第49时 空间向量与立体几何
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
高中数学第三章空间向量与立体几何1空间向量及其运算5空间向量运算的坐标表示3课件新人教A版选修2
变式训练
已知 a=(1,2,12),b=(12,-12,1),c=(-2,3, -12),d=(1,-32,14).
求证:a⊥b,c∥d.
证明: ∵ a= (1,2,12), b= (12,-12,1), ∴a·b=1×12+2×(-12)+12×1=0. ∴ a⊥ b. ∵ c= (- 2,3,-12), d= (1,-32,14), ∴ c=- 2(1,-32,14)=- 2d. ∴ c∥ d.
(1)求证:EF⊥CF; (2)求E→F与C→G所成角的余弦值; (3)求 CE 的长. [分析] 可建立空间直角坐标系,利用向量的坐 标形式解题.
[解] 建立如图 3 所示的空间直角坐标系 D-xyz, 则 D(0,0,0),E(0,0,12),C(0,1,0), F(12,12,0),G(1,1,12).
[解] (1)如图 1,以 D 为原点,DA,DC,DD1 所在的直线为 x,y,z 轴建立空间直角坐标系,设 AA1=a,
则 B(4,4,0),N(2,2,a), A(4,0,0),M(2,4,a2),
图1
∴B→N= (- 2,- 2, a), A→M= (- 2, 4,a),
2 由B→N⊥A→M得B→N·A→M = 0, ∴4-8+a2=0,a=2 2,
b32.
2.空间中向量的坐标及两点间的距离公式 在空间直角坐标系中,设 A(a1,a2,a3),B(b1, b2, b3),则: (1)A→B= (b1- a1, b2- a2, b3- a3); (2)AB= |A→B|=
b1- a1 2+ b2- a2 2+ b3- a3 2.
如何理解空间向量的坐标运算与平面向量的坐 标运算间的关系?
|E→F|= |C→G|=
新教材2024版高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.2用空间向量研究距离夹角
解:由题设知 ABCD 是正方形,连接 AC,BD,交于点 O,则 AC⊥BD. 连接 PQ,则 PQ 过点 O.
由正四棱锥的性质知 PQ⊥平面 ABCD,故以 O 为坐标原点,以直 线 CA,DB,QP 分别为 x 轴、y 轴、z 轴建立空间直角坐标系(如图),
则 P(0,0,1),A(2 2,0,0),Q(0,0,-2),B(0,2 2,0), ∴A→Q=(-2 2,0,-2),P→B=(0,2 2,-1). ∴cos 〈A→Q,P→B〉=|AA→→QQ|·|PP→→BB|= 93, ∴异面直线 AQ 与 PB 所成角的余弦值为 93.
0+0=1.
(2)不妨设 CA=CC1=2CB=2,所以 B(0,0,1),C1(0,2,0),A(2,
0,0),B1(0,2,1),则A→B1=(-2,2,1),C→1B=(0,-2,1),所以 cos
〈A→B1,C→1B〉=|AA→→BB11|··C|C→→11BB|=-3×4+51=- 55.所以直线 BC1 与直线 AB1 所
题型2 直线与平面所成的角 如图,在四棱锥P-ABCD中,平面
PAB⊥ 底 面 ABCD , AD∥BC , ∠ ABC = 90° , ∠APB=90°.
(1)求证:AP⊥PC; (2)设AB=5,AP=BC=2AD=4,求直线CB 与平面PCD所成角的正弦值.
(1)证明:因为平面PAB⊥底面ABCD,∠ABC=90°,所以BC⊥平 面PAB,则BC⊥AP.
___[0_,__π_]_
【预习自测】
1.思维辨析(对的画“√”,错的画“×”)
(1)两异面直线所成的角与两直线的方向向量所成的角相等. ( )
(2)直线l的方向向量与平面α的法向量的夹角的余角就是直线l与平面
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
高考数学知识点总结之空间向量与立体几何
2019高考数学知识点总结之空间向量与立体几何一、考点概要:1、空间向量及其运算(1)空间向量的基本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量基本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量(平行向量):ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在内,则说向量平行于平面,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,则向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:已知两个非零向量、,在空间任取一点O,作,(两个向量的起点一定要相同),则叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:已知空间两个非零向量、,则叫做向量、的数量积,记作,即:。
高中数学必修2--空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何复习课件 PPT
错因分析:用法向量的夹角判断二面角的大小时出现错误,根据法向量 的方向可知,二面角为钝角,而不是锐角. 正解:以D为坐标原点建立如图所示的空间直角坐标系, 设正方体的棱长为1, 则D(0,0,0),A1(1,0,1),C1(0,1,1).
由题意知 DA1 =(1,0,1)是平面 ABD1 的一个法向量,
证明:如图所示,以点D为坐标原点,DA,DC,DP所在直线为x轴,y轴,z轴 建立空间直角坐标系.
(1)连接 AC,AC 交 BD 于点 G,连接 EG.
设 DA=a,PD=DC=b,
则 A(a,0,0),P(0,0,b),E(0, b , b ). 22
因为四边形 ABCD 是矩形,所以 G( a , b ,0). 22
( 5 ,0, 2 5 ).
5
5
因为 N(1,1,0),所以 MN =(-1,1,-1),故点 N 到平面 MA1C1 的距离 d=| MN · n0|=1.
四、易错易误辨析 1.混淆向量与实数的运算性质致误 【典例4】 已知a,b都是非零向量,且向量a+3b与7a-5b垂直,向量a-4b与 7a-2b垂直,求向量a,b的夹角.
DC1 =(0,1,1)是平面 BCD1 的一个法向量.
所以 cos< DA1 , DC1 >=
DC1 DA1 DC1 DA1
=1 2
,
所以 cos< DA1 , DC1 >=60°. 所以二面角 A-BD1-C 的大小为 120°.
真题体验
1.(2017·全国Ⅰ卷)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP =90°. (1)证明:平面PAB⊥平面PAD;
因为 PA =(a,0,-b), EG =( a ,0,- b ).
人教B版高中数学选修第三章空间向量与立体几何章归纳总结张课件
• (3)求二面角
• 用向量法求二面角也有两种方法:一种方
法是利用平面角的定义,在两个面内先求 出与棱垂直的两条直线对应的方向向量, 然后求出这两个方向向量的夹角,由此可 求出二面角的大小;另一种方法是转化为 求二面角的两个面的法向量的夹角,它与 二面角的大小相等或互补.
• 7.运用空间向量求空间距离
设平面 CDE 的法向量为 n2=(1,y2,z2),
则 n2·C→D=0,y2=0,
n2·C→E=0,1-y2+z2=0,z2=-1,
故 n2=(1,0,-1),
cos〈n1,n2〉=|nn11|·|nn22|=
1 2·
2=12,
∴〈n1,n2〉=60°,即二面角 B—DE—C 为 60°.
• [点评] 综合法更注重推理,方法巧妙,
①若A→B=C→D,则必有 A 与 C 重合,B 与 D 重合,AB
与 CD 为同一线段;
• ②若a·b<0,则〈a,b〉是钝角;
• ③若a是直线l的方向向量,则λa(λ∈R)也
是l的方向向量;
• ④非零向量a,b,c满足a与b,b与c,c与a
都是共面向量,则a,b,c必共面.
• 其中错误命题的个数是
∵CD⊥PD,∴C→D·P→D=0,
即 3(3-a)+9=0,∴a=6.
∵A→E=12E→P=13A→P, ∴B→E-B→A=13(B→P-B→A), ∴B→E=23B→A+13B→P=23(0,3,0)+13(0,0,3)=(0,2,1). 设平面 EBD 的法向量 a=(x,y,1), ∵B→E⊥a,∴2y+1=0,∴y=-12. ∵B→D⊥a,∴3x+3y=0,∴x=-y, ∴a=12,-12,1.
利用公式 cos〈a,b〉=|aa|·|bb|,
第2章空间向量与立体几何知识点清单-高二下学期数学湘教版选择性
新教材湘教版2019版数学选择性必修第二册第2章知识点清单目录第2章空间向量与立体几何2. 1 空间直角坐标系2. 2 空间向量及其运算2. 3 空间向量基本定理及坐标表示2. 4 空间向量在立体几何中的应用第2章空间向量与立体几何2. 1 空间直角坐标系一、空间直角坐标系1. 空间直角坐标系:在空间中任取一点O,以O为原点,作三条两两垂直的有向直线Ox,Oy,Oz,在这三条直线上选取共同的长度单位,分别建立坐标轴,依次称为x轴、y轴、z轴,从而组成了一个空间直角坐标系O-xyz.2. 相关概念:在空间直角坐标系O-xyz中,点O叫坐标原点,由两条坐标轴确定的平面叫坐标平面,分别称为xOy平面、yOz平面、xOz平面.二、空间点的坐标表示1. 空间直角坐标系点的坐标的概念在空间直角坐标系O-xyz中,若点P与有序实数组(x,y,z)之间为一一对应关系,此时,有序实数组(x,y,z)称为点P的坐标,记作P(x,y,z),其中x称为点P的横坐标,y称为点P的纵坐标,z称为点P的竖坐标.2. 特殊点的坐标在空间直角坐标系中,原点O的坐标为(0,0,0),x轴上的点的坐标为(x,0,0),y 轴上的点的坐标为(0,y,0),z轴上的点的坐标为(0,0,z),xOy平面内的点的坐标为(x,y,0),yOz平面内的点的坐标为(0,y,z),xOz平面内的点的坐标为(x,0,z). 记忆方法:无谁谁为0.三、空间两点间的距离公式1. 设A(x1,y1,z1),B(x2,y2,z2)为空间中任意两点,则|AB|=√(x2−x1)2+(y2−y1)2+(z2−z1)2.2. 特别地,原点O到空间中任意一点P(x,y,z)的距离为|OP|=√x2+y2+z2.3. 线段中点坐标公式已知空间中任意两点A(x1,y1,z1),B(x2,y2,z2),则线段AB的中点M的坐标为(x1+x22,y1+y22,z1+z22).4. 三角形重心坐标公式已知△ABC的三个顶点分别为A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),则△ABC的重心G的坐标为(x1+x2+x33,y1+y2+y33,z1+z2+z33).5. 空间中的对称问题在空间直角坐标系内,已知点P(x,y,z),则有如下结论:(1)点P关于原点对称的点是P1(-x,-y,-z);(2)点P关于横轴(x轴)对称的点是P2(x,-y,-z);(3)点P关于纵轴(y轴)对称的点是P3(-x,y,-z);(4)点P关于竖轴(z轴)对称的点是P4(-x,-y,z);(5)点P关于xOy平面对称的点是P5(x,y,-z);(6)点P关于yOz平面对称的点是P6(-x,y,z);(7)点P关于xOz平面对称的点是P7(x,-y,z).记忆方法:关于谁对称谁不变,其余坐标变为相反数.四、空间直角坐标系点的坐标的确定1. 建立空间直角坐标系应遵循的原则(1)让尽可能多的点落在坐标轴上或坐标平面内;(2)充分利用几何图形的对称性;(3)充分利用图中已有的垂直关系.2. 确定空间中点的坐标的方法(1)垂面法:找到点P在三条坐标轴上的射影. 方法是过点P作三个平面分别垂直于x 轴、y轴、z轴于A,B,C三点(A,B,C即为点P在三条坐标轴上的投影),点A,B,C的坐标分别为(x,0,0),(0,y,0),(0,0,z),则(x,y,z)就是点P的坐标.⃗⃗⃗⃗⃗⃗ 的长度(2)垂线法:先将P投射(沿与z轴平行的方向)到xOy平面上的一点P1,由P1P及其方向确定竖坐标z,再在xOy平面上用同平面直角坐标系中一样的方法确定P1的横坐标x、纵坐标y,最后得出点P的坐标(x,y,z).五、空间两点间的距离公式的应用1. 计算空间两点间的距离(1)若两点坐标已知,则直接代入空间两点间的距离公式求解.(2)若点的坐标未知,则需利用平面图形及空间图形的性质结合空间直角坐标系求出点的坐标,再代入空间两点间的距离公式求解.2. 利用空间两点间的距离公式确定点的坐标设出点的坐标,利用空间两点间的距离公式构造方程求解. 此外,要注意点的坐标的巧设,如在x轴上的点的坐标可设为(x,0,0),在xOy平面上的点的坐标可设为(x,y,0).3. 根据两点间的距离公式可求出三角形的三边长,从而判断三角形的形状.2. 2 空间向量及其运算一、空间向量的基本概念1. 空间向量的基本概念(1)定义:空间中既有大小又有方向的量称为空间向量.(2)向量的模:空间向量a 的大小(或长度)称为a 的模,记为|a |.(3)表示:从空间中任意一点A 出发作有向线段AB ⃗⃗⃗⃗⃗ ,使AB⃗⃗⃗⃗⃗ 的方向与a 相同,长度与|a | 相等,则有向线段AB ⃗⃗⃗⃗⃗ 表示向量a ,记作a =AB ⃗⃗⃗⃗⃗ . 通常把A 称为向量AB⃗⃗⃗⃗⃗ 的起点,B 称为向量AB⃗⃗⃗⃗⃗ 的终点. 2. 几类特殊的空间向量 名称定义 零向量长度为0的向量 相等向量方向相同且长度相等的向量 相反向量 方向相反、长度相等的向量二、空间向量的加减法1. 空间向量的加减法法则平面向量求和的三角形法则和平行四边形法则对空间向量也成立.(1)对于空间任意两个向量a ,b ,在平面α内任取一点O ,作OA ⃗⃗⃗⃗⃗ =a , OB ⃗⃗⃗⃗⃗ =b , AC⃗⃗⃗⃗⃗ =b ,则a +b =OC ⃗⃗⃗⃗⃗ ,a -b =BA⃗⃗⃗⃗⃗ .(2)对于空间三个或更多的向量的求和,与平面内多个向量的加法类似,可将它们依次用首尾相接的折线来表示,则从第一个向量的起点指向最后一个向量的终点所得的向量即为这些向量的和向量.2. 空间向量的加法运算律(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).三、向量与实数相乘1. 向量与实数相乘的定义:任何一个向量a 都可看作某平面上的向量,它与实数λ相 乘可类比平面向量数乘的法则进行,因而有|λa |=|λ||a |.当λ>0时,λa 与a 方向相同;当λ<0时,λa 与a 方向相反.空间向量的加法、减法、数乘三种运算统称为空间向量的线性运算.2. 单位向量:长度为1的向量称为单位向量.对于每个非零向量a ,可得到与它方向相同的唯一单位向量e =1|a|a . 3. 共线向量:对于空间任意两个向量a ,b (a ≠0),若b =λa ,其中λ为实数,则b 与a 共线或平行,记作b ∥a .4. 零向量与任意向量共线.5. 空间向量与实数的乘法的运算律(1)对向量加法的分配律:λ(a +b )=λa +λb .(2)对实数加法的分配律:(λ1+λ2)a =λ1a +λ2a .四、向量的数量积1. 向量的夹角:作OA ⃗⃗⃗⃗⃗ =a , OB⃗⃗⃗⃗⃗ =b ,则∠AOB 称为向量a ,b 的夹角,记作<a ,b >,其取值范围为[0,π]. 两向量同向时,夹角为0;两向量反向时,夹角为π.2. 向量的数量积:定义a·b =|a ||b |·cos<a ,b >为a 与b 的数量积.3. 零向量与任意向量的数量积为0,即0·a =0.4. 向量数量积的性质(1)向量垂直的关系式: a ⊥b ⇔a ·b =0.注:零向量与任意向量垂直.(2)模长公式:a·a =|a |2=a 2,|a |=√a 2 .(3)夹角公式:若a ,b 均为非零向量,则cos<a ,b >=a⋅b |a||b|.5. 向量数量积的运算律(1)(λa )·b =λ(a ·b )=a ·(λb )(λ∈R).(2)交换律:a·b =b·a .(3)分配律:a ·(b +c )=a·b +a·c .6. 向量数量积的几何意义(1)投影向量与投影长:如图,将空间任意两个向量a ,b 平移到同一个平面内,可得OA ⃗⃗⃗⃗⃗ =a , OB ⃗⃗⃗⃗⃗ =b ,<a ,b >=α,过点B 作BB 1⊥OA,垂足为点B 1,则OB 1⃗⃗⃗⃗⃗⃗⃗ 为OB⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上的投影向量,投影向量的模|OB 1⃗⃗⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ ||cos α|称为投影长, 称|OB ⃗⃗⃗⃗⃗ |cos α为OB⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上的投影.(2)数量积的几何意义:a 与b 的数量积等于a 的模|a |与b 在a 方向上的投影|b |·cos α的乘积,也等于b 的模|b |与a 在b 方向上的投影|a |cos α的乘积.五、空间向量的三角不等式1. 如果a ,b 都是空间向量,那么||a |-|b ||≤|a ±b |≤|a |+|b |.六、空间向量的线性表示1. 空间向量的线性表示的步骤(1)在空间中选三条不在同一个平面内的向量;(2)利用向量的线性运算表示空间中的其他向量.七、利用数量积求距离问题1. 求解两点间距离问题时,转化为求以两点为端点的有向线段表示的向量的模的问题,然后将此向量表示为已知的几个向量和或差的形式,求出已知向量两两之间的夹角以及它们的模,利用公式|a|=√a⋅a(推广公式:|a±b|=√(a±b)2=√a2±2a⋅b+b2)求解即可.八、利用数量积求解夹角问题1. 求空间两个向量的夹角的方法(1)结合图形,平移向量,利用空间向量的夹角定义来求,但要注意向量夹角的范围;求cos<a,b>,最后确定<a,b>.(2)先求a·b,再利用公式cos<a,b>=a⋅b|a||b|2. 求两条异面直线所成的角的步骤(1)根据题设条件在两条异面直线上分别取一个有向线段表示的向量;(2)将异面直线所成角的问题转化为向量夹角问题;(3)利用向量的数量积求向量夹角的余弦值;(4)由于异面直线所成的角为锐角或直角,因此向量夹角的余弦值的绝对值等于异面直线所成的角的余弦值,进而求出异面直线所成的角的大小.九、利用数量积证明两直线垂直1. 由数量积的性质a⊥b⇔a·b=0可知,要证两直线垂直,可构造与两直线分别平行的非零向量,然后证明这两个向量的数量积为0即可.2. 用向量法证明垂直关系的步骤(1)把几何问题转化为向量问题;(2)用已知向量表示所证向量;(3)结合数量积公式和运算律证数量积为0;(4)将向量问题回归到几何问题.2. 3 空间向量基本定理及坐标表示一、共面向量1. 共面向量的概念:一般地,能平移到同一平面内的向量叫作共面向量.2. 平面向量基本定理:如果两个向量e1,e2不共线,那么向量p与向量e1,e2共面的充要条件是存在有序实数组(x,y),使得p=x e1+y e2.3. 相关结论:在三个向量a,b,c中,某个向量为0,或者某两个向量平行,则这三个向量共面.二、空间向量的基本定理1. 设e1,e2,e3是空间中三个不共面向量,则空间中任意一个向量p可以分解成这三个向量的实数倍之和:p=x e1+y e2+z e3,此表达式中的系数x,y,z由p唯一确定,即若p=x e1+y e2+z e3=x'e1+y'e2+z'e3,则x=x',y=y',z=z'.2. 我们把{e1,e2,e3}称为空间的一组基,e1,e2,e3叫作基向量,(x,y,z)称为向量p=x e1+y e2+z e3在基{e1,e2,e3}下的坐标.三、空间向量的直角坐标表示1. 标准正交基:空间任意三个两两垂直、长度均为1的向量i,j,k不共面,可将它们组成空间的一组基,我们把这组基称为标准正交基.2. 向量的坐标:空间每个向量p都可以分解成基向量的实数倍之和:p=x i+y j+z k,系数x,y,z按顺序排成的实数组(x,y,z),称为向量p的坐标,记为p=(x,y,z).3. 与向量坐标有关的结论:一个空间向量在空间直角坐标系中的坐标,等于表示这个空间向量的有向线段的终点的坐标减去它的起点的坐标.四、空间向量运算的坐标表示1. 空间向量的坐标运算法则设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2).设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2).四、拓展1. 四点共面的充要条件空间中任一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y), 使MP ⃗⃗⃗⃗⃗⃗ =x MA ⃗⃗⃗⃗⃗⃗ +y MB ⃗⃗⃗⃗⃗⃗ ,或对空间中任一点O ,有OP ⃗⃗⃗⃗⃗ =OM ⃗⃗⃗⃗⃗⃗ +x MA ⃗⃗⃗⃗⃗⃗ +y MB ⃗⃗⃗⃗⃗⃗ (或OP ⃗⃗⃗⃗⃗ =(1-x-y)·OM ⃗⃗⃗⃗⃗⃗ +x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ ).2. 定比分点坐标公式已知A(x 1,y 1,z 1),B(x 2,y 2,z 2)两点,点M 在直线AB 上,AM ⃗⃗⃗⃗⃗⃗ =λMB⃗⃗⃗⃗⃗⃗ (λ∈R 且λ≠-1)则称点M 为有向线段AB ⃗⃗⃗⃗⃗ 的定比分点,其坐标为(x 1+λx 21+λ,y 1+λy 21+λ,z 1+λz 21+λ). 五、利用基向量解决几何问题1. 用基向量表示向量的步骤(1)定基向量:若未给定基向量,则应根据已知条件,确定三个不共面的向量作为空间的基向量.(2)找目标:用已给定或确定好的基向量表示目标向量,需要根据三角形法则或平行四边形法则,结合相等向量及向量的相关运算进行变形、化简.(3)下结论:将变形、化简后的目标向量进行整理,得到最终结果. 注意此结果中只能含有基向量,不能含有其他形式的向量.六、空间向量平行与垂直的坐标表示的应用1. 利用空间向量的坐标运算判断向量平行、垂直借助向量的坐标,可将向量的平行与垂直问题代数化,即借助代数运算达到判断向量平行或垂直的目的. 求解此类问题要抓住两个核心关系式:(1) a∥b (a ≠0)⇔x 2=λx 1,y 2=λy 1,z 2=λz 1,λ∈R;(2) a⊥b ⇔x 1x 2+y 1y 2+z 1z 2=0. 其中,a =(x 1,y 1,z 1),b =(x 2,y 2,z 2).2. 由平行、垂直求参数的值利用平行、垂直关系和上述的两个核心关系式列出方程,即可求出参数的值.3. 利用空间向量的坐标运算证明线线平行或垂直(1)在两直线上分别取一个有向线段表示的向量;(2)利用向量的坐标运算判断两向量的平行或垂直关系;(3)若两向量平行,且两直线不重合,则两直线平行;若两向量垂直,则两直线垂直.七、利用空间向量的坐标运算求夹角和线段的长1. 利用空间向量的坐标运算求夹角和线段长的步骤(1)根据几何图形的特点建立适当的空间直角坐标系;(2)利用题设条件写出相关点的坐标,进而得相关向量的坐标;(3)利用空间向量的模长公式与夹角公式求解.2. 4 空间向量在立体几何中的应用2. 4. 1 空间直线的方向向量和平面的法向量2. 4. 2 空间线面位置关系的判定一、空间直线的方向向量和平面的法向量1. 位置向量:在空间中,取一定点O 作为原点,那么空间中任意一点P 的位置就可以用向量OP ⃗⃗⃗⃗⃗ 来表示, OP⃗⃗⃗⃗⃗ 称为点P 的位置向量. 2. 直线的方向向量:一般地,如果非零向量v 与直线l 平行,就称v 为l 的方向向量.由此可知,在直线l 上任取两点A ,B ,则AB ⃗⃗⃗⃗⃗ (或BA⃗⃗⃗⃗⃗ )就是直线l 的方向向量. 3. 平面的法向量:如果非零向量n 所在直线与平面α垂直,则称n 为平面α的法向量.二、空间线面位置关系的判定1. 设空间两条直线l 1,l 2的方向向量分别为v 1=(x 1,y 1,z 1),v 2=(x 2,y 2,z 2),两个平面α1,α2的法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2),则三、三垂线定理及其逆定理1. 点在平面内的射影:过点P作平面α的垂线,则称垂足P0为点P在平面α内的射影.2. 三垂线定理:如果平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它和这条斜线也垂直. 可简记为:垂直于射影,则垂直于斜线.3. 三垂线定理的逆定理:如果平面内的一条直线和这个平面的一条斜线垂直,则它和这条斜线在平面内的射影也垂直. 可简记为:垂直于斜线,则垂直于射影.四、利用空间向量证明垂直关系1. 利用向量法证明线线垂直的两种思路(1)坐标法:建立空间直角坐标系,将两直线的方向向量用坐标表示出来,再证明其数量积为0.(2)基向量法:利用向量的线性运算,将要证明的两条直线的方向向量用基向量表示出来,再利用数量积运算证明两方向向量的数量积为0.2. 利用向量法证明线面垂直的两种思路(1)求平面的法向量,然后证明直线的方向向量与平面的法向量平行.(2)证明直线与平面内不共线的两直线分别垂直,线线垂直则利用向量法证得.3. 利用向量法证明面面垂直的两种思路(1)证明一个平面过另一个平面的垂线,其实质是转化为利用向量法证明线线垂直.(2)证明两个平面的法向量互相垂直.五、利用空间向量证明平行关系1. 利用向量法证明线线平行的两种思路(1)建立空间直角坐标系,利用向量平行的坐标表示证明两直线的方向向量平行.(2)用空间的一组基表示两直线的方向向量,通过向量的线性运算,结合向量共线的充要条件证明两直线的方向向量平行.2. 利用向量法证明线面平行的三种思路(1)设平面α外的直线l的方向向量为v,平面α的法向量为n,要证明l∥α,只需证明v⊥n,即v·n=0即可.(2)根据线面平行的判定定理,将线面平行转化为线线平行,证明线线平行则可转化为证明两直线的方向向量平行.(3)根据平面向量基本定理,要证线面平行,则只需证明这条直线的方向向量能够用平面内的两个不共线的向量线性表示即可.3. 利用向量法证明面面平行的两种思路(1)先分别求出两平面的法向量,再证明两法向量平行.(2)证明一个平面内有两个不共线的向量平行于另一个平面,转化为线面平行问题.六、利用空间向量解决立体几何中的探索性问题1. 解决探索性问题的基本方法(1)对于存在型问题,应先假设存在,把要成立的结论当作已知条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”或“是否有规定范围内的解”的问题.(2)对于位置探究型问题,通常是借助向量,引入参数,综合已知条件和结论列方程或方程组,解出参数,从而确定位置.2. 4. 3 向量与夹角 2. 4. 4 向量与距离一、向量与夹角(1)当直线与平面平行或直线在平面内时,直线与平面所成的角为0;(2)两个平面相交会形成四个二面角,二面角的取值范围为[0,π],一般规定较小的二面角为两个平面所成的角. 两个平面平行时,它们所成的角为0.二、向量与距离三、利用空间向量求空间角利用空间向量求空间角时,要注意空间角的范围与向量夹角的范围的区别.1. 两异面直线所成角的向量求法(1)基向量法:在一些不容易建立空间直角坐标系的题中,我们经常用基向量法求解. 求向量v1,v2的夹角时,先把v1,v2用同一组基向量表示出来,再利用向量的夹角公式求解.(2)坐标法:找出或作两条异面直线的方向向量,再利用向量夹角的坐标公式计算两直线的方向向量的夹角.2. 直线与平面所成角的向量求法法向量法:利用直线的方向向量和平面的法向量求直线与平面所成的角.3. 求二面角的两种方法(1)基向量法:在图形中找到与二面角的棱都垂直的两条异面直线,利用向量的线性运算法则对两条直线的方向向量进行转化,求出两方向向量的夹角,进而求得二面角的大小.(2)法向量法:找出或作两个半平面的法向量,应用向量的夹角公式求解.四、利用空间向量求空间距离1. 用向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,过已知点作直线的垂线段,利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解.2. 用向量法求点面距的步骤(1)求出平面的一个法向量;(2)找出从已知点出发的平面的任一条斜线段对应的向量;(3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求得点到平面的距离.3. 用向量法求线线距、线面距、面面距(1)求线面距、面面距都可转化为求点面距,求两直线间的距离可转化为求一条直线上任一点到另一条直线的距离;(2)求线线距、线面距、面面距的前提分别是线线、线面、面面平行.五、利用空间向理解决与夹角、距离有关的探索性问题1. 利用空间向量解决与夹角、距离有关的探索性问题的解题步骤(1)假设存在(或结论成立);(2)建立空间直角坐标系,得到相关点的坐标;(3)得到有关向量的坐标;(4)利用空间角、空间距离的计算公式列关系式求解;(5)根据解的情况做出判断.。
新教材高中数学第1章空间向量与立体几何章末复习课件新人教B版选择性必修第一册
1 向量的线性运算 选定空间不共的基本要求.解题时应结合已知和所求观察图 形,联想相关的运算法则和公式等,就近表示所需向量,再对照目标,将 不符合目标要求的向量作新的调整,如此反复,直到所有向量都符合目标 要求.
3.有关公式 (1)模:|a|= a·a= a21+a22+a23; (2)夹角:cos〈a,b〉=|aa|·|bb| = a21+a1ab221++aa232b2+b21a+3bb322+b23; (3)两点间距离: |AB|= x1-x22+y1-y22+z1-z22.
三、运用向量方法研究平行与垂直 1.线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. 2.线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直.
5.面面平行 (1)证明两个平面的法向量平行(即是共线向量); (2)转化为线面平行、线线平行问题. 6.面面垂直 (1)证明两个平面的法向量互相垂直; (2)转化为线面垂直、线线垂直问题.
四、用向量方法求空间角和距离 1.求两异面直线所成的角 利用公式 cos〈a,b〉=|aa|·|bb|,但务必注意两异面直线所成角 θ 的范围 是0,π2,故实质上应有 cosθ=|cos〈a,b〉|. 2.求线面角 求直线与平面所成的角时,一种方法是先求出直线及射影直线的方向 向量,通过数量积求出直线与平面所成的角;另一种方法是借助平面的法 向量,先求出直线的方向向量与平面法向量的夹角 φ,即可求出直线与平面 所成的角 θ,其关系是 sinθ=|cosφ|.
AB = | A→B | =
5.点到直线的距离 点 A 是直线 l 外一点,若 AB 是直线 l 的垂线段,则 AB 的长度就是点 A 到直线 l 的距离,这一距离也等于|A→B|. 6.点到平面的距离的求法 点 P 到它在一个平面 α 内射影的距离,称为点 P 到这个平面 α 的距离.若 A 为平面 α 内任一点,n 为平面 α 的法向量,则点 P 到平面 α 的距离 d=|P→|An·|n|.
人教B版选修第三章《空间向量与立体几何》word教案
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
空间向量,向量法在立体几何中的应用
空间向量在立体几何中的应用1.常见角的范围:(1)异面直线的夹角:0<θ≤π2; (2)直线与平面所成的角:0≤θ≤π2;(3)二面角:0≤θ≤π; (4)直线的倾斜角:0≤θ<π; (5)向量的夹角:0≤θ≤π; 2.空间向量在立体几何中的应用:3.空间向量与距离的关系: (1)点到线的距离如上图,点C 为直线AB 外一点,则点C 到直线AB 的距离:θsin ⋅=−→−AC d ,因为−→−−→−−→−−→−⋅⋅=ABAC ABAC θcos ,所以可以求出θsin ,进而求出d.(2)点到面的距离如下图,设直线AB 为平面α的一条斜线,点A 在平面内,点B 在平面外,−→−n 为平面α的法向量,设θ>=<−→−−→−n AB ,,则−→−−→−−→−−→−⋅⋅=nAB nAB 1cos θ.点B 到平面α的距离:−→−−→−−→−−→−⋅=⋅=nnAB AB d θcos .注意:点到面的距离有时也可以用等体积法来求解。
另外,由于知道了−→−−→−−→−−→−⋅⋅=nAB nAB 1cos θ,所以可以求出θsin 的值,进而可以求出点A 到直线OB 的距离为:θsin ⋅=−→−−→−AB AO ;点O 到AB 的距离:θθθθsin sin cos sin ⋅⋅=⋅⋅=⋅−→−−→−−→−−→−nnAB AB d .(3)线到面的距离如下图,直线AD 平行于平面A 1BCD 1(直线AD 平行于直线A 1D 1),则直线AD 到平面A 1BCD 1的距离等于直线AD 上任意一点到平面A 1BCD 1的距离(线面距转化为点面距),设−→−n 为平面A 1BCD 1的法向量。
所以,直线AD 到平面A 1BCD 1的距离:−→−−→−−→−−→−⋅=⋅=n nAB AB d θcos 或者−→−−→−−→−−→−⋅=⋅=nnAC AC d θcos ;或者−→−−→−−→−−→−⋅=⋅=n nBD BD d θcos 或者−→−−→−−→−−→−⋅=⋅=nnCD CD d θcos .(4)异面直线的距离如上图(同(3)中的图),直线AD 和直线BC 为异面直线,直线A 1D 1平行于直线AD 且与直线BC 共面,则异面直线AD 和直线BC 的距离等于直线AD 到平面A 1BCD 1的距离(线线距转化为线面距,线面距再转化为点面距)。
2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)
第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。
第一章空间向量与立体几何-高二数学上学期(人教A版)课件
AA1 AB 2AD 2CD 4 , C(2,0,2) , E(2,2,0) , F(1, 4,0) ,G0,2,4 .
CG 2, 2, 2 , EF (1,2,0) .
CG EF 21 0 22 6 . (2)证明:由(1)得:CE 0,2, 2 .
0 2m n
令 CE mCG nEF ,即 2 2m 2n
432
44
4 444
则 BG 3 BN ,又 BG,BN 有公共起点 B ,B ,G , N 三点共线. 4
3 典型例题讲与练
考点02:空间向量的共线定理
【考试题型2】由空间向量共线求参数或值 【典例 1】(2023 下·江苏盐城·高二校联考阶段练习)已知向量a (1,1,0), b (1,0,2) ,
【详解】零向量的方向是任意的,但并不是没有方向,故①错误;
①零向量没有方向;
当两个空间向量的起点相同,终点也相同时,这两个向量必相
②若两个空间向量相等,则它们的起点相同,终点也相同;
等.但两个向量相等,起点和终点不一定相同,故②错误;
③若空间向量 a,b 满足 a b ,则a b; ④若空间向量 m, n, p 满足 m n, n p ,则m p ; ⑤空间中任意两个单位向量必相等.
其中正确命题的个数为【( 答案】D)
根据相等向量的定义,要保证两个向量相等,不仅模要相等,而且 方向也要相同,但③中向量a 与b 的方向不一定相同,故③错误;
命题④显然正确;
A.4
B.3
C.2
D.1
对于命题⑤,空间中任意两个单位向量的模均为1,但 方向不一定相同,故不一定相等,故⑤错误.
【考试题型1】空间向量基本概念
(1)请用a,b,c 表示 BN ; (2)求证: B,G, N 三点共线.
高中数学第二章空间向量与立体几何2.2空间向量的运算课件4北师大版选修2_1
C→B.
2.已知空间四边形 ABCD,点 M、N 分别是边 AB、CD
的中点,化简A→C+A→D-A→B.
解析: 如图所示, 因为点 M、N 分别是边 AB、CD 的中点,
所以A→C+A→D-A→B=2A→N-2A→M
=2M→N.
(1)首尾相接的若干向量之和,等于由起始向量的始 点指向末尾向量的终点的向量.因此,求空间若干 向量之和时,可通过平移将它们转化为首尾相接的 向量.
(2)若首尾相接的若干向量构成一个封闭图形,则这 些向量的和为0.
(3)两个向量相加的三角形法则、平行四边形法则在 空间中仍成立.
3.熟练应用三角形法则和平行四边形法则
则A→P=A→B+B→P=A→B+12BD→′ =A→B+12(B→A+B→C+BB→′) =A→B+12(-A→B+A→D+AA→′) =12(A→B+A→D+AA→′).
同理可证:A→M=12(A→B+A→D+A→A′), A→N=12(A→B+A→D+AA→′).
由此可知 O,P,M,N 四点重合. 故平行六面体的对角线相交于一点,且在交点处互相平 分.
[题后感悟] 利用向量解决立体几何中的问题的一般思路:
1.空间向量与平面向量的关系 空间任意两个向量都可以平移到同一个平面内,成为同 一平面内的两个向量.如图所示,已知空间向量 a,b,我们
可以在任意平面 α 内,以任意点 O 为起点,作向量O→A=a, O→B=b.
2.空间向量加法运算的理解
(1)利用三角形法则进行加法运算时,注意“首尾相连”和向 量的方向是从第一个向量的起点指向第二个向量的终点.进 行减法运算时,注意“共起点”,差向量的方向是从减向量 的终点指向被减向量的终点.
空间向量与立体几何---单元专题梳理课件高二上学期数学人教B版(2019)选择性必修第一册
易于掌握.
(4)利用法向量求空间角
单元专题梳理
典例剖析
解析
单元专题梳理
典例剖析
解析
单元专题梳理
专题4 立体几何中存在性问题的向量解法
平行、垂直、夹角和距离等问题是立体几何中的主要问题,而以它们
为背景的探索性问题是近几年来高考数学命题创新的一个显著特点.
下面举例谈谈用向量法求解立体几何探索性问题的类型和方法.
(2)与垂直关系有关的存在性问题
单元专题梳理
典例剖析
解析
单元专题梳理
典例剖析
解析
名师点评
有关是否存在一点,使得直线与平面之间满足垂直的探索性问题,解答时,先
假设存在这样的点,再建立空间直角坐标系,设出该点的坐标,将直线与平面
的垂直关系转化为直线的方向向量与平面的法向量的关系,利用向量坐标运
易于掌握.
(3)利用法向量求空间距离
单元专题梳理
典例剖析
解析
名师点评
单元专题梳理
典例剖析
解析
名师点评
单元专题梳理
专题3 平面的法向量的求法及其应用
已知平面,如果一个向量n的基线与平面垂直,则向量n叫作平
面的法向量或说向量n与平面正交.法向量的引进,对空间夹
角与距离问题以及线面与面面位置关系问题的研究,提供了一
单元专题梳理
专题4 立体几何中存在性问题的向量解法
平行、垂直、夹角和距离等问题是立体几何中的主要问题,而以它们
为背景的探索性问题是近几年来高考数学命题创新的一个显著特点.
由于此类问题所涉及的点具有运动性和不确定性,所以用传统的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:空间向量与立体几何
考纲要求:
① 理解直线的方向向量和平面的法向量.② 能向量语言表述直线与直线、直线与平面、平面与平面的垂直关系、平行关系;③能用向量方法证明有关直线和平面位置关系的一些定理;④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的作用.
教材复习
0,a b π<<
a b
b a b
⋅=⋅ b 直线与平面所成的角:①直线与平面所成角的范围是n αcos n α和β的一个法向量,平面α和β的夹角为θ,则cos θ=12cos ,n n =
4.空间任意两点A 、B 间的距离即线段AB 的长度: 设()111,,A x y z 、()222,,B x y z ,则AB AB ==
.
5.点到平面距离:如右图,斜线AB 交平面α于点A ,平面α一个法向量为n ,斜线的一个方向向量为AB ,
则点B 到平面α的距离为sin cos ,d AB AB n AB θ==⋅=
n
a
1n 2n 1n n b
n
a
6.直线l 的方向向量是a ,平面α的法向量为n ,则l ∥α⇔ .
7.直线l 的方向向量是a ,平面α的法向量为n ,则l α⊥⇔ .
8.平面α的法向量为1n ,平面β的法向量为2n ,则αβ⊥⇔ .
9.平面α的法向量为1n ,平面β的法向量为2n ,则α∥β⇔ .
典例分析:
考点一 异面直线所成的角
问题1. (2012陕西)如图,在空间直角坐标系中有直三棱柱111ABC A B C -,
12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为
.
A .
B .
C .
D 35
考点二 直线和平面所成的角
问题2.(2013山东)已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为
9
4
,底面
.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为
.A
512π .B 3π .C 4π .D 6
π
考点三 平面和平面的夹角
问题3. (2013陕西)如图, 四棱柱1111ABCD A BC D -的底面
ABCD 是正方形, O 为底面中心, 1AO ⊥平面ABCD
, 1AB AA ==()1证明: 1AC ⊥平面11BB D D ; ()2求平面1OCB 与平面11BB D D 的夹角θ的大小.
1
A
考点四 求点到平面的距离
问题4.(05江西)如图,在长方体1111ABCD A BC D -中,11AD AA ==,
2AB =, 点E 在棱AB 上移动.()1略;()2当E 为AB 的中点时,求点E 到面1ACD 的距离;()3略.
(请用多种方法,至少要用向量法)
A B E
D
1A 1B
1C
1D
考点五 存在性问题
问题5:(2013北京)如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形,
平面ABC ⊥平面11AAC C ,
3AB =,5BC =.()1求证:1AA 平面ABC (这里不做);()2求二面角111A BC B --的余弦值(这里不做);()3证明:在线段1BC 存在点D ,使得1AD A B ⊥,并求1
BD
BC 的值.
1B
1A 1C B
A
C
课后作业:
1. (2013洛阳联考)在平面直角坐标系中,点A 的坐标为()2,3,点B 的坐标为()1,1--,将直角坐标平面沿x 轴折成直二面角,则,A B 两点间的距离为
.A 3 .
B .
C 5 .
D
2. (2013辽宁六校联考)如图,平面AED ⊥平面ABCD ,AED △为正三角形,四边形ABCD 为矩形,F 为CD 的中点,EB 与平面ABCD 所成的角为30︒.()1当AD 长度
A 到平面EF
B 的距离;()2二面角A BF E --的大小是否与AD 长度有
关?请说明理由.
E A B
C
D
F
走向高考:
1.(05辽宁)如图,正方体的棱长为1,C 、D
A 、
B 、M 是顶点,那么点M 到截面ABCD
2.如图,正方体1111ABCD A BC D 的棱长为1,
O 是底面 1111A B C D 的中心,则O 到平面11ABC D 的距离为
.A 21
.B 42 .C 2
2 .D 23
A
B
C
D
1C
1D
1A
1B
O
M
3.(2012福建)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点. (Ⅰ)求证:11AD E B ⊥(这里不做);(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由;(Ⅲ)若二面角11A E B A --的大小为30︒,求AB 的长(这里不做);。