2020年苏科版九年级6月模拟中考数学试卷含评分标准
苏科版2020年初三数学中考6月适应性练习数学试题(含答案)
初三中考适应性练习数学试卷 2020年6月一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合 题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1. 4的平方根是 ( ▲ )A .2B .± 2C .﹣2D .﹣42.函数2y x =-中自变量x 的取值范围是 ( ▲ )A .2x ≠B .2x ≥C .2x ≤D .2x <3.下列运算正确的是 ( ▲ )A .326236a a a g =B .3412()x x -=C .222()a b a b +=+ D .5510a a a +=4.下列图形中,是中心对称图形,但不是轴对称图形的是 ( ▲ )A .B .C .D .5.下列命题是真命题的是( ▲ )A. 对角线相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 顺次联结矩形各边中点所得四边形是正方形D. 同位角相等6.下列说法正确的是 ( ▲ )A .打开电视,它正在播天气预报是不可能事件B .要考察一个班级中学生的视力情况适合用抽样调查C .抛掷一枚均匀的硬币,正面朝上的概率是12,若抛掷10次,就一定有5次正面朝上.D .甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明乙的射击成绩比甲稳定7. 如图所示立体图形,下列选项中是图中几何体的主视图的是 ( ▲ )A .B .C .D .8.如图,在半径为4的⊙O 中,弦AB =6,点C 是优弧¼ACB 上一点(不与A ,B 重合),则cos C 的值为 ( ▲ )A .7B .34C .7D .459.某公司出售A 、B 、C 三种商品,前一阶段结帐时,商品C 的售出金额高达总金额的60%,预计目前阶段A 、B 两种商品售出金额要比前一阶段减少5%,因而商品C 更是推销重点,要想使现阶段售出的总金额比前一阶段增长10%,必须努力使商品C 的售出金额比前阶段增加百分之( ▲ ) A .20 B .25 C .30 D .35第8题 第10题10.如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O (0,0),A (12,0),B (8,6), C (0,6).动点P 从点O 出发,以每秒3个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒2个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,作AG ⊥PQ 于点G ,则AG 的最大值为( ▲ )A .73B .1855 C .365D .6 二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置.......上.) 11.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示▲km . 12.因式分解: 2416x -=▲.13.已知一次函数3y kx =+的图像经过点(1,1),则k =▲.14.已知x 、y 满足方程组:2512529x y x y ì+=ïí+=ïî,则x−y 的值为▲.15.已知圆锥的底面半径为2cm ,母线长为6cm ,则这个圆锥的展开图圆心角为▲度.16.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点,若CD =6,则EF 的长为▲.17.如图,在平面直角坐标系中,点A (4,0),B (0,2),反比例函数(0)ky k x=>的图象经过矩形ABCD 的顶点C ,且交边AD 于点E ,若E 为AD 的中点,则k 的值为▲. 18.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =4,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把△BDE 翻折到△B′DE 的位置,B′D 交AB 于点F .若∠AB′F 为直角,则AE 的长为▲.第16题 第17题 第18题三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.(本题共有2小题,每小题4分,共8分)(1) 计算: 201()(2017)2sin 602p -?-+-- (2)化简:2(23)(2)(1)x x x ---- 20.(本题共有2小题,每小题4分,共8分)(1)解方程: 22410x x -+= (2)解不等式组:4111321x x x x +>-⎧⎪⎨≤+⎪⎩()21.(本题满分8分)如图,□ABCD 的对角线AC 、BD 相交于点O .E 、F 是AC 上的两点,并且AE =CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD =EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.22.(本题满分8分)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A (100~90分)、B (89~80分)、C (79~60分)、D (59~0分)四个等级进行统计,并将统计结果绘制成如下统计图表,请你根据统计图解答以下问题:其中C组的期末数学成绩如下:61 63 65 66 66 67 69 70 72 7375 75 76 77 77 77 78 78 79 79(1)请补全条形统计图;(2)这部分学生的期末数学成绩的中位数是▲,C组的期末数学成绩的众数是▲;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?23.(本题满分8分)甲、乙、丙三人到某商场购物,他们同时在该商场的地下车库等电梯,三人都任意从1至3层的某一层出电梯.(1)求甲、乙两人从同一层楼出电梯的概率(画树状图或列表分析);(2)甲、乙、丙三人从同一层楼出电梯的概率为▲.24.(本题满分8分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A 、D 的⊙O 分别交边AB 、AC 于点E 、F . (1)求证:BC 是⊙O 的切线; (2)若BE =16,sin B =513,求AF 的长.25.(本题满分6分)(1)如图1,已知AC ⊥直线l ,垂足为C .请用直尺(不含刻度)和圆规在直线l 上求作一点P (不与点C 重合),使P A 平分∠BPC ;(2)如图2,在(1)的条件下,若90PAB ??,AC =3,作BD ⊥直线l ,垂足为D ,则BD =▲.26.(本题满分10分)某家具商场计划购进某种餐桌和餐椅,已知每张餐椅的进价比每张餐桌的进价便宜110元,餐桌零售价270元/张,餐椅零售价70元/张.已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求该家具商场计划购进的餐桌、餐椅的进价分别为多少元?(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,售价500元/套,其余餐桌、餐椅以零售方式销售.请问该商场怎样进货,才能获得最大利润?最大利润是多少?27.(本题满分10分)已知抛物线22(0)y ax ax c a =-+<与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴的正半轴交于点C ,顶点为D ,对称轴与直线BC 交于点E ,且CE :BE=1 :2,连接BD ,作CF ∥AB 交抛物线对称轴于点H ,交BD 于点F .(1)写出A 、B 两点的坐标:A (▲,▲),B (▲, ▲) (2)若四边形BEHF 的面积分为74,求抛物线的函数表达式; (3)抛物线对称轴是否存在点M ,使得∠C MF =∠CBF , 若存在,请求出M 点的坐标;若不存在,请说明理由.28.(本题满分10分)在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图1,现有矩形纸片ABCD ,AB =8cm ,AD =6cm .连接BD ,将矩形ABCD 沿BD 剪开,得到△ABD 和△BCE .保持△ABD 位置不变,将△BCE 从图1的位置开始,绕点B 按逆时针方向旋转,旋转角为α(0°≤α<360°).在△BCE 旋转过程中,边CE 与边AB 交于点F .(1)如图2,将图1中的△BCE 旋转到点C 落在边BD 上时,CF=▲; (2)继续旋转△BCE ,当点E 落在D A 延长线上时,求出CF 的长;(3)在△BCE 旋转过程中,连接AE ,AC ,当AC =AE 时,直接写出此时α的度数及△AEC 的面积.答案 2020年6月一、选择题(每小题3分,共计30分)1.B 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.A 10.B 二、填空题(每小题2分,共计16分)11.53.8410 ; 12.4(2)(2)x x +-; 13.﹣2; 14.﹣1;15.120; 16.6; 17.569; 18.2.8 三、解答题(共计84分)19.计算(每小题4分,共16分)解:(1)原式41=+-(3分)5=-…………………………………………………………… (3分)(2) 原式 2227621x x x x =-+-+- …………………………………… (2分)255x x =-+ ……………………………………………………… (4分)20. 解:(1)∵2,4,1,8a b c ==-=\D =. ……………………………………(1分)22x ±\=………………………………………………………………… (3分)122222x x -\==…………………………………………………… (4分) (2)由①得:32x >-………………………………………………………… (1分)由②得:3x ? ………………………………………………………… (3分) 32x \>-………………………………………………………… ……… (4分) 21.证:(1)∵四边形ABCD 是平行四边形 ∴OA =OC , OB =OD ………… … (1分)∵AE =CF ∴ OE =OF …………………………………………… … (2分) ∴证得△DO E ≌△BOF . ………………………… …………… … (4分) (2) 结论:四边形EBFD 是矩形. ………… ………………… ……… ……(5分) ∵OD =OB ,OE =OF ∴四边形EBFD 是平行四边形 ………… …………(7分) ∵BD =EF , ∴四边形EBFD 是矩形 ………… …… ……… ……… (8分)答:这次九年级学生期末数学成绩优秀的约有480人 . ……… ……(8分)23.解:(1)画树状图如下:………………(3分)(2)9………… ………… ………………………………………………(8分)24.(1)证:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CA D∵OA=OD∴∠ODA=∠OAD∴∠ODA=∠CAD……………(1分)∴OD∥AC……………………………… ………………(2分)∴∠ODC=∠C=90°∴OD⊥BC………… …………………(3分)∴BC为⊙O的切线…………………… ……………………… (4分)(2)解:求出半径为10 ………………………………………………(6分)连接EF, 求出AF=10013………………………………………(8分)25.(1)…则点P即为所求. ……………………………………(4分)(2)23……………………………………………………(6分)26.解:(1)设每张餐桌的价格为a元,则每张餐椅的价格为(a-110)元,由题意得600160110a a=-,解得a=150 …………………………… ……(2分)经检验,a=150是原分式方程的解………………………………… ……(3分)此时a﹣110=40答:该家具商场计划购进的餐桌、餐椅的进价分别为150元和40元.… (4分) (2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20⩽200,解得:x⩽30 …………… ……… ……(5分)W=12x⋅(500−150−4×40)+12x⋅(270−150)+(5x+20−12x⋅4)⋅(70−40)=245x+600 …………………… … (7分)∵k =245>0, ∴W 随x 的增大而增大,∴当x =30时,W 取最大值,最大值为7950. 此时a ﹣110=40 ……… … (9分) 答购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元. (10分) 27.解:(1)A (-1,0), B (3,0) …………… ………………… …… ……… ……(2分)(2)设(1)(3)y a x x =+-, 得:C (0,﹣3a),D (1,﹣4a), ……… ……(3分) ∴3(,3)2F a - ………………………………………… ……… … (4分) 由7=4BEFH S Q 四形 ∴ 94BCF S =V …… …………… ……… ……(5分) ∴a=﹣1 y=﹣x 2 + 2x + 3 ………………… …………… ……… ……(6分) (3)△BFC 的外接圆圆心坐标为33(,)44…………… …………… ……(7分)设M (1,n ),则22233(1)()44n -+-= ……… …………… ……(8分)得n=34- ∴13(1,4M -- …………………… …… ……… ……(9分)由对称得: 221(1,4M -综上所述:1(M - 2(M - …… …………… ……(10分) 28.解:(1) 92………………………… …………… ……(2分) (2)∵BE =BD , BA ⊥DE ∴∠DBA =∠EBA ……… ……(3分)∵ ∠DBA =∠CEB ∴ ∠EBA =∠CEB ∴ EF =FB ……… ……(4分)设CF=x,则在Rt BCF中,(8﹣x)2=62+ x2, ……… ……… ……… ……(5分)解得x=7 4∴CF=74……… ……… ……… ……(6分)(3)60°,16324-或300°,16324+… ……… ……… ……(10分)1、Great works are performed not by strengh, but by perseverance.20.6.246.24.202011:4811:48:04Jun-2011:482、I stopped believing in Santa Claus when I was six. Mother took me to see him in a department store and he asked for my autograph.。
苏教版2020年中考数学模拟测试卷(含答案解析)
2020年中考全真模拟卷数 学(考试时间:120分钟 试卷满分:130分)一、选择题(本大题共10个小题,每小题3分,共计30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.方程24x x =的根是( ) A .4x = B .0x =C .10x =,24x =D .10x =,24x =-2.若38m n =,则m n n+的值是( ) A .118B .311C .113D .8113.已知5OA cm =,以O 为圆心,r 为半径作O e .若点A 在O e 内,则r 的值可以是( ) A .3cmB .4cmC .5cmD .6cm4.如图,AB 是半圆的直径,2AB r =,C 、D 为半圆的三等分点,则图中阴影部分的面积是( )A .2112r π B .216r πC .214r πD .2124r π 5.已知关于x 的方程220x kx +-=的一个根是1,则它的另一个根是( ) A .3-B .3C .2-D .26.已知1O e 和2O e 外切于M ,AB 是1O e 和2O e 的外公切线,A ,B 为切点,若4MA cm =,3MB cm =,则M 到AB 的距离是( ) A .52cmB .125cm C 3cm D .4825cm 7.若ABC ∆与△111A B C 相似且对应中线之比为2:5,则周长之比和面积比分别是( ) A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:58.如图,ABC ∆内接于O e ,BD 是O e 的直径.若33DBC ∠=︒,则A ∠等于( )A .33︒B .57︒C .67︒D .66︒9.如图,抛物线2y ax bx c =++交x 轴于(1,0)-、(3,0)两点,则下列判断中,错误的是( )A .图象的对称轴是直线1x =B .当1x >时,y 随x 的增大而减小C .一元二次方程20ax bx c ++=的两个根是1-和3D .当13x -<<时,0y <10.如图,O e 半径为6,Rt ABC ∆的顶点A 、B 在O e 上,30A ∠=︒,90B ∠=︒,点C 在O e 内.当点A 在圆上运动时,OC 的最小值为( )A 3B 33C .23D .3二、填空题(本大题共8小题,每小题2分,共16分) 11.若关于x 的方程21(1)310aa x x +---=是一元二次方程,则a 的值是__________.12.已知四条线段a ,2,6,1a +成比例,则a 的值为__________.13.如图,已知P 是线段AB 的黄金分割点,且PA PB >,若1S 表示PA 为一边的正方形的面积,2S 表示长是AB ,宽是PB 的矩形的面积,则1S ________2S .(填“>”“ =”或“<”)14.二次函数2y ax bx c =++的图象与x 轴相交于(1,0)-和(5,0)两点,则该抛物线的对称轴是__________.15.如图,AB 是O e 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若2CE =,则图中阴影部分的面积为__________.16.如图,在平面直角坐标系中,已知点(2,4)A ,(4,1)B ,以原点O 为位似中心,在点O 的异侧将OAB ∆缩小为原来的12,则点B 的对应点的坐标是 1(2,)2-- .17.边长为4的正六边形内接于M e ,则M e 的半径是 4 .18.如图,已知点(4,0)A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、)A ,过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当3OD AD ==时,这两个二次函数的最大值之和等于5 .三、解答题(本大题共10小题,共84分) 19.(本题满分8分)解方程: (1)241440x -=; (2)(4)28x x x -=-.20.(本题满分8分)已知关于x 的一元二次方程220x mx --= (1)若1x =-是这个方程的一个根,求m 的值和方程的另一根; (2)对于任意的实数m ,判断方程的根的情况,并说明理由. 21.(本题满分8分)已知ABC ∆,(1)用无刻度的直尺和圆规作ABD ∆,使ADB ACB ∠=∠.且ABD ∆的面积为ABC ∆面积的一半,只需要画出一个ABD ∆即可(作图不必写作法,但要保留作图痕迹)(2)在ABC ∆中,若45ACB ∠=︒,4AB =,则ABC ∆面积的最大值是 442+22.(本题满分8分)如图,在四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =g ,90ADC ∠=︒,点E 为AB 的中点.(1)求证:ADC ACB ∆∆∽. (2)若2AD =,3AB =,求ACAF的值.23.(本题满分6分)数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC 为9米,留在墙上的影高CD 为2米,请你帮助兴趣小组的同学们计算旗杆的高度.24.(本题满分8分)如图,四边形ABCD 内接于O e ,90BAD ∠=︒,AD 、BC 的延长线交于点F ,点E 在CF 上,且DEC BAC ∠=∠, (1)求证:DE 是O e 的切线;(2)当AB AC =时,若2CE =,3EF =,求O e 的半径.25.(本题满分8分)某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x (元),每天销售y (个),每天获得利润W (元).(1)写出y 与x 的函数关系式;(2)求W 与x 的函数关系式(不必写出x 的取值范围)(3)若降价x 元(x 不低于4元)时,销售这种商品每天获得的利润最大为多少元?26.(本题满分10分)某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶. (1)当每瓶售价为11元时,日均销售量为 480 瓶; (2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?27.(本题满分10分)如图,在平面直角坐标系中,(0,4)A ,(3,4)B ,P 为线段OA 上一动点,过O ,P ,B 三点的圆交x 轴正半轴于点C ,连结AB ,PC ,BC ,设OP m =.(1)求证:当P 与A 重合时,四边形POCB 是矩形. (2)连结PB ,求tan BPC ∠的值.(3)记该圆的圆心为M ,连结OM ,BM ,当四边形POMB 中有一组对边平行时,求所有满足条件的m 的值.(4)作点O 关于PC 的对称点O ',在点P 的整个运动过程中,当点O '落在APB ∆的内部(含边界)时,请写出m 的取值范围.28.(本题满分10分)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ CP =,连接PQ ,设CP m =,CPQ ∆的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上,若存在点F ,使DFQ ∆为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共10个小题,每小题3分,共计30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.【解析】方程整理得:(4)0x x -=, 可得0x =或40x -=, 解得:10x =,24x =, 故选C . 2.【解析】Q 38m n =,38m n ∴=,∴31188n nm n n n ++==.故选A . 3.【解析】5OA cm =Q ,点A 在O e 内, OA r ∴<,即5r >.故选D . 4.【解析】连接OC 、OD . COD ∆Q 和CDA ∆等底等高, COD ACD S S ∆∆∴=.Q 点C ,D 为半圆的三等分点,2AB r =,180360COD ∴∠=︒÷=︒,OA r =,∴阴影部分的面积226013606CODr S r ππ⨯===扇形.故选B .5.【解析】设方程的另一个根为t , 根据题意得12t =-g,解得2t =-. 故选C . 6.【解析】如图,AB Q 是1O e 和2O e 的外公切线,1290O AB O BA ∴∠=∠=︒,11O A O M =Q ,22O B O M =,11O AM O MA ∴∠=∠,22O BM O MB ∠=∠, 190BAM AMO ∴∠+∠=︒,290ABM BMO ∠+∠=︒, 2190AMB BMO AMO ∴∠=∠+∠=︒,AM BM ∴⊥,4MA cm =Q ,3MB cm =,∴由勾股定理得,5AB cm =,由三角形的面积公式,M 到AB 的距离是341255cm ⨯=, 故选B .7.【解析】ABC ∆Q 与△111A B C 相似,且对应中线之比为2:5,∴其相似比为2:5,ABC ∴∆与△111A B C 周长之比为2:5, ABC ∆与△111A B C 面积比为4:25,故选B . 8.【解析】连结CD ,如图,BD Q 是O e 的直径,90BCD ∴∠=︒,而33DBC ∠=︒, 903357D ∴∠=︒-︒=︒, 57A D ∴∠=∠=︒.故选B .9.【解析】A 、对称轴为直线1312x -+==,正确,故本选项错误; B 、当1x >时,y 随x 的增大而减小,正确,故本选项错误;C 、一元二次方程20ax bx c ++=的两个根是1-和3正确,故本选项错误;D 、应为当13x -<<时,0y >,故本选项正确.故选D . 10.【解析】连接AO ,当OC OA ⊥时,OC 最短, 90B ∠=︒Q ,BC ∴延长线与AO 的延长线交于D ,点D 会在圆上, OC AD ⊥Q ,OA OD =, AC CD ∴=, 30CAB ∠=︒Q ,2CD AC CB ∴==,3AB BC =,2222293AD BD AB BC BC =+=+Q , 23BC ∴= 43AC ∴=,6AO =Q , 23OC ∴=故选C .二、填空题(本大题共8小题,每小题2分,共16分) 11.【解析】根据题意得:21210a a ⎧+=⎨-≠⎩,解得:1a =-. 故答案是:1-. 12.【解析】Q 四条线段a ,2,6,1a +成比例,∴621a a =+, 解得:13a =,24a =-(舍去), 所以3a =, 故答案为:3 13.【解析】P Q 是线段AB 的黄金分割点,且PA PB >,2PA PB AB ∴=g ,又1S Q 表示PA 为一边的正方形的面积,2S 表示长是AB ,宽是PB 的矩形的面积,21S PA ∴=,2S PB AB =g , 12S S ∴=.故答案为:=. 14.【解析】Q 二次函数2y ax bx c =++的图象与x 轴相交于(1,0)-和(5,0)两点,∴其对称轴为:1522x -+==.故答案为:2x =.15.【解析】连接OE 、OD ,点D 、E 是半圆的三等分点,60AOE EOD DOB ∴∠=∠=∠=︒OA OE OD OB ===QOAE ∴∆、ODE ∆、OBD ∆、CDE ∆都是等边三角形,//AB DE ∴,ODE BDE S S ∆∆=;∴图中阴影部分的面积22360242233603OAE OAE ODE S S S ππ∆⋅⋅=-+=⨯-⨯=-扇形扇形. 故答案为433π-.16.【解析】如图所示,△OA B ''即为点O 的异侧将OAB ∆缩小为原来的12的图形,点B 的对应点的坐标为1(42-⨯,11)2-⨯,即1(2,)2--, 故答案为:1(2,)2--. 17.【解析】正六边形的中心角为360660︒÷=︒,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.18.【解析】过B 作BF OA ⊥于F ,过D 作DE OA ⊥于E ,过C 作CM OA ⊥于M , BF OA ⊥Q ,DE OA ⊥,CM OA ⊥,////BF DE CM ∴,3OD AD ==Q ,DE OA ⊥,122OE EA OA ∴===, 由勾股定理得:225DE OD OE -=,设(2,0)P x ,根据二次函数的对称性得出OF PF x ==,////BF DE CM Q ,OBF ODE ∴∆∆∽,ACM ADE ∆∆∽, ∴BF OF DE OE =,CM AM DE AE=, 11()(42)222AM PM OA OP x x ==-=-=-Q , 25x =225x -=,解得:5BF x =,55CM x =-, 5BF CM ∴+=.故答案为:5三、解答题(本大题共10小题,共84分)19.【解析】(1)(212)(212)0x x -+=,2120x -=或2120x +=,所以16x =,26x =-;(2)242x x +=,2446x x ++=,2(2)6x +=,26x +=所以126x =-,226x =--.20.【解析】(1)将1x =-代入方程220x mx --=,得120m +-=,解得1m =,解方程220x x --=,解得11x =-,22x =;(2)Q △280m =+>,∴对于任意的实数m ,方程有两个不相等的实数根.21.【解析】(1)如图1所示,ABD ∠即为所求.(2)如图2所示,作以AB为弦,且AB所对圆心角为90︒的Oe,此时ABC∆面积取得最大值,4AB=Q,2AP BP OP∴===,则22OC OA==,222PC∴=+ABC∴∆的面积为114(222)442 22AB PC=⨯⨯+=+g g,故答案为:442+.22.【解析】(1)证明:ACQ平分DAB∠,DAC CAB∴∠=∠,2AC AB AD=Q g,∴AC AD AB AC =, ADC ACB ∴∆∆∽;(2)ADC ACB ∆∆Q ∽,90ACB ADC ∴∠=∠=︒,Q 点E 为AB 的中点,1322CE AE AB ∴===,EAC ECA ∴∠=∠,DAC EAC ∴∠=∠,DAC ECA ∴∠=∠,//CE AD ∴;∴34CFCE FA AD ==,∴74ACAF =.23.【解析】作DH AB ⊥于H ,如图,易得四边形BCDH 为矩形,2BH CD ∴==,9DH BC ==,Q 小明的身高1.65米,此时其影长为2.5米,∴ 1.652.5AHDH =,1.6595.942.5AH ⨯∴==,5.9427.94AB AH BH ∴=+=+=.答:旗杆的高度为7.94m .24.【解析】(1)如图,连接BD ,90BAD ∠=︒Q ,∴点O 必在BD 上,即:BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒,DEC BAC ∠=∠Q ,90BAC CDE ∴∠+∠=︒,BAC BDC ∠=∠Q ,90BDC CDE ∴∠+∠=︒,90BDE ∴∠=︒,即:BD DE ⊥,Q 点D 在O e 上,DE ∴是O e 的切线;(2)90BAF BDE ∠=∠=︒Q ,90F ABC FDE ADB ∴∠+∠=∠+∠=︒,AB AC =Q ,ABC ACB ∴∠=∠,ADB ACB ∠=∠Q ,F EDF ∴∠=∠,3DE EF ∴==,2CE =Q ,90BCD ∠=︒,90DCE ∴∠=︒,CD ∴=90BDE ∠=︒Q ,CD BE ⊥,CDE CBD ∴∆∆∽, ∴CD BDCE DE =,BD ∴=,O ∴e 的半径=.25.【解析】(1)根据题意,得305y x =+.答:y 与x 的函数关系式305y x =+.(2)根据题意,得(2010)(305)W x x =--+2520300x x =-++.答:W 与x 的函数关系式为2520300W x x =-++.(3)2520300W x x =-++25(2)320x =--+50-<Q ,对称轴2x =,x Q 不低于4元即4x …,在对称轴右侧,W 随x 的增大而减小,4x ∴=时,W 有最大值为300,答:降价4元(x 不低于4元)时,销售这种商品每天获得的利润最大为300元. 26.【解析】(1)当每瓶的售价为11元时,日均销售量为1110560404800.5--⨯=瓶, 故答案为:480;(2)设每瓶的售价为x 元, 根据题意可得:10(9)(56040)12000.5x x ---⨯=, 整理,得:2261680x x -+=,解得:112x =、214x =,答:当每瓶售价为12元或14元时,所得日均总利润为1200元;(3)设日均利润为y , 则10(9)(56040)0.5x y x -=--⨯ 280208012240x x =-+-280(13)1280x =--+,当13x =时,y 取得最大值,最大值为1280,答:当每瓶售价为13元时,所得日均总利润最大,最大日均总利润为1280元. 27.【解析】(1)90COA ∠=︒QPC ∴是直径,90PBC ∴∠=︒(0A Q ,4)(3B ,4)AB y ∴⊥轴∴当A 与P 重合时,90OPB ∠=︒∴四边形POCB 是矩形(2)连结OB ,(如图1)BPC BOC ∴∠=∠//AB OC QABO BOC ∴∠=∠BPC BOC ABO ∴∠=∠=∠4tan tan 3AO BPC ABO AB ∴∠=∠==(3)PC Q 为直径M ∴为PC 中点①如图2,当//OP BM 时,延长BM 交x 轴于点N //OP BM QBN OC ∴⊥于NON NC ∴=,四边形OABN 是矩形 3NC ON AB ∴===,4BN OA == 设M e 半径为r ,则BM CM PM r === 4MN BN BM r ∴=-=-222MN NC CM +=Q222(4)3r r ∴-+= 解得:258r =257488MN ∴=-=M Q 、N 分别为PC 、OC 中点 724m OP MN ∴===②如图3,当//OM PB 时,BOM PBO ∠=∠ PBO PCO ∠=∠Q ,PCO MOC ∠=∠ OBM BOM MOC MCO ∴∠=∠=∠=∠ 在BOM ∆与COM ∆中BOM COMOBM OCMBM CM∠=∠⎧⎪∠=∠⎨⎪=⎩()BOM COM AAS ∴∆≅∆225OC OB OA AB ∴==+= 4AP m =-Q22222(4)3BP AP AB m ∴=+=-+ ABO BOC BPC ∠=∠=∠Q ,90BAO PBC ∠=∠=︒ ABO BPC ∴∆∆∽ ∴OB ABPC BP =53OB BP PC BP AB ∴==g22222525[(4)3]99PC BP m ∴==-+又222225PC OP OC m =+=+ ∴222225[(4)3]59m m -+=+ 解得:52m =或10m =(舍去)综上所述,74m =或52m =(4)Q 点O 与点O '关于直线对称 90PO C POC '∴∠=∠=︒,即点O '在圆上 当O '与O 重合时,得0m = 当O '落在AB 上时,则224(4)m m =+-,得52m = 当O '与点B 重合时,得258m =502m ∴剟或258m =28.【解析】(1)将A 、C 两点坐标代入抛物线,得8436609c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:438b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为244893y x x =-++; (2)①8OA =Q ,6OC =,10AC ∴=,过点Q 作QE BC ⊥与E 点,则3sin 5QE AB ACB QC AC ∠===, ∴3105QE m =-, 3(10)5QE m ∴=-, 21133(10)322510S CP QE m m m m ∴==⨯-=-+g g ; ②221133315(10)3(5)22510102S CP QE m m m m m ==⨯-=-+=--+Q g g , ∴当5m =时,S 取最大值;在抛物线对称轴l 上存在点F ,使FDQ ∆为直角三角形,Q 抛物线的解析式为244893y x x =-++的对称轴为32x =, D 的坐标为(3,8),(3,4)Q ,当90FDQ ∠=︒时,13(2F ,8), 当90FQD ∠=︒时,则23(2F ,4), 当90DFQ ∠=︒时,设3(2F ,)n , 则222FD FQ DQ +=, 即2299(8)(4)1644n n +-++-=,解得:6n =, 33(2F ∴,6,43(2F,6-, 满足条件的点F 共有四个,坐标分别为13 ( 2F,8),23 ( 2F,4),33 ( 2F,76)+,43(2F,76)-.。
江苏省苏州市2020年九年级中考数学模拟试卷(九)含答案
精选资料苏州市初三数学中考模拟试卷(九)(满分: 130 分考试 时间 120 分钟) 一、选择题(本大题共10 小题,每题 3 分,共30 分)1.计算 (- 2)× 5 的结果是()A .10B . 5C .- 5D .- 102.以下运算正确的选项是()A . x 3·x 2= 16B . (x 2)3= x 5C . 2a - 3a =- aD . (x - 2)2= x 2- 4 3.设 x = 13 ,则 x 的值知足()A . 1<x<2B . 2<x<3C . 3<x<4D . 4<x<54.给出以下四个函数:①y =- x ;② y =x ;③ y =1;④ y =x 2.当x<0 时, y 随 x 的增大x而减小的函数有( )A .①③B .②④C .①④D .①③④5.甲、乙两人各射击 6 次,甲所中的环数是 8, 5,5, a , b , c ,且甲所中的环数的均匀数是6,众数是 8;乙所中的环数的均匀数是 6,方差是 4.依据以上数据,对甲、乙射击成绩 的正确判断是()A .甲射击成绩比乙稳固B .乙射击成绩比甲稳固C .甲、乙射击成绩稳固性同样D .甲、乙射击成绩稳固性没法比较6.若- 1≤ y ≤ 2,则代数式 2x3 + y + 1 有( )A .最大值 0B .最大值 3C .最小值 0D .最小值 17.圆锥底面圆的半径为3 cm ,其侧面睁开图是半圆,则圆锥的母线长为()A . 3 cmB . 6 cmC . 9 cmD .12 cm 8.如图,以下条件中不可以判断直线l 1∥ l 2 的是()A .∠1=∠3B .∠ 2=∠ 3C .∠ 4=∠ 5D .∠ 2+∠ 4= 180°9.如图,⊙ O 的半径为 5,若 OP = 3,则经过点 P 的弦长可能是 ( )精选资料A . 3B . 6C. 9 D .1210.如图,⊙O 是以原点为圆心、2为半径的圆,点P 是直线y=- x+ 6 上的一点,过点P 作⊙ O 的一条切线PQ, Q 为切点,则切线长PQ 的最小值为()A . 3B. 4C. 6-2D. 32-1二、填空题(本大题共8 小题,每题 3 分,共24 分)11.我国雾霾天气多发,PM2.5颗粒物被称为大气污染的首恶.PM2.5是指直径小于或等于2.5 微米的颗粒物,已知 1 毫米= 1000 微米,用科学记数法表示 2.5 微米是_______毫米.12.分解因式:x3- 6x 2+ 9x= _______.13.现有五张完整同样的卡片,上边分别写有“中国”、“美国”、“韩国”、“德国”、“英国”,把卡片反面向上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概率是_______.x20 14.不等式组6的解集是 _______.x3x15.如图,点 A 在反比率函数6OA = 4,过点 A 作 AC ⊥ x 轴,垂y= (x>0) 的图像上,且x足为 C,OA 的垂直均分线交OC 于点 B .则△ ABC 的周长为 _______.16.在四边形ABCD 中,给出三个条件:①AD ∥BC ;② AB =DC;③ AD = BC .以此中两个作为题设,余下一个作为结论,写出一个真命题:_______.(用“序号序号”表示)17.已知一次函数y=23x+b 与反比率函数y=3x中, x与y 的对应值以下表:则不等式2x+b>3的解集为 _______.3x18.如图,以 Rt△ ABC 的斜边 BC 为一边在△ ABC 的同侧作正方形 BCEF ,设正方形的中心为O,连结 AO ,假如 AB = 3, AO =2,那么 AC 的长等于 _______.三、解答题(本大题共11 小题,共76 分)19.(此题满分 5 分)2计算:112 2cos303.14 0.2220.(此题满分 5 分)3x 2 y 7 解方程组:2 x3 y 921.(此题满分 6 分)先化简,再计算:x 21 x2x 1,此中 x 是一元二次方程x 2- 2x - 2=0 的正数x 2xx根.22.(此题满分 6 分)某市举办中学生足球赛,初中男子组共有市里学校的h 四队报名参赛,六支球队分红甲、乙两组,甲组由A 、B 两队和县区学校的 e 、f 、g 、A 、e 、f 三队构成,乙组由B 、 g 、h 三队构成,现要从甲、乙两组中各随机抽取一支球队进行首场竞赛.(1)在甲组中,首场竞赛抽e 队的概率是 _______;(2)请你用画树状图或列表的方法,求首场竞赛出场的两个队都是县区学校队的概率.23.(此题满分 6 分)“校园手机” 现象愈来愈遇到社会的关注°某校小记著随机检查了某地域若干名学生和家长对学生带手机现象的见解,统计整理并制作了以下统计图:(1)求此次检查的家长人数,并补全图①;(2)求图②中表示家长“同意”的圆心角的度数;(3)已知该地域共有 6500 名家长,预计此中反对中学生带手机的家长大概有多少名.24.(此题满分 6 分)某一天,小明和小亮到达一河畔,想用遮阳帽和皮尺丈量这条河的大概宽度,两人在保证无安全隐患的状况下,此刻河岸边选择了一点B(点 B 与河对岸岸边上的一棵树的底部点D 所确立的直线垂直于河岸).①小明在 B 点面向树的方向站好,调整帽檐,使视野经过帽檐正好落在树的底部点 D 处,以下图,这时小亮测的小明眼睛距地面的距离AB=1.7 米;②小明站在原地转动180°后蹲下,并保持本来的察看姿态(除身体重心下移外,其余姿态均不变),这时视野经过帽檐落在了 DB 延伸线上的点 E 处,此时小亮测得BE=9.6 米,小明的眼睛距地面的距离CB=1.2米.依据以上丈量过程及丈量数据,请你求出河宽BD 是多少米?25.(此题满分 7 分)某商场销售甲、乙两种商品, 3 月份该商场同时一次购进甲、乙两种商品共100 件,购进甲种商品用去 300 元,购进乙种商品用去1200 元.(1)若购进甲、乙两种商品的进价同样,求两种商品的数目分别是多少;(2)因为商品遇到市民欢迎,商场 4 月份决定再次购进甲、乙两种商品共100 件,但甲、乙两种商品进价在原基础上分别降20%、涨20%,甲种商品售价20 元,乙种商品售价35元,若此次所有售出甲、乙两种商品后获取的总收益许多于1200元,该商场最多购进甲种商品多少件?26.(此题满分7 分)如图,在矩形 ABCD 中, E、 F 分别是边 AB 、CD 上的点, AE = CF,连结 EF、 BF , EF 交对角线 AC 于点 O,且 BE= BF,∠ BEF= 2∠ BAC .(1)求证: OE=OF;(2)若 BC = 2 3 ,求AB的长.27.(此题满分8 分)如图,在△ ABC 中, D 是 AB 边上一点,⊙ O 过 D、 B 、C 三点,∠ DOC= 2∠ ACD =90°.(1)求证:直线AC 是⊙ O 的切线;(2)假如∠ ACB = 75°,①若⊙ O 的半径为2,求 BD 的长;②试问 CD : BC 的值能否为定值?假如,直接写出这个比值;若不是,请说明原因.28.(此题满分10 分)假如一条抛物线y= ax2+ bx + c(a≠ 0)与 x 轴有两个交点,那么以这两个交点和该抛物线的极点、对称轴上一点为极点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线 y= ax2+ bx-+ c(a≠ 0)与 x 轴的两个交点为(-1, 0)、 (3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数分析式;(2) 如图,四边形OABC 是抛物线 y=- x2+ bx(b>0) 的“抛物菱形” ,且∠ OAB = 60°.①求“抛物菱形OABC ”的面积;②将直角三角板中含有“60°角”的极点与坐标原点O 重合,两边所在直线与“抛物菱形 OABC ”的边 AB 、BC 交于点 E、F,△ OEF 的面积能否存在最小值?若存在,求出此时△ OEF 的面积;若不存在,说明原因.29.(此题满分10 分)如图 1,⊙ O 在直角坐标系中是一个以原点为圆心、半径为 4 的圆, AB 是过圆心 O 的直径,点P 从点 B 出发沿⊙ O 做匀速运动,过点P 作 PC 垂直于直径AB , PC 的长度跟着点 P 的运动而变化.(各组数据已标出)(1)当点P 的地点以下图时,求∠OPC和∠ POC 的度数.(2)当点P 的地点以下图时,求PC 的值.(3)研究: PC 的长度跟着∠ BOP 的变化而变化,设 PC 的值为 y,∠ BOP 为 x,并规定:① PC 在 x 轴上方记为正,在 x 轴下方记为负;②逆时针旋转获取的角度记为正,顺时针旋转获取的角度记为负;1③ η= 180°,π=90°.2请写出 y 对于 x 的函数关系式,以及x 的取值范围.(直接写出答案)(4)试在图 2 中画出第 (3)题中函数的图像.(5)求出该函数图像的对称轴.(直接写出答案,答案请用含有π的式子表示)参照答案1— 10 DCCDB CBBCB11. 2.5-3)213.215. 27 10×12. x(x - 314. 2<x<3516.①③②(或②③①)17. x>1 或- 2<x<018. 2 2 +3 19. 3+3x320.1y21.13 x 131422. (1)(2)3923. (1)280( 人 ). (2)36°. (3)4550( 名 ).24.解:由题意得,∠BAD= ∠ BCE ,∵∠ ABD= ∠ CBE=90 °,∴△ BAD ∽△ BCE ,∴= ,即=,解得 BD=13.6 米.25. (1)购进甲种商品20件,乙种商品80 件. (2)55 件.26. (1)略(2)6.27. (1)略(2) 3-1.28. (1)y=-1x2+x+3或 y=1x2-x-3(2)①6②存在.222229. (1)60°. (2)2 3(3)y= 4sinx. x 可取随意实数.(4)图像以下: (5)x =± kπ( k 为2整数).。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 计算(-4)+6的结果为A .-2B .2C .-10D .22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .3.5×106B .3.5×107C .35×105D .0.35×1083. 下列图形中,是中心对称图形的是A .B .C .D .4. 如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是 A .点MB .点NC .点PD .点Q5. 如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆锥D .圆柱6. 已知方程3x 2-4x -4=0的两个实数根分别为x 1,x 2.则x 1+x 2的值为A .4B .23C .43D .-43QP N M左视图主视图俯视图(第5题)7. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABCF(第10题)O xyy =8xAB y =kx(第9题)DCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)216.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40C 汽车尾气排放 nD工厂造成的污染120(第18题)y xB OCAC 10%B A20%DE调查结果扇形统计图E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.(第23题)ABC EOBCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(第25题)FEDCBA(1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2k y x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第27题)(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2................. 4分 =x 2 .. (5)分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)D∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。
2020年江苏省中考数学模拟试题与答案
2020年江苏省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。
江苏省2020年中考数学模拟试题(含答案)
江苏省2020年中考数学调研模拟试题含答案注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个是正确的) 1.在函数2y x =-中,自变量x 的取值范围是A .x <2B .x ≤2C .x >2D .x ≥22. 若一个三角形三个内角度数的比为1∶2∶3,那么这个三角形最小角的正切值为A .13B .12C .33D .323.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁) 18 19 20 21 22 人数25221则这12名队员年龄的众数、中位数分别是A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于 A .21 B .41 C .81 D .91 5.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°, 则∠DAB 等于A .60°B .65°C .70°D .75°6. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切7. 若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程25x bx +=的解为 A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =8.如图1,一个电子蜘蛛从点A 出发匀速爬行,它先沿线段AB 爬到点B ,再沿半圆经过 点M 爬到点C .如果准备在M 、N 、P 、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x ,电子蜘蛛与记录仪之间的距离为y ,表示y 与x 函数关系的图象如图2所示,那么记录仪可能位于图1中的AB CDEB CDAABCNPQ 图1Oxy图2MA .点MB .点NC .点PD .点Q二、填空题(本大题共10小题.每小题2分,共20分) 9. 已知,在Rt △ABC 中,∠C =90°,4tan 3B =,则cos A = ▲ . 10.反比例函数ky x=的图象经过点(1,6)和(m ,-3),则m = ▲ . 11.某工厂2014年缴税20万元,2016年缴税24万元,设这两年该工厂缴税的年平均增长率为x ,根据题意,可得方程为 ▲ .12.已知一组数据1,2,x ,5的平均数是4,则这组数据的方差是 ▲ . 13.点11()A x y ,、B 22()x y ,在二次函数241y x x =--的图象上,若当1<1x <2,3<2x <4时,则1y 与2y 的大小关系是1y ▲ 2y .(用“>”、“<”、“=”填空) 14.已知扇形的圆心角为150°,它所对应的弧长20 π cm ,则此扇形的半径是 ▲ cm . 15.直角坐标系中点A 坐标为(5,3),B 坐标为(1,0),将点A 绕点B 逆时针旋转90°得到点C ,则点C 的坐标为 ▲ . 16.一次函数1y x =-+与反比例函数2y x=-,x 与y 的对应值如下表: x 3-2- 1- 1 2 31y x =-+ 4 32 01- 2-2y x =-321 22-1-23-不等式21x x-+-> 的解为 ▲ . 17.如右图,△ABC 的三个顶点的坐标分别为A (-3,5),B (-3,0),C(2,0),将△ABC 绕点B 顺时针旋转一定角度后使A 落在y 轴上,与此同时顶点C 恰好落在ky x=的图象上,则k 的值为 ▲ . 18.如图,在平面直角坐标系中,已知点(0,1)A 、点(0,1)B t +、(0,1)(0)C t t ->,点P 在以(3,3)D 为圆心,1为半径的圆上运动,且始终满足90BPC ∠=︒,则t 的最小值是 ▲ .三、解答题(本大题共有10小题,共84分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.化简:(本题8分) ⑴2cos60tan 45sin 45sin30︒-︒+︒︒⑵ 019sin30(3)2π-+︒++O CABPDyxABCyOA'C'x20.解方程:(本题10分)⑴ 241)90x --=( ⑵ 2322x x -=-()21.(本小题满分7分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:⑴ 本次调查的样本容量为 ▲ ;⑵ 在频数分布表中,a = ▲ ,b = ▲ ,并将频数分布直方图补充完整; ⑶ 若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?初中毕业生视力抽样调查频数分布表初中毕业生视力抽样调查频数分布直方图(每组数据含最小值,不含最大值)4.0 4.3 4.6 4.95.2 5.5 视力22.(本小题满分8分)甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a 、b 、c ,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张,不放回.⑴ 用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果; ⑵ 求三位同学中至少有一人抽到自己制作卡片的概率.23.(本小题满分7分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形,建立如图所示的平面直角坐标系,点C 的坐标为(0,-1).⑴ 在如图的方格纸中把△ABC 以点O 为位似中心扩大,使扩大前后的位似比为1∶2,画出△A 1B 2C 2(△ABC 与△A 1B 2C 2在位似中心O 点的两侧,A 、B 、C 的对应点分别是A 1、B 2、C 2).⑵ 利用方格纸标出△A 1B 2C 2外接圆的圆心P ,P 点坐标是 ▲ ,⊙P 的半径 = ▲ (保留根号).O A C B yx24.(本小题满分7分) 已知:如图,等腰△ABC 中,AB =BC ,AE ⊥BC 于E ,EF ⊥AB 于F ,若CE =2,4cos 5AEF ∠=,求BE 的长.25.(本小题满分8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO =45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h ,经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得∠DBO =58°,此时B 处距离码头O 多远?(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)26.(本小题满分9分)旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金是x (元).发现每天的运营规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.当每辆车的日租金为多少元时,每天的净收入会最多?(注:净收入=租车收入-管理费)DOB AC北东ACEF27.(本小题满分10分)如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E .在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x . ⑴ 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示) ⑵ 当x 为何值时,△AFD 是等腰三角形. ⑶作点D 关于AG 的对称点'D ,连接'FD ,'GD .若四边形DF 'D G 是平行四边形,求x 的值.(直接写出答案)28.(本小题满分10分)如图,在平面直角坐标系中,直线112y x =-与抛物线214y x bx c =-++ 交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.点P 是直线AB 上方的抛物线上的一动点(不与点A 、B 重合).⑴ 求该抛物线的函数关系式;⑵ 连接PA 、PB ,在点P 运动过程中,是否存在某一位置,使△PAB 恰好是一个以点P 为直角顶点的等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由; ⑶ 过P 作PD ∥y 轴交直线AB 于点D ,以PD 为直径作⊙E ,求⊙E 在直线AB 上截得的线段的最大长度.AB CD'E MGF DO B A Pyx (备用图)O BAyx数学参考答案及评分意见一、选择题 (共16分)二、填空题 (共20分)9.4510.2- 11.20(1+x )2=24 12.513.< 14.24 15.(-2,4) 16.x <-1,0<x <2 17.12n 181-三、计算题(共84分)19.⑴ 2cos60tan 45sin 45sin30︒-︒+︒︒=1212-1 2------------------------------------------------ 3分=12------------------------------------------------------------ 4分 ⑵ ()001sin3032π-+++=12+3-12+1 --------------------------------------------------- 3分= 4 -------------------------------------------------------------- 4分20.⑴ (4x -1)2-9=0 (4x -1)2 =9 ------------------------------------------------------ 1分4x -1=±3 -------------------------------------------------------- 3分x 1=2,x 2=-1 ----------------------------------------------------- 5分 ⑵ 23(2)2x x -=-3(x -2)2 +(x -2) =0 --------------------------------------------- 1分(x -2) (3x -5) =0 ------------------------------------------------ 3分3分21.⑴ 200 --------------------------------------------------------------- 1分⑵ 60,0.05;画图略-------------------------------------------------- 4分⑶ 5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有3500人。
2020年苏州市中考数学模拟试卷(含答案)
一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)4.不等式叫组 ⎨的解集是( )- x + 1 ≥ 02020 年苏州市中考数学模拟试卷本试卷由选择题、填空题和解答题三大题组成.共 28 小题,满分 130 分.考试时间 120 分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用 0.5 毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中,恰有....... 1.–2 的倒数是()A. 2B. –2C. 1 1D. -2 22.下列计算正确的是()A. 5a 3 - 2a 3 = 3B. (a 4 )3 = a 7C. a 3 g a 5 = a 8D. a 8 ÷ a 4 = a 23.某班派 6 名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据的中位数是() A. 59B. 61C. 62D. 63⎧2x + 2 > 0⎩A. x ≤ 1B. -1 ≤ x < 1C. x > -1D. -1 < x ≤ 15.将抛物线 y = x 2 平移得到抛物线 y = ( x + 3)2 ,则这个平移过程正确的是()A.向左平移 3 个单位长度B.向右平移 3 个单位长度C.向上平移 3 个单位长度D.向下平移 3 个单位长度6.在一个直角三角形中,有一个锐角等于 40°,则另一个锐角的度数是()A. 40°B. 50°C. 60°D. 70°7.一个多边形的内角和等于它的外角和,则这个多边形的边数为()A. 3B. 4C. 5D. 68.如图,在 ∆ABC 中,AB = 8 ,AC = 6 ,∠BAC = 30︒ ,将 ∆ABC 绕点 A 逆时针旋转 60°得到 ∆AB C ,连接 BC ,则 BC 的长为()1 111;②;③;④写在答题卡相应位置上)9.如图,E是Y ABCD的AD边上一点,CE与BA的延长线交于点F,则下列比例式:①FB FC AE AF FA AE AE FE====CD CE ED AB FB AD EC ED,其中一定成立的是()A.①②③④B.①②③C.①②④D.①②10.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为()A.2+5B.2+6C.4D.32二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填.......13.要使分式2x+2有意义,则x的取值范围是.14.分解因式:a2-4=.15.已知一粒米的质量约是0.000021千克,这个数字用科学记数法表示为.16.如图,在平面直角坐标系中,点M是直线y=-x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.15.用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说⎩2(x-3)=y+6……②2b长为cm.16.如图,在正方形网格中,∆ABC的顶点都在格点上,则tan∠ACB的值为.17.在锐角三角形ABC中,已知其两边a=1,b=3,则第三边c的取值范围为.18.如图,在Rt∆OAB中,∠AOB=90︒,OA=8,A B=10,⊙O的半径为4.点P是AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x(0≤x≤10),PQ2=y,则y与x的函数关系式为.........明、证明过程或演算步骤)19.(本题满分5分)计算:1-27+3-2-(-)-1+2cos60︒.320.(本题满分5分)⎧x-3y=1…………①解方程组:⎨21.(本题满分6分)如图,BD为Y ABCD的对角线,AE⊥BD,C F⊥BD,垂足分别为E、F.求证:BE=DF.22.(本题满分6分)有三个质地、大小都相同的小球分别标上数字2,–,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a,b)恰好在函数y=-x的图像上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,)恰好在函数y=-x的图像上的概率是(请用含n的代数式直接写出结果).A23.(本题满分 7 分)如图,在 ∆ABC 中, AB = AC ,点 D 、 E 分别在 BC 、 AC 上,且DC = DE .(1)求证: ∆ABC : ∆DEC ;(2)若 AB = 5 , AE = 1 , DE = 3 ,求 BC 的长.24.(本题满分 8 分)无锡有丰富的旅游产品.某校九(1)班的同学就部分旅游产品的喜爱情况对部分游客随机调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一项, 以下是同学们整理的不完整的统计图:根据以上信息完成下列问题: (1)请将条形统计图补充完整. (2)参与随机调查的游客有 人;在扇形统计图中, 部分所占的圆心角是 度. (3)调查结果估计在 2 000 名游客中最喜爱惠山泥人的约有 人.25.(本题满分 8 分)初夏五月,小明和同学们相约去森林公园公玩.从公园入口处到景点只有一条长 15 km 的观光道路.小明先从入口处出发匀速步行前往景点,1.5 h 后,迟到的另 3 位同学在入口处搭乘小型观光车(限栽客 3 人)匀速驶往景点,结果反而比小明早到 45 min. 已知小型观光车的速度是步行速度的 4 倍. (1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这 3 位同学下车步行前往景点(步行速度和小明相同),观光 车立即返回接载正在步行的小明后直接驶往景点,并正好和这 3 位同学同时到达.求这 样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)26.(本题满分 9 分)如图,正方形 ABCD 的对角线相交于点 O ,的 ∠CAB 平分线分别交 BD 、BC 于 E 、 F ,作 BH ⊥ AF 于点 H ,分别交 AC 、CD 于点 G 、 P ,连接 GE 、GF . (1)试判断四边形 BEGF 的形状并说明理由.(2)求AEPG的值.27.(本题满分 10 分)如图①,直线 l 与反比例函数 y =kxA 、B 两点,并与 y 轴、 x 轴分别交于 E 、 F .(1)试判断 AE 与 BF 的数量关系并说明理由.(k > 0) 位于第一象限的图像相交于(2)如图②,若将直线 l 绕点 A 顺时针旋转,使其与反比例函数 y =kx的另一支图像相交,设交点为 B .试判断 AE 与 BF 的数量关系是否依然成立?请说明理由.28.(本题满分12分)如图①,抛物线y=ax2+bx+3交x轴于点A(-1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图②,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当∆AQD是直角三角形时,求出所有满足条件的点Q的坐标.三、19、-4320,⎨⎧x=7y=2(参考答案一、1D.2C.3C.4D.5A.6B.7B.8C9B.10B二、11,x≠-2,12,(a+2)(a-2),132.1×10-514-4≤m≤4,15,216,3/5⎩21略23(1)证明略,2)BC=20/324.(1)图略,(2)400(3)56025.5,202627(1)证明略,(2)结论依然成立,证明略。
2020年苏州市初三数学中考模拟试卷含答案
2020年苏州市初三数学中考模拟试卷(一)(满分130分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1.如果向北走2km 记作+2km ,那么向南走3km 记作A .-3kmB .+3kmC .-1kmD .+5km 2.下列计算中正确的是A .2352a a a +=B .236a a a ⋅=C .235a a a ⋅=D .329()a a = 3.2014年,南通市公共财政预算收入完成约486亿元,将“486亿”用科学记数法表示为 A .4.86×102 B .4.86×108 C .4.86×109 D .4.86×1010 4.如果一个三角形的两边长分别为2和5,则第三边长可能是 A .2B .3C .5D .85.若正多边形的一个内角等于144°,则这个正多边形的边数是A .9B .10C .11D .12 6.如图是一个正方体被截去一角后得到的几何体,它的俯视图是7.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是A .中位数为170B .众数为168C .极差为35D .平均数为170 8.如图,已知⊙O 的直径AB 为10,弦CD =8,CD ⊥AB 于点E ,则sin ∠OCE 的值为A .45 B .35C . 34D .439.已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b -->的解集为A .2x >-B .2x <-C .2x >D .3x < 10. 如图,边长为2a 的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是A 3aB .aC 3D .12a 二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.计算:322÷= ▲ . 12. 函数5xy x =+中,自变量x 的取值范围是 ▲ . 13. 如图,AB ∥CD ,∠C =20o,∠A =55o,则∠E = ▲ o.14. 若关于x 的方程2x x a -+=0有两个相等的实数根,则a 的值为 ▲ . 15. 已知扇形的圆心角为45o,半径为2cm ,则该扇形的面积为 ▲ cm 2.16. 如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C 1处,BC 1交AD 于点E ,AD =8,AB =4,则DE 的长为 ▲ .17. 某家商店的账目记录显示,某天卖出26支牙刷和14盒牙膏,收入264元;另一天,以同样的价格卖出同样的65支牙刷和35盒牙膏,收入应该是 ▲ 元.18. 如图,Rt △OAB 的顶点O 与坐标原点重合,∠AOB =90°,AO 2,当A 点在反比例函数1y x=(x >0)的图象上移动时,B 点坐标满足的函数解析式为 ▲ . 三、解答题:本大题共10小题,共计76分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤.19.(本小题满分5分)计算:121|3|(3)(6)2π-⎛⎫-+-+-- ⎪⎝⎭;20.(本小题满分5分)先化简,再求值:2211(1)2+1m m m m -+÷-.其中2m =。
2020年江苏省中考模拟测试数学试题(附答案)
江苏省中考模拟测试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.23的倒数是2.计算a 6b 2÷(ab )2的结果是3.无理数a 满足: 2<a <3,那么a 可能是4.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,摸到红球的概率是 A .12 B .13 C .25 D .15 5.半径为1,圆心角为60°的扇形的面积是A .π3B .16C .π6D .136.如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y =33x 的图像相切时,点AA .(-2,0)B .(-3,0) 或(3,0)C .(-3,0)D .(-2,0)或(2,0)二、填空题(本大题共10小题,每小题2分,共20A .23B .-23C .-32D .32A .a 3B .a 4C .a 3bD .a 4bA .10B .6C .2.5D .207(第6题)填写在答题卡相应位置.......上) 7.(-2)2+(-2)-2= ▲ .8.南京奥林匹克体育中心位于南京市区西部,总占地面积896000平方米,是2014年南京青奥会主要场馆.数据896000用科学计数法表示为: ▲ . 9.如图,在正六边形ABCDEF 中,连接AE ,则tan ∠1= ▲ .10.写出一个公因式为2ab 且次数为3的多项式: ▲ . 11.2a =12,则a = ▲ .12.如图, CD ∥AB ,CB ⊥AB ,∠1=60o ,∠2=40o ,则∠3= ▲ .13.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程: ▲ .14.平行四边形ABOC 在平面直角坐标系中,A 、B 的坐标分别为(-3,3),(-4,0).则 过C 的双曲线表达式为: ▲ .15.如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过C ,且l ∥AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = ▲ . 16. 如图,△OA 1B 1在直角坐标系中,A 1(-1,0),B 1(0,2),点C 1与点A 1关于OB 1的对称.对△A 1B 1C 1 进行图形变换,得到△C 1B 2C 2,使得B 2(3,2),C 2(5,0);再进行第二次变换,得到△C 2B 3C 3 ,使得B 3(9 ,2 ),C 3(13 ,0 );第三次将△C 2B 3C 3变换成△C 3B 4C 4,B 4(21, 2),C 4(29 ,0 )…按照上面的规律,若对△A 1B 1C 1进行第四次次变换,得到△C 4B 5C 5,则C 5(第15题)CABEF D 1 (第9题)13 2EABCD (第12题)(第13题) (第14题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式组⎩⎪⎨⎪⎧ 2x -3>5, 2+x 3-1≤2.18.(6分)先化简,再求值a 2-b 2ab ÷(1a + 1b ).其中a =-2,b =1.19.(8分)如图,在矩形ABCD 中,点F 是CD 中点,连接AF 并延长交BC 延长线于点E ,连接AC .(1)求证:△ADF ≌△ECF ;(2)若AB =1,BC =2,求四边形ACED 的面积.20.(8分)王老师对初三年级四个班级上学期期末数学成绩进行统计分析,以下是根据数据制成的统计图表的一部分:请你根据以上信息解答下列问题:CAB D EF (第19题)初三各班参考人数统计表0﹪﹪分比统计图初三各班数学合格人数统计图图(2)(1)图(1)中,甲班参考人数占 ▲ ﹪,丙班有 ▲ 人参考; (2)若经计算得出丙班的合格率为90%,将图(2)补充完整; (3)求上学期期末初三年级数学成绩的平均合格率.21.(8分)甲、乙、丙三个篮球队用抽签方法来决定参加第一场比赛的两个球队.请用树状图或列表法求出甲、乙两队在第一场进行比赛的概率.22.(8分)如图,延长等边三角形ABC 一边CB 到D ,连接AD .以A 为圆心,AC 为半径画弧交AD 于E .已知AC =2,∠D =20o ,求DE 的长(精确到0.1).(参考数据:3≈1.73,tan20o ≈0.36,sin20o ≈0.34,cos20o ≈0.94)23. (8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价....为x 元(x >40),请你分别用x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元?DB AEC(第22题)24.(8分)请用尺规..作出符合下列要求的图形(不写作法,保留作图痕迹): (1)已知线段AB ,试确定一点C ,使得∠ACB =90o ; (2)已知△ABD ,试确定一点C ,使得∠ACB +∠ADB =180o .25.(8分)快、慢两车分别从相距120千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,立即按原路返回,返回时的速度是去时速度的2倍,结果与慢车同时回到甲地.慢车距出发地的路程y 1(千米)与出发后所用的时间x (小时)的关系如图所示. 请结合图象信息解答下列问题:(1)慢车的速度是 ▲ 千米/小时,快车的返回时速度是 ▲ 千米/小时; (2)画出快车距出发地的路程y 2(千米)与出发后所用的时间x (小时)的函数图象; (3)在快车返回途中,快、慢两车相距的路程为50千米时,慢车行驶了多少小时?DABAB(第25题)y 120O 1 2 3 x26.(9分)已知,如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,动点E 、F 同时从B 点出发,点E 沿射线BC 方向以5cm /s 运动,点F 沿线段BD 方向以4cm /s 运动,当点F 到达D 时,运动停止,连接DE ,设运动时间为t (s ). (1)请判断△DEF 的形状,并说明理由; (2)线段DE 的中点O 的运动路径长 ▲ cm ;(3)当t 为何值时,△DEF 的外接圆与矩形ABCD 的边相切?27.(11分)函数图象有一个公共点,我们就称两个函数图象“共一点”,有两个公共点,则称它们“共两点”…(1)若函数y =-x +b 图像和y =-x 2+2x 图像“共一点”P ,求P 点坐标;(2)若函数y =-x +1图像和y =ax 2+2x 图像“共两点”,则a 的取值范围是: ▲ ; (3)若函数y =2x 与y =ax 2+bx 图像在第一象限“共两点”A 、B (A 在B 左侧),且A 、B 两点之间水平距离为2,两点之间垂直距离是A 到y 轴距离的倒数,设函数y =ax 2+bx 图像(第26题)的顶点为C .求顶点C 的坐标.参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.174 8.8.96 105 9.3310.答案不唯一,如2ab -4ab 211.1212.65o 13.x (x +1)=3 14.y =3x 15. 6.4或10 16.(61,0) 三、解答题(本大题共11小题,共88分) 17. (本题6分)解:解不等式2x -3>5,得 x >4. …………………………………………………………………2分 解不等式2+x3-1≤2,得 x ≤7. ………………………………………………………………4分 ∴原不等式组解集为4<x ≤7. ………………………………………………………………… 6分 18.(本题6分)解:原式=a 2-b 2ab ÷ a +bab ………………………………………………………………………… 1分=(a -b )(a +b )ab ·aba +b………………………………………………………………3分 =a -b . ………………………………………………………………………4分 当a =-2,b =1时,原式=-2-1=-3. ………………………………………………………6分 19.(本题8分) (1)证明: ∵F 是CD 中点, ∴DF =CF .∵四边形ABCD 是矩形, ∴AD ∥BC ,即AD ∥CE .∴∠ADF =∠ECF . ………………………………………………………………………………2分 在△ADF 和△ECF 中,∠ADF =∠ECF ,DF =CF ,∠AFD =∠EFC .∴△ADF ≌△ECF . ………………………………………………………………………………4分 (2)解:∵四边形ABCD 是矩形, ∴AD =BC =2,AB =CD =1,CD ⊥AD . 由(1)知,△ADF ≌△ECF . ∴AD =CE . ∵AD ∥CE ,∴四边形ACED 是平行四边形. ………………………………………………………………6分 ∴四边形ACED 的面积=AD ×DC =2. ………………………………………………………8分 20.(本题8分)(1)28,30; ………………………………………………………3分(2)图(2)中丙班合格人数为27,图略; ……………………………………………5分(3)42+35+27+40150=96﹪. ∴上学期期末数学成绩各班的平均合格率为96﹪. …………………………………………8分 21.(本题8分)解:列表如下(或画树状图正确)……………………………………………………5分 共有6种等可能的结果.…………………………………………………………………………………6分CABD EF∴ P (甲,乙)=26=13. …………………………………………………………………………………8分 22.(本题8分)解:如图,过A 作AF ⊥BC ,交点为F .…………………………………………………………………1分 ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60o . 在△ABF 中,sin ∠ABC =AFAB , ∵∠ABC =60o ,AB =2, ∴sin60o =AF 2,即32=AF2.∴AF =3.…………………………………………………………………………………………………4分 在△ADF 中,sin D =AFAD , ∵∠D =20o ,AF =3, ∴sin20o =AF 3,即3AD ≈0.34, ∴AD ≈5.1,…………………………………………………………………………………………………7分 由题知,∴AE =AC =2,∴DE =3.1. …………………………………………………………………………8分 23.(本题8分) 解:(1)……………………………………………………………………………………4分 (2)-10x 2+1300x -30000, 解之得:x 1=50,x 2=80. 答:玩具销售单价为50元或80元时,可获得10000元销售利润.……………………………………………………………………………………8分 24.(本题8分)(1)画图正确; ……………………………………………………………………………………4分 (提示:借助以AB 为直径画圆,圆上除A 、B 之外的点均可为C 点)(2)画图正确. ……………………………………………………………………………………8分(提示:作出△ABD 的外接圆,以圆内接四边形对角互补为依据,在优弧上取一点为C ) 25.(本题8分)(1)40,120; ……………………………………………………………………………………2分 (2)如图:DBAECF……………………………………………………………………………………4分 (3)解:OA 的函数关系式为y =40x ,BC 的函数关系式为y =120-120(x -2)=-120x +360; 根据题意,得:-120x +360+40x =120+50,解得:x =198.所以,慢车行驶198小时,快、慢两车相距的路程为50千米. …………………………………………8分 26.(本题9分) 解:(1)△DEF 是直角三角形理由 ∵四边形ABCD 为矩形,∴∠C =90°. 又∵AB =6cm ,BC =8cm ,根据勾股定理得∴BD =10.Q 点E 的运动速度为5cm/s ,点F 的运动速度为4cm/s ,运动时间为t (s), ∴BE =5t ,BF =4t . ∴BF BC =BEBD .又∵∠DBC 为公共角,∴△BEF ∽△BDC .∴∠ BFE =∠ C =90°.∴△DEF 是直角三角形. …………………………………………………………………………………3分 (2)254; …………………………………………………………………………………5分 (3)∵∠ DFE =90°,∴DE 为△DEF 的外接圆直径,点O 为圆心,①当⊙O 与AB 边相切于点G 时,连接GO 并延长交BC 于H 点, ∴GH ∥AD ∥BC . ∴BG AG =BM MD =DO EO =DH CH .又∵点O 是DE 的中点,∴点G 、M 、H 分别为AB 、DB 、CD 的中点,∴OH =12EC =12(8-5t )=4-52t ,OG =8-12(8-5t )=4+52t .ABFEOGM DCEB A H又∵OD 2=OH 2+DH 2=(4-52t )2+32,∴由OD 2=OG 2,得(4-52t )2+32=(4+52t )2,解得t =940. …………………………………………7分②当点E 运动到点C 时,⊙O 与AD 、BC 边相切,由5t =8,得t =85 .所以,当t =940或t =85时,△DEF 的外接圆⊙O 与矩形ABCD 的边相切. (9)分27.(本题11分)解:(1)∵函数y =-x +b 图像和y =-x 2+2x 图像“共一点”,∴-x +b =-x 2+2x ,且b 2-4ac =9-4b =0.∴b =94.………………………………………………………………………………………………………2分当b =94时,y =-x +94,-x +94=-x 2+2x .解得x =32,把x =32代入y =-x +94中,得y =34.∴P 坐标为(32,34). ……………………………………………………………………………………4分(2)a>-94,且a ≠0. ………………………………………………………………………………6分(3)设A 的横坐标为m ,则B 的横坐标为m +2,∵A 、B 在y =2x 图像上,∴A 、B 分别表示为(m ,2m ),(m +2,2m +2). ∵两点之间垂直距离是A 到y 轴距离的倒数,∴2m -2m +2=1m . 解得m =2, (4)经检验,m =2是原方程的根.………………………………………………………………………8分当m =2时,A 、B 分别为(2,1),(4,12),∵A 、B 在函数y =ax 2+bx 图像上,∴1=4a +2b ,12=16a +4b .解得a =-316,b =78.………………………………………………………10分∴y =-316x 2+78x ,其顶点坐标C 为(73,4948).………………………………………………………11分。
苏教版2020年中考数学模拟试卷
2020年中考数学模拟试卷(试卷满分:130分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列计算结果为负数的是( )A. 0(3)-B. 3--C. 2(3)-D. 2(3)-- 2.下列运算中,结果是6a 的是( )A. 23a aB. 122a a ÷ C. 33()a D. 6()a -3.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A. –1 B. 1 C. 2 D. 34.下面调查中,适合采用普查的是( ) A.调查全国中学生心理健康现状 B.调查你所在的班级同学的身高情况 C.调查我市食品合格情况D.调查苏州电视台《新闻夜班车》的收视率5.在下列图形中,既是轴对称图形又是中心对称图形的是( )6.如图,⊙O 的半径为5,若3OP =,则经过点P 的弦长可能是( ) A. 3 B. 6 C. 9 D. 127.如图,在五边形ABCDE 中,//AB CD ,1∠、2∠、3∠分别是BAE ∠、AED ∠、EDC ∠ 的外角,则123∠+∠+∠等于( )A. 90°B. 180°C. 210°D. 270° 8.若21y -≤≤,则代数式2(9)2x y -++有( ) A.最大值0 B.最大值3 C.最小值0 D.最小值。
9.如图,⊙O 是以原点为圆心、2为半径的圆,点P 是直线6y x =-+上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A. 3B. 4C. 62-D. 321-10.在ABC ∆中,30ABC ∠=︒,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.在函数1x y x+=中,自变量x 的取值范围是 . 12.因式分解:244ab ab a -+=13.若点(,2)P a a -在第四象限,则a 的取值范围是 . 14.方程(2)(2)x x x -=--的根是 .15.如图,AB AC =,DE 垂直平分AB 分别交AB 、AC 于D 、E 两点,若40A ∠=︒,则EBC ∠= °.16.如图,将正五边形ABCDE 的点C 固定,并依顺时针方向旋转,若要使得新五边形''''A B CD E 的顶点'D 落在直线BC 上,则至少要旋转 °. 17.若111a m=-,2111a a =-,3211a a =-……,则2015a 的值为 .(用含m的代数式表示)18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.三、解答题(本大题共10小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分6分) 计算:21272cos30()132-︒+-.20.(本题满分6分) 化简:35(2)22x x x x -÷+---.21.(本题满分6分)解不等式组:3(1)(3)8211132x x x x -+--<⎧⎪+-⎨-≤⎪⎩,并求它所有整数解的和.22.(本题满分6分)如图,在平行四边形ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 的延长线分别交AB 、CB 的延长线于H 、G ; (1)求证:BH AB =;(2)若四边形ABCD 为菱形,试判断G ∠与H ∠的大小,并证明你的结论.23.(本题满分8分)为了解某校九年级男生1 000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次,绘制成如图所示的不完整的统计图,请你依图忿答下列问题.(1)a = ;b = ;c = .(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为 度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画二状图法,求甲、乙两名男生同时被选中的概率.24.(本题满分8分)如图,在ABC ∆中,90ACB ∠=︒,CAB ∠的平分线交BC 于点D ,DE AB ⊥,垂足为E ,连接CE ,交AD 于点H . (1)求证: AD CE ⊥;(2)过点E 作//EF BC 交AD 于点F ,连接CF 猜想:四边形CDEF 是什么图形?并证明你的猜想.25.(本题满分8分)某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元; 信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?26.(本题满分8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为2m ,台阶AC 的坡度为B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).27.(本题满分10分)在ABC ∆中,45ABC ∠=︒,,3tan 5ACB ∠=. 如图,把ABC ∆的一边BC 放置在x 轴上,有14OB =,OC =AC 与y 轴交于点E .(1)求AC 所在直线的函数解析式;(2)过点O 作OG AC ⊥,垂足为G ,求OEG ∆的面积;(3)已知点(10,0)F ,在ABC ∆的边上取两点P ,Q ,探索是否存在以O ,P ,Q 为顶点的三角形与OFP ∆全等,且这两个三角形在OP 的异侧?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.28.(本题满分10分)如图,在平面直角坐标系中,直线242y x =-+交x 轴于点A ,交直线y x =于点B .抛物线22y ax x c =-+分别交线段AB 、OB 于点C 、D ,点C 和点D的横坐标分别为16和4,点P 在这条抛物线上. (1)求a 、c 的值;(2)若Q 为线段OB 上一点,且P 、Q 两点的纵坐标都为5,求线段PQ 的长;(3)若Q 为线段OB 或线段AB 上的一点,PQ x ⊥轴,设P 、Q 两点之间的距离为(0)d d >,点Q 的横坐标为m ,求d 随m 的增大而减小时m 的取值范围;(4)若123min(,,)y y y 表示1y 、2y 、3y 三个函数中的最小值,则函数2min(242,2)y x ax x c =-+-+的最大值为 .。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案注意事项:1、本试卷共2页,共27题,满分150分,考试时间120分钟。
2、请在答题卡规定的区域作答,在其他位置作答一律无效。
一、选择题(本大题共有6小题,每小题3分,共18分。
在每小题所给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 下列四个图形中,不是轴对称图形的是( )2、下列计算正确的是( ) A.a 2+a 3=a 5B.(ab 2)3=a 2b 5C.2a-a=2D.2a 2×a -1=2a3.如图,AB//CD ,∠A=50°,则∠的大小是( )A.50°B. 120°C.130°D.150°4.在下列几个几何体中,主视图与俯视图都是圆的是( )5.若63 x 在实数范围内有意义,则x 的取值范围是( ) A. x>2B. x ≥2C. x ≥3D. x ≠26.如图,已知顶点为(-3,-6)的抛物线y= ax 2+bx+c 经过点(-1,-4),则下列结论中错误的是( ) A. b 2>4ac B. ax 2+bx+c ≥-6C. 若点(-2,m ),(-5,n ) 在抛物线上,则D. 关于的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(本大题共有10小题,每小题3分,共30分。
不需要写出解答过程,请把答案直接写在答题卡相应位置)7.分解因式:m2-3m=8.9的平方根是9.据统计,2017年“五一节”期间,东台黄海森林公园共接待游客164000人。
将164000用科学计数法表示为10.圆锥的底面半径为2,母线长为4,圆锥的侧面积为11.若一组数据2、-1、0、2、-1、a的众数为a,则这组数据的平均数为12.如图,⊙o是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是13.若3a2-a-2=0,则5+2a-6a2=14.如图,点G是△ABC的重心,GE//BC,如果BC=12 ,那么线段GE的长为15.无论m取什么实数,点A(m+1,2m-2)都在直线l上,若点B(a,b)是直线l上的动点,则(2a-b-6)3的值等于16.在△ABC中,∠BAC=30°,AD是BC边上的高,若BD=3,CD=1,则AD的长为第12题图第14题图三、解答题(本大题共11小题,共102分。
苏教版2020年初中毕业暨升学考试数学模拟试卷(含答案解析)
2020年初中毕业暨升学考试模拟试卷数 学本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色.墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.......... 1.﹣2的相反数是 A .12-B .12C .﹣2D .22. 下列各式计算正确的是A .23523a a a +=B .235()a a = C .623a a a ÷= D .235a a a ⋅= 3.2018年苏州地区生产总值约为9700亿元,将9700亿用科学记数法表示为A .9.7×108B .9.7×109C .9.7×1010D .9.7×10114.如图,AB ∥CD ,直线EF 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,交AB 于点G ,若∠1=72°,则∠2的度数为 A .36°B .30°C .34°D .33°第4题 第7题5.若一个多边形的内角和与它的外角和相等,则这个多边形是( ) A .三角形B .四边形C .五边形D .六边形6.数据21、12、18、16、20、21的众数和中位数分别是A .21和19B .21和17C .20和19D .20和187.如图,已知BC 是⊙O 的直径,AB 是⊙O 的弦,切线AD 交BC 的延长线于D ,若∠D =400, 则∠B 的度数是 ( ) A .400B .500C . 250D . 11508.关于x 的方程2(1)210m x x --+=有两个不相等的实数根,则实数m 的取值范围是 A.2m < B.2m ≤ C.2m <且1m ≠ D.2m >且1m ≠ 9.如图,等边△ABC 边长为2,四边形DEFG 是平行四边形,DG=2,DE=3,∠GDE=60°,BC 和DE 在同一条直线上,且点C 与点D 重合,现将△ABC 沿D→E 的方向以每秒1个单位的速度匀速运动,当点B 与点E 重合时停止,则在这个运动过程中,△ABC 与四边形DEFG 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )A .B .C .D .10.如图,正方形ABCD 中,AB =2,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF .则线段OF 长的最小值( )A .2B . +2C .2﹣2D .5二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11 . 分解因式:3x 3﹣6x 2y +3xy 2= .123x -有意义的x 的取值范围是 . 13.已知a -3b =3,则6b +2(4-a )的值是 .14.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为 .第14题 第16题15. 用半径为10,圆心角为54°的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径等于 .16.如图,在平面直角坐标系中,矩形OEFG 的顶点F 的坐标为(4,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP ,OM 与GF 相交于点A .若经过点A 的反比例函数的图象交EF 于点B ,则点B 的坐标为 .17.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,轮船与小岛C 的距离为 海里.(结果保留根号)第17题 第18题 18.如图,正方形ABCD 的边长为6,E ,F 是对角线BD 上的两个动点,且EF =,连接CE ,CF ,则△CEF 周长的最小值为 .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:2019216tan 30(12)--︒+-20. (本题满分5分)解不等式组31422x x x ->-⎧⎨<+⎩,并把它的解集表示在数轴上.21. (本题满分5分)先化简,再求值:2121(1)x x x x-+-÷,其中x=.22.(本题满分6分)某校准备组织七年级学生参加夏令营,已知:用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人,现有学生400人,计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)请你帮学校设计出所有的租车方案;(3)若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的方案,并求出最省租金.23. (本题满分8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?24.(本题满分8分)如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A 作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.FED CBA(第24题)25.(本题满分9分)如图1,反比例函数y = kx(x >0)的图象经过点A (23,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D . (1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC相交于点N ,连接CM ,求△CMN 面积的最大值.26.(本题满分10分)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A 、C 两点,与BC 边交于点E,点D 为CE 的下半圆弧的中点,连接AD 交线段EO 于点F.AB=BF ,CF=4,DF=10. (1)求证:AB 是⊙O 的切线; (2)求⊙O 的半径r.(3)设点P 是BA 延长线上的一个动点,连接DP 交CF 于点M,交弧AC 于点N(N 与A 、C 不重合).试问DN DM 是否为定值?如果是,求出该定值:如果不是.请说明理由。
2020年江苏省九年级数学中考模拟试题及答案
A B C D2020江苏省九年级数学中考模拟试题(全卷共140分,考试时间120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在答题卷的相应位置上.) 1. 4的平方根是( )A. 2-B. 2C. 2±D. 16 2. 下列计算正确的是( )A .(a 3)2= a 6B .a 2+ a 4= 2a 2C .a 3a 2= a 6D .(3a )2= a 63. 下列说法中正确的是( ) A .“打开电视,正在播放《新闻联播》”是必然事件 B .一组数据的波动越大,方差越小 C .数据1,1,2,2,3的众数是3D .想了解某种饮料中含色素的情况,宜采用抽样调查4. 如果三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是( ) A .3 B .4 C .5 D .95. 下列图形中,既是轴对称图形,又是中心对称图形的是( )6. 将2.05 × 310-用小数表示为( )A .0.000205B .0.00205C .0.0205D .-0.002057. 平面直角坐标系中,若平移二次函数()() 673y x x =---的图像,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 ( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位BACA ′B ′C ′(第15题)8.如图,在一张矩形纸片ABCD 中,AD = 4cm ,点E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 延长线恰好经过点D ,则CD 的长为( ) A . 2cmB .23cmC .4 cmD . 43cm(第8题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 要使22x -有意义,则x 的取值范围是_▲______. 10.因式分解:2x 2– 8 = ▲ . 11. 若m 2-2m =1,则2017+2m 2-4m 的值是___▲___.(第12题)12.把一根直尺与一块直角三角板如图放置,若∠1 = 55°,则∠2 = ▲ °. 13. 在Rt △ABC 中,∠ACB = 90°,CD 是斜边AB 上的中线 , CD = 4,AC = 6,则CB = ▲ . 14.如果关于x 的方程x 2-6x + m = 0有两个相等的实数根,那么m = ▲ . 15.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到△A ′B ′C ′,连接A ′C ,则△A ′B ′C 的周长为▲ . 16.设函数2y x =与1y x =-的图像的交点坐标为(a ,b ),则11a b-的值为 ▲ . 17.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是3cm ,底面周长是8πcm ,则扇形的半径为 ▲ cm .18.如图,已知Y ABCD 的顶点A 、C 分别在直线x =2和x =5上,O 是坐标原点,则对角线OB 长的最小值为 ▲ .AB C Oxy(第18题)x =2 x =5三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:2017131(1)()273--+π-+. (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭20.(本题10分)(1)解方程:221x x -=; (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪+>+⎩ 21.(本题7分)若中学生体质健康综合评定成绩为x 分,满分为100分.规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了▲ 名学生;a = ▲ %;C 级对应的圆心角为▲ 度. (2)补全条形统计图;(3)若该校共有2000名学生,请你估计该校D 级学生有多少名?22.(本题7分)2016年G20杭州峰会期间,某志愿者小组有五名翻译,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)23.(本题8分)已知:如图,Y ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E . (1)求证:△AOD ≌ △EOC ;AEDO(第23题)B OA C D(2)连接AC ,DE ,当∠B =∠AEB = ▲ °时,四边形ACED 是正方形?请说明理由.24. (本题8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成任务,共需支付运费4800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?25. (本题8分)如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时,它与地面所成的角∠ ABO = 60°;当梯子底端向右滑动1 m (即BD = 1m )到达CD 位置时,它与地面所成的角∠ CDO = 51°18′,求梯子的长.(参考数据:sin 51°18′ ≈ 0.780,cos 51°18′ ≈ 0.625,tan 51°18′ ≈ 1.248)(第25题)26. (本题满分8分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD .(1) 弦长AB 等于 ▲ (结果保留根号); (2) 当∠D =20°时,求∠BOD 的度数;(3) 当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.OAC(第26题)BD27.(本题10分)如图1,菱形ABCD 中,∠A =60º.点P 从A 出发,以2cm/s 的速度,沿边AB 、BC 、CD 匀速运动到D 终止;点Q 从A 与P 同时出发,沿边AD 匀速运动到D 终 止,设点P 运动的时间为t 秒.△APQ 的面积S (cm 2)与t (s )之间函数关系的图像由图2中的曲线段OE 与线段EF 、FG 给出.(1)求点Q 运动的速度;(2)求图2中线段FG 的函数关系式;(3)问:是否存在这样的t ,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.C(图1) (图2)MxyONMxyON28.(本题10分)已知抛物线l :y = ax 2+ bx + c (a ,b ,c 均不为0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)如图,抛物线y = x 2-2x -3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y = x 2-2x -3的顶点为M ,与y 轴交点为N ,将它的衍生直线MN 先绕点N 旋转到与x 轴平行,再沿y 轴向上平移1个单位得直线n ,P 是直线n 上的动点,是否存在点P ,使△POM 为直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(备用图)九年级数学试题答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的代号填在表格的相应位置上.)题号 1 2 3 4 5 6 7 8 选项 CADCCBCB二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.1x ≥ 10.)2)(2(2-+x x 11.2019 12.145° 13.27 14.9 15. 12 16.12-17. 5 18. 7三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:20170131(1)()273--+π-+分 = 0. --------------- 5分 (2)化简:21111x x x ⎛⎫+÷ ⎪--⎝⎭ 原式=()()111x x x x x+-⋅- ----------------------4分 =1x + ------------5分20.(本题10分)(1)解方程:221x x-=;(2)解不等式组:1,2263 2.xxx x⎧+≥⎪⎨⎪+>+⎩解不等式21xx≥+,得2-≥x.………2分解不等式2362+>+xx,得4<x.……4分∴不等式组的解集42<≤-x.…5分21.(本题7分)(1)50,24%,72º(每个1分)……………………………3分(2)补全条形统计图如图.……………………………5分(3)∵4200016050⨯=∴若该校共有2000名学生,估计该校D级学生有160名.……………………7分22.(本题7分)将一名只会翻译法语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:…………………4分∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,……………5分∴该组能够翻译上述两种语言的概率为:147=2010.…………………7分23.(本题8分)(1)∵四边形ABCD是平行四边形,∴AD∥BC.·············1分102212x x-+=……. 2分2(1=2x-)……3分(x-1)= 2±……4分∴1212,12x x==-……5分(第23题)B OA C D∴∠D =∠OCE ,∠DAO =∠E .又∵OC =OD , ············· 2分 ∴△AOD ≌△EOC .············· 3分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形. --------------- 4分∵△AOD ≌△EOC ,∴OA =OE .又∵OC =OD ,∴四边形ACED 是平行四边形. ······ 5分∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°. ---------------6分 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠COE =∠BAE ∴Y ACED 是菱形.--------------- 7分∵AB =A E ,AB =CD ,∴AE =CD .∴菱形ACED 是正方形. ------- 8分24.(本题8分)(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需2x 趟,依题意得:121212x x+= --------------- 1分 解得:18x =--------------- 3分经检验18x =是原方程的解---------------4分 ∴236x =---------------5分答:甲车单独运完此堆垃圾需18趟,乙车需36趟.(2)设甲车每趟需运费a 元,则乙车每趟需运费(200)a -元,依题意得:1212(200)4800a a +-=--------------- 6分解得:300a =--------------- 7分 ∴200100a -=∴单独租用甲车的费用=300×18=5400(元);单独租用乙车的费用=100×36=3600(元) 5400>3600∴单独租用乙车合算. ------------------------- 8分 25.(本题8分)设梯子的长为x m .在Rt △ABO 中,co s∠ABO =OB AB, ∴OB =AB cos∠ABO =x cos 60°=12x .--------------2分在R t△CDO 中,cos∠CDO = OD CD,∴OD =CD cos∠CDO = x cos51°18′ ≈ 0.625x --------4分∵BD =OD ﹣OB ,∴0.625x ﹣12x = 1,-------------- 6分解得x = 8.--------------7分.ABEO故梯子的长是8米.--------------8分.26.(本题8分)(1)23.-------------------------1分 (2)∵∠BOD 是△BOC 的外角,∠BCO 是△ACD 的外角, ∴∠BOD =∠B +∠BCO ,∠BCO =∠A +∠D .∴∠BOD =∠B +∠A +∠D .------------------------- 2分又∵∠BOD =2∠A ,∠B =30°,∠D =20°,------------------------- 3分 ∴2∠A =∠B +∠A +∠D =∠A +50°,∴∠A =50°------------------------- 4分∴∠BOD =2∠A =100°.------------------------- 5分 (3)∵∠BCO =∠A +∠D ,∴∠BCO >∠A ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA =∠BCO =90°.---------- 6分 此时∠BOC =60°,∠BOD =120°,∴∠DAC =60°. ∴△DAC ∽△BOC .------------------------- 7分 ∵∠BCO =90°,即OC ⊥A B ,∴AC =12AB =3.------------------------- 8分 27.(本题10分)(1)∵点Q 始终在AD 上作匀速运动,∴它运动的速度可设为a cm/s . 当点P 在AB 上运动时,AP =2t ,过点P 作PH ⊥AD 于H ,则PH =AP ·sin60º=3t , 此时,S =12·at ·3t =32a t 2,S 是关于t 的二次函数.当点P 在BC 上运动时,P 到AD 的距离等于定长32AB ,此时,△APQ 的面积S 与t 之间的函数关系是一次函数由图2可知∶t =3时,S = 932,∴ 932 = 32a ·9,∴a =1,即Q 点运动速度为1 cm /s .------------------------------------------------2分(2)∴当点P 运动到B 点时,t =3,∴AB =6.---------------------------------------3分当点P 在BC 上运动到C 时,点Q 恰好运动到D 点;当点P 由C 运动到D 时,点Q 始终在D 点,∴图2中的图像FG 对应的是点Q 在D 点、点P 在CD 上运动时S 与t 之间的函数关系,此时,PD =18-2t ,------------------------------------------------------------4分点P 到AD 的距离PH =PD ·sin60º=3(9-t ),------------------------------ ---------- 5分OAB C D此时S =12×6×3(9-t ),∴FG 的函数关系式为S =3 3 (9―t ),即S =―33t +27 3 (6≤t <9). ------------------------------ ---------- --------- ---------- --6分(3)当点P 在AB 上运动时,PQ 将菱形ABCD 分成△APQ 和五边形PBCDQ ,此时,△APQ 的面积S =32t 2,根据题意,得32t 2=16S 菱形ABCD =16×6·6sin60º,解得t =6(秒).-- 8分 当点P 在BC 上运动时,PQ 将菱形ABCD 分成四边形AB PQ 和四边形PCDQ ,此时,有 S 四边形ABPQ =56S 菱形ABCD ,即 12(2t ―6+t )×6×32 = 56×6×6×32,解得t =163(秒)--9分 ∴存在t =6和t =163,使PQ 将菱形ABCD 的面积恰好分成1∶5的两部分.--------- 10分.28.(本题10分)(1)y =﹣x 2﹣3,y =﹣x ﹣3.------------------------------ ---------- 2分(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点, ∴将y =﹣2x 2+1和y =﹣2x +1联立,得,22121y x y x ⎧=-+⎨=-+⎩ 解得0111x x y y ==⎧⎧⎨⎨==-⎩⎩或,------------------------------ ---------- 3分 ∵衍生抛物线y =﹣2x 2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y =a (x ﹣1)2﹣1,∵y=a (x ﹣1)2﹣1过(0,1),∴1=a (0﹣1)2﹣1,解得 a =2,------------------------------ ---------- 4分 ∴原抛物线为y =2x 2﹣4x +1.------------------------------ ---------5分(3)∵N (0,﹣3),∴MN 绕点N 旋转到与x 轴平行后,解析式为y =﹣3,∴再沿y 轴向上平移1个单位得的直线n 解析式为y =﹣2.------------------------------ ---- 6分设点P 坐标为(x ,﹣2),∵O (0,0),M (1,﹣4),∴OM 2=(x M ﹣x O )2+(y O ﹣y M )2=1+16=17,OP 2=(|x P ﹣x O |)2+(y O ﹣y P )2=x 2+4,MP 2=(|x P ﹣x M |)2+(y P ﹣y M )2=(x ﹣1)2+4=x 2﹣2x +5.①当OM 2=OP 2+MP 2时,有17=x 2+4+x 2﹣2x +5,解得x=1+172或x=1-172,即P(1+172,﹣2)或P(1-172,﹣2).--------- 7分②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).------------------------------ ---------- 8分③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).------------------------------ ---------- 9分综上所述,当P 1+17,﹣21-172)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.------------------------------ ----------10分。
【2020精品】江苏省苏州九年级数学中考模拟检测含答案
2020江苏省苏州市中考数学中考模拟试题含答案一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上)1、的倒数是(▲)A .B .2C .﹣2D .﹣2、下列图形中,既是轴对称图形又是中心对称图形的是(▲)A .B .C .D .3、地球的平均半径约为6371000米,该数字用科学记数法可表示为(▲)A .0.6371×107B .6.371×106C .6.371×107D .6.371×1034、下列运算正确的是(▲)A .523)a a =(B .523a a a =+C .1)(23-=÷-a a a a D .153=÷a a 5、若一个多边形的内角和与它的外角和相等,则这个多边形是(▲)A .三角形B .四边形C .五边形D .六边形6一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖)同学A B C D E 方差平均成绩得分8179808280那么被遮盖的两个数据依次是(▲)A .78,2B .78,C .80,2D .80,7、对于二次函数2)1(2+-=x y 的图象,下列说法正确的是(▲)A .开口向下B .对称轴是x =﹣1C .顶点坐标是(1,2)D .与x 轴有两个交点8、已知一次函数b x y +-=与反比例函数x y 1=的图象有2个公共点,则b 的取值范围是(▲)A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣29、如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是(▲)第9题图A .B .C .D .10、如图,在等腰Rt △ABC 中,AC=BC=2,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是(▲)A .πB .πC .2D .2第10题图二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11、代数式1-x 在实数范围内有意义,则x 的取值范围是▲.12、已知关于x 的方程032=+-m x x 的一个根是1,则m=▲.13、在实数范围内分解因式:1642-m =▲.14、分式方程:351+=x x 的解是▲.15、如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB=▲度.(15)(17)(18)16、若一个圆锥的底面圆半径为3cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是▲cm .17、如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是▲.18、如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为▲.F G E H D C B A三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19、(本题满分5分)计算:201700)1(45sin 2-1214.3--+-+)(π.20、(本题满分4分)解方程:0152=--x x .21、(本题满分7分)已知:14)96)(2()3(22--+-+÷-=x x x x x A .(1)化简A ;(2)若x 满足不等式组⎪⎩⎪⎨⎧<-<-343112x x x ,且x 为整数时,求A 的值.22、(本题满分6分)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A 、D 、G 在同一直线上,且AD=3,DE=1,连接AC 、CG 、AE ,并延长AE 交CG 于点H .(1)求证:∠DA E=∠D CG ;(2)求线段HE 的长.23、(本题满分8分)今年某市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.24、(本题满分8分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.25、(本题满分8分)如图,在平面直角坐标xoy 中,正比例函数kx y =的图象与反比例函数xm y =的图象都经过点A (2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB 、AC ,求点C 的坐标及△ABC 的面积.26、(本题满分10分)如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将沿CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC .(1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交于点F (F 与B 、C 不重合),则GE •GF 为一定值。
苏科版2020年中考数学模拟试卷
2020年中考数学模拟试卷本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔 填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干 净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位 置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上 一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(-2)X5的计算结果是( )A. 10 B 5. C.-5 D.-102.下列运算正确的是( )A. 326x x x ⋅=B. 235()x x =C. 23a a a -=-D. 22(2)4x x -=-3.江苏省占地面积约为10 7 200平方公里.将107 200用科学记数法表示应为( )A. 0. 10 12 X 106B. 1. 072 X 105C. 1. 072 X 106D. 10. 72 X 1044.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是( )A.长方体B.四棱锥C.三棱锥D.圆锥5.甲、乙两人各射击6次,甲所中的环数是8,5,5, ,,a b c ,且甲所中的环数的平均数是6, 众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确 判断是( )A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较6.若12y -≤≤1y +有( )A.最大值B.最大值3C.最小值0D.最小值17.圆锥底面圆的半径为3 cm ,其侧面展开图是半圆,则圆锥的一母线长为( )A. 3 cmB. 6 cmC. 9 cmD. 12 cm8.如图,下列条件中不能判断直线12//l l 的是( )A. 13∠=∠B. 23∠=∠C. 45∠=∠D. 24180∠+∠=︒9.如图,点,,A B C 都在⊙O 上,若140AOC ∠=︒,则B ∠的度数是( )A. 70°B. 80°C. 110°D. 140°10.如图,将等边三角形ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的»AC ,长度不变, ,AB BC 的长度也不变,则ABC ∠的度数大小由60°变为( )A. 60()π︒ B. 90()π︒C. 120()π︒ D. 180()π︒ 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填 写在答题卡相应位置上)11.下列各数中,0130,,(),643cos π︒--是无理数的是 .12.分解因式: 3269x x x -+= .13.现有五张完全相同的卡片,上面分别写有“中国”“美国”“韩国”“德国”“英国”,把卡 片背面朝上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概率是 .14.若ABC ∆一边长为4,另两边长分别是方程2560x x -+=的两实根,则ABC ∆的周长 为 .15.如图,点A 在反比例函数6(0)y x x=>的图像上,且4OA =,过点A 作AC x ⊥轴,垂 足为,C OA 的垂直平分线交OC 于点B .则ABC ∆的周长为 .16.在四边形ABCD 中,给出三个条件:①//AD BC ;②AB DC =;③AD BC =.以其中两 个作为题设,余下一个作为结论,写出一个真命题: .(用“序号⇒序号”表示)17.如图,ABC ∆中,::5:12:13AC BC AB =,⊙O 在ABC ∆内自由移动,若⊙O 的半径 为1,且圆心O 在ABC ∆内所能到达的区域的面积为103,则ABC ∆的周长为 . 18.在ABC ∆中,4,60,AB C A B =∠=︒∠>∠,则BC 的长的取值范围是 .三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说 明、证明过程或演算步骤)19.(本题满分5分)计算: 1013()(2019)2--+-.20.(本题满分6分)解方程组: 327239x y x y +=⎧⎨-=⎩.21.(本题满分6分)先化简,再计算: 22121()x x x x x x--÷-+,其中x 是一元二次方程 2220x x --=的正数根.22.(本题满分6分)PM2.5是指空气中直径小于或等于2.5μm 的颗粒物,它会对人体健康和 大气环境造成不良影响.下表是根据《全国城市空气质量报告》中的部分数据制作的统计 表,根据统计表回答下列问题:(1) 2018年7-12月PM2. 5平均浓度的中位数为 μg/m 3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7-12月PM2. 5平均浓 度变化过程和趋势的统计图是 ;(3)某同学观察统计表后说:"2018年7--12月与2017年同期相比,空气质量有所改善”.请你用一句话说明该同学得出这个结论的理由.23.(本题满分7分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、-2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.24.(本题满分8分)图1、图2分别是7X6的网格,网格中的每个小正方形的边长均为1,点,A B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点,C D在小正方形的顶点上),使得四边形∆为轴对称图形(画出一个即可);ABCD为中心对称图形,且ABD(2)在图2中以AB为边作四边形ABEF(点,E F在小正方形的顶点上),使得四边形ABEF为中心对称图形但不是轴对称图形,且tan3∠=.FAB25.(本题满分9分)“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段--所示.CD DE EF(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.26.(本题满分9分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1, A 为⊙O 上一点,请用直尺(不带刻度)和圆规作出⊙O 的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于一点,三条角平分线相交于一 点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点. 请运用上述性质,只用直尺(不带刻度)作图.①如图2,在ABCD Y 中,E 为CD 的中点,作BC 的中点F .②如图3,在由小正方形组成的4X3的网格中,ABC ∆的顶点都在小正方形的顶点上, 作ABC ∆的高AH .27.(本题满分10分)如图,在ABC ∆中,90ACB ∠=︒,6,8BC AC ==.点E 与点B 在AC 的同侧,且AE AC ⊥.(1)如图1,点E 不与点A 重合,连接CE 交AB 于点P .设,AE x AP y ==,求y 关于 x 的函数解析式,并写出自变量x 的取值范围;(2)是否存在点E ,使PAE ∆与ABC ∆相似,若存在.求AE 的长;若不存在,请说明理由;(3)如图2,过点B 作BD AE ⊥,垂足为D .将以点E 为圆心,ED 为半径的圆记为⊙E . 若点C 到⊙E 上点的距离的最小值为8,求⊙E 的半径.28.(本题满分10分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于,A B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当13t=秒时,点Q的坐标是.(2)在运动过程中,设正方形PQMN与AOB∆重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT PT+的最小值.1、Great works are performed not by strengh, but by perseverance.20.7.17.1.202009:5609:56:00Jul-2009:56 2、I stopped believing in Santa Claus when I was six. Mother took me to see him in adepartment store and he asked for my autograph.。
江苏省苏州市2020年九年级中考数学模拟试卷(八)含答案
苏州市初三数学中考模拟试卷(八)(满分:130分考试 时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分) 1.在-1,0,-2,1四个数中,最小的数是 ( ) A .-1B .0C .-2D .12.下列运算正确的是 ( ) A .2+3=5B .(a +b)2=a 2+b 2C .(-2a)3=-6a 3D .-(x -2)=2-x3.下列调查方式,你认为最合适的是 ( )A .日光灯管厂要检测一批灯管的使用寿命,采用普查方式B .了解苏州市每天的流动人口数,采用抽样调查方式C .了解苏州市居民日平均用水量,采用普查方式D .旅客上飞机前的安检,采用抽样调查方式4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的 电线等距排列,则三户所用电线( ) A .a 户最长 B .b 户最长 C .c 户最长D .三户一样长5.已知()32213m ⎛⎫=-⨯- ⎪ ⎪⎝⎭,则有 ( )A .5<m<6B .4<m<5C .-5<m<-4D .-6<m<-56.如图,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D 、C 分别落在点F 、E 处(点F 、E 都在AB 所在的直线上),折痕为MN ,则∠AMF 等于 ( ) A .70°B .40°C .30°D .20°7.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y=x 的图象被⊙P 截得的弦AB 的长为24,则a 的值是 ( ) A .4 B .23+ C .23 D .33+ 8.如图所示的工件的俯视图是 ( )9.如图,正方形ABCD的两边BC、AB分别在平面直角坐标系内的x轴、y轴的正半轴上,正方形A'B'C'D'与正方形ABCD是以AC的中点O'为中心的位似图形.已知AC=32,若点A'的坐标为(1,2),则正方形A'B'C'D'与正方形ABCD的相似比是( )A.16B.13C.12D.2310.小翔在如图①所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C.共用时30 s.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:s),他与教练的距离为y(单位:m),表示y与t的函数关系的图像大致如图②所示,则这个固定位置可能是图①中的( )A.点M B.点N C.点P D.点Q二、填空题(本大题共8小题,每小题3分,共24分)11.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万平方千米用科学记数法可表示为_______平方千米.12.分解因式:a4-16a2=_______.13. 如图,直线a∥b,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2=.14.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为_______.15.如图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车经过该路口都向右转的概率为_______.16.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是_______.17.甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌,规定每人最多两种取法,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张(k 是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有_______张.18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)三、解答题(本大题共11小题,共76分) 19.(本小题满分5分)()120151272tan 6012-⎛⎫--︒-- ⎪⎝⎭20.(本小题满分5分)解不等式组:()315151733x x x x⎧+<⎪⎨-≤-⎪⎩21.(本小题满分5分)先化简,再求值:223252224x x x x x +⎛⎫+÷ ⎪-+-⎝⎭,其中x 是满足-2≤x ≤2的整数.22.(本小题满分5分)如图,已知正五边形ABCDE,请用无刻度的直尺,准确画出它的一条对称轴(保留画图痕迹).23.(本小题满分6分)如图,分别以Rt ABC△的直角边AC及斜边AB向外作等边ACD△及等边ABE△,已知:30BAC∠=o,EF AB⊥,垂足为F,连接DF。