2011年考研数学线性代数必考的知识点

合集下载

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。

通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。

在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。

作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。

本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。

二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。

重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。

2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。

3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。

三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。

重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。

2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。

3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。

四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。

重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。

2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。

3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。

五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。

重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。

2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。

3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。

线性代数的重点知识点总结

线性代数的重点知识点总结

线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。

在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。

本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。

1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。

向量可以表示为一个有序的数列,也可以表示为一个列矩阵。

矩阵是由多个向量按照一定规则排列而成的矩形阵列。

矩阵可以进行加法、减法和数乘等运算。

矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。

2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。

线性方程组的求解可以通过消元法、矩阵的逆等方法进行。

当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。

3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。

子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。

子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。

子空间的维度等于基向量的个数。

4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。

线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。

线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。

5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。

特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。

特征值和特征向量可以通过求解线性方程组来得到。

6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。

内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。

数学线性代数重点知识点

数学线性代数重点知识点

数学线性代数重点知识点在数学中,线性代数是一门研究向量空间和线性映射的数学分支。

它涉及到矩阵、向量、线性方程组以及线性变换等概念。

线性代数在数学、物理学、计算机科学等领域广泛应用。

下面将介绍线性代数的几个重点知识点。

1. 向量和矩阵向量是一组有序的数集,可以表示为列向量或行向量。

矩阵是由多个向量组成的矩形排列的数组。

矩阵有各种类型,如方阵、对称矩阵、特殊矩阵等。

向量和矩阵可以进行加法、减法和乘法运算。

2. 线性方程组线性方程组是由一组线性方程组成的方程组。

方程组中的未知数称为变量,通过求解变量的值,可以确定方程组的解集。

线性方程组可以用矩阵和向量表示,称为矩阵方程。

3. 行列式行列式是矩阵的一个标量值。

它是一个用于描述矩阵特性的重要工具。

行列式有多种计算方法,如拉普拉斯展开和三角化等。

行列式的值可以用来判断矩阵是否可逆,以及计算矩阵的逆和求解线性方程组等。

4. 特征值和特征向量特征值和特征向量是矩阵的重要特性。

特征向量是指在一次线性变换后方向不变的向量,其长度可以改变。

特征值是对应于特征向量的标量值。

通过求解特征值和特征向量,可以对矩阵进行分解和求解矩阵的幂等问题。

5. 内积和正交性内积是一种向量之间的运算,可以用来计算夹角、长度和投影等。

内积满足交换律和分配律。

正交向量是指两个向量的内积为零,它们之间的夹角为90度。

正交向量在向量空间的正交基和正交矩阵中有广泛应用。

6. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,保持了向量的线性性质。

线性变换可以用矩阵表示,称为线性变换矩阵。

线性变换有许多重要的类型,如旋转、缩放和投影等。

7. 最小二乘法最小二乘法是一种用于求解线性方程组的近似解的方法。

它通过最小化残差的平方和来确定拟合曲线或者求解过定、欠定线性方程组。

最小二乘法在数据拟合、曲线拟合和参数估计等问题中有广泛应用。

总结:以上是数学线性代数的几个重点知识点。

线性代数是数学中的重要分支,对于理解和解决复杂的数学问题和实际应用具有重要意义。

考研数学线性代数复习要点

考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。

线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。

以下是为大家梳理的线性代数复习要点。

一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。

1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。

对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。

2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。

这些性质在行列式的计算中经常用到。

3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。

二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。

1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。

要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。

2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。

3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。

矩阵的秩在判断线性方程组解的情况等方面有重要应用。

4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。

三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。

1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。

2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。

3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。

4、向量空间了解向量空间的基本概念,如基、维数等。

四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。

1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学三必背知识点:线性代数

考研数学三必背知识点:线性代数

线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i >时,我们称21i i 组成一个逆序。

一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i τ 2、行列式性质(1) 行列式行列互换,其值不变,即TAA =(2) 行列式两行或两列互换,其值反号。

(3) 行列式某行或某列乘以k 等于行列式乘以k 。

(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。

(5) 行列式两行或两列对应成比例,则行列式为零。

(6) 行列式某行或某列元素为零,则行列式为零。

(7) 上、下三角行列式其值为主对角线上元素乘积。

(8) 行列式值等于对应矩阵所有特征值的乘积,即n A λλλ 21= (9) 齐次线性方程组0=Ax有非零解n A r A <⇔=⇔)(03、行列式行列展开定理 (1) 余子式ijji ijA M +-=)1( (2) 代数余子式ijji ijMA +-=)1(4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。

(2) 矩阵乘法是将对应行与对应列元素相乘再相加。

(3) 矩阵除法是乘以逆矩阵。

(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。

(5)n阶方阵一般可以有1*,,,-AA A A T 四大基本矩阵运算2、矩阵的行列式(1) A k kA A A n T ==, (2) A B B A BA AB === 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A ==+=+=)(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A ==--4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,AkkA A B AB AA A AA E A A A AA A A A n n -----=======(2)1)(0)(1)(1)()()(***-<⇔=-=⇔==⇔=n A r A r n A r A r nA r n A r5、逆矩阵 (1)1111*111111*1)(,1)(,,)(,,1-----------=======ABAB A AA AAA AE A AAAA AA(2) 分块矩阵的逆矩阵 ①111---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭AO A O OB O B (主对角分块)② 111OA O BB O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(副对角分块) ③11111AC A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭(拉普拉斯)④ 11111A O A O C B B C A B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭(拉普拉斯)6、矩阵初等变换(1) 交换矩阵两行或两列(2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵7、矩阵其他考点(1) 行列矩阵相乘:α为行矩阵),,(21n a a a ,β为列矩阵),,(21n b b b , 则βααβααβαβββαβαβαβα1)()()()())(()(-===k k(2) 矩阵n A 的求法:若A 可对角化,则有Λ=-AP P 1,于是1-Λ=P P A n n (3) 若n B r m A r ==)(,)(,则有m A r B A r =≤+)()(且n B r B A r =≤+)()(三、向量1、向量运算:βαβαλβαλβααββαk k k ±=±±±=±±±=±)(),()(,2、线性表示对于向量组s ααα ,,21和向量β,若存在一组数s k k k ,,21使得s s k k k αααβ+++= 2211 (1) 若s s k k k αααβ+++= 2211有唯一解,则β能由向量组s ααα ,,21唯一线性表示。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

线性代数中必考知识点归纳总结

线性代数中必考知识点归纳总结

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A;3. 代数余子式和余子式的关系:(1)(1)i j i j ijij ij ijMA A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式(=◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A CA B C B O B==、(1)m n C A O AA B B O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵: ⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪=⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF O O ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线性方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素; ③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-mnn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m m m m r n r r nnn nnn n n r C CCC CC rC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、111211*********2n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12nb b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出Ax b ⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关; 若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关; ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14.12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭有非零解,即0Ax =有非零解; ⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0Ti j i j a a i j n i j =⎧==⎨≠⎩;②、若A 为正交矩阵,则1TA A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B ,其中可逆;⇔T x Ax 与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门重要的数学学科,在许多领域都有广泛的应用,如计算机科学、物理学、工程学等。

下面将对线性代数的一些关键知识点进行归纳整理。

一、行列式行列式是线性代数中的一个基本概念。

它是一个数值,可以通过特定的计算规则得到。

对于二阶行列式,其计算公式为:\\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc \对于三阶行列式,计算相对复杂些,可通过按行(列)展开来计算。

行列式具有一些重要的性质,例如:1、行列式转置后其值不变。

2、某行(列)元素乘以一个数加到另一行(列)的对应元素上,行列式的值不变。

行列式的应用包括求解线性方程组、判断矩阵是否可逆等。

二、矩阵矩阵是线性代数中的核心概念之一。

矩阵的定义:由\(m×n\)个数排成的\(m\)行\(n\)列的数表称为\(m×n\)矩阵。

矩阵的运算包括加法、减法、数乘、乘法等。

1、矩阵加法和减法要求两个矩阵具有相同的行数和列数,对应元素相加减。

2、数乘矩阵是将矩阵中的每个元素乘以一个数。

3、矩阵乘法需要前一个矩阵的列数等于后一个矩阵的行数,乘法运算不满足交换律。

矩阵的转置是将矩阵的行和列互换得到的新矩阵。

逆矩阵是一个重要概念,若矩阵\(A\)可逆,则存在矩阵\(B\),使得\(AB = BA = I\),其中\(I\)为单位矩阵。

三、向量向量可以看作是一组有序的数。

行向量是一行数,列向量是一列数。

向量的运算包括加法、减法、数乘。

向量组的线性相关性是一个重要内容。

如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称该向量组线性相关;否则称线性无关。

四、线性方程组线性方程组可以表示为矩阵形式\(Ax = b\)。

线性方程组的解分为有解和无解的情况。

1、有解时,可能有唯一解或无穷多解。

2、无解时,方程组矛盾。

通过高斯消元法可以求解线性方程组。

五、特征值与特征向量对于矩阵\(A\),如果存在非零向量\(x\)和数\(\lambda\),使得\(Ax =\lambda x\),则\(\lambda\)称为矩阵\(A\)的特征值,\(x\)称为对应于特征值\(\lambda\)的特征向量。

考研数学线性代数重点知识

考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。

下面我们就来详细梳理一下线性代数中的重点知识。

一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。

计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。

其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。

行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。

行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。

二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。

矩阵的运算有加、减、乘、数乘。

矩阵乘法需要注意其规则,不满足交换律。

逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。

三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。

判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。

极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。

向量组的秩等于其极大线性无关组所含向量的个数。

四、线性方程组线性方程组是线性代数的重点应用之一。

齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。

非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。

求解线性方程组可以使用高斯消元法。

五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。

求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。

[考研数学]2011数三考试大纲

[考研数学]2011数三考试大纲

华中农业大学硕士研究生入学考试数学(308)考试大纲[考试科目] 微积分、线性代数、概率论微积分一、函数、极限、连续考试内容函数的概念及其表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及其图形初等函数数列极限与函数极限的概念函数的左极限和右极限无穷小和无穷大的概念及其关系无穷小的基本性质及阶的比较极限四则运算两个重要极限函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数、反函数、隐函数和分段函数的概念。

4.掌握基本初等函数的性质及其图形,理解初等函数的概念。

5.会建立简单应用问题中的函数关系式。

6.了解数列极限和函数极限(包括左、右极限)的概念。

7.了解无穷小的概念和其基本性质,掌握无穷小的阶的比较方法,了解无穷大的概念及其与无穷小的关系。

8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹逼定理),掌握极限四则运算法则,会应用两个重要极限。

9.理解函数连续性的概念(含左连续与右连续)。

10.了解连续函数的性质和初等函数的连续性。

了解闭区间连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。

二、一元函数微分学考试内容导数的概念函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则罗尔(Rolle)定理和拉格朗日(lagrange)中值定理及其洛必达(L'Hospital)法则函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念)。

2.掌握基本初等函数的导数公式、导数的四则运算法则及复函数的求导法则;掌握反函数与隐函数求导法,了解对数求导方法。

2011年考研数学考试大纲数二

2011年考研数学考试大纲数二

2011 年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为 150 分,考试时间为 180 分钟 .二、答题方式答题方式为闭卷、笔试 .三、试卷内容结构高等教学 78%线性代数 22%四、试卷题型结构试卷题型结构为:单项选择题8 小题,每小题 4 分,共 32 分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性 .3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系 .6.掌握极限的性质及四则运算法则 .7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法 .8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限 .9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达( L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系 .2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式 . 了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数 .4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数 .5.理解并会用罗尔( Rolle )定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor )定理,了解并会用柯西 ( Cauchy )中值定理 .6.掌握用洛必达法则求未定式极限的方法 .7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用 .8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数 . 当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形 .9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿 - 莱布尼茨 (Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法 .3.会求有理函数、三角函数有理式和简单无理函数的积分 .4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分 .6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值 .四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义 .2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题 .5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标) .五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理 .5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程 .6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程 .7.会用微分方程解决一些简单的应用问题 .线性代数一、行列式行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质 .2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质 .2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质 .3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件 . 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 .4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法 .5.了解分块矩阵及其运算 .考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念 .2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法 .3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩 .4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特( Schmidt )方法 .四、线性方程组考试内容线性方程组的克莱姆( Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则 .2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件 .3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法 .4.理解非齐次线性方程组的解的结构及通解的概念 .5.会用初等行变换求解线性方程组 .五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1. 理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵 .3.理解实对称矩阵的特征值和特征向量的性质 .六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念 .2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形 .3.理解正定二次型、正定矩阵的概念,并掌握其判别法 .。

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。

它在数学、物理、工程、计算机科学等领域都有广泛的应用。

下面将对线性代数的一些重要知识点进行归纳整理。

1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。

向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。

2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。

线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。

3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。

解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。

4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。

矩阵可以表示线性映射、线性方程组和向量空间的基等。

矩阵的运算包括加法、数乘、矩阵乘法和转置等。

5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。

行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。

6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。

特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。

特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。

7.正交性:正交性是指向量之间的垂直关系。

在内积空间中,如果两个向量的内积为零,则它们是正交的。

正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。

8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。

如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

随机变量之于概率正如矩阵之于线性代数。

考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。

所以随机变量的理解至关重要。

讨论完随机变量之后,讨论其描述方式。

分布即为描述随机变量的方式。

分布包括三种:分布函数、分布律和概率密度。

其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。

之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。

考研数学 线性代数(高等代数)重点知识整理总结

考研数学 线性代数(高等代数)重点知识整理总结

考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。

2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。

重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。

(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

(4)行列式具有分行(列)可加性。

行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。

(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。

余子式ij M 、代数余子式ij ji ij M A +-=)1(。

(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。

定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。

逆否:若方程组存在非零解,则D 等于零。

③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。

④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。

店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。

考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。

不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。

举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。

这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。

以后解这一类题就会顺畅很多。

考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。

考研数学线性代数有哪些考点

考研数学线性代数有哪些考点

考研数学线性代数有哪些考点考研数学线性代数有哪些考点线性代数在考研数学中占比22%,因此,学好线代很关键,我们需要掌握好它的考点。

店铺为大家精心准备了考研数学线性代数重点考点,欢迎大家前来阅读。

考研数学线性代数六大考点一是行列式部分,强化概念性质,熟练行列式的求法。

在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。

另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

二是矩阵部分,重视矩阵运算,掌握矩阵秩的应用。

通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。

涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

三是向量部分,理解相关无关概念,灵活进行判定。

向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。

如何掌握这部分内容呢?首先在于对定义概念的理解,然后就是分析判定的'重点,即:看是否存在一组全为零的或者有非零解的实数对。

基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

四是线性方程组部分,判断解的个数,明确通解的求解思路。

线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数是考研数学中的重要一部分,是以线性代数为基础的高等数学课程。

线性代数在科学与工程中有着广泛的应用,而考研数学线性代数的知识点主要包括矩阵、行列式、线性方程组、特征值与特征向量、线性空间和线性变换等内容。

一、矩阵1.矩阵的基本运算:矩阵的加减法、数乘、乘法及其性质;2.矩阵的转置、对称与反对称矩阵、单位矩阵;3.矩阵的秩:元素型和行列型定义、秩的性质和计算方法;4.矩阵的逆:可逆矩阵与非奇异矩阵、矩阵的逆的存在性和计算方法;5.矩阵的秩公式和分块矩阵。

二、行列式1.行列式的定义:n阶行列式的定义、性质和计算方法;2.行列式的性质:行列式的性质和性质导出的定理;3.方阵的行列式的计算:按行(列)展开、对角线法则、拉普拉斯展开;4.计算商工差、计算行列式的特殊方法;5.行列式的应用:方阵可逆的判定、线性方程组的解的存在性与唯一性、向量线性相关与线性无关的判定。

三、线性方程组1.线性方程组的线性组合与线性相关性;2.齐次方程组与非齐次方程组的概念;3.齐次线性方程组的基础解系与通解;4.线性方程组的求解方法:初等变换法、高斯消元法、矩阵法;5.线性方程组的解的判别准则:齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件。

四、特征值与特征向量1.特征值与特征向量的定义;2.特征值与特征向量的性质:特征值的性质、特征向量的性质;3.对角化与相似矩阵:矩阵的相似与相似矩阵的性质;4.对称矩阵的主轴定理和谱定理;5.特征值与特征向量的计算方法。

五、线性空间与线性变换1.线性空间的定义和性质;2.线性子空间的定义和性质;3.线性相关与线性无关性质的判定;4.线性空间的基与维数的概念;5.线性变换的定义和性质:线性变换的线性性质、线性变换的像与核。

以上就是考研数学线性代数必考的主要知识点。

掌握了这些知识点,可以帮助考生有效准备考研数学线性代数的复习和应对考试,为取得良好成绩打下坚实的基础。

线性代数各章复习重点汇总

线性代数各章复习重点汇总

线性代数各章复习重点汇总线性代数是数学的一个重要分支,研究向量空间、线性变换、线性方程组等概念和性质。

下面是线性代数各章的复习重点汇总。

1.线性方程组:-线性方程组的基本概念和性质,包括齐次线性方程组、非齐次线性方程组等。

-线性方程组的解的存在性与唯一性,以及求解线性方程组的方法(高斯消元法、矩阵求逆法、克拉默法则等)。

-线性方程组的等价关系与等价变换。

2.矩阵与行列式:-矩阵的基本概念和性质,如矩阵的加法、减法、乘法等运算。

-方阵的特殊性质,如对称矩阵、反对称矩阵、单位矩阵等。

-行列式的定义和性质,包括行列式的展开定理、行列式的性质推导等。

3.向量空间:-向量空间的定义和性质,如线性相关性、线性无关性、基、维数等。

-子空间的概念和性质,包括子空间的交、和、直和等操作。

-线性组合、张成空间、极大线性无关组等概念。

4.线性变换与矩阵:-线性变换的定义和性质,包括线性变换的特征值、特征向量等。

-线性变换的矩阵表示,以及矩阵与线性变换之间的转换关系。

-线性变换的合成、逆变换等操作,以及线性变换的标准形式(例如,矩阵的对角化)。

5.特征值与特征向量:-特征值与特征向量的定义和性质,包括特征值的重数、特征向量的线性无关性等。

-特征值与特征向量的计算方法,如特征方程的求解、特征值的代入等。

-特征值与特征向量的应用,如对角化矩阵、相似矩阵等。

6.正交性与标准正交基:-向量的正交性和标准正交性的概念和性质,包括向量的点积、向量的夹角等。

-标准正交基的定义和求解方法,如施密特正交化过程等。

-正交矩阵的定义和性质,以及正交矩阵与标准正交基之间的关系。

以上是线性代数各章的复习重点汇总,希望能够帮助你理清知识重点,并提高复习效率。

祝你取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年线性代数必考的知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A;3. 代数余子式和余子式的关系:(1)(1)i ji jij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4D D=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -⨯ -; ⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m nC A O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A,恒有:1(1)nnkn kk k EA S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明A =的方法: ①、A A=-;②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()r A n<;⑤、证明0是其特征值;2、矩阵1.A 是n阶可逆矩阵:⇔0A≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax=有非零解;⇔nb R∀∈,Axb=总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔TA A是正定矩阵;⇔A 的行(列)向量组是nR 的一组基;⇔A 是nR中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()TTTT A A A A A A ----===***111()()()TTTA B B A A B B A A B BA---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA A A A = ;Ⅱ、111121s A A AA ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B OB ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O BB O A O ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE O FOO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B=⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Axb=,如果(,)(,)rA b E x ,则A 可逆,且1xA b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n+≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:0111111()nnnn m n mmn n n nmm n mn n n n n nm a b C a C ab C abC a bC bCa b-----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnn n n n n n m n C C C mm n mⅢ、组合的性质:11112---+-===+==∑nmn mmmm r nr r n nn n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1A A A-=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n<,A 中有n 阶子式全部为0;③、()r A n≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Axb=为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m n m n n a x a x a x b a x a x a x b a x a x a x b+++= ⎧⎪+++=⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b a a a x bA x b a a a x b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A nβ=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα;m个n 维行向量所组成的向量组B :12,,,T T Tmβββ 构成m n ⨯矩阵12T T T mB βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5.n维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则rs≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ == 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA BPA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B A Q B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m A Q E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax=有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r=-;16. 若*η为Axb=的一个解,12,,,n r ξξξ- 为0Ax=的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E⇔=或1TA A-=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TA A-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]rr r rr r r r r b a b a b a b a b b bb b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与Tx Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档