八年级上学期数学整式的乘除与因式分解单元测试题(有完整答案)
【人教版】八上:《整式的乘除与因式分解》全检测题(附标准答案)
4.将(2x)n-81 分解因式后得(4x2+9)(2x+3)(2x-3),则 n 等于()
A.2B.4C.6D.8
5.若 m=2100,n=375,则 m,n 的大小关系是()
A.m>nB.m<nC.m=nD.无法确定
6.已知 a+b=3,ab=2,则 a2+b2 的值为()
A.3B.4C.5D.6
2
8
__1000____(n+1)2-1=n(n+2)__
4 解:原式=x2+4xy 解:原式=- a3b2
3 解:原式=9604 原式=810000 解:原式=2a(3a+1)(3a-1) 解:原式=(ab-3)2 解:原式=(m-n)(m+n+2)
1 解:原式=4-2ab,当 ab=- 时,原式=
2/4
要进“5000G网课视频共享群”的到QQ:763491846的空间日志查看(另有全部学科的300个资料群)
资料下载来源:黄冈中学资料共享群:761889459,全国初中数学教师群:95837671.
(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中 x=-5,y=2.
23.(8 分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计 划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当 a=3, b=2 时的绿化面积.謀荞抟箧飆鐸怼类蒋薔。
2 解:原式=-2x-5y,当 x=-5,y=2 时,原式=0 解:绿化面积为(3a+b)(2a+b)-(a+b)2=5a2+3ab(平方米).当 a=3,b=2 时,5a2+ 3ab=63,即绿化面积为 63 平方米籟丛妈羥为贍偾蛏练淨。 解:(n+7)2-(n-3)2=(n+7+n-3)(n+7-n+3)=20(n+2),∴一定能被 20 整除預頌圣
第14章 整式乘除与因式分解 单元同步检测试题 2022—2023学年人教版数学八年级上册
第十四章《整式的乘法与因式分解》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a62.下列因式分解正确的是()A. x2﹣4=(x+4)(x﹣4) B. x2+2x+1=x(x+2)+1C. 3mx﹣6my=3m(x-6y) D. 2x+4=2(x+2)3.下列因式分解错误的是()A. 2a﹣2b=2(a-b) B. x2﹣9=(x+3)(x﹣3)C. a2+4a-4=(a+2)2 D. -x2-x+2=-(x-1)(x+2)4.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.15.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7. 如果单项式-2x a-2b y2a+b与x3y8b是同类项,那么这两个单项式的积是()A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y168. 化简(-2)2n+1+2(-2)2n的结果是()A.0 B.-22n+1 C.22n+1 D.22n9. 因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3)C.(x-2)(x-3) D.(x+2)(x+3)10. 如图,设k =甲阴影部分的面积乙阴影部分的面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1D .0<k <12二、填空题(每题3分,共24分)11.计算:223()32x y --=__________.12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________. 13.当x __________时,(x -4)0=1.14.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为_______. 15.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 16.已知3a =5,9b =10,则3a +2b 的值为________. 17.已知A =2x +y ,B =2x -y ,计算A 2-B 2=________. 18.如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
八年级上学期数学整式乘除与因式分解单元测试题有完整答案
《整式的乘除与因式分解》单元测试题考试时间: 100 分钟,试卷满分150 分一.选择题(共 5 小题,每题 4 分,共 20 分)1、以下运算正确的是 ( )A 、 8x 9 4x 3 2x 3B 、 4a 2b 3 4a 2 b 3C 、 a2 mama2D、 2ab 2c( 1ab 2) 4c22、计算 ( 2) 2003×1.5 2002×(-1) 2004 的结果是 ()3A 、2B 、3C 、-2D 、- 32 3323、以下多项式乘法中可以用平方差公式计算的是()( a b)(ab)( x 2)(2x)11 )A 、B 、C 、( xy)( yD 、( x 2)( x1)3 x34、把代数式 ax2- 4ax+4a2分解因式,以下结果中正确的是 ( )A a(x-2)2 B a(x+2)2 C a(x-4)2 D a(x-2) (x+2)5、在边长为 a 的正方形中挖去一个边长为 b 的小正方形 ( a >b ) ,再沿虚线剪开,如图①,而后拼成一个梯形,如图②,依据这两个图 形的面积关系,表示以下式子建立的是()。
A 、a 2+b 2=( a +b )( a -b )B 、( a +b ) 2=a 2+2ab +b 2C 、( a -b ) 2=a 2 -2ab +b 2D 、a 2-b 2=( a -b ) 2二.填空题(共 5 小题,每题 4 分,共 20 分)b b ba图①a图②a(第 5 题图 )6、使用乘法公式计算: ( 2 a-b)(2a+b)=33(-2x-5)(2x-5)=7、计算: 5a 5 b 3c 15a 4b8、若 a+b=1,a-b=2006 ,则 a2-b 2=9、在多项式 4x2+1 中增添一个单项式,使其成为完整平方式,则添加的单项式为(只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y-2xy 2,商式一定是 2xy,则小亮报一个除式是。
八年级上册整式的乘法与因式分解单元试卷(word版含答案)
八年级上册整式的乘法与因式分解单元试卷(word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30 B .32 C .18- D .9【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.2.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.3.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()【答案】A【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.4.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于( ) A .0B .52C .52-D .25 【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=- 15322=-=-; 把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+= ⎪ ⎪⎝⎭⎝⎭. 故选:A .【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.5.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .6.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.7.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.8.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.9.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a =6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.因式分解:a 3-9ab 2=__________.【答案】a (a -3b )(a +3b )【解析】【分析】首先提取公因式a ,进而利用平方差公式分解因式得出即可.【详解】a 3-9ab 2=a (a 2-9b 2)=a (a-3b )(a+3b ).故答案为:a (a-3b )(a+3b ).【点睛】本题考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题的关键.12.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7.故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-= 解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.17.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.18.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.19.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+20.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
《整式的乘法与因式分解》单元检测题(含答案)
故选A.
【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
2.下列等式成立的是( )
A.3a2-2a2=1B.(2x+y)2=4x2+y2C.a2-4=(a-2)2D.2a2b·3a2b2=6a4b3
【答案】D
【解析】
【分析】
考点:因式分解-运用公式法.
12.如果实数x、y满足方程组 那么x2-y2的值为______.
【答案】﹣ .
【解析】
,
由②得x+y= ,
则x2﹣y2=(x+y)(x﹣y)= ,
故答案为 .
13.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为__.
【答案】9
【解析】
∵m−n=2,mn=−1,
【详解】A.原式=−m(a+1),故A错误;
B.原式=(a+1)(a−1),故B错误;
C.原式=(a−3)2,故C正确;
D.该多项式不能因式分解,故D错误,
故选:C
【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
4.计算1.252 017× 的值是( )
A. B. C. 1D. -1
故选A.
【点睛】此题是因式分解的应用,主要考查了完全平方公式,提公因式,解本题的关键是用完全平方公式a2+2ab+b2=(a+b)2.
8.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()
A.是0
B.总是奇数
C.总是偶数
D.可能是奇数也可能是偶数
【答案】C
【解析】
八年级上册数学整式的乘除与因式分解精选练习题及答案
整式的乘除与因式分解精选练习题(一)一、填空题(每题2分,共32分)1.-x2·(-x)3·(-x)2=__________.2.分解因式:4mx+6my=_________.3.___ ____.4._________;4101×0.2599=__________.5.用科学记数法表示-0.0000308=___________.6.①a2-4a+4,②a2+a+,③4a2-a+,•④4a2+4a+1,•以上各式中属于完全平方式的有______(填序号).7.(4a2-b2)÷(b-2a)=________.8.若x+y=8,x2y2=4,则x2+y2=_________.9.计算:832+83×34+172=________.10..11.已知.12.代数式4x2+3mx+9是完全平方式,则m=___________.13.若,则,.14.已知正方形的面积是(x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式.15.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________.16.已知,那么_______.二、解答题(共68分)17.(12分)计算:(1)(-3xy2)3·(x3y)2;(2)4a2x2·(-a4x3y3)÷(-a5xy2);(3);(4).18.(12分)因式分解:(1);(2);(3);(4).19.(4分)解方程:.20.(4分)长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的.求原面积.21.(4分)已知x2+x-1=0,求x3+2x2+3的值.22.(4分)已知,求的值.3.(4分)给出三个多项式:,,4.(4分)已知,求的值.6.(4分)已知,试判断此三角形的形状.答案一、填空题1.x7 2.3.4.5.6.①②④7.8.12 9.10000 10.11.2 12.13.14. 15. 16.65二、解答题17.(1)-x9y8;(2)ax4y;(3);(4)18.(1);(2);(3);(4)19.3 20.180cm21.4 22.4 23.略24.7 25. 26.等边三角形。
经典资料:初二数学《整式的乘除与因式分解》习题(含答案)
整式的乘除与因式分解 一、选择题 1.下列计算中,运算正确的有几个( (1) a +a =a
5 5 10
)
2
(2)
(a+b) =a +b (3) (-a+b)(-a-b)=a B 、1 个
5 3
3
3
3
-b
2
(4)
(a-b) = -(b-a) D 、3 个
3
3
A、 0 个
3 5
C ) C
、2 个
2 2 2 2
B D
2
+ab-2b
2
7,
a b
3, 则 3 2
与
的值分别是 C.5,1 D. 10,
(
ห้องสมุดไป่ตู้
) 3 2
B. 2,
b
2
, a b 的值等于
2
1 2 1 2.已知 a- =3 ,则 a + 2 a a
2 2
・ k = ________________ ;
3.如果 x - kx + 9y 是一个完全平方式,则常数
部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一 个等式,则这个等式是( A. a -b =(a+b)(a-b) C . (a-b) =a -2ab+b 6. 已知 a b A. 4,1 二、填空题 1.若 a b
3 , ab 2 ,则 a
2 2 2 2 2 2 2
) . (a+b) =a +2ab+b . (a+2b)(a-b)=a
y=2; 7. 2( x+y+z); 8. B
第4 页 共 4 页
2
八年级上册整式的乘法与因式分解单元练习(Word版 含答案)
八年级上册整式的乘法与因式分解单元练习(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知226a b ab +=,且a>b>0,则a b a b+-的值为( )A B C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a ba b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.2.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =【解析】()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -= 【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C5.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.6.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 【答案】D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.8.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x 【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意;【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b ,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.14.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.15.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.16.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.17.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.18.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.19.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.20.若=2m x ,=3n x ,则2m n x 的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.。
《整式的乘法与因式分解》单元测试题带答案
【点睛】本题考查了幂的乘方与积的乘方,解决本题的根据是熟记幂的乘方与积的乘方的定义.
12.分解因式:4x2-2x=.
【答案】 .
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式2x即可: .
【答案】D
【解析】
【分析】
多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.依据法则运算,展开式不含关于字母a的一次项,那么一次项的系数为0,就可求m的值.
【详解】解:∵(a+m)(a+ )=a2+(m+ )a+ •m,
又∵不含关于字母a的一次项,
∴m+ =0,
∴m=- .
【解析】
【分析】
原式利用平方差公式计算即可求出值.
【详解】解:原式=(x2-1)(x2+1)-(x4+1)=x4-1-(x4+1)=-2,
故选C.
【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
9.计算(a+m) 的结果不含关于字母a的一次项,那么m等于()
A.2B.-2C. D.-
3.计算(2a)3·a2的结果是【】
A.2a5B.2a6C.8a5D.8a6
4.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()
A.4a-3bB.8a-6b
C.4a-3b+1D.8a-6b+2
5.多项式a-b+c(a-b)因式分解的结果是()
A. (a-b)(c+1)B. (b-a)(c+1)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)
人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、722.利用因式分解计算:2100﹣2101=( )A 、﹣2B 、2C 、2100D 、﹣21003.设x 为正整数,若1x +是完全平方数,则它前面的一个完全平方数是( )A.xB.1x -C.1x -D.2x -4.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A.1a +B.21a +C.221a a ++D.1a +5.因式分解:1﹣4x 2﹣4y 2+8xy ,正确的分组是( )A 、(1﹣4x 2)+(8xy ﹣4y 2)B 、(1﹣4x 2﹣4y 2)+8xyC 、(1+8xy )﹣(4x 2+4y 2)D 、1﹣(4x 2+4y 2﹣8xy )6.观察下列各式:①abx ﹣adx ;②2x 2y+6xy 2;③8m 3﹣4m 2+2m+1;④a 3+a 2b+ab 2﹣b 3;⑤(p+q )x 2y ﹣5x 2(p+q )+6(p+q )2;⑥a 2(x+y )(x ﹣y )﹣4b (y+x ).其中可以用提公因式法分解因式的有( )A 、①②⑤B 、②④⑤C 、②④⑥D 、①②⑤⑥7.如果ax (3x ﹣4x 2y+by 2)=6x 2﹣8x 3y+6xy 2成立,则a 、b 的值为( )A 、a=3,b=2B 、a=2,b=3C 、a=﹣3,b=2D 、a=﹣2,b=38.把多项式ac ﹣bc+a 2﹣b 2分解因式的结果是( )A 、(a ﹣b )(a+b+c )B 、(a ﹣b )(a+b ﹣c )C 、(a+b )(a ﹣b ﹣c )D 、(a+b )(a ﹣b+c )9.下列哪项是x 4+x 3+x 2的因式分解的结果( )A 、x 2(x 2+x )B 、x (x 3+x 2+x )C 、x 3(x+1)+x 2D 、x 2(x 2+x+1)10.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为( )A 、182B 、180C 、32D 、30二 、填空题(本大题共5小题,每小题3分,共15分)11.计算:332(3)_____a a ⋅=12.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 .13.如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.14.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=15.若2310x x x +++=,那么220081x x x +++⋅⋅⋅+=三 、解答题(本大题共7小题,共55分)16.计算:⑴222(30.5)a b ab + ⑵2(1113)m n a b - ⑶2(25)(52)(25)x x x ----17.⑴化简:()()2121x x ++- ⑵化简:()()()12282a b a b b a b +---18.分解因式:⑴256x x ++⑵256x x -+ ⑶276x x ++ ⑷276x x -+19.分解因式:22(1)1a b b b b -+-+-20.分解因式:325153x x x --+21.比较n a 与2n a +(a 为正数,n 为正整数)的大小.22.分解因式:22()4a b ab c -+-人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一、选择题1.原式=(13x﹣17)(19x﹣31﹣11x+23)=(13x﹣17)(8x﹣8)∵可以分解成(ax+b)(8x+c),∴a=13,b=﹣17,c=﹣8,∴a+b+c=﹣12.故选A.2.D;2100﹣2101=2100﹣2100×2=2100(1﹣2)=﹣2100.故选D.3.D;设21y x=+,则y=22(1)21112y y y x x-=-+=+-=-,故选D.4.D;∵自然数a是一个完全平方数,∴a a的算术平方根大11,∴这个平方数为:21)1a=+.故选D.5.D;1﹣4x2﹣4y2+8xy=1﹣(4x2+4y2﹣8xy).6.D7.B8.A;ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).9.D10.A;设另一条直角边的长度为x,斜边的长度z,则z2﹣x2=132,且z>x,∴(z+x)(z﹣x)=169×1,∴{z+x=169z﹣x=1,∴三角形的周长=z+x+13=169+13=182.故选A.二、填空题11.546a12.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.13.解:原式=32(15)4x a x ax a +--+∵不含2x 项,∴150a -=,解得15a =14.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.15.解:原式235232005231(1)(1)(1)1x x x x x x x x x x x x =+++++++++⋅⋅⋅++++=三 、解答题16.⑴222423324(30.5)930.25a b ab a b a b a b +=++;⑵222(1113)121286169m n m m n n a b a a n b -=-+;⑶22222(25)(52)(25)(25)(25)2(25)84050x x x x x x x x ----=----=--=-+-.17.⑴23x +;⑵ 212a ab -18.⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --19.222(1)1(1)(1)a b b b b a b b -+-+-=--+20.322251535(3)(3)(51)(3)x x x x x x x x --+=---=--或322225153(51)3(51)(51)(3)x x x x x x x x --+=---=--21.方法1∵0a >,n 为正整数,∴0n a >,∵22n n a a a +=⋅,∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=③当01a <<,则21a <,则2n n a a +<.方法2∵0a >,n 为正整数,∴0na >,∵22n n a a a +=, ∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=; ③当01a <<,则21a <,则2n n a a +<.22.22()4a b ab c -+- 22224a ab b ab c =-++-222222()a ab b c a b c =++-=+- ()()a b c a b c =+-++。
(完整word版)八年级数学整式的乘除与因式分解单元测试题
第十五章 整式的乘除与因式分解 单元测试题一、选择题(每小题3分,共36分)1.下列各单项式中,与42x y 是同类项的为( ) (A) 42x . (B) 2xy . (C) 4x y . (D)232x y 2.()()22x a xax a -++的计算结果是( )(A) 3232x ax a +-.(B) 33x a -.(C) 3232xa x a +-.(D)222322x ax a a ++-3.下面是某同学在一次测验中的计算摘录 ①325a b ab +=; ②33345mn mn m n -=-;③3253(2)6x x x -=-g; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )(A)1个. (B)2个. (C)3个. (D)4个.4.小亮从一列火车的第m 节车厢数起,一直数到第2m 节车厢,他数过的车厢节数是( ) (A)23m m m +=. (B)2m m m -=. (C)211m m m --=-.(D)211m m m -+=+. 5.下列分解因式正确的是( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-.6.如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
若c RS LM ==,则花园中可绿化部分的面积为( )DQ P 铜陵第七中学 初二( )班 姓名: 编号:装 订 线(A)2bc ab ac b -++. (B)2a ab bc ac ++-. (C)2ab bc ac c --+. (D)22bbc a ab -+-.二、填空题(每小题4分,共28分)7.(1)当x 时,()04x -等于 .(2)()()2002200320042 1.513⎛⎫⨯÷-= ⎪⎝⎭8.分解因式:2212a b ab -+-=9.如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示,则打包带的长至少要 (单位:mm) (用含z 、y 、z 的代数式表示)(第9题)10.如果()()22122163a b a b +++-=,那么a b +的值为 .11.下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如()na b +(n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出()4a b +展开式中所缺的系数.()a b a b +=+()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++则()4432234a b a a b a b ab b +=++++ … … … …12.某些植物发芽有这样一种规律;当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 (精确到0.001)第×年 1 2 3 4 老芽数Za3a5a13.某体育馆用大小相同的长方形木板镶嵌地面,第1次铺2块,如图(1);第2次把第1次铺的完全围起来,如图(2);第3次把第2次铺的完全围起来,如图(3);….依此方法,第”次铺完后,用字母”表示第”次镶嵌所使用的木板数——(1)(2)(3)三、解答题14.(10分)计算:()22232()3x x y xy y x x y x y⎡⎤---÷⎣⎦15.(18分)已知:()222,2m n n m m n=+=+≠,求:332m mn n-+的值.16.(18分)某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.3次降价处理销售结果如下表:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利?测试题题答案l. C ;2.B ;3.B ;4.D ;5.B ;6.C ; 7.(1)≠4,1,(2)32.8.()()11a b a b ---+.9.(2x+4y+6z)mm . 10.士4.11.4.6.4.12.0.618.提示:由题意易知,后一年的老芽数是前一年老芽数和新芽数的和,后一年的新芽数是前一年的老芽数.所以第8年的老芽数为21a ,新芽数为13a ,总芽数为34a ,老芽数与总芽数的比值约为0·618. 13.()221242n n n n -=-.提示:第1次铺有2=1×2块; 第2次铺有12=3×4块; 第3次铺有30=5×6块; ……第n 次铺完后共有()()221242n n n n -=-块. 14.原式2233xy =- 15.解:∵332(2)2(2)2()m mn n m n mn n m m n -+=+-++=+ ∵22(2)(2)m n n m n m -=+-+=- 又∵22()()m n m n m n -=+- ∴()()m n m n n m +-=- ∵m n ≠∴1m n +=- 故原式=2(1)2⨯-=-.16.解(1)设原价为x ,则跳楼价为2.50.70.70.7x ⨯⨯⨯所以跳楼价占原价的百分比为32.50.785.75%x x ⨯÷=.(2)原价出售:销售金额100x =新价出售: 销售金额32.50.710 2.50.70.740 2.50.750x x x =⨯⨯+⨯⨯⨯+⨯⨯109.375x =∵109.375100x x >, ∴新方案销售更盈利.。
人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案
人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。
9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。
八年级上册数学 整式的乘法与因式分解单元练习(Word版 含答案)
由题意可得:(x+y)2=144,(x﹣y)2=4,∴x+y=12,x﹣y=2,故B、C选项不符合题意;∴x=7,y=5,∴xy=35,故D选项不符合题意;∴x2+y2=84≠100,故选项A符合题意.
故选A.
【点睛】
本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.
【详解】∵ ,
∴ ,
∴ ,
∴an+1=an+1-1或an+1=-an+1+1,
∴an+1-an=2或an=-an+1,
又∵ 是一列正整数,
∴an=-an+1不符合题意,舍去,
∴an+1-an=2,
又∵a1=1,
∴a2=3,a3=5,……,an=2n-1,
∴a2018=2×2018-1=4035,
故答案为4035.
因为(x+6)(x-1)=x2+5x-6,所以b=-6;
因为(x-2)(x+1)=x2-x-2,所以a=1.
所以x2-ax+b=x2-x-6=(x-3)(x+2).
故选B.
点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b中分解因式.
八年级上册数学 整式的乘法与因式分解单元练习(Word版 含答案)
一、八年级数学整式的乘法与因式分解选择题压轴题(难)
1.若 ,则 ( )
A.3B.6C.9D.12
【答案】C
【解析】
【分析】
由 得x=3+y,然后,代入所求代数式,即可完成解答.
八年级上册数学 整式的乘法与因式分解单元综合测试(Word版 含答案)
八年级上册数学 整式的乘法与因式分解单元综合测试(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8 【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n 次幂的计算总结规律,从而可得到结果.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确;根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.5.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
八年级上册数学 整式的乘法与因式分解单元测试题(Word版 含解析)
八年级上册数学 整式的乘法与因式分解单元测试题(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++---2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.3.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9 【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.4.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---=2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.如果是个完全平方式,那么的值是( ) A .8 B .-4 C .±8 D .8或-4【答案】D【解析】试题解析:∵x 2+(m -2)x +9是一个完全平方式,∴(x ±3)2=x 2±2(m -2)x +9,∴2(m -2)=±12,∴m =8或-4.故选D .7.如图将4个长、宽分别均为a ,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是( )A .a 2+2ab+b 2=(a+b )2B .a 2﹣2ab+b 2=(a ﹣b )2C .4ab=(a+b )2﹣(a ﹣b )2D .(a+b )(a ﹣b )=a 2﹣b 2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b )2﹣(a ﹣b )2=4ab ,即4ab=(a+b )2﹣(a ﹣b )2.故选C .8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.10.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.因式分解:a 3-9ab 2=__________.【答案】a (a -3b )(a +3b )【解析】【分析】首先提取公因式a ,进而利用平方差公式分解因式得出即可.【详解】a 3-9ab 2=a (a 2-9b 2)=a (a-3b )(a+3b ).故答案为:a (a-3b )(a+3b ).【点睛】本题考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题的关键.12.已知222246140x y z x y z++-+-+=,则()2002x y z--=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z-+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z++-+-+=所以222(21)(44)(69)0x x y y z z-+++++-+=所以222(1)(2)(3)0x y z-+++-=所以102030xyz-=⎧⎪+=⎨⎪-=⎩,解得123xyz=⎧⎪=-⎨⎪=⎩所以()2002x y z--=[]221(2)3(33)0---=-=故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.13.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________.【答案】(a-b+x-y)【解析】运用公因式的概念,把多项式(a-b)2(x-y)-(b-a)(y-x)2运用提取公因式法因式分解(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×(a-b+x-y).故答案为:(a-b+x-y).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.14.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=______.【答案】()()2a b a b++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.15.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.16.在实数范围内因式分解:231x x +-=____________【答案】3322x x ⎛⎫⎛++ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:x x ⎛+ ⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.17.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.19.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.20.若m+n=3,则2m 2+4mn+2n 2-6的值为________.【答案】12【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=12.。
《整式的乘法与因式分解》单元测试(含答案)
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.
初二数学《整式的乘除与因式分解》习题(含答案)
整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个()(1) a5+a5=a10(2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3A、0个B、1个C、2个D、3个2.计算(-2a3)5÷(-2a5)3的结果是()A、— 2B、2 C、4 D、—4 3.若,则的值为()A. B.5 C. D.2 4.若x2+mx+1是完全平方式,则m=()。
A、2B、-2C、±2D、±4 5.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+2b)(a-b)=a2+ab-2b26.已知()b-2a3,则与的值分别=+2ba7, ()=是()A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.若2,3=-=+ab b a ,则=+22b a ,()=-2b a2.已知a -1a =3,则a 2+21a的值等于 · 3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________;4.若⎩⎨⎧-=-=+31b a b a ,则a 2-b 2= ;5.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y =________________;6、如果一个单项式与的积为-34a 2bc,则这个单项式为________________; 7、(-2a 2b 3)3 (3ab+2a 2)=________________;8、()()()()=++++12121212242n ________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。
八年级上册整式的乘法与因式分解单元试卷(word版含答案)
八年级上册整式的乘法与因式分解单元试卷(word版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.5.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确;根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.6.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】 解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.7.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.8.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.9.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.10.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得: a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.13.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.15.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.因式分解:=______. 【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.17.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+18.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.19.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28;②当a+b=8,ab=﹣2时,222a bab+-=2()22a bab+-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)
人教版八年级上册数学第14章整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的乘除与因式分解》单元测试题
考试时间:100分钟,试卷满分150分
一.选择题(共5小题,每小题4分,共20分) 1、下列运算正确的是 ( )
A 、 933842x x x ÷=
B 、 2323440a b a b ÷=
C 、22m m a a a ÷=
D 、2212()42
ab c ab c ÷-=- 2、计算(3
2)2003×1.52002×(-1)2004的结果是( )
A 、3
2 B 、2
3 C 、-3
2 D 、-2
3 3、下列多项式乘法中可以用平方差公式计算的是( )
A 、))((b a b a -+-
B 、)2)(2(x x ++
C 、)3
1)(3
1
(x y y x -+ D 、)1)(2(+-x x 4、
把代数式ax ²- 4ax+4a ²分解因式,下列结果中正确的是( ) A a(x-2) ² B a(x+2) ² C a(x-4)² D a(x-2) (x+2) 5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿
虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2+b 2=(a +b )(a -b )
B 、(a +b )2=a 2+2ab +b 2
C 、(a -b )2=a 2-2ab +b 2
D 、a 2-b 2=(a -b )2
二.填空题(共5小题,每小题4分,共20分) 6、运用乘法公式计算:(3
2a-b)(3
2a+b)= (-2x-5)(2x-5)=
7、计算:534515a b c a b -÷=
图①
图② (第5题图)
8、若a+b=1,a-b=2006,则a²-b²=
9、在多项式4x²+1中添加一个单项式,使其成为完全平方式,则添加的单项式为(只写出一个即可)
10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x³y-2xy²,商式必须是2xy,则小亮报一个除式是。
三.解答题(共5小题,每小题8分,共40分)
11、计算(1)(2x+y-3)(2x-y+3) (2)34223
a b ab
()()
12、分解因式(m2+3m)2-8(m2+3m)-20;
13、分解因式4a2bc-3a2c2+8abc-6ac2;
14、 分解因式(y 2+3y )-(2y +6)2.
15、求值:x ²(x-1)-x(x ²+x-1),其中x=12。
四.解答题(4小题,每小题10分,共40分) 16、分解因式:
(1)(a-b)²+4ab (2) 4xy ²-4x ²y-y ³
17、利用因式分解简便计算:
(1)57×99+44×99-99 (2)2
19921100
18、先化简后求值:()()()2
2x y x y x y x ⎡⎤-++-÷⎣⎦
,其中x =3,y=1.5。
19、 数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:
2962=(300-4)2=3002-2×300×(-4)+42 =90000+2400+16=92416
老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.
五.解答题(3小题,每小题10分,共30分)
20、设a =21
m +1,b =21m +2,c =2
1m +3,求代数式a 2+2ab +b 2-2ac -2bc +c 2的值.
21、已知a,b,c是△ABC的三边,且满足关系式a2+c2=2a b+2bc-2b2,试说明△ABC是等边三角形.
22、小明做了四个正方形或长方形纸板如图1所示a、b为各边的长,小明用这四个纸板拼成图2图形,验证了完全平方公式。
小明说他还能用这四个纸板通过拼接、遮盖,组成新的图形,来验证平方差公式.他说的是否有道理?如有道理,请你帮他画出拼成的图形.如没有道理、不能验证,请说明理由.并与同伴交流.
a
a
b a
b a b
b
a
a
b
a
b
b
b
图1
(a+b)2=a2+2ab+b2
图2
参考答案
1. D
2.C
3.C
4. A
5. A
6. 224
9
a b -,4x-25 7. 213
ab c -
8.2006 9. 4x ±或416x 10. 212
x y - 11.(1) 4x ²-y ²+6y-9 (2)213
ab c -
12.(m +5)(m -2)(m +2)(m +1); 13.ac (4b -3c )(a +2) 14.-3(y +3)(y +4). 15.原式= 22x x -- 当12
x =时,原式= -1 16.(1) (a+b) ² (2) -y(2x-y) ² 17、(1)9900 (2)9999.75 18.原式= x+y =4.5
19.答案: 错在“-2×300×(-4)”,
应为“-2×300×4”,公式用错. ∴2962=(300-4)2
=3002-2×300×4 +42
=90000-2400+16 =87616.
20. 4
1m 2
21.解:∵a 2+c 2=2a b+2bc-2b 2, ∴a 2+c 2+2b 2-2ab-2bc=0.
∴(a 2+b 2-2ab)+(c 2+b 2-2bc)=0. ∴(a -b)2+(b-c)2=0. 由平方的非负性可知,
⎩⎨
⎧=-=-,0,0c b b a ∴⎩
⎨⎧==.,
c b b a ∴a =b=c.
∴△ABC 是等边三角形.
22.答案: 如下图折叠(参考)阴影部分面积.
(a +b )(a -b )
(a -b )
a
b
b (a -b )
b
a
b
b 2
a -
b 2
(a-b)
(a-b)
两阴影部分面积相等, ∴(a +b )(a -b )=a 2-b 2.。