初二上培优辅导资料11 一元一次不等式组及应用
初二数学知识点梳理:一元一次不等式组的应用
初二数学知识点梳理:一元一次不等式组的应用一元一次不等式组的应用应用:列一元一次不等式组解决实际问题。
一元一次不等式的应用主要涉及问题:分配问题:例:一堆玩具分给若干个小朋友,若每人分3,则剩余4,若前面每人分4,则最后一人得到的玩具最多3,问小朋友的人数至少有多少人?。
2积分问题:例:某次数学测验共20道题(满分100分)。
评分办法是:答对1道给分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格?3比较问题:例:某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?4行程问题:例:抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了0公里后,后半小时速度多大才能保证及时送到?车费问题:例:出租汽车起价是10元,达到或超过后,每增加1加价12元,现在某人乘这种出租汽车从甲地到乙地支付车费172元,从甲地到乙地的路程超过多少?6浓度问题:例:在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?7增减问题:例:一根长20的弹簧,一端固定,另一端挂物体。
在弹簧伸长后的长度不超过30的限度内,每挂1㎏质量的物体,弹簧伸长0求弹簧所挂物体的最大质量是多少?8销售问题:例:商场购进某种商品,每按进价加价30元售出全部商品的6%,然后再降价10%,这样每仍可获利18元,又售出全部商品的2%。
试求该商品的进价和第一次的售价;为了确保这批商品总的利润率不低于2%,剩余商品的售价应不低于多少元?一元一次不等式组解应用题的一般步骤为:列不等式组解决实际问题的步骤与列一元一次不等式解应用题的步骤相类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可。
专题10 一元一次不等式(组)(含解析)
专题10 一元一次不等式(组)一、解读考点二、考点归纳归纳 1:有关概念基础知识归纳:1、不等式:用不等号表示不等关系的式子,叫做不等式.2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3、用数轴表示不等式的方法4、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).【答案】<.考点:不等式的定义.归纳 2:不等式基本性质基础知识归纳:1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】若x>y,则下列式子中错误..的是()A、x-3>y-3B、x y>33C、x+3>y+3D、-3x>-3y【答案】D.考点:不等式基本性质。
初二一元一次不等式与一元一次不等式组培优同步讲义
初二一元一次不等式与一元一次不等式组培优同步讲义本次辅导的主题是一元一次不等式与一元一次不等式组。
我们将通过同步课堂、实战演练和归纳总结三种方式,达到以下教学目标:了解不等式的概念,掌握一元一次不等式的概念、解法及应用,掌握一元一次不等式组的解法及应用。
本次辅导适用于八年级(下)的数学课程,课时数为3个。
首先,我们来梳理一下不等式的基本概念和性质。
不等式一般用符号“”(或“”)“”(或“”)连接的式子叫做不等式。
不等式有三个基本性质:加减同一个整式不改变不等号方向,乘除同一个正数不改变不等号方向,乘除同一个负数改变不等号方向。
此外,不等式还有对称性、传递性和正负性质等其他性质。
接下来我们来讨论不等式的解集。
能使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
不等式解集可以用不等式表示或者用数轴表示。
然后,我们来研究一元一次不等式。
一元一次不等式是左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式。
一元一次不等式的解法包括去分母、去括号、移项、合并同类项和系数化1等步骤。
此外,我们还可以利用一次函数的图象解一元一次不等式。
最后,我们来探讨一元一次不等式组的概念。
一元一次不等式组是由多个一元一次不等式组成的集合。
解一元一次不等式组,需要将每个不等式的解集求交集。
一般来说,将关于同一个未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
解集是指一元一次不等式组中各个不等式的解集的公共部分。
解一元一次不等式组的步骤如下:首先根据不等式的性质求出每一个不等式的解集,然后将每一个不等式的解集利用数轴进行合并得到不等式组的解。
由两个一元一次不等式组成的不等式组,可以归结为四种基本类型,具体可以看上面的表格。
一元一次不等式组可以应用于解决实际问题,一般步骤为:找出问题中的不等关系,设出未知数,根据前面的不等关系列出不等式组,解不等式组,最后检验后答出结果。
(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
浙教版八年级上册一元一次不等式专题培优(附答案)
浙教版八年级上册一元一次不等式专题培优(附答案)八年级上册一元一次不等式专题培优基础巩固1.不等式 $x+1\geq2x-1$ 的解集在数轴上表示为()。
答案:$[2,+\infty)$2.已知$a>b$,$c\neq0$,则下列关系一定成立的是()。
A。
$ac>bc$B。
$\frac{c}{a}>\frac{c}{b}$C。
$c-a>c-b$D。
$c+a>c+b$答案:A3.若实数 $3$ 是不等式 $2x-a-2<0$ 的一个解,则 $a$ 可取的最小正整数为()。
答案:$5$4.下列命题中:①如果 $a1-a$ 的解集是 $x<-1$,则 $a<1$;③若 $\frac{6-x}{3}$ 是自然数,则满足条件的正整数 $x$ 有$4$ 个。
正确的命题有()。
A。
个B。
$1$ 个C。
$2$ 个D。
$3$ 个答案:C5.若关于$x$,$y$ 的二元一次方程组的解满足$x+y<2$,则 $a$ 的取值范围是()。
A。
$a>2$B。
$a<2$C。
$a>4$D。
$a<4$答案:B6.若 $x$ 的 $3$ 倍大于 $5$,且 $x$ 的一半与 $1$ 的差不大于 $2$,则 $x$ 的取值范围是()。
答案:$[\frac{7}{3},+\infty)$7.若 $ab$ 的解集是 $x<\frac{a}{b}$,则 $a$ 的取值范围是()。
答案:$(-\infty,0)\cup(b,+\infty)$8.若在数轴上表示关于 $x$ 的不等式 $x-3>\frac{2}{3}$ 的解集如图所示,则 $a$ 的值是()。
答案:$a=\frac{11}{3}$9.如图,若开始输入的 $x$ 的值为正整数,最后输出的结果为 $144$,则满足条件的 $x$ 的值为()。
答案:$6$10.解下列不等式,并把解集表示在数轴上。
一元一次不等式(组)的应用
(2) 预计在该线路上 A型和 B型公交车每辆年均载客量分别为 60万人次和100万人
次.若该公司购买A型和B型公交车的总费用不超过1 200万元,且确保这10辆公交 车在该线路的年均载客总和不少于 680万人次,则该公司有哪几种购车方案?哪种 购车方案总费用最少?最少总费用是多少?
不等 关系:
总费用不超过1 200万 总和不少于680万人次
(某个数量介于某个范围之中)
某数量
2、普通不等式组
(两个量分别满足两个不等关系)
Hale Waihona Puke 类型之一:列一元一次不等式解应用题 1.晨光文具店用进货款1 620元购进A品牌的文具盒40个, B品牌的文具盒60个.其中A品牌文具盒的进货价比B品牌文 具盒的进货价多3元.
(1)求A,B两种文具盒的进货单价;
(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全 部售完后利润不低于500元,B品牌文具盒的销售单价最少是 多少? 语言文字
(1)购买 A 型公交车每辆需 100 万元,购买 B 型公交车每辆需 150 万元 (2) 设 购 买 A 型 公 交 车 a 辆 , 则 B 型 公 交 车 (10 - a) 辆 , 由 题 意 得
100a+150(10-a)≤1200 ,解得 6≤a≤8, 60a+100(10-a)≥680
数学符号
不等关系:
利润不低于500元
解: (1)设A品牌文具盒的进价为x元/个,依题意得: 40x+60(x-3)=1620,解得:x=18,x-3=15. 答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个 (2)设B品牌文具盒的销售单价为y元,依题意得: (23-18)×40+60(y-15)≥500,解得:y≥20. 答:B品牌文具盒的销售单价最少为20元
八年级数学竞赛培优训练 一元一次不等式(组)的应用 含解析
一元一次不等式(组)的应用【思维入门】1.王芳同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳带了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元) ()A.6B.7C.8D.92.运动会间,李老师组织班上的同学给运动员加油助威,将手中的若干面小旗分发给若干小组,若每小组分4面小旗,还剩20面;若每小组分8面小旗,则还有一组数量不够,那么李老师一共有小旗()A.38面B.40面C.42面D.44面3.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?4.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1 000棵,其中甲种树苗每棵40元,乙种树苗每棵50元.根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46 500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?5.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【思维拓展】6.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8 t,10 t的卡车共12辆,全部车辆运输一次能运输110 t沙石.(1)求“益安”车队载重量为8 t,10 t的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165 t以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.7.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额:注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品.则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?8.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大、小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生,将入住寝室80间,问该校有多少种安排住宿的方案?9.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1 380 t.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.【思维升华】10.一个长方体盒子的最短边长50 cm,最长边长90 cm.则盒子的体积可能是()A.4 500 cm3B.180 000 cm3C.90 000 cm3D.360 000 cm311.已知三角形三边的长分别为a,b,c,且a,b,c均为整数,若b=7,a<b,则满足条件的三角形的个数是()A.30 B.36 C.40 D.4512.A商品的单价是50元,B商品的单价是60元,几所学校各付款1 220元购买了这两种商品,任意2所学校购买的A商品的数量都不同.则参加这次采购的学校最多有____所.13.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2 013元,则他至少卖出了____支圆珠笔.14.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有____件.15.某公司为了扩大经营,决定购买6台机器用于生产活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞数量如下表所示.经过预算,本次购买机器所需的资金不能超过34万元.(1)按该公司的要求,可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,为了节约资金,应选择哪种购买方案?一元一次不等式(组)的应用【思维入门】1.王芳同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳带了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( B )A .6B .7C .8D .92.运动会间,李老师组织班上的同学给运动员加油助威,将手中的若干面小旗分发给若干小组,若每小组分4面小旗,还剩20面;若每小组分8面小旗,则还有一组数量不够,那么李老师一共有小旗( D )A .38面B .40面C .42面D .44面【解析】 设共有x 个小组,那么就有(4x +20)面小旗,⎩⎨⎧4x +20>8(x -1),4x +20<8x ,解得5<x <7,所以有6组. 4×6+20=44(面). 所以有44面小旗.3.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场? 解:设这个班胜x 场,则负(28-x )场, 由题意,得3x +(28-x )≥43, 解得x ≥7.5.因为场次x 为正整数,故x ≥8. 答:这个班至少要胜8场.4.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林“的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1 000棵,其中甲种树苗每棵40元,乙种树苗每棵50元.根据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46 500元,则购买甲、乙两种树苗各多少棵? (2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵? 解:(1)设购买甲种树苗x 棵,乙种树苗y 棵.⎩⎨⎧x +y =1 000,40x +50y =46 500, 解得⎩⎨⎧x =350,y =650,答:购买甲种树苗350棵,乙种树苗650棵;(2)设购买甲种树苗a 棵,则购买乙种树苗(1 000-a )棵. 85%a +90%(1 000-a )≥1 000×88%, 解得a ≤400.答:至多可购买甲种树苗400棵.5.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x 元,其中x >100. (1)根据题意,填写下表(单位:元):(2)当x 取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少? 解:(1)在甲商场:271,0.9x +10;在乙商场:278,0.95x +2.5. (2)根据题意,有0.9x +10=0.95x +2.5, 解得x =150,∴当x =150时,小红在甲、乙两商场的实际花费相同. (3)由0.9x +10<0.95x +2.5,解得x >150, 由0.9x +10>0.95x +2.5,解得x <150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.【思维拓展】6.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8 t ,10 t 的卡车共12辆,全部车辆运输一次能运输110 t 沙石. (1)求“益安”车队载重量为8 t ,10 t 的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165 t 以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设“益安”车队载重量为8 t ,10 t 的卡车分别有x 辆,y 辆,由题意,得⎩⎨⎧x +y =12,8x +10y =110, 解得⎩⎨⎧x =5,y =7.答:“益安”车队载重量为8 t 的卡车有5辆,10 t 的卡车有7辆. (2)设载重量为8 t 的卡车增加了z 辆,由题意,得 8(5+z )+10(7+6-z )>165, 解得 z <52. ∵z ≥0且为整数, ∴z =0,1,2; ∴6-z =6,5,4.∴车队共有3种购车方案:①载重量为8 t 的卡车不购买,10 t 的卡车购买6辆; ②载重量为8 t 的卡车购买1辆,10 t 的卡车购买5辆; ③载重量为8 t 的卡车购买2辆,10 t 的卡车购买4辆.7.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额:注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为400元的商品.则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元). (1)购买一件标价为1 000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?解:(1)购买一件标价为1 000元的商品,消费金额为800元,顾客获得的优惠额为1 000×(1-80%)+150=350(元). (2)设该商品的标价为x 元. 当80%x ≤500,即x ≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226; 当500<80%x ≤600,即625<x ≤750时, (1-80%)x +100≥226. 解得x ≥630. 所以630≤x ≤750.当600<80%x ≤800×80%,即750<x ≤800时,顾客获得的优惠额大于750×(1-80%)+130=280>226.综上,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.8.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大、小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生,将入住寝室80间,问该校有多少种安排住宿的方案?解:(1)设该校大寝室每间住x 人,小寝室每间住y 人. 可得方程组⎩⎨⎧55x +50y =740,50x +55y =730,解方程组得⎩⎨⎧x =8,y =6.答:该校大寝室每间住8人,小寝室每间住6人. (2)设应安排小寝室z 间,则有 6z +8(80-z )≥630, 解不等式得 z ≤5,∵z 为自然数,∴z =0,1,2,3,4,5. 答:共有6种安排住宿方案.9.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A ,B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1 380 t. (1)该企业有几种购买方案? (2)哪种方案更省钱,说明理由.解:(1)设购买污水处理设备A 型号x 台,则购买B 型号(8-x )台,根据题意,得 ⎩⎨⎧12x +10(8-x )≤89.200x +160(8-x )≥1 380, 解这个不等式组,得2.5≤x ≤4.5. ∵x 是整数,∴x =3或x =4.当x =3时,8-x =5;当x =4时,8-x =4.所以有2种购买方案:第一种是购买3台A 型污水处理设备,5台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,4台B 型污水处理设备. (2)当x =3时,购买资金为12×3+10×5=86(万元); 当x =4时,购买资金为12×4+10×4=88(万元). 因为88>86,所以为了节约资金,应购污水处理设备A 型号3台,B 型号5台. 答:购买3台A 型污水处理设备,5台B 型污水处理设备更省钱.【思维升华】10.一个长方体盒子的最短边长50 cm ,最长边长90 cm.则盒子的体积可能是( D ) A .4 500 cm 3 B .180 000 cm 3 C .90 000 cm 3D .360 000 cm 3【解析】 ∵长方体盒子的最短边长50 cm ,最长边长90 cm , ∴长方体盒子的高h 满足50≤h ≤90, 所以其体积V 满足225 000≤V ≤405 000.11.已知三角形三边的长分别为a ,b ,c ,且a ,b ,c 均为整数,若b =7,a <b ,则满足条件的三角形的个数是( B ) A .30B .36C .40D .45【解析】 ∵三角形的三边a ,b ,c 的长都是整数,且a <b ,b =7, ∴a =1,2,3,4,5,6.根据三角形的三边关系,得b -a <c <b +a ,即7-a <c <7+a . 当a =1时,6<c <8,则c =7,此时满足条件的三角形有1个;当a=2时,5<c<9,则c=6,7,8,此时满足条件的三角形有3个;当a=3时,4<c<10,则c=5,6,7,8,9,此时满足条件的三角形有5个;当a=4时,3<c<11,则c=4,5,6,7,8,9,10,此时满足条件的三角形有7个;当a=5时,2<c<12,则c=3,4,5,6,7,8,9,10,11,此时满足条件的三角形有9个;当a=6时,1<c<13,则c=2,3,4,5,6,7,8,9,10,11,12,此时满足条件的三角形有11个.∴满足条件的三角形一共有1+3+5+7+9+11=36(个).12.A商品的单价是50元,B商品的单价是60元,几所学校各付款1 220元购买了这两种商品,任意2所学校购买的A商品的数量都不同.则参加这次采购的学校最多有__4__所.【解析】设某校购买了x件A商品,y件B商品,则有50x+60y=1 220,即5x+6y =122,5x<122,x<2425,y=122-5x6=20-x+2+x6,x是除以6余4的数,所以x=4,10,16,22,即有4个整数解,所以最多有4所学校.13.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2 013元,则他至少卖出了__207__支圆珠笔.【解析】设4元的卖x支,7元的卖y支,则4x+7y=2 013,x+y<350.4x+7y=2 013⇒4x=2 012-8y+y+1⇒x=503-2y+y+1 4.令y+14=k⇒y=4k-1,则x=503-2(4k-1)+k=505-7k,又x+y<350,即505-7k+4k-1<350⇒k≥5113k≥52,y=4k-1≥4×52-1=207.即他至少卖了207支圆珠笔.14.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有__12__件.【解析】设共购商品2x件,9元商品a件,则8元商品为(2x-a)件,根据题意,得8(2x-a)+9a=172,解得a=172-16x,∴依题意2x≥a,且a=172-16x≥0,x为正整数,可得959≤x≤10.75,∴x=10,则a=12.∴9元的商品12件,故答案填12.15.某公司为了扩大经营,决定购买6台机器用于生产活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞数量如下表所示.经过预算,本次购买机器所需的资金不能超过34万元.(1)按该公司的要求,可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,为了节约资金,应选择哪种购买方案?解:(1)设购买x台甲机器,则7x+5(6-x)≤34,所以x≤2.即x取0,1,2三个值,有三种购买方案:①不购买甲机器,购6台乙机器;②购买1台甲机器,5台乙机器;③购买2台甲机器,4台乙机器.(2)按方案①,所需资金为6×5=30(万元),日产量为6×60=360(个);按方案②,所需资金为1×7+5×5=32(万元),日产量为1×100+5×60=400(个);按方案③,所需资金为2×7+5×4=34(万元),日产量为2×100+4×60=440(个).所以,选择方案②.。
专题10一元一次不等式(组)及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习
2021年中考数学专题10 一元一次不等式(组)及其应用(知识点总结+例题讲解)一、不等式及其性质:1.不等式的定义:用不等号“>”、“≥”、“<”、“≤”或“≠”表示不等关系的式子,叫做不等式;2.不等式的解:使不等式成立的未知数的值;3.不等式的解集:(1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;(2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;4.解不等式:求不等式的解集的过程,叫做解不等式;5.不等式基本性质:(1)不等式两边加(或减)同一个数(或同一个整式),不等号的方向不变;若a>b,则a±c>b±c;(2)不等式两边乘以(或除以)同一个正数,不等号的方向不变;若a>b,c>0,则ac>bc(或a b>);c c(3)不等式两边乘以(或除以)同一个负数,不等号的方向改变;若a>b,c<0,则ac<bc(或a b<);c c【例题1】下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】主要依据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.【变式练习1】据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33 B.t≤24 C.24<t<33 D.24≤t≤33【答案】D【解析】已知某日武侯区的最高气温和最低气温,可知某日武侯区的气温的变化范围应该在最高气温和最低气温之间,且包括最高气温和最低气温.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.【例题2】(2020•贵港)如果a<b,c<0,那么下列不等式中不成立的是()A.a+c<b+c B.ac>bc C.ac+1>bc+1 D.ac2>bc2【答案】D【解析】根据不等式的性质解答即可.解:A、由a<b,c<0得到:a+c<b+c,原变形正确,故此选项不符合题意;B、由a<b,c<0得到:ac>bc,原变形正确,故此选项不符合题意;C、由a<b,c<0得到:ac+1>bc+1,原变形正确,故此选项不符合题意;D、由a<b,c<0得到:ac2<bc2,原变形错误,故此选项符合题意.故选:D.【变式练习2】(2019•济南)实数a、b在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.a﹣5>b﹣5 B.6a>6b C.﹣a>﹣b D.a﹣b>0【答案】C【解析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.解:由图可知,b<0<a,且|b|<|a|,∴a﹣5>b﹣5,6a>6b,﹣a<﹣b,a﹣b>0,∴关系式不成立的是选项C.故选:C.【例题3】已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.【答案】-35【解析】解答此题首先根据已知得出理解“≥”“≤”的意义,判断出a和b的最值即可解答.解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.【变式练习3】关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【答案】D【解析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.解:m−2x3≤−2;所以:m﹣2x≤﹣6;则:﹣2x≤﹣m﹣6;即:x≥12m+3;∵关于x的一元一次不等式m−2x3≤−2的解集为x≥4;∴12m+3=4,解得m=2.故选:D.二、一元一次不等式及其解法:1.一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的2.一元一次不等式的解法一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)将未知项的系数化为1。
一元一次不等式(组)与二元一次方程(组)结合培优资料
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题. 经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为⎩⎨⎧x =1y =7 或⎩⎨⎧x =3y =4 或⎩⎨⎧x =5y =1 【变式题组】01.求下列各方程的正整数解:⑴2x +y =10 (2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x 场,平了y 场 ,负了z 场,依题意可得:⎩⎨⎧x +y =4 ①3x +y =6 ②②-①得:2x -z =2 ③变形得: z =2x -2∵0≤z ≤2∴0≤2x -2≤2即1≤x ≤2又x 为正整数∴x =1,2相应地,y =3,0 z =0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔( ).A .11支B .9支C .7支D .5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x 、y 的方程组⎩⎨⎧x -y =a +32x +y =5a若x >y ,求a 的取值范围. 【解法指导】解本题的指导思想就是构建以a 为未知数的不等式•解之即得a 的取值范围,构建不等式的依据就是x >y ,而解方程组即可用a 的代数式分别表示x 和y ,进而可得不等式.解:解方程组⎩⎨⎧x -y =a +32x +y =5a 得 ⎩⎨⎧x =2a +1y =a -2∵x >y ∴2a +1>a -2 解得a >-3故a 的取值范围是a >-3.【变式题组】01.已知:关于x 的方程3x -(2a -3) =5x +(3a +6)的解是负数,则a 的取值范围是_____.02.已知:关于x 、y 的方程组⎩⎨⎧x +y =3a +9x -y =5a +1的解为非负数. (1)求a 的取值范围;(2)化简|4a +5|-|a -4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组⎩⎨⎧2x +y =5m +6x -2y =-17 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式⎩⎨⎧x -a >2b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组⎩⎨⎧x -a >2a -2x >0 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ ⎩⎪⎨⎪⎧a +2=-12b =1a 解设⎩⎨⎧a =-3a b =2a ∴(a +b )2009=(-1)2009=-1【变式题组】01.若⎩⎨⎧2a +x >a 2-3x >a的解集为-1<x <2,则a =___________,b =_____________. 02.已知:关于x 的不等式组⎩⎨⎧x -a ≥b 2x -a <2b +1的解集为3≤x <5,则ab 的值为( )A .-2B .21-C .-4D . 41- 03.若关于x 的不等式组⎩⎪⎨⎪⎧34+x >12+x x +a >0b的解集为x <2,则a 的取值范围是___________.04.已知:不等式组⎩⎨⎧x +2>a +b x -1<a -b 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃”玩具和一盒徽章的价格分别为x 元和y 元.依题意,得⎩⎨⎧x +2y =142x +3y =280 解得⎩⎨⎧x =125y =10答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m 盒,则购买徽章(20-m )盒.由题意,得125m +10(20-m )≤450,解得m ≤2.17.所以m 可以取1,2. 答:该公司有两种购买方案.方案一:购买“福娃”玩具1盒,徽章19盒;方案二:购买“福娃”玩具2盒,徽章18盆.【变式题组】01.(益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品, 奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.02. (眉山)渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.⑴若购买这批鱼苗共用了 2600元,求甲、乙两种鱼苗各购买了多少尾?⑵若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?⑶若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 03.(盐城)整顿药品市场,降低药品价格是国家的惠民政策之一.根据国家的《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%根据相关信息解决下列问题:⑴降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?⑵降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实 际情况决定:对甲种药品每盒加价15%对、乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?【例6】认真阅读下面三个人的对话.小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱入).售货员:本来你用10元钱买一盒饼干是多余的,但再买一袋牛奶就不够了.不过今天是儿童节,我给你买的饼干打九折,两样东西请拿好,还有找你的8角钱.旁边者:一盒饼干的标价可是整数哦!根据对话内容,试求出饼干和牛奶的标价各是多少?【解法指导】本题的条件蕴藏在对话中,应学会从对话中获取信息,“用10元钱买一盒饼干是多余的”, 说明一盒饼干的售价小于10元,此不等关系之一;“但再买一袋牛奶就不够了 ”,说明一盒饼干和一袋牛奶的价格之和大于10元,此不等关系之二.对话中还包含有一个等量关系,就是用10元钱买上述两样东西剩余0.8 元钱,即是说一袋牛奶与一盒饼干的价格之和等于10元减去0.8元,由一个方程和两个不等式结合最终可求出答案.解:设饼干的标价为每盒x 元,牛奶的标价为每袋^元.根据题意,得⎩⎪⎨⎪⎧x +y >10 ①0.9x +y =10-0.8 ②x <10 ③由②,得y =9.2-9x 将其代入①,得x +9.2-9x >10,解得:x >8.所以综合③可知8<x <10.又因为x 为整数,所以x =9,y =9.2-9x =1.1即饼干的标价为每盒9元,牛奶的标价为每袋1. 1元.【变式题组】01.某次足球联赛A 组共6队,比赛规定采取小组循环赛的形式,取前3名进人决赛,记分方法为胜1场得2 分,负1场扣1分,平1场不得分,问该小组共需比赛几场?某队得了 7分,则它是几胜几负?能否进人决赛?02.(杭州)宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班” 学生,也有一般普通班学生.由于场地、师资等条件限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%问今年最少可招收“宏志班”学生多少名?03.把一些书分给几个学生,如果每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一个同学分不到3本,这些书有多少本?学生有多少人?【例7】(北京市竞赛题)已知:a 、b 、c 是三个非负数,并且满足3a +2b +c =5,2a +b -3c =1,设m =3a +b -7 c ,设x 为m 的最大值,y 为m 的最小值.求xy 的值.【解法指导】要求某一代数式的最大(或最小)值,往往依题意构建一个不等式组:若s ≤m ≤t ,则m 的最小值为s ,最大值为t .本题思路亦类此,首先利用前两个等式,将c 看作已知量,解关于a 、b 的二元一次方程组,得到用含c 的式子表示a 、b 的形式,代入第三个等式,得到用含c 的式子表示m 的形式,同时依据a 、b 、c 均为非负数,得到c 的范围,代入m 与c 的关系式,得m 的范围,因而x 、y 可求.解:由条件得:解得: ⎩⎨⎧3a +2b =5-c 2a +b =1+3 c⎩⎨⎧a =7c -3b =7-11 c则m =3a +7-7c =3(7c -3)+ (7-11 c ) -7 c =3 c -2由a ≥0,b ≥0,c ≥0得⎩⎪⎨⎪⎧7c -3≥07-11c ≥0c ≥0解得,37≤c ≤711从而x =-57,y =-111故xy =577. 【变式题组】01.若a 、b 满足3a +5∣b ∣=7,S =2a 2-3∣b ∣,则 S 的取值范围是 .02.已知:x 、y 、z 是三个非负有理数,且满足3 x +2 y +z =5,x +y -z =2,若S =3 x + y -z ,则S 的取值范围是 .演练巩固 反馈提高一、填空题01.方程3x +y = 10的解有 个,其正整数解有 个.02.若关于x 的不等式(a -1)<a +5和2x <4的解集相同,则a 的值为 .03.已知:关于x 的不等式2x -a ≥-3的解集如图所示,则a = .04.已知方程组⎩⎨⎧2x -y =m 2y -x =1,若未知数x 、y 满足尤x +y >0,则m 的取值范围是 . 05.若方程组⎩⎨⎧3x +2y =2k 2y -x =3的解满足无x <1且y >0,则整数k 的个数是 . 06.若∣x -1∣ x -1=-1则x 的取值范围是 . 二、选择题07.已知:关于尤的不等式组⎩⎨⎧x -y ≥b 2x -a <2b +1的解为3≤x <5,则b a 的值为( ) A .-2 B .-2 C .2 D .108.若∣x +1∣=-1-x ,∣3x +4∣=3x +4.则x 取值范围是( )A .-43≤x ≤-1B .x ≥-1C .―43≤x ≤―1D .―43<x <―1 09.已知:m 、n 是整数,3 m +2=5n +3,且3 m +2>30,5n +3<40,则mn 的值是〈 〕A .70B .72C .77D .8410.某次测验共20道选择题,答对一题记5分,答错一题记―2分,不答记0分,某同学得48分,那么他答对的题目最多是( )道.A .9B .10C .11D .12三、解答题11.学校举办奥运知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖 三等奖 1盒福娃和1枚徽章 1盒福娃 1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和徽章前,了解到图所示的信息:⑴求一盒“福娃”和一枚徽章各多少元?⑵若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?12.(宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1 株,共需成本1500元.⑴求甲、乙两种花木每株成本分别为多少元;⑵据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?13.—项维修工程,若由甲工程队单独做,则40天可以完成,需费用24万元;若由乙工程队单独做,则60天可以完成,需费用21万元•现打算由甲、乙两工程队共同完成,要使该项目的总费用不超过22万元,则乙工程队至少要施工多少天?14.足球联赛得分办法是胜一场得3分,平一场得1分,负一场得0分•在一次足球赛中,南方足球队参加了14场比赛,至少负了1场,共积分19分.试推算南方足球队胜、平、负各多少场.15.(温州)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.⑴现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.①根据题意,完成以下表格:盒纸板竖式纸盒(个)横式纸盒(个)x正方形纸板(张)2(100-x)长方形纸板(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则求a的值.(写出一个即可)培优升级 奥赛检测01.若方程组⎩⎨⎧4x +y =k +1x+4y =3的解满足条件0<x+y <1,则k 的取值范围是( ) A .-4<k <1 B .-4<k <0 C .0<k <9 D .k <-402.(浙江省竞赛题)要使方程组⎩⎨⎧3x +2y =a 2x+3y =2的解是一对异号的数,则a 的取值范围是( ) A .43<k <3 B .a <43 C .a >3 D .a <43或a >3 03.已知a +b +c =0,a >b >c ,则 c a的取值范围是 . 04.(新加坡竞赛题)正整数m 、n 满足8m +9n =mn +6,则m 的最大值是 .05.(“希望杯”邀请赛初一试题)(中国古代问题)唐太宗传令点兵,若一千零一卒为一营,则剩余一人;若一千零二卒为一营,则剩余四人,此次点兵至少有 人.06.(第15届“希望杯”邀请赛试题)若正整数x 、y 满足2004x =15y ,则x +y 的最小值为 . 07.(北京市竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能表示为3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 .三、解答题08.已知:关于x 的方程组⎩⎨⎧x -y =a +32x+y =5a的解满足x >y >0,化简∣a ∣+∣3-a ∣.09.a 、b 、c 、d 是正整数,且a +b =20,a +c =24,a +d =22,设a +b +c +d 的最大值为M ,最小值为N ,求M -N 的值.10.在车站开始检票时,有a (a >0)名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口?11.(河南省竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那正好取完,求盒子里共有多少粒棋子?12.(“希望杯”初二竞赛题)一个布袋中有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中,红球的个数最多不超过多少个?13.(第20届香港中学数学竞赛题)已知:n 、k 皆为自然数,且1<k <n ,若1+2+3+…+n -k n -1,及n +k =a ,求a 的值.。
八年级数学一元一次不等式
在数轴上标出关键点并判断范围
对于一元一次不等式,首先找出 不等式中的关键点,即不等号两
边的数值。
在数轴上标出这些关键点,然后 根据不等式的性质确定解的范围。
如果不等式是严格不等式(<或 >),则解的范围不包括关键点; 如果是不严格不等式(≤或≥),
则解的范围包括关键点。
用数轴表示不等式解集
在数轴上标出关键点后,根据不等式 的性质用不同颜色的线段或箭头表示 解集的范围。
若满足,则公共解集正确;若不满足 ,则需要重新检查计算过程和解集范 围。
04 一元一次不等式在数轴上 表示方法
数轴概念及性质回顾
数轴是一条直线,其上有正整数、 零和负整数的标记,每个数在数
轴上都有唯一确定的位置。
数轴上的数从左到右依次增大, 即右边的数总比左边的数大。
数轴上的任意两点之间的距离等 于这两点所表示的数的差的绝对
简化不等式
移动项后,简化不等式并 求解。
系数化为1法
确定系数
找到不等式中含有未知数 的项的系数。
化系数为1
通过除以系数的方式,将 含有未知数的项的系数化 为1。
注意事项
在化系数为1的过程中,要 确保不等号的方向不变, 并且当系数为负数时,不 等号的方向需要改变。
03 一元一次不等式组解法
确定各不等式解集
对于每个不等式,首 先确定未知数的系数 和常数项。
解出每个不等式的解 集,并用数轴表示。
根据未知数的系数正 负,确定不等式的解 集方向。
找出公共解集
01
观察数轴上各个不等式的解集, 找出它们的交集部分。
02
公共解集必须满足所有不等式的 条件,即同时满足所有不等式的 解集。
第八讲(培优)一元一次不等式(组)及其应用提高
第六讲一元一次不等式(组)及其应用提高知识点一.1.不等式的基本性质性质1: 性质2: 性质3:2.同解不等式: 称为同解不等式。
3.一元一次不等式的定义:4.一元一次不等式的标准形式 :5.一元一次不等式组的解集确定:由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表,请填完整。
不等式组(其中a<b ) 图示 解集 口诀x a x b ≥⎧⎨≥⎩x a x b ≤⎧⎨≤⎩x ax b ≥⎧⎨≤⎩x ax b ≤⎧⎨≥⎩◆强化训练(易错)1.已知x-y|=y-x, 则x y;2.11|1|-=--x x ,则x 的取值范围是( ).(A)x >1; (B)x ≤1; (C)x ≥1; (D)x <1.3.a|>-a,则a 的取值范围是( ). (A)a >0; (B)a ≥0; (C)a <0; (D)自然数.◆经典例题:例1. m 取什么样的负整数时,关于x 的方程112x m -=的解不小于-3.◆变式训练已知x 、y 满足()22210x y a x y a -++--+=且31x y -<-,求a 的取值范围.例2.若实数a<1,则实数M=a ,N=23a +,P=213a +的大小关系为( ) A .P>N>M B .M>N>P C .N>P>M D .M>P>N◆变式训练比较231a a -+和225a a +-的大小(6>a )例3 关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是:( ) A .-5≤a ≤-143 B .-5≤a<-≤-143 C .-5<a ≤-143 D .-5<a<-143◆变式训练1:知关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解共有3个,则a 的取值范围是______.◆变式训练2:一、填空题1.不等式组52(1)1233x x x >-⎧⎪⎨-≤-⎪⎩的整数解的和是______. 2.不等式1≤3x-7<5的整数解是______.3.长度分别为3cm ,•7cm ,•xcm•的三根木棒围成一个三角形,•则x•的取值范围是_______.4.如果a<2,那么不等式组2x a x >⎧⎨>⎩的解集为________;当______时,不等式组2x a x <⎧⎨>⎩的解集是空集. 5.若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x<1,则a+b=______. 二、选择题6.已知0<b<a ,那么下列不等式组中无解的是( )A .x a x b >⎧⎨<⎩B .x a x b >-⎧⎨<-⎩C .x a x b >⎧⎨<-⎩D .x a x b>-⎧⎨<⎩ 7.已知24221x y kx y k +=⎧⎨+=+⎩,且-1<x-y<0,则k 的取值范围是( ) A .-1<k<-12 B .0<k<12 C .0<k<1 D .12<k<1 8.如果不等式组320x x m -≥⎧⎨≥⎩有解,则m 的取值范围是( )A .m<32B .m ≤32C .m>32D .m ≥329.15233m m +>⎧<⎪⎨-⎪⎩,化简│m+2│-│1-m │+│m │得( )A .m-3 B .m+3 C .3m+1 D .m+110.不等式组3(2)423x a x x x +--≤⎧>⎪⎨⎪⎩无解,则a 的取值范围是( )A .a<1 B .a ≤1 C .a>1 D .a ≥1知识点二.概括用一元一次不等式组解应用题的一般步骤(1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式组(5)解:求出不等式组的解集(6)答:写出符合题意的答案例4仔细观察图,认真阅读对话:根据对话内容,试求出饼干和牛奶的标价各是多少元?例5 .某中学新建了一栋5层的教学大楼,每层楼有7间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。
八年级(上)培优讲义:第10 讲一元一次不等式(组)综合
第10讲一元一次不等式(组)综合运用一、知识建构1.不等式的基本概念:(1)不等式:用连接起来的式子叫做不等式.(2)不等式的解:使不等式成立的值,叫做不等式的解.(3)不等式的解集:一个含有未知数的不等的解的叫做不等式的解集.2.常用的不等号有等.3.不等式的解与解集是不同的两个概念,不等式的解是单独的未知数的值,而解集是一个范围的未知数的值组成的集合,一般由无数个解组成.3.不等式的解集一般可以在数轴上表示出来。
注意“>”“<”在数轴上表示为,而“≥”“≤”在数轴上表示为 .4.不等式的基本性质:(1)基本性质1、不等式两边都加上(或减去)同一个或同一个不等号的方向,即:若a<b,则a+c b+c(或a-c b-c) .(2)基本性质2:不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c>0则a c b c(或acbc).(3)基本性质3、不等式两边都乘以(或除以)同一个不等号的方向,即:若a<b,c <0则a c b c(或acbc).5.运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要.6.一元一次不等式及其解法:(1)定义:只含有一个未知数,并且未知数的次数是且系数的不等式叫一元一次不等式,其一般形式为或.(2)一元一次不等式的解法步骤和一元一次方程的解法相同,即包含、、、、等五个步骤.7.一元一次不等式组及其解法:(1 )定义:把几个含有相同未知数的合起来,就组成了一个一元一次不等式组.(2)解集:几个不等式解集的叫做由它们所组成的不等式组的解集.(3)解法步骤:先求出不等式组中各个不等式的再求出他们的部分,就得到不等式组的解集.8.一元一次不等式组解集的四种情况:9.一元一次不等式(组)的应用:基本步骤同一元一次方程的应用可分为:、、、、、等六个步骤 .10.列不等式(组)解应用题,涉及的题型常与方案设计型问题相联系如:最大利润,最优方案等.二、经典例题例1.已知x=3是关于x的不等式3x-22ax+>23x的解,求a的取值范围.例2.若不等式组122x ax x+≥⎧⎨->-⎩有解,则a的取值范围是.例3.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.例5. 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?三、基础演练1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6折B .7折C .8折D .9折2.用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3 倍,则最小边用了( )火柴.A .20根火柴B .19根C .18根或19根火柴D .19根或20根 3.若x =23+a ,y =32+a ,且x >2>y ,求a 的取值范围.4.某工人生产机器零件,如果每天比预定计划多做1件,那么8天所做的零件超过100件;如果每天比预定计划少做1件,那么9天做的零件不到100件,问预定计划每天做几件?5.某公司为了扩大经营,决定购进6台机器用于生产某种零件,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产零件的数是如下所示,经过预算,本次购买机器所耗资金不能超过34万元.按该公司要求可以有几种购买方案?若该公司购进的6台机器的日产量能力不能低于380个,那么为了节约资金应选择哪种购买方案?四、直击中考1.(2014宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?2. (2014贵州)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.3.(2014南充)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为w元,请用含x的代数式表示w,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.4.(2014内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?五、能力提升1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?2.在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.(1)该校原有的班数是多少个?(2)新学期所增加的班数是多少个?3.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.4.某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?六、挑战竞赛1.小杰到学校食堂买饭,看到A,B两窗口前面排队的人一样多(设为a人,a>8),就站在A窗口队伍的后面排队,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍且B窗口队伍后面每分钟增加5人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上培优辅导资料11
一元一次不等式组及应用
例1、若不等式组0321x a x -⎧⎨
->-⎩
≥有5个整数解,求a 的取值范围.
练习:1、若不等式组851x x x m +<⎧⎨
>+⎩的解集是2x >,则m 的取值范围是 .
2、若关于x 的不等式组232x a x a >+⎧⎨
<-⎩无解,则a 的取值范围是 .
例2、已知关于x 、y 的方程组3951
x y a x y a +=+⎧⎨-=-⎩的解是一对正数.
(1)求a 的取值范围; (2)化简:445a a +--.
练习:若关于x 、y 的方程组256217x y m x y +=+⎧⎨-=-⎩
的解x 、y 都是正数,且x 的值小于y 的值, 求m 的取值范围.
例3、某校为了奖励在数学竟赛中获奖的学生,买了若干本课外读物准备送给他们.如果每
人送3本,则余8本;如果前面每人送5本,则最后一个得到的课外读物不足3本.设
该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:
(1)用含x 的代数式表示m ;
(2)求出该校的获奖人数及所买的课外读物的本数.
例4、商场购进某种商品m 件,每件按进价加价30元售出全部商品的65%,然后再降价
10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
巩固练习:
1、不等式组2311
x x -<⎧⎨
>-⎩的解集在数轴上可表示为( )
A .
B .
C .
D .
2、下列不等式组的解集,在数轴上表示为如图所示的是( )
A .1020x x ->⎧⎨+⎩≤
B .1020x x +⎧⎨-<⎩≥
C .1020
x x -⎧⎨+<⎩≥ D .1020x x +>⎧⎨-⎩≤ 3、不等式组23482x x x
⎧>-⎪⎨⎪--⎩≤解集中的最小整数解为( ) A .1- B .0 C .1 D .4
4、满足不等式组210107m m +⎧⎨->⎩
≥的整数m 的值有( )个 A .2 B .3 C .4 D .5
5、若不等式组的 2113x x a
-⎧>⎪⎨⎪>⎩解集为2x >,则a 的取值范围是( )
A .2a <
B .2a ≤
C .2a >
D .2a ≥
6、不等式组230320
x x -<⎧⎨+>⎩的解集是 .
7、不等式组2323x x -<⎧⎨--<⎩
解集中的整数解的和是 . 8、当方程5252x a x -=-的解满足13x <<时,a 的取值范围是 .
9、若使
()03x -三个式子都有意义,则x 的取值范围是 .
10、若不等式组237635x a b b x a
-<⎧⎨
-<⎩的解集是522x <<,则a = ,b = .
11、若直线y x k =+与直线122
y x =-+的交点在y 轴右侧,则k 的取值范围是( ) A .22k -<< B .20k -<< C .2k > D .2k < 12、如果不等式组9080
x a x b -⎧⎨-<⎩≥ 的整数解仅为1、2、3,那么适合这个不等式组的整数a 、
b 的有序数对(a ,b )共有( )
A .17个
B .64个
C .72个
D .81个 13、若a 为整数,且点M (39a -,210a -)在第四象限,则21a +的值为 .
14、若方程组21
x y m x y +=+⎧⎨-=⎩的解满足2x y >>,则m 的取值范围是_______________.
15、已知关于x 的不等式组221x a b x a b -⎧⎨
-<+⎩≥的解集为35x <≤,求b a 的值.
16、若方程组323x y x y a +=⎧⎨
-=-⎩
的解x 、y 都是正数,求a 的取值范围.
17、某种植物适宜生长在温度为18C ︒~22C ︒的山区,已知山区海拔每升高100m ,气
温下降0.6C ︒,现测出山脚下的平均气温为22C ︒,问该植物种在山上的哪一部分更合适?(设山脚下的平均海拔高度为100m )
18、某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型
车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装 运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?
19、水果店进了某中水果1t,进价是7元/kg,售价定为10元/kg.销售一半以后,为了
尽快售完,准备打折出售,如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?
20、某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃
圾55吨,需要费用550元;乙厂每小时可处理垃圾45吨,需要费用495元.如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?
21、某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元.
(1)设需用x千克甲种原料,写出x应满足的不等式组;
(2)按上述的条件购买甲种原料应在什么范围之内?
22、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼
里放5只,则有一笼无鸡可放,且最后一笼不足3只,问有笼多少个?有鸡多少只?。