修改版:2-2_合情推理
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比
§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V PBCDV ABCD,同理,p b h b =V PACD V ABCD ,p c h c =V PABD V ABCD ,p d h d =V PABCV ABCD .∵V PBCD +V PACD +V PABD +V PABC =V ABCD , ∴p a h a +p b h b +p c h c +p d h d =V PBCD +V PACD +V PABD +V PABCV ABCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。
2020高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合情推理讲义 2-2
2.1。
1 合情推理1.归纳推理(1)概念:由某类事物的□01部分对象具有某些特征,推出该类错误!全部对象都具有这些特征的推理,或由错误!个别事实概括出错误!一般结论的推理,称为归纳推理(简称归纳).(2)特征:归纳推理是由错误!部分到错误!整体、由错误!个别到错误!一般的推理.(3)一般步骤:第一步,通过观察个别情况发现某些错误!相同性质;第二步,从已知的错误!相同性质中推出一个明确表述的一般性命题(猜想).2.类比推理(1)概念:由两类对象具有某些□,11类似特征和其中一类对象的某些错误!已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特征:类比推理是由错误!特殊到错误!特殊的推理.(3)一般步骤:第一步,找出两类事物之间的错误!相似性或错误!一致性;第二步,用一类事物的错误!性质去推测另一类事物的错误!性质,得出一个明确的命题(猜想).3.合情推理(1)含义归纳推理和类比推理都是根据已有事实,经过错误!观察、错误!分析、错误!比较、错误!联想,再进行错误!归纳、错误!类比,然后提出错误!猜想的推理,我们把它们统称为合情推理.(2)合情推理的过程错误!→错误!→错误!→错误!归纳推理与类比推理的区别与联系区别:归纳推理是由特殊到一般的推理;类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真或可假.1.判一判(正确的打“√",错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于类比推理.( )(2)类比推理得到的结论可以作为定理应用. ()(3)归纳推理是由个别到一般的推理.( )答案(1)×(2)×(3)√2.做一做(1)已知数列{a n}中,a1=1,a n+1=错误!(n∈N*),则可归纳猜想{a n}的通项公式为__________________.(2)数列5,9,17,33,x,…中的x等于________.(3)等差数列{a n}中有2a n=a n-1+a n+1(n≥2且n∈N*),类比以上结论,在等比数列{b n}中类似的结论是__________.答案(1)a n=错误!(n∈N*) (2)65 (3)b错误!=b n-1·b n+1(n≥2且n∈N*)探究1 数列中的归纳推理例1 已知数列{a n}的首项a1=1,且a n+1=错误!(n=1,2,3,…),试归纳出这个数列的通项公式.[解]当n=1时,a1=1,当n=2时,a2=错误!=错误!,当n=3时,a3=错误!=错误!,当n=4时,a4=错误!=错误!,…通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出数列{a n}的通项公式是a n=错误!。
合情推理
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1
当当nn==23时时,,aa23==
3 7
当n=4时,a4= 15
猜想 an= 2n -1
2
1
3
练习题1:
在德国不莱梅举行的第48届世乒赛期间,某商场橱窗 里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其 中第一堆只有一层,就一个乒乓球;第2、3、4、…堆最底 层(第一层)分别按图4所示方式固定摆放. 从第一层开始, 每层的小球自然垒放在下一层之上,第n堆第n层就放一个 乒乓球,试表示第n堆的乒乓球总数。
13 1
13 23 9 32 (1 2)2 13 23 33 36 62 (1 2 3)2 13+23+33+43=100=102=(1+2+3+4)2
13 23 33 L n3 (1 2 3 L n)2
n2 (n 1)2
4
2、下面是一系列有机物的结构简图,图中的
类比 (特殊到特殊)
三段论 (一般到特殊)
3.合情推理:
①前提为真,结论可能为真的推理,叫做合情推理. ②归纳推理与类比推理是数学中常用的合情推理;
归纳推理的定义:
归纳推理:由某类事物的部分对象具有某些特征,
推出该类事物的全部对象都具有这些特征的推理; 或者 由个别事实概括出一般性的结论的推理,
练习题2:
观察下列等式: cos2x=2cos2x-1; cos4x=8cos4x-8cos2x+1; cos6x=32cos6x-48cos4x+18cos2x-1; cos8x=128cos8x-256cos6x+160cos4x-32cos2x+1; cos10x=mcos10x-1280cos8x+1120cos6x+ncos4x+pcos2x-1
合情推理—归纳推理
随着人工智能应用的广泛,归纳推理的可解释性成为了一个重要问题, 未来将有更多研究关注如何提高归纳推理的可解释性。
THANKS FOR WATCHING
感谢您的观看
合情推理的结论通常是确定 的,而归纳推理的结论通常 是不确定的,因为归纳推理 是基于有限的事例进行的。
04 合情推理的实际应用
商业决策
01
市场需求预测
通过分析历史销售数据和市场趋 势,推断未来市场需求和产品发 展方向。
竞争分析
ห้องสมุดไป่ตู้02
03
风险评估
通过研究竞争对手的产品、价格、 市场占有率等信息,评估自身竞 争优势和劣势。
归纳推理的定义
归纳推理是从个别到一般的推理过程,即从具体事例出发,通过观察、实验和分析,形成一般性的结 论或规律。
归纳推理的结论不是基于前提必然得出的,而是基于大量实例和经验,通过概括和总结得出的。
归纳推理的特点
1
归纳推理的结论是建立在大量实例和经验基础上 的,因此具有或然性,即结论不一定完全准确。
归纳推理在数学和逻辑学中也具有重要地位, 如在数学中的归纳法,逻辑学中的归纳逻辑等。
归纳推理在人工智能领域也得到了广泛应用, 如机器学习和数据挖掘等。
03 合情推理与归纳推理的联 系与区别
联系
都属于推理范畴
合情推理和归纳推理都是推理的两种基本形式,它们都是从已知事实出发,通过一定的逻辑或经验规则推导出未知事 实的思维方式。
合情推理与归纳推理
目 录
• 合情推理概述 • 归纳推理概述 • 合情推理与归纳推理的联系与区别 • 合情推理的实际应用 • 归纳推理的实际应用 • 合情推理与归纳推理的未来发展
01 合情推理概述
高中数学 2.1《合情推理与演绎推理》课件(1) 新人教A版选修2-2
思考2 思考2:科学家们发现火星具有一些与地 球类似的特征, 球类似的特征,如火星也是围绕太阳运 绕轴自转的行星,也有大气层, 行、绕轴自转的行星,也有大气层,在 一年中也有季节的变更, 一年中也有季节的变更,而且火星上大 部分时间的温度适合地球上某些已知生 物的生存,等等.运用类比推理, 物的生存,等等.运用类比推理,你有什 么猜想?其推理过程是怎样形成的? 么猜想?其推理过程是怎样形成的? 猜想:火星上也可能有生命存在. 猜想:火星上也可能有生命存在.
不能! 不能!
思考6 对于等式:1·2+2·3+ 思考6:对于等式:1·2+2·3+3·4 n(n+1)= 3n+ n=1, +…+n(n+1)=3n2-3n+2,当n=1, 时等式成立吗? 2,3时等式成立吗?能否由此断定这个 等式对所有正整数n都成立? 等式对所有正整数n都成立? 思考7:应用归纳推理可以发现一般结 思考7 其不足之处是什么? 论,其不足之处是什么? 由归纳推理得出的结论不一定正确, 由归纳推理得出的结论不一定正确,其 真实性有待进一步证明. 真实性有待进一步证明.
圆的概念和性质 圆的周长 圆的面积 球的类似概念和性质 球的面积 球的体积
圆心与弦(非直径)中点 球心与截面(非大圆)圆心的 球心与截面(非大圆) 圆心与弦(非直径) 连线垂直于截面 的连线垂直于弦 与圆心距离相等的两弦相 等,与圆心距离不等的两 弦不等, 弦不等,距圆心较近的弦 较长. 较长. 圆的方程为: 圆的方程为: (x- (y- (x-x0)2+(y-y0)2=r2 与球心距离相等的两截面积相 等,与球心距离不等的两截面 积不等, 积不等,距球心较近的截面积 较大. 较大 球的方程
如图所示, 例1 如图所示,有三根针和套在一根针 上的若干金属片,按下列规则, 上的若干金属片,按下列规则,把金属片 从一根针上全部移到另一根针上. 从一根针上全部移到另一根针上. 每次只能移动1个金属片; (1)每次只能移动1个金属片; (2)较大的金属片不能放在较小的金属 片上面. 片上面. 试推测: 个金属片从1 试推测:把n个金属片从1号针移到3号 个金属片从 号针移到3 最少需要移动多少次? 针,最少需要移动多少次?
人教版高中数学选修2-2《推理与证明小结》
3.平面图形与空间图形,圆与球中,从几何元素 的数目、位置关系、度量等方面入手,将平面几 何的相关结论类比到立体几何,相关类比点如下:
平面图形 点 直线 边长 面积 三角形 线线角 空间图形 直线 平面 面积 体积 四面体 面面角
第5个图形,中间有一个圆圈,另外的圆圈指 向五个方向,每个方向有四个圆圈,共有5×(5 -1)+1个圆圈;……
由上述的变化规律,可猜测第n个图形中间 有一个圆圈,另外的圆圈指向n个方向,每个 方向有(n-1)个圆圈,因此共有n(n-1)+1= (n2-n+1)个圆圈.
归纳推理在图形中的应用策略 通过一组平面或空间图形的 变化规律,研究其一般性结论, 通常需形状问题数字化,展现 数学之间的规律、特征,然后 进行归纳推理.解答该类问题 的一般策略是:
方法二:第2个图形,中间有一个圆圈,另外 的圆圈指向两个方向,共有2×(2-1)+1个圆圈;
第3个图形,中间有一个圆圈,另外的圆圈指 向三个方向,每个方向有两个圆圈,共有 3×(3-1)+1个圆圈;
第4个图形,中间有一个圆圈,另外的圆圈指 向四个方向,每个方向有三个圆圈,共有 4×(4-1)+1个圆圈;
(3)类比推理问题 例4.(1)在三角形中,任意两边之和大于第三边,那 么,在四面体中,各个面的面积之间有什么关系? 【提示】 四面体中的任意三个面的面积之和大于 第四个面的面积. (2)三角形的面积等于底边与高乘积的 ,那么 在四面体中,如何表示四面体的体积? 【提示】 四面体的体积等于底面积与高的积
2.已知等式或不等式进行归纳推理的方 法 (1)要特别注意所给几个等式(或不等式) 中项数和次数等方面的变化规律; (2)要特别注意所给几个等式(或不等式) 中结构形式的特征; (3)提炼出等式(或不等式)的综合特点; (4)运用归纳推理得出一般结论.
合情推理2类比推理
类比推理的特点
01
类比推理是一种或然性推理,其结论并非必然的,而是有一定 的不确定性。
02
类比推理依赖于比较和推断,需要有一定的经验和知识作为基
础。
类比推理在科学、法律、商业等领域有广泛应用,是一种重要
03
的推理方法。
类比推理的常见类型
属性类比
根据对象的某些属性之间的相似性进行类比,例如根据两种动物 的行为特征进行比较。
教育教学中的合情推理与类比推理
教学方法选择
教师可以通过合情推理分析学生的学习情况,选择适合的教学方法, 提高教学效果。
学科知识整合
教师可以通过类比推理将不同学科的知识进行整合,帮助学生建立 全面的知识体系。
学生评估
教师可以通过合情推理评估学生的学习进度和能力,为个性化教学提 供依据。
个人生活中的合情推理与类比推理
合情推理案例:侦探小说中的推理
合情推理在侦探小说中表现为
从已知事实出发,通过逻辑推理和经验判断,推导出可能的 解决方案。
案例
《福尔摩斯探案集》中福尔摩斯通过观察细节和逻辑分析, 推断出嫌疑人的身份。
类比推理案例:科学实验中的推理
要点一
类比推理在科学实验中表现为
要点二
案例
通过比较不同实验条件下的结果,推断出可能的因果关系 。
合情推理与类比推理
目录
• 合情推理介绍 • 类比推理介绍 • 合情推理与类比推理的比较 • 合情推理与类比推理的案例分析 • 合情推理与类比推理的实际应用
01 合情推理介绍
合情推理的定义
合情推理是一种基于经验和常识的推 理方式,通过观察、归纳、类比等方 法,从已知事实推导出未知结论。
它不同于演绎推理,演绎推理是基于 前提条件和逻辑规则推导出结论,而 合情推理则更注重实际情况和经验。
数学:2.1.1《合情推理与演绎推理-合情推理》PPT课件(新人教选修2-2)
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
例1:已知数列{an}的第1项a1=1且a
n +1
=
an 1 + an
(n=1,2,3 …),试归纳出这个数列的通项公式.
例2:数一数图中的凸多面体的面数F、顶
点数V和棱数E,然后用归纳法推理得出它们 之间的关系.
1 2
+
1 3
+ L + 5 2
1 n
(n Î
N )计 算 得 7 2
*
f(2)=
,f(4)>2,f(8)> 2时 ,有
, f ( 1 6 ) > 3 , f (3 2) >
-----------------.
例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测; 把n个金属片从1号针移到3号针,最少需要移动多少次? 解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3
哥德巴赫猜想(Goldbach Conjecture)
目前最佳的结果是中国数学家陈景润於1966年 证明的,称为陈氏定理(Chen„s Theorem) ? “ 任何充份大的偶数都是一个质数与一个自然数 之和,而後者仅仅是两个质数的乘积。” 通 常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
高中数学合情推理与演绎推理
合情推理是从已知的 结论推测未知的结论, 发现与猜想的结论都 要经过进一步严格证 明.
演绎推理是由一般到 特殊的推理,它常用 来证明和推理数学问 题,注意推理过程的 严密性,书写格式的 规范性.
归纳推理、类比推理、演绎推理等问题是 高考的热点,归纳、类比推理大多数出现 在填空题中,为中、低档题.演绎推理大 多数出现在解答题中,为中、高档题 目.在知识的交汇点处命题,背景新颖的 创新问题,常考常新,值得重视.
34.
新课标 ·文科数学(安徽专用)
自 主
(2)归纳三角恒等式sin2α+cos2(30°-α)-sin
落 实 ·
cos(30°-α)=34.
固
基
证明如下:
础
sin2α+cos2(30°-α)-sin αcos(30°-α)
高
α考 体 验
· 明 考 情
=
1-cos 2
2α +
1+cos(620°-2α) -sin
【思路点拨】
从特殊②计算结果为
3 4
,观察每个三角
函数式中三角函数名称与角的变化规律,归纳出一般性结
论;然后利根用据演(1绎)的推计理算进结行果证,将明该.同学的发现推
广为三角恒等式,并证明你的结论.
【尝试解答】 (1)选择②式,计算如下:
sin215°+cos215°+sin 15°cos 15°=1-12sin 30°=
01
归纳推理和类比推理的共同特点和区别是什么?
02
【提示】 共同点:两种推理的结论都有待于证明.
03
不同点:归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.
二.演绎推理所获得的结论一定可靠吗?
【提示】 演绎推理是由一般性的命题推出特殊性命 题的一种推理模式,是一种必然性推理.演绎推理的 前提与结论之间有蕴含关系,因而,只要前提是真实 的,推理的形式是正确的,那么结论必定是真实的, 但是错误的前提可能导致错误的结论.
归纳与技巧:合情推理与演绎推理(含解析)
归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。
2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.1 2.1.1 合情推理
栏 目 链 接
自 测 自 评
2.下面使用的类比推理中恰当的是( ) A.“若 m· 2=n· 2,则 m=n”类比得出“若 m· 0=n· 0,则 m=n” B.“(a+b)c=ac+bc”类比得出“(a· b)c=ac· bc” a+b a b C.“(a+b)c=ac+bc”类比得出“ c =c+c(c≠0)” D.“(pq)n=pn· qn”类比得出“(p+q)n=pn+qn”
栏 目 链 接
基 础 梳 理
1 例:已知正三角形内切圆的半径是高的 ,把这 3 个结论推广到空间正四面体,类似的结论是 _________________________________________ ______________________.
栏 目 链 接
基 础 梳 理
分析:从方法的类比入手. 1 1 1 解析:原问题的解法为等面积法,即 S= ah=3× ×ar⇒r= h, 2 2 3 1 1 1 类比问题的解法应为等体积法, V= Sh=4× Sr⇒r= h,即正四面 3 3 4 1 体的内切球的半径是高的 . 4 1 答案:正四面体的内切球半径是高的 自 评
1. 已知 a1=3, a2=6 且 an+2=an+1-an, 则 a33 为( A.3 C.6 B.-3 D.-6
)
解析:a3=3,a4=-3,a5=-6,a6=-3, a7=3,a8=6,„,故{an}以 6 个项为周期循环出 现,a33=a3=3. 答案:A
解析:类比推理的结果不一定正确,只有选项 C 的类 比结果是正确的.故选 C. 答案:C
栏 目 链 接
自 测 自 评
x 3.设函数 f(x)= (x>0),观察: x+2 x f1(x)=f(x)= , x+2 x f2(x)=f(f1(x))= , 3x+4 x f3(x)=f(f2(x))= , 7x+8
人教a版数学【选修2-2】2.1.1《合情推理》ppt课件
牛刀小试 1.已知a1=3,a2=6,且an+2=an+1-an,则a33为( A.3 B.-3 C.6 D.-6 [答案] A
)
[解析] a3=a2-a1=6-3=3, a4=a3-a2=3-6=-3, a5=a4-a3=-3-3=-6, a6=a5-a4=-6-(-3)=-3, a7=a6-a5=-3-(-6)=3, a8=a7-a6=6. 归纳猜想该数列为周期数列,且周期为6,所以a33=a6×5+3 =a3=3,故应选A.
(3)∵2 Sn=an+1, ∴2 S1=a1+1,即 2 a1=a1+1,∴a1=1. 又 2 S2=a2+1,∴2 a1+a2=a2+1, ∴a2 2-2a2-3=0. ∵对一切的 n∈N*,an>0,∴a2=3. 同理可求得 a3=5,a4=7,猜测出 an=2n-1.
[解析] (1)由已知有a1=3=22-1, a2=2a1+1=2×3+1=7=23-1, a3=2a2+1=2×7+1=15=24-1, a4=2a3+1=2×15+1=31=25-1. 猜测出an=2n+1-1,n∈N* (n≥2).
(2)由已知有 a1=a, 2-a 1 1 1 a2 = = ,a3= = , 2-a1 2-a 2-a2 3-2a 3-2a 1 a4 = = . 2-a3 4-3a n-1-n-2a 猜测出 an= .(n≥2) n-n-1a
-1
) B.nn D.(2n)2
[答案] B
1 4 x x 4 [解析] 由 x+x ≥2,x+x2=2+2+x2≥3, b x x x b 可推广 x+x3=3+3+3+x3≥4,知 b=33, a x x x a 所以对于结论 x+xn=n+n+…+n+xn≥n+1 知 a=nn, 故 应选 B.
2019-2020数学人教A版选修2-2课件:2.1.1合情推理
【解题探究】写出前4项,通过观察,发现相应的规律.
【解析】(1)由已知,可得 a1=3=22-1, a2=2a1+1=2×3+1=7=23-1, a3=2a2+1=2×7+1=15=24-1, a4=2a3+1=2×15+1=31=25-1. 猜想 an=2n+1-1,n∈N*.
(2)由已知,可得a1=a,a2=2-1a1=2-1 a, a3=2-1 a2=32--2aa,a4=2-1 a3=34--23aa. 猜想an=n-n-1-n-n1-a2a(n∈N*). (3)∵2 Sn=an+1,∴2 S1=a1+1,即2 a1=a1+1. ∴a1=1.又2 S2=a2+1,∴2 1+a2=a2+1. ∵对一切的n∈N*,an>0,∴a2=3. 同理可求得a3=5,a4=7.猜想出an=2n-1(n∈N*).
【答案】(1)C (2)f3(x)=1-x4x fn(x)=1-2xn-1x 【解析】(1)利用归纳法:a+b=1,a2+b2=3,a3+b3=3+1 =4,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18, a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29= 76,a10+b10=76+47=123,规律为从第三组开始,其结果为 前两组结果的和.
长,h是该边上的高,则三角形的面积是 12 ah,如果把扇形的弧
长l,半径r分别看成三角形的底边长和高,可得到扇形的面积
为
1 2
lr;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…
+(2n-1)=n2.(1)(2)两个推理过程分别属于( )
A.类比推理、归纳推理 B.类比推理、类比推理
a.在正四面体ABCD内有
2021_2022年高中数学第二章推理与证明1
④平面上,“在△ABC 中,∠ACB 的平分线 CE 将三角形 分成两部分的面积比SS△ △ABEECC=ABCC”,将这个结论类比到空间中, 有“在三棱锥 A-BCD 中,平面 DEC 平分二面角 A-CD-B, 且与 AB 交于点 E,则平面 DEC 将三棱锥分成两部分的体积比 VA-CDE=S△ACD”. VB-CDE S△BDC
• 1.类比推理 • 由两类对象具有某些__类__似____特征和其中一类对象的某些
_已__知__特__征_____,推出另一类对象也具有这些特征的推理称为类 比推理(简称类比).简言之,类比推理是由__特__殊____到 __特__殊____的推理. • (1)类比是从人们已经掌握了的事物的属性,推测正在研究中的 事物的属性,它以旧有认识作基础,类比出新的结果;
牛刀小试
• 1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“ 锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在 形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )
• A.归纳推理
B说法都不对
• [答案] B
• [解析] 推理是根据一个或几个已知的判断来确定一个新的判断的 思维过程,上述过程是推理,由性质类比可知是类比推理.
• [解析] 圆与球在它们的生成、形状、定义等方面都具有相似 的属性.据此,在圆与球的相关元素之间可以建立如下的对应 关系:
• 弦 ↔ 截面圆, • 直径 ↔ 大圆, • 周长 ↔ 表面积, • 圆面积 ↔ 球体积, • 等等.于是,根据圆的性质,可以猜测球的性质如下表所示:
圆的性质
圆心与弦(不是直径)的中 点的连线垂直于弦
cos2A+cos2B=bc2+ac2=a2+c2 b2=1.
高中数学选修2《合情推理与演绎推理》课件
【推理】
推理是根据一个或几个已知的判断来确定一个新 的判断的思维过程. 合情推理具有猜测和发现新结论、探索和提供解 决问题的思路和方向的作用; 演绎推理则具有证明结 论, 整理和建构知识体系的作用.
合情推理又分归纳推理与类比推理.
问题1. 观察以下几个一元二次方程的根与常数 项, 你有什么发现? 5x2+2x+3=0, 5x2+2x-3=0, x2+x+1=0, x2+x-1=0, 2x2-3x+4=0, 2x2-3x-4=0. 问题2. 观察下面几个偶数的分解, 你有什么发现? 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11. 方程 5x2+2x+3=0, x2+x+1=0, 2x2-3x+4=0 无实根; 方程 5x2+2x-3=0, x2+x-1=0, 2x2-3x-4=0 有二不 等实根. 由问题 1 猜测: 一元二次方程中, 常数项为正时, 方程无实根; 常数项为负时, 方程有两不等实根.
归纳推理可以发现新事实, 获得新结论.
【课时小结】
2. 归纳推理的基本思路
(1) 在部分对象中寻找相同点. 如问题 1, 2. (2) 在部分对象中分析运行结果的相同点. 如例1, 例4. (3) 在部分对象中寻找相关关系. 如练习第2题.
习题 2.1 A组 第 1、2、3 题.
习题 2.1 A 组 2an 1. 在数列{an}中, a1=1, an+1 = (nN*), 试 2 + an 猜想这个数列的通项公式. 解: a1=1. 2a1 21 2 = = . a2 = 2 + a1 2 + 1 3 2 2 2a2 1 3 = . = a3 = ∴猜想: 2 2 2 + a2 2 + 3 an = 2 . n+1 1 2 2a3 2 2 = . = a4 = 2 + a3 2 + 1 5 2 2 2 1 2 2 观察前 4 项: a1 = 1 = , a2 = , a3 = = , a4 = . 2 3 2 4 5
合情推理归纳推理
多角度思考问题
变换思考角度
尝试从不同的角度、立场或背景出发思考问 题,打破思维定势,发现新的思路和方法。
对比分析
对相似或不同的事物进行对比分析,找出它 们之间的异同点、联系和规律,为合情推理
和归纳推理提供依据。
不断练习和总结
要点一
大量练习
通过大量的练习,逐渐掌握合情推理和归纳推理的技巧和 方法,提高推理的准确性和效率。
Байду номын сангаас
要点二
及时总结
在练习过程中及时总结经验教训,发现自身的不足和问题 ,不断改进和提高。同时,将学到的知识和方法应用到实 际生活和工作中,不断检验和完善自己的推理能力。
THANKS FOR WATCHING
感谢您的观看
如果在被研究现象出现的两个或两个 以上的场合中,只有一个情况是共同 的,那么这个共同情况就与被研究的 现象之间有因果联系。
如果在被研究现象出现和不出现的两 个场合中,只有一个情况不同,其他 情况完全相同,而且这个唯一不同的 情况在被研究现象出现的场合中存在 ,在被研究现象不出现的场合中不存 在,那么这个唯一不同的情况就与被 研究现象之间有因果联系。
经验验证原则
推理的结论应该能够通过经验验证,符合实际情 况和常识。
合情推理的常用方法
1 2
归纳推理
从个别性知识推出一般性结论的推理方法,包括 简单枚举归纳、科学归纳和类比归纳等。
演绎推理
从一般性原理出发,通过逻辑推理得出特殊情况 下的结论,包括三段论、假言推理和选言推理等。
3
类比推理
根据两个或两类对象在某些属性上的相似,推断 它们在其他属性上也可能相似的一种推理方法。
如果被研究现象发生变化时,只有一 个情况也发生变化,那么这个情况就 与被研究现象之间有因果联系。
最新人教版高中数学选修2-2第二章《合情推理与演绎推理》教材梳理
庖丁巧解牛知识²巧学一、合情推理1.归纳推理由某类事件的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者是由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).要点提示①归纳推理的前提是已知的几个特殊现象,归纳所得的结论是尚属于未知的一般现象,该结论超越了前提所包容的范围.②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.知识拓展归纳推理的步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题.深化升华①归纳推理的实质是由部分到整体、由个别到一般.②应用归纳推理获得的新结论,一般只能作为猜想,虽然猜想是否正确还有待严格的证明,但是这个猜想可以为我们的研究提供一种方向.2.类比推理由两类对象具有某些类似的特征和已知其中一类对象的某些特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).方法点拨①类比推理实质是由特殊到特殊的推理.②运用类比推理常常要先寻找合适的类比对象,我们可以从不同角度出发确定类比对象,基本原则是根据当前的实际,选择适当的类比对象.知识拓展类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.深化升华①合情推理是指“合乎情理”的推理,得到一个新结论之前,合情推理常常能帮助我们猜想和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思想和方向.②一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如费马猜想就被大数学家欧拉推翻了.③合情推理的过程概括为:二、演绎推理1.演绎推理从一般性原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,演绎推理又称为逻辑推理.深化升华①演绎推理是由一般到特殊的推理.②数学中的证明主要是通过演绎推理来进行的.2.三段论推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.(2)“三段论”可以表示为:大前提:M是P小前提:S是M结论:S是P.(3)公理化方法:尽可能少地选择原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理法.公理化方法的精髓是:利用尽可能少的前提,推出尽可能多的结论.深化升华①利用集合知识说明“三段论”:若集合M的所有元素都有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.②应用三段论解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.知识拓展假言推理①定义:如果一个推理规则能用符号表示为“如果p q,p真,则q真”,那么这种推理规则叫做假言推理.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.②假言推理的步骤:确定命题p能够推出命题q;判断命题p是否为真,如果p为真,则q为真.知识拓展关系推理①定义:如果一个推理规则可以用符号表示为“如果a≥b,b≥c,则a≥c”,那么这种推理规则叫做关系推理.②关系推理的步骤:确定原式a和式子b存在的关系a≥b;论证式子b和c存在关系b≥c,从而推出a≥c.知识拓展完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.例如,对所有的n(3≤n<+∞),证明n边形的内角和为(n-2)π就是完全归纳推理.3.合情推理与演绎推理合情推理与演绎推理是常见的两种推理方式.从推理形式上看,合情推理是由局部到整体、个别到一般的推理(归纳),或是由特殊到特殊的推理(类比);而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确.方法点拨在数学中,证明命题的正确性,都是用演绎推理,而合情推理不能用作证明. 问题²探究问题1 类比平面向量和空间向量,列出它们相似(相同)的性质.思路:从平面向量和空间向量的定义、运算法则、运算律、数量积、共线,共面以及向量基本定理等几个方面来进行类比.探究:(1)从定义的角度考虑:平面向量:平面内既有大小又有方向的向量;空间向量:空间内既有大小又有方向的向量. (2)从运算法则的角度考虑:两个平面向量相加的三角形法则和平行四边形法则在空间中仍成立.始点相同的三个不共面的向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则在空间的推广.(3)从运算律、数量积的角度考虑,平面向量和空间向量是相同的.运算律:①a+b=b+a(加法交换律);②(a+b)+c=a+(b+c)(加法结合律);③λ(a+b)=λa+λb(数乘分配律).数量积的性质:①a²e=|a|cos〈a,e〉(e是单位向量);②a⊥b a²b=0;③|a|2=a²a.数量积的运算律:①(λa)²b=λ(a²b);②a²b=b²a(交换律);③a²(b+c)=a²b+a²c(分配律).(4)从向量共线,共面的角度考虑:共线向量定理:向量b与a(a≠0)共线的充要条件是:有且只有一个实数λ,使得b=λa.共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使p=x a+y b.(5)从向量基本定理的角度考虑:平面向量基本定理:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内任一向量a,有且只有一对实数λ1,λ2,使得a=λ1e1+λ2e2,其中e1,e2表示平面向量的一组基底. 空间向量基本定理:如果三个向量a、b、c不共面,那么对于空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=x a+y b+z c,其中{a,b,c}叫做空间的一个基底,a、b、c都叫基向量. 问题2 将三角形与四面体进行类比,你能想出几种类比呢?思路:可以取三角形为类比源,由三角形的已知知识预测和发现关于四面体的某些新命题. 探究:第一,三角形的内角平分线交于一点,这一点是三角形的内切圆的圆心.于是得到类比猜想:四面体各个面所成二面角的平分面交于一点,该点为四面体内切球的球心.第二,三角形的三条中线交于一点,这一点是三角形的重心,并分各条中线成2∶1两部分.由此得到类比猜想:四面体的四条中线(顶点与相对面三角形重心的连线)交于一点,该点是四面体的重心,且分各中线成2∶1两部分.第三,直角三角形的三边之间有关系c2=a2+b2.由此猜想:三个侧面两两垂直的四面体的各面面积之间有关系D2=A2+B2+C2.问题3 从A地出发到河边饮完马再到B地去,在河边哪个地方饮马可使路途最短?如图2-1-1所示.图2-1-1思路:先作点A关于MN的对称点A′,连结BA′,交MN于P,则P点即为所求.探究:用演绎法证明如下:如图2-1-1所示,在MN上取一点P′(异于点P),则AP ′=P ′A ′,AP=PA ′,从而AP ′+P ′B=A ′P ′+P ′B>A ′P+PB=AP+PB. 由此可知:A 到B 经P 点距离最短. 典题²热题例1设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)=___________;当n>4时,f(n)=___________. 思路解析:f(2)=0,f(4)-f(3)=3,f(5)-f(4)=4,…, f(n)-f(n-1)=n-1.累加得f(n)=f(2)+2+3+4+…+n-1=2)]1(2)[2(-+-n n =21(n+1)(n-2).答案:521(n+1)(n-2) 深化升华 本小题考查观察、分析、归纳推理、累加求通项等知识,是一个很灵活的题目. 例2在数列{a n }中,a 1=1,a n+1=nn a a +22(n ∈N *),猜想这个数列的通项公式.思路分析:根据已知条件和递推关系,先求出数列的前几项.然后总结归纳其中的规律,写出通项.解:{a n }中,a 1=1,a 2=322211=+a a ,a 3=,42212222==+a a a 4=522233=+a a ,…. ∴{a n }的通项公式为a n =12+n . 证明:∵a 1=1,a n+1=211221122+=+=+∴+n n n n n n a a a a a a ∴21111=-+n n a a . 即数列{n a 1}是以11a =1为首项,公差为21的等差数列.na 1=1+21(n-1)=21(n+1),a n =12+n .例3已知在△ABC 中,不等式π9111≥∠+∠+∠C B A ,在四边形ABCD 中,不等式π2161111≥∠+∠+∠+∠D C B A 成立, 在五边形ABCDE 中,不等式π32511111≥∠+∠+∠+∠+∠E D C B A ,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立? 思路分析:根据已知特殊的值: πππ3252169、、,…,总结归纳出一般性的规律:π)2(2-n n (n ≥3).s解:在n 边形A 1A 2…A n 中,π)2(1111121321-≥∠+∠++∠+∠+∠-n n A A A A A n n (n ≥3). 拓展延伸 平面内有n 条直线,其中任何两条都不平行,任何三条不过同一点,试归纳它们的交点的个数.解:n=2时,交点的个数f(2)=1. n=3时,交点的个数f(3)=3. n=4时,交点的个数f(4)=6. n=5时,交点的个数f(5)=10. 猜想归纳:f(n)=21n(n-1)(n ≥2). 深化升华 运用归纳推理可以去发现一些新的几何命题,再运用相关的方法证明它的真假,这是数学发明,创新的一条途径.例4已知在Rt △ABC 中,若∠C=90°,则cos 2A+cos 2B=1;在立体几何中,给出四面体性质的猜想.思路分析:考虑到平面中的图形是直角三角形,所以我们在空间选取有3个面两两垂直的直四面体P —A ′B ′C ′,且三个面分别与面A ′B ′C ′所成的二面角为α、β、γ.解:如图212所示,在Rt △ABC 中,cos 2A+cos 2B=(c b )2+2222)(cb ac a +==1. 于是把结论类比到四面体P —A ′B ′C ′中,我们猜想,三棱锥P-A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α、β、γ,则cos 2α+cos 2β+cos 2γ=1.图2-1-2深化升华 类比推理应从具体问题出发,通过观察、分析、联想进行对比,归纳,提出猜想.拓展延伸 在Rt △ABC 中,若∠C=90°,AC=b,BC=a,则△ABC 的外接圆半径r=222b a +.把上面的结论推广到空间,写出相似的结论.解:我们同样取空间有三条侧棱两两垂直的四面体A —BCD,且AB=a,AC=b,AD=c,则此三棱锥外接球的半径R=2222c b a ++.例5设a 1,a 2,a 3,…,a n ,…均为自然数,称a 1++++43211a a a 为无穷连分数,例如2=(2-1)+1=1+++++=+2121211121,这里a 1=1,a n =2(n ∈N *,n ≥2).请你与上式类似地将3写成无穷连分数,并写出a n .思路分析:本题给出了无穷连分数的定义以及范例,依定义仿范例,即可解决问题. 解:3=1+(3-1)=1+13111121311121311132+++=-++=++=++++++=-+++=211121111)13(21111同时有a 1=a 2n =1,a 2n+1=2(n ∈N *).深化升华 对有些提供了范例的信息迁移型创新题,解答时可根据所给的信息与所求的问题的相似性,运用类比推理,使问题得以解决,另外在解有些信息迁移型创新题时,也可类比旧的问题的解决方法,依照它解决新信息中的问题. 例6试将下列演绎推理写成三段论的形式.(1)太阳系的大行星都以椭圆形轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y=2x-1是一次函数,所以y=2x-1是单调函数;(4)等差数列的通项公式具有形式a n =pn+q(p,q 是常数),数列1,2,3,…,n 是等差数列,所以数列1,2,3,…,n 的通项具有a n =pn+q 的形式.思路分析:分清三段论的大前提、小前提、结论是解题的关键. 解:(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行; 小前提:冥王星是太阳系里的大行星; 结论:冥王星以椭圆形轨道绕太阳运行. (2)大前提:所有导体通电发热; 小前提:铁是导体; 结论:铁通电时发热.(3)大前提:一次函数是单调函数; 小前提:函数y=2x-1是一次函数; 结论:y=2x-1是单调函数.(4)大前提:等差数列的通项公式具有形式a n =pn+q; 小前提:数列1,2,3,…,n 是等差数列;结论:数列1,2,3,…,n 的通项具有a n =pn+q 的形式.深化升华 分清楚“三段论”中的大前提、小前提、结论,要抓住它们的定义,即大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况作出判断.例7用三段论证明:x 2+3>3x.思路分析:证明本例所依据的是:a-b>0⇔a>b.小前提是证明:(x 2+3)-3x>0,这是证明本例的关键.解:∵(x 2+3)-3x=(x-23)2+43≥43>0, ∴根据“三段论”,得x 2+3>3x.深化升华 由于本例所依据的大前提a-b>0⇔a>b 很明显,因此在证明过程中往往将其省略掉了.例8求证函数y=1212+-x x 是奇函数,且在定义域上是增函数.思路分析:本题在证明过程中使用了三段论推理,假言推理等推理规则.解:y=1221122)12(+-=+-+xx x 所以f(x)的定义域为x ∈R . f(-x)+f(x)=(1-122+-x )+(1-122+x )=2-(122+x +122+-x) =2-(1222121+∙++x x x )=2-12)12(2++xx =2-2=0, 即f(-x)=-f(x),所以f(x)是奇函数.任取x 1,x 2∈R ,且x 1<x 2. 则f(x 1)-f(x 2)=(1-1221+x )-(1-1222+x )=2(1222+x -1221+x ) =2²)12)(12(221221++-x x x x . 由于x 1<x 2,从而022,222121<-<x x x x ,所以f(x 1)<f(x 2),故f(x)为增函数.例9(2005全国高考 )设f(x)=sin(2x+φ)(-π<φ<0)的图象的一条对称轴是直线x=8π. (1)求φ;(2)求y=f(x)的单调增区间;(3)证明直线5x-2y+c=0与函数y=f(x)的图象不相切. (1)解:∵x=8π是函数y=f(x)的图象的对称轴,∴sin(2³8π+φ)=±1. ∴4π+φ=k π+2π,k ∈Z . ∵-π<φ<0,∴φ=43π-.(2)解:由(1)知φ=43π-,因此y=sin(2x-43π-).由题意得2k π-2π≤2x 43π-≤2k π+2π,k ∈Z .∴函数y=sin(2x-43π-)的单调增区间为[k π+8π,k π+85π],k ∈Z .(3)证明:∵|y ′|=|[sin(2x-43π-)]′|=|2cos(2x-4π)|≤2,∴曲线y=f(x)的切线斜率的取值范围为[-2,2]. 而直线5x-2y+c=0的斜率为25>2, ∴直线5x-2y+c=0与函数y=sin(2x-43π-)的图象不相切. 深化升华 第三问考查直线与三角函数图象的位置关系,很有新意.把函数值域、导数、斜率有机地联系在一起,是一道灵活的好题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用圆的性质类比得出球的性质
1相似性 圆是平面上到一定点的距离等于定长的所有点构成的集合 球面是空间中到一定点的距离等于定长的所有点构成的集合
圆是平面内封闭的曲线所围成的对称图形 球是空间中封闭的曲面所围成的对称图形
利用圆的性质类比得出球的性质 球的概念和性质 圆的概念和性质
圆的周长 S = 2πR 圆的面积 S =πR 2 圆心与弦(非直径)中点的连线 垂直于弦 球的表面积 S = 4πR2 球的体积 V = πR 3 球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
平面图形的性质
1.一条直线把平面分成两个部分 2.同一平面内两条直线无公共点 ,则它们互相平行 3.同一平面内垂直于同一条直线 的两条直线平行 4.同一平面内平行于同一条直线 的两条直线平行 5.平行四边形对边平行且相等 6.矩形对角线长相等 7.正方形外接圆与内切圆的圆心 重合 8.正三角形外接圆与内切圆的圆 心重合 9.等面积法
第四个数为8
第n个 数为2n.
由某类事物的部分对象具有某些特征,推出 该类事物的 全部对象都具有这些特征的推理,或 者由个别事实 概括出一般结论 的推理,称为归纳 推理(简称归纳). 即是由部分到整体,由个别到一般的推理.
你能举出归纳推理 的例子吗?
观察下列等式 6=3+3, 8=3+5, 12=5+7, 14=3+11,
简言之,类比推理是由特殊到特殊的推理.
类比推理的几个特点:
1.类比是从人们已经掌握了的事物的属性,推测正在研究 的事物的属性,是以旧有的认识为基础,类比出新的结果. 2.类比是从一种事物的特殊属性推测另一种事物的特殊属 性.3.类比的结果是猜测性的不一定可靠,但它却有发现的功能.
类比推理的一般步骤:
蛇类是用肺呼吸的
一切金属 都能导电. 鳄鱼是用肺呼吸的
海龟是用肺呼吸的
蜥蜴是用肺呼吸的
部分 个别
n 2180 .
整 体 一 般
爬行动
物都是 用肺呼
吸的
三角形内角和
为 180
和为 360 和为
凸四边形内角
凸五边形内角
540
第一个数为2 凸n边形 内角和为 第二个数为4 第三个数为6
归纳推理:从个别事实中推演出一般性的结论.
实验、观察 概括、推广 猜测一般性结论
练习3.(05年广东)设平面内有n条直线(n≥3),其中
有且仅有两条直线互相平行,任意三条直线不过同
一点.若用f(n)表示这n条直线交点的个数. 当n ≥3 时, f(n)= .(用n表示)
1 2 ( n n 2) 2
4 3
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等 与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积 等,距圆心较近的弦较长 不相等,距球心较近的面积较大 以点(x0,y0)为圆心, r为半径 的圆的方程为(x-x0)2+(yy0 )2 = r2 以点(x0,y0,z0)为球心, r为半 径的球的方程为(x-x0)2+(yy0)2+(z-z0)2 = r2
例1.已知数列{an}的第一项 a1 =1, an an 1 n 1 an 且 ( =1,2,3,· · · ),
1 an n 请归纳出这个数列的通项公式为________.
an满足 2. 已知数列
1 , 2 1 , a1 an1 an 归纳猜想通项公式a n
2 1
可能有生命存在
火星与地球类比的思维过程:
存在类似特征
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
仿照鱼类的外型和它们在水中沉浮的原理,发 明了潜水艇.
这几个推理的过程是归纳推理吗?若不是,它与归纳 推理有什么区别?
由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理.
归纳推理
由部分到整体、特殊到一般的推理; 以观察分析为基础,推测新的结论; 具有发现的功能; 结论不一定成立.
他的思路是这样的:
茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具; 它也可以是齿形的.
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕 轴自转 轴自转 有大气层 有大气层 一年中有四季的变更 一年中有四季的变更 大部分时间的温度适合地 球上某些已知生物的生存
温度适合生物的生存
有生命存在
三角形的两边的边长之和大于 四面体任意三个面的面积之和 第三边的边长 大于第四个面的面积 三角形的中位线等于第三边的 四面体的中位面(以任意三条棱 一半,且平行于等三边 的中点为顶点的三角形)的面积
等于第四个面的面积的 1 ,且 4 平行于第四个面
三角形的三条内角平分线交于 一点,且这点是三角形 内切圆的圆心
空间图形的性质
一个平面把空间分成两个部分
同一空间内两个平面无公共点,则它 们互相平行 同一空间内垂直于同一个平面的两条 平面平行 同一空间内平行于同一个平面的 两个平面平行 平行六面体对面平行且面积相等
长方体对角面的面积相等
正方体外接球与内切球的球心重合 正四面体外接球与内切球的球心重合
等体积法
问题 : 类比三角形的性质,列出四面体的有关特征。
例2:类比平面内直角三角形的勾股定理, 试给出空间中四面体性质的猜想.
A B
c2=a2+b2
a
C
c
s1 o s2
A
b
s3
B C 如图,四面体A BOC中,AOB BOC AOC 90 , 则
猜想: S2△ABC =S21+S22+S23
总结:1.进行类比推理的步骤:
(1)找出两类对象之间可以确切表述的相似特征; (2)用一类对象的已知特征去猜测另一类对象的特征, 从而得出一个猜想; (3)检验这个猜想.
第1个圆环从1到3.
前1个圆环从1到2;
第2个圆环从1到3; 第1个圆环从2到3.
a3 =7 n=3时,
前2个圆环从1到2; 第3个圆环从1到3;
同理 a4=15
前2个圆环从2到3.
猜想 an= 2n -1
2
1
3
观察到都是质数,进而猜想:
任何形如 的数都是质数 这就是著名的"费马猜想"
半个世纪后,
•作业:P84 T3.T4
类比推理
一年夏天,鲁班上山砍树,因为坡陡路滑,而且横七竖八 地长满了小树、杂草,行走非常不便。鲁班只好搀着树木、拽 着茅草往上爬。忽然,脚底一滑,身体便顺着山坡往下滚去, 鲁班急中生智,急忙抓住一把茅草,由于没有抓牢,反而感到 手掌心疼痛无比。滑到山脚,鲁班狼狈地爬了起来,伸开手掌 一看,掌心已是鲜血淋漓。鲁班非常惊奇,为何一把茅草能够 划破人的手掌。鲁班顾不得疼痛,沿着滑下来的山坡,爬上去 一看,这丛茅草与别的草没有两样。鲁班不甘心,便揪下一根 茅草仔细地观察起来。这茅草的叶子很怪,叶子两边都长着锋 利的小细齿,人手握紧它一拽,手掌就会被划破。鲁班又试着 用茅草在他的手指上拉了一下,果然又划开一道血口。 鲁班从这件事中得到启发,心想:如果仿照茅草细齿,来 做一件边缘带有细齿的工具,用它来锯树,岂不比斧砍更快、 更好吗?鲁班忘记疼痛,转身下山,做起试验来。在金属工匠 的帮助下,鲁班做了一把带有许多细齿的铁条。鲁班将这件工 具拿去锯树,果然又快又省力。锯子就这样发明了。
a1 =1 n =1时,
第1个圆环从1到3.
2
1
3
设 an为把 n 个圆环从1号针移到3号针的最少次数,则
a1 =1 n =1时, n=2时,a2=3
第1个圆环从1到3.
前1个圆环从1到2;
第2个圆环从1到3; 第1个圆环从2到3.
2
1
3
设 an为把 n 个圆环从1号针移到3号针的最少次数,则
a1 =1 n =1时, n=2时,a2=3
n
例2.如图所示,有三根针和套在一根针上的若干金属片.
按下列规则,把金属片从一根针上全部移到另一根针上 . (1)每次只能移动1个金属片; (2)较大的金属片不能放在较小的金属片上面; 试推测:把n个金属片从1号针移到3号针,最少需要移动 多少次?
2
1
3
设 an为把 n 个圆环从1号针移到3号针的最少次数,则
⑴ 找出两类对象之间相似形或一致性;
⑵ 用一类对象的已知特征去推测另一类对象的特征,
从而得出一个命题(猜想);
代数中的常见类比对象;
向量------数 不等------相等 无限------有限
几何中的常见类比对象
平面几何 点 线 面积 线线角 三角形 圆 立体几何 线 面 体积 二面角 四面体 球
十六进位 十进位
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
十六进位
十进位
8 8
A
9
9
A
10
B
11
C
12
D
13 )
E
14
F
15
例如用16进位制表示E+D=1B,则A×B=(
A.6E
B.72
C.5F
D.0B
类比推理
由特殊到特殊的推理
类比推理
以旧的知识为基础,推测新 的结果,具有发现的功能
注意 类比推理的结论不一定成立
观察、比较
2、类比推理的一般模式:
联想、类推
猜想新结论
A类事物具有性质a,b,c,d,
B类事物具有性质a’,b’,c’, (a,b,c与a’,b’,c’相似或相同)
所以B类事物可能具有性质d .
’