数学物理方法典型习题

合集下载

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析

物理数学物理法专项习题及答案解析及解析一、数学物理法1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-2.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.3.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在粘性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少?(2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】(1)根据机械能守恒定律得:21p 0122E v mg R m =+⋅ A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有:mv 1=2mv 2200122gt R =x =v 2t 0解得:E p =2J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得:21N v F mg m R+=解得:F N =30N由牛顿第三定律知:F 压=F N =30N(3)根据2p 1122E mv mg R =+⋅ mv 1=2mv 2 2R =12gt 2,x =v 2t联立解得:(2)2p E x R R mg=-⋅其中E p 最大为4J ,得 R =0.5m 时落点离O ′点最远,为:x m =1m4.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。

数学物理方法习题及解答

数学物理方法习题及解答

2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。

由于在平面上可微所以在平面上解析。

()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。

数学物理方法习题

数学物理方法习题
习题十一 1、一长为 l 的均匀杆,两端受压,从而长度缩为 l (1 2 ) ,求解放手后杆的振动情况。 2、长为 l 的均匀杆,一端固定,另一端受拉力 F0 的作用而伸长,稳定后突然放手让其 振动。求解该杆的纵振动. 3、长为 l 的均匀杆,上端固定在电梯的天花板上,杆身竖直,下端自由。电梯匀速下 降,速度为 v0 ,在 t=0 时刻电梯突然停住.求解其后的杆的振动情况. (提示:杆身竖直, 杆上各点处于新的平衡位置.取此新的平衡位置为纵向位移 v 的坐标原点,则 v 的振动方程 是齐次的.由于是匀速下降,此时

数学物理方法习题答案.pdf

数学物理方法习题答案.pdf

电路练习题一、选择题(第1组)1、图示电路,求i 。

A :1/2 A B: 1/3 A C :3/2 A D :2/3 A2、图示电路,求u 。

A :2VB :4VC :6VD :8V3、图示单口网络,其端口VCR 关系为:A: u =5i +3 B: u =-5i +3 C :u =-5i -3 D: u =5i-34、图示电路,求i 。

A :2AB :1.5AC :1AD :3A5、图示电路,求i 。

A :1AB :9/13 AC :1/7 AD :2/11 A6、图示电路,问R L 能获得的最大功率。

A :1/3 W B :2W C :2/9 W D :4W7、图示稳态电路,求i 。

A :2A B :1AC :3AD :1.5Ai 4ΩR L4Ω6Ω 10Ω1H108、图示稳态电路,问电容中的储能。

A :4J B :2JC :8JD :1J9、图示电路,t < 0时处于稳态, t = 0时,开关切到a , 当t = 5s 时,u c (t )是多少?A :6.3VB :5VC :2.4VD :3.16V10、图示电路,t < 0时处于稳态,t = 0时, 开关断开,求t = 1s 时u c (t )是多少? A :1.47V B :2.94V C: 5V D :4V11、图示电路原处于稳态,在t = 0时, 开关断开,求t = 0.1s 时的电流i (t )。

A :1A B :0 C :0.358A D :0.184 A12、图示正弦稳态电路,求i (t ) 。

A :)452cos(2°+t A B :)452cos(2°−t A C :)452cos(2°−t A D :)452cos(2°+t A13、图示正弦稳态电路中,有效值: I 是10A ,I R 是8A 。

问I c 是多少? A :2A B :18A C :6A D :4Ai(t)1H0.5Ω2ΩA2cos 22t u c1A c (t)2A14、图示正弦稳态电路, 求电阻上的平均功率。

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

数学物理方法习题集

数学物理方法习题集

数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。

(2),iii i 524321-+-+。

(3),5(1)(2)(3)i i i ---。

(4),4(1)i -。

(5),bi a +。

2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。

(2),1(2n+, 4,3,2=n 。

(3),i +1。

(4),3)i -。

(5),231i -。

3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。

4,若21=+Z z θcos ,证明21=+m m zz θm cos 。

5,求下列复数z 的主幅角z arg :(1),iz 312+-=。

(2),6)z i =-。

6,用指数形式证明:(1),(1)2i i -+=+。

(2),i ii2125+=+。

(3),7(1)8(1)i i -+=-+。

(4),1011(12(1)--=-。

7,试解方程44(0)z a a +=>。

8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。

(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。

(3),2121z z z z = ;一般2121z z z z +≠+。

9,证明:(1),2121z z z z +=±。

(2),2121z z z z ⋅=。

(3),1122(z zz z = (02≠z )。

(4),121212122Re()2Re()z z z z z z z z +==。

(5),()z z ≤Re ,()z z ≤Im 。

(6),2121212z z z z z z ≤+。

(7),222121212()()z z z z z z -≤+≤+。

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析

【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。

两极板间电势差UAB 随时间变化规律如右图所示。

现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。

求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。

物理数学物理法练习题含答案及解析

物理数学物理法练习题含答案及解析

物理数学物理法练习题含答案及解析物理和数学是自然界的两个重要学科,它们之间有着紧密的联系。

物理数学是一门研究物理学中的数学方法和应用的学科,对于学习物理学和数学学科的学生来说,理解物理数学的基本概念和方法非常重要。

本文将为大家提供一些物理数学物理法的练习题,并附带答案及解析,希望能帮助大家加深对物理数学物理法的理解。

物理数学物理法练习题一:1. 对于一维的匀强磁场,其磁感应强度与位置关系为B(x)=B0(1-αx),求出在此磁场中的磁场力。

答案:由洛伦兹力公式F=q(v×B),其中q为电荷量,v为速度,B为磁感应强度。

在一维情况下,速度的方向与磁场垂直,即v⊥B。

则磁场力可表示为F=qvB=qvB0(1-αx)。

解析:根据洛伦兹力公式,磁场力的大小与电荷量、速度以及磁感应强度的乘积有关。

在一维匀强磁场中,磁感应强度与位置存在线性关系,根据此关系可以得到磁场力的表达式。

物理数学物理法练习题二:2. 在直角坐标系中,由一个点电荷产生的静电场强度为E=3xi+4yj,其中i和j为单位矢量,求出点电荷的电荷量。

答案:静电场的强度和电荷量的关系由高斯定律给出,即E=ρ/ε0,其中E为静电场强度,ρ为电荷密度,ε0为真空中的介电常数。

在此题中,静电场强度为E=3xi+4yj,代入高斯定律可得ρ/ε0=3xi+4yj。

解析:根据高斯定律,静电场的强度与电荷量的关系是一个线性关系。

通过求解此关系方程组,我们可以确定电荷量的值。

物理数学物理法练习题三:3. 一根长为L的均质细杆,质量为m,绕过其一端的固定轴按垂直于杆的方向以角速度ω旋转,求杆上离轴一端的质点的动能。

答案:质点的动能可表示为K=1/2Iω^2,其中K为动能,I为转动惯量,ω为角速度。

对于质点来说,其距离轴的距离为r=L,转动惯量为I=1/3mL^2。

代入公式,动能可表示为K=1/2(1/3mL^2)ω^2=1/6mL^2ω^2。

解析:根据转动惯量的定义和动能的定义,我们可以通过计算转动惯量和角速度的乘积来确定质点的动能。

高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析

高考物理数学物理法题20套(带答案)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。

两极板间电势差U AB 随时间变化规律如右图所示。

现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。

求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

数学物理方法题目

数学物理方法题目

2 5
3 5
51、求解 ⎪ ⎨
⎧ ∇ 2u = 0
2
( r < a, 0 < θ < π )
⎪ ⎩u r = a = cos θ , u r →0 = 有限值
(0 < θ < π )

⎧ ∇ 2u = 0 ( r > a, 0 < θ < π ) ⎪ 52、求解 ⎨ 。 2 ⎪ ⎩u r = a = cos θ , u r →0 = 有限值 ( 0 < θ < π )
i
b.证明 ∫i
2+i
dz ≤ 2 积分路径是直线段。 z2
10、不用计算,证明下列积分之值均为零,其中 c 均为圆心在原点, 半径为 1的单位圆周。 a. v ∫c
e z dz dz ; b. v ∫c z 2 + 5z + 6 。 cos z 2z2 − z +1 v ∫ c z − 1 dz ez z
z ( z + 1)
2
z −1
2
; (2) cos
1 1 ; (3) 。 z +i sin z + cos z
1 − ez 在孤立奇点处的留数。 23、求 f ( z ) = 1 + ez
24、求下列函数在指定点处的留数。
3
1 − e2 z (1) 在 z = ±1, ∞ ; (2) 4 在 z = 0, ∞ 。 2 z ( z − 1)( z + 1)
u t =0 = ρ 2 − R 2 ,求此物体的温度分布随时间的变化规律。 (无限长
→ u 与 ϕ 无关)
58、圆柱体半径为 R 而高为 H ,上底面保持温度 u1 ,下底面保持温度

数学物理方法习题

数学物理方法习题

数学物理方法习题一、 复变函数1、 填空题(1)函数 f (z)=e iz 的实部 Re f (z)=______________。

(2)ln1=_________. (3)=ix e _________。

(4)求积分 dz zzz ⎰=12sin =______ . (5) 求积分=⎰=1cos z dz zz_________。

(6)设级数为∑∞=1n nnz ,求级数的收敛半径_______________。

(7).设级数为)211nn n n zz +∑∞=( ,求级数的收敛区域_________。

(8)求积分⎰=1z zdz=___________.(9) 求积分⎰=1z zdz=____________. (10)设f (z)=9cos z z, 求Resf (0)= _________。

2、计算题(1)导出极坐标下的C- R 条件:⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂ϕρρϕρρu v vu 11(2) 己知解析函数的实部u(虚部v),求此解析函数:a 、,cos x eu y-= b 、22y x yv +-=c 、()y y y x e v xsin cos +=-(3)设 f (z) 是区域D 内的解析函数,且f (z) 的模∣f (z)∣为常数,证明 f (z) 在D 内为常数。

(4) 设 f (z) 是区域D 内的解析函数,且f *(z)也是区域D 内的解析函数,则f (z)必常数。

(5) 求函数 f (z)=)1(12-+z z z 在下列区域 ⅰ) 0<∣z ∣< 1; ⅱ) 1<∣z ∣<∞ 的Laurent 展开。

(6)求出下列函数的奇点,并确定它们的类别a 、zz cos sin 1+ b 、zz e 1-c 、nnz z +12 n 为正整数.(7) 求下列积分a 、,)1(sin 02dx x x x⎰∞+b 、⎰=⎪⎭⎫ ⎝⎛-222sin z dzz zπc 、b 且a b a dx x bxax ≠≥≥-⎰∞,0,0,cos cos 02d 、 ⎰∞++022sin cos dx a x xx x a ω(二) 积分变换1、填空题(1)函数f (t) 的Fourier 变换的像函数为()()0ωωδω-=F , 求f (t)=____________。

数学物理方法习题

数学物理方法习题

第一章 分离变量法1、求解定解问题:200000000,(01),||0,,(0),|(),(),|0,(0).tt xx x x l t t u a u x u u n h l x x l n u h l l x x l l n l n u x l ====-=<<==⎧≤≤⎪⎪⎪=⎨-≤≤⎪-⎪⎪⎩=≤≤(P-223) 2、长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后撤出这力,求解弦的震动。

[提示:定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),|0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T lu =-=<<==-⎧<<⎪⎪=⎨⎪-<<⎪⎩= ] (P-227)3、求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布20|()/t u bx l x l ==-。

[定解问题为 220200,()(0),||0,|()/.t xx x x l t k u a u a x l C u u u bx l x l ρ===⎧-==≤≤⎪⎪⎪==⎨⎪=-⎪⎪⎩] (P-230) 4、求解定解问题2220,0,0220,0.03sin ,0.00u u a x l t t x u u x x l x u u A t l t t π⎧∂∂⎪-=<<>⎪∂∂⎪==⎨==⎪∂⎪===⎪∂=⎩4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动,求解杆的这一振动。

[提示:定解问题为20000,(0),||0,2|2(),|0.tt xx x x x x l t t t u a u x l u u u x l u ε====⎧-=<<⎪==⎪⎪⎨=-⎪⎪=⎪⎩] (P-236) 5、长为l 的杆,一端固定,另一端受力0F 而伸长,求解杆在放手后的振动。

数学物理方法习题

数学物理方法习题
2
z z c ( 0为复常数, c为实常数 )
四川大学数学学院 邓瑾
第二章习题
6. 求下列函数的解析区域: (1)
f ( z ) xy iy
16. cos z在哪些曲线上取实数值. 17. 求下列各值:
(1) Ln( 1), ln( 1); Lni , ln i; L(3 2i ), ln( 2 i ) (2) 1 2 , ( 2) 2 , 2i , (3 4i )1 i (3) cos(2 i ), sin 2i

e d z , 并证明 z
z


0
14. 求积分
6
e cos cos(sin )d .
(1 z
C
z2
2 2
)
dz , 其中C为包围 i 且位于上半
平面的围线.
四川大学数学学院 邓瑾
四川大学数学学院 邓瑾
20. 求解析函数 f ( z ) u iv, 使其分别满足下列条件:
1 sin( n 1 2 ) 1 2 2sin k 1 2 n cos( n 1 1 2 ) (2) sin k cot 2 1 2 2sin k 1 2 (1) cos k
n
0 .
3. 利用复数的三角式或指数式计算下列各题:
(1) i (1 3i )( 3 i ); (2) ( 3 i )3 ; (3) 3 1 i
一、必做题 5i 1. 计算 2 3i 2. 用三角式及指数式表示下列复数,并求辐角一般值:
z 2 2i; z 3i; z 1 cos i sin
第一章习题
二、选做题 5. 如果是1的立方根的一个复根,求证: 1 2 0. 7. 用复数的指数式证明下列等式:

高中物理数学物理法技巧和方法完整版及练习题

高中物理数学物理法技巧和方法完整版及练习题

高中物理数学物理法技巧和方法完整版及练习题一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。

其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。

数学物理方法考试试题

数学物理方法考试试题

数学物理方法考试试题一、选择题1. 在坐标系中,以下哪个曲线表示了函数 y = e^x 的图像?A. y = x^2B. y = eC. y = e^(-x)D. y = ln(x)2. 一个小球从地面上方以速度 v0 抛下,忽略空气阻力。

以下哪个公式正确地描述了小球的下降高度 h(t) 随时间变化的关系?A. h(t) = v0 * t - 0.5 * g * t^2B. h(t) = v0 * t + 0.5 * g * t^2C. h(t) = v0 * t + g * t^2D. h(t) = v0 * t - g * t^23. 空间中有一个电场 E = 2x i + 3y j + 4z k。

一个电子从点 (1, 2, 3) 处开始沿电场方向运动,电子的加速度大小是多少?A. 7B. 5C. 6D. 44. 一个质点在平面上做匀速圆周运动,其角速度大小为 2 rad/s。

质点的速度大小和圆周半径分别是多少?A. v = 2rB. v = 4rC. v = 6rD. v = 8r5. 一辆汽车以匀加速度 a 行驶,在时刻 t1 时起动,时刻 t2 时速度为 v2。

以下哪个公式可以用于计算汽车在时间区间 [t1, t2] 内行驶的距离?A. s = v2 - v1B. s = a * (t2 - t1)C. s = v1 * (t2 - t1) + 0.5 * a * (t2 - t1)^2D. s = v1 * (t2 + t1) + 0.5 * a * (t2 - t1)^2二、计算题1. 计算下列函数的导数:(1) f(x) = x^3 - 2x^2 + 3x - 4(2) g(x) = e^x * sin(x)2. 一个弹簧的劲度系数为 k,质量为 m 的物体悬挂在弹簧上。

当物体受到外力 F(t) = 2cos(t) 作用时,确定物体的运动方程并解释物体的运动特性。

3. 一个半径为 R 的圆形铁环在匀强磁场 B 的作用下,磁通量在时间区间 [0, t] 内以恒定速率增大。

高考物理数学物理法题20套(带答案)含解析

高考物理数学物理法题20套(带答案)含解析

高考物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。

已知磁场的磁感应强度大小为,不计带电粒子的重力。

求: (1)带电粒子的比荷; (2)C 点的坐标。

【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。

2.[选修模块3-5]如图所示,玻璃砖的折射率3n =,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示).【答案】83310/2v m s =;3sin 3i =【解析】 【分析】 【详解】 根据c n v =,83310/v m s = 全反射条件1sin C n=,解得C=600,r =300, 根据sin sin i n r =,3sin i =3.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I和II两个区域,I区域的宽度为d,右侧磁场II区域还存在平行于xoy平面的匀强电场,场强大小为E=22B qdm,电场方向沿y轴正方向。

高考物理数学物理法技巧和方法完整版及练习题

高考物理数学物理法技巧和方法完整版及练习题

高考物理数学物理法技巧和方法完整版及练习题一、数学物理法1.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。

一条光线从P 点射入玻璃砖,入射方向与NP 夹角为45°。

光线恰能从Q 点射出。

(1)求该玻璃的折射率;(2)若与NP 夹角90°的范围内均有上述同频率光线从P 点射入玻璃砖,分析计算光线不能从玻璃砖射出的范围。

【答案】(1)2;(2)312a - 【解析】 【详解】(1)如图甲,由几何关系知P 点的折射角为30°。

则有sin 452sin 30n == (2)如图乙,由折射规律结合几何关系知,各方向的入射光线进入P 点后的折射光线分布在CQB 范围内,设在D 点全反射,则DQ 范围无光线射出。

D 点有1sin n α=解得45α=︒由几何关系知DQ EQ ED =-,12ED EP a ==,32EQ a = 解得31DQ a -=2.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.人在A 点拉着绳通过一个定滑轮匀速吊起质量50kg m =的物体,如图所示,开始时绳与水平方向成60角,当人拉着绳由A 点沿水平方向运动2m s =而到达B 点时,绳与水平方向成30角,求人对绳的拉力做了多少功?(不计摩擦,g 取210m/s )【答案】732J 【解析】 【分析】 【详解】人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h ,物体上升的高度等于滑轮右侧绳子增加的长度,即sin 30sin 60h hh ∆=- 又tan 30tan 60h hs =- 所以人对绳的拉力做的功31)732J W mg h mg s =∆=⋅≈4.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点,水平直线轨道和半圆轨道相切于B 点.已知赛车质量m =0.5kg ,通电后以额定功率P =2W 工作,进入竖直圆轨道前受到的阻力恒为F f =0.4N ,随后在运动中受到的阻力均可不计,L =10.00m ,R =0.40m ,(g 取10m/s 2).求:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少多大? (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力多大 (3)要使赛车完成比赛,电动机至少工作多长时间t ?(4)若电动机工作时间为t 0=5s ,当R 为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少?【答案】(1)2m/s (2)25/m s ,30N (3)t =4.5s (4)R =0.3m ,1.2m 【解析】 【分析】赛车恰好通过最高点时,靠重力提供向心力,根据牛顿第二定律求出通过C 点的最小速度.根据机械能守恒定律求出赛车在B 点的最小速度,根据牛顿第二定律求出赛车对轨道的压力.对A 到B 过程运用动能定理,求出电动机从A 到B 至少工作的时间.根据动能定理求出赛车到达最高点的速度,结合平抛运动的规律求出水平位移,通过数学知识求出水平位移的最大值. 【详解】(1)当赛车恰好过C 点时在B 点对轨道压力最小,赛车在B 点对有:2Cv mg m R=解得:100.4m/s 2m/s C v gR ==⨯=...①(2)对赛车从B 到C 由机械能守恒得:2211222B C mv mv mg R =+⋅…② 赛车在B 处,由牛顿第二定律可得:2N Bv F mg m R-=…③由①②③得:525m/s B v gR ==N 630N F mg ==由牛顿第三定律知,对轨道的压力大小等于30N ; (3)对赛车从A 到B 由动能定理得:2102fB Pt F L mv -=- 解得:4.5s t =(4)对赛车从A 到C 由动能定理得:20012'2f Pt F L mg R mv --⋅=, 赛车飞出C 后有:212'2R gt =0x v t =解得:2316('')5x R R =--,所以当'0.3m R =时,x 最大:max 1.2m x =答:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少为2m/s ; (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力等于30N ; (3)要使赛车完成比赛,电动机至少工作 4.5s t =;(4)若电动机工作时间为t 0=5s ,当R 为0.3m 时赛车既能完成比赛且飞出的水平距离又最大,最大水平距离max 1.2m x =.5.一定质量的理想气体,由状态A 沿直线变化到状态B ,如图所示.已知在状态A 时,温度为15℃,且1atm ≈105P a ,求:①状态B 时的温度是多少开尔文? ②此过程中气体对外所做的功?③此过程中气体的最高温度是多少开尔文? 【答案】①576B T K =②900J ③m T =588K 【解析】 【详解】①A A B BA BP V P V T T =,解得:576B T K =②气体外所做的功可由P —V 图的面积计算,()25131042109002W J J -=⨯⨯⨯+⨯= ③图中AB 的直线方程为21433P V =-+,则221433PV V V =-+, 由数学知识可知,当V =3.5L 时,PV 最大,对应的温度也最高,且()24.53m PV atmL = 根据理想气体状态方程可得:()mA A A mPV P V T T =, 解得m T =588K6.2016年7月5日,美国宇航局召开新闻发布会,宣布已跋涉27亿千米的朱诺号木星探测器进入木星轨道。

高中物理数学物理法技巧和方法完整版及练习题及解析

高中物理数学物理法技巧和方法完整版及练习题及解析

高中物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ;【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值(2)若,的最大值【答案】(1)(2)22212v vvtg g-∆=-【解析】试题分析:(1)若,取最大值时,应该在抛出点处相遇,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v vvtg-∆=-考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t取得最大的条件,也可以运用函数法求极值分析.3.如图,O1O2为经过球形透明体的直线,平行光束沿O1O2方向照射到透明体上。

数学物理方法+吴崇试+习题解答

数学物理方法+吴崇试+习题解答

z3 − z1 AC
z2 − z3 BC
AC BC
AB AC 由 ∠A = ∠C 可得 AB = BC ,代入 = 可得 AB = BC = AC ,即
AC BC
z2 − z1 = z3 − z2 = z1 − z3 。
9.(1)给出 z1, z2 , z3 三点共线的充要条件;(2)给出 z1, z2 , z3, z4 四点共圆的充要条件。 (1)若三点共线,则矢量 z1 − z3 与矢量 z2 − z3 平行,反之也成立。所以三点共线的充要条 件是 z1 − z3 = 实数。
11.设 z = p + iq 是实系数方程 a0 + a1z + a2 z2 +" + an zn = 0 的根,证明 z = p − iq 也是此
方程的根。
对方程两边取共轭得 a0 + a1z + a2 z 2 +" + an z n = 0 ,即 z 也满足此方程。
12.证明: sin4 ϕ = 1 (cos 4ϕ − 4 cos 2ϕ + 3) 。
4.若 z = 1,试证明 az + b = 1, a , b 为任意复数。 bz + a
( ) az + b 2 = (az + b) az + b = ( ) bz + a bz + a (bz + a)
a 2 + abz + abz + b 2 b 2 + abz + abz + a 2
= 1 ,所以
=
x2 + x2
y +
2
(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型习题
一、填空题:
1
的值为 , , 。

2
、1-+的指数表示为_________ ,三角表示为 。

3、幂级数2
k k=1(k!)k z k ∞
∑的收敛半径为 。

4、ln(5)-的值为 。

5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。

已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。

6、在单位圆的上半圆周,积分1
1||__________z dz -=⎰。

7、长为a 的两端固定弦的自由振动的定解问问题 。

8、具有轴对称性的拉普拉斯方程的通解为 。

9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。

10、对函数f(x)实施拉普拉斯变换的定义为 。

二、简答题
1、已知()f z u iv =+是解析函数,其中22
v(x,y)=x y +xy -,求 (,)u x y 。

2、已知函数1w z
=
,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。

3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。

试写出杆的泛定方程及定解条件。

三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+⎰
2.||2sin (3)z zdz I z z ==+⎰ 3.22202(1)x I dx x ∞
=+⎰ 4.||1(31)(2)
z zdz I z z ==++⎰ 5. ||23cos z zdz I z ==
⎰ 6. 240x dx 1x I ∞=+⎰ 7、0sin x dx x ∞
⎰ 8、20cos 1x dx x
∞+⎰ 四、使用行波法求解下列方程的初值问题
五、求解下列定解问题:
1. 2.在水平向右的均匀外电场E 中置入半径为0R 的导体球,如图所示。

若导体球上接有电池,使球与地面保持电势差为0u ,设球心与无穷远的连线与外电场间的夹角为θ,导体球置入前球心的电势(0)0.u = (已知1120121P (x)=,P (x)=x,P (x)=
(3x -)2

(1) 写出定解问题
(2) 求出球内外的电势。

3.半径为R 0的球面上电势分布为22cos θ,求球内外空间的电势分布。

六、用傅里叶变换法求解下列扩散方程的初值问题 (, 0)()
t xx x t u(x,0)x u u ϕ-∞<<∞>=-= 已知F[()x ϕ]=[()()]a k b k b δδ+++,a ,b 为常数。

七、拉氏变换问题: 22222,,0(,0)cos 2,(,0)1,t u u a x t t x u x x x u x x ∂∂=-∞<<+∞>∂∂=-∞<<+∞
=+⎧⎪⎪⎨⎪⎪⎩2222,01,0(0,)(1,)0,
0(,0)(,0)sin ,0,01
u u x t t x u t u t t u x u x x x t π⎧∂∂=<<>⎪∂∂⎪==>⎨⎪∂⎪==≤≤∂⎩
(1)证明:L[sind ]=22d t p +d
(2)用拉氏变换法求解下列问题:
y(t)满足:0t dy a +b ydt =c dt y(0)=0⎧⎪⎨⎪⎩⎰,a,b,c 为常数。

试用拉氏变换法求y(t)随时间的变
化规律。

相关文档
最新文档