函数图象

合集下载

经典数学函数图像大全

经典数学函数图像大全

函数图形 基本初等函数 幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数 y = |x|符号函数 y = sgnx取整函数 y= [x]极限的几何解释(1)极限的几何解释(2)极限的几何解释(3)极限的性质 (1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质 (3) (不等式性质) 极限的性质 (4) (局部有界性) 极限的性质 (5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x 的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e 的值(1)e 的值(2)等价无穷小(x->0)sinx 等价于xarcsinx等价于xtanx等价于xarctanx 等价于x 1-cosx 等价于x^2/2sinx 等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线实用标准文案精彩文档y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1) 夹逼定理(2) 数列的夹逼性 (1) 数列的夹逼性 (2)。

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

经典数学函数图像大全

经典数学函数图像大全

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(4)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1) y=sin(1/x) (2)y=sin(1/x) (3) y=sin(1/x) (4) y = [1/x](1) y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1)极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性)极限的性质(3) (不等式性质)极限的性质(4) (局部有界性)极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2) lim(1+1/x)^x 的一般形式(3)e的值(1)e的值(2)等价无穷小(x->0)sinx等价于xarcsinx等价于xtanx等价于xarctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2) 数列的夹逼性(1) 数列的夹逼性(2)。

经典数学函数图像大全

经典数学函数图像大全

. 函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)双曲函数(3)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)反双曲函数(5).y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x|取整函数y= [x]极限的几何解释(1)极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性)极限的性质(3) (不等式性质)极限的性质(4) (局部有界性)极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2) limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)e的值(2)等价无穷小(x->0)sinx等价于xarcsinx等价于xtanx等价于xarctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1)夹逼定理(2)数列的夹逼性 (1)数列的夹逼性 (2)。

函数图像ppt课件

函数图像ppt课件

03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。

数学函数图像大全

数学函数图像大全
7.万能公式 $sin(a)= (2tan(a/2))/(1+tan^2(a/2))$ $cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))$ $tan(a)= (2tan(a/2))/(1-tan^2(a/2))$
8.其它公式(推导出来的 )
$a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)$ 其中 $tan(c)=b/a$ $a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)$ 其中 $tan(c)=a/b$ $1+sin(a)=(sin(a/2)+cos(a/2))^2$ $1-sin(a)=(sin(a/2)-cos(a/2))^2$
$sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)$ $sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)$ $cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)$ $cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)$ 4.积化和差公式 (上面公式反过来就得到了) $sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]$ $cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]$ $sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]$
y=sin(1/x) (4) y = [1/x](1)
y = [1/x](2)
y=21/x y=21/x (2) y=xsin(1/x)

考研数学函数图像大全

考研数学函数图像大全
函数图形
基本初等函数
幂函数(1)
幂函数(2)
幂函数(3)
指数函数(1)
指数函数(2)
指数函数(3)
对数函数(1)
对数函数(2)
三角函数(1)
三角函数(2)
三角函数(3)
三角函数(4)
三角函数(5)
反三角函数(1)
反三角函数(2)
反三角函数(3)
反三角函数(4)
反三角函数(5)
反三角函数(6)
反三角函数(7)
反三角函数(8)
双曲函数(1)
双曲函数(2)
双曲函数(3)
双曲函数(4)
双曲函数(5)
双曲函数(6)
Байду номын сангаас双曲函数(7)
反双曲函数(1)
反双曲函数(2)
反双曲函数(3)
反双曲函数(4)
反双曲函数(5)
反双曲函数(6)
y=sin(1/x) (1)
y=sin(1/x) (2)
y=sin(1/x) (3)
y=sin(1/x) (4)
精品函数图形基本初等函数幂函数1幂函数2精品精品幂函数3指数函数1指数函数2精品精品指数函数3对数函数1精品精品对数函数2三角函数1精品精品三角函数2三角函数3精品精品三角函数4三角函数5精品精品反三角函数1反三角函数2精品精品反三角函数3反三角函数4精品精品反三角函数5反三角函数6精品精品反三角函数7反三角函数8精品精品双曲函数1双曲函数2精品精品双曲函数3双曲函数4精品精品双曲函数5双曲函数6精品精品双曲函数7反双曲函数1精品精品反双曲函数2反双曲函数3精品精品反双曲函数4反双曲函数5精品精品反双曲函数6ysin1x精品精品ysin1x精品精品ysin1x精品精品

常用函数图像

常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)三角函数(3)对数函数(2)三角函数(4)三角函数(1)三角函数(5)三角函数(2)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3) y=sin(1/x) (4)y = [1/x](1) y = [1/x](2) y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x) y=e1/xy=sinx (x->∞)绝对值函数 y = |x|符号函数 y = sgnx取整函数 y= [x]极限的几何解释(1)极限的几何解释 (2)极限的几何解释 (3)极限的性质 (1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质 (3) (不等式性质)极限的性质 (4) (局部有界性)极限的性质 (5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2) lim(1+1/x)^x 的一般形式(3) e的值(1)等价无穷小 (x->0)sinx 等价于xarcsinx 等价于xtanx 等价于xarctanx 等价于x1-cosx 等价于x^2/2sinx 等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞)夹逼定理(1)夹逼定理(2)数列的夹逼性(1)数列的夹逼性(2)pi 是派的意思(如果你没有切换到公式版本) ^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了。

经典数学函数图像大全

经典数学函数图像大全

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(5)反三角函数(6)反三角函数(7)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y = [1/x](2) y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1)极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2) lim(1+1/x)^x 的一般形式(3) e的值(1)e的值(2)等价无穷小(x->0)sinx等价于x arcsinx等价于xtanx等价于xarctanx等价于x1-cosx等价于x^2/2 sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2) 数列的夹逼性(1) 数列的夹逼性(2)。

经典数学函数图像大全-数学函数图像

经典数学函数图像大全-数学函数图像
函数图形
基本初等函数
幂函数(1)
幂函数(2)
幂函数(3)
指数函数(1)
指数函数(2)
指数函数(3)
对数函数(1)
对数函数(2)
三角函数(1)
三角函数(2)
三角函数(3)
三角函数(4)
三角函数(5)
反三角函数(1)
反三角函数(2)
反三角函数(3)
反三角函数(4)
反三角函数(5)
反三角函数(6)
反三角函数(7)
y = [1/x](1)
y = [1/x](2)
y=21/x
y=21/x (2)
y=xsin(1/x)
y=arctan(1/x)
y=e1/x
y=sinx (x->∞)
绝对值函数 y = |x|
符号函数 y = sgnx
取整函数 y= [x]
极限的几何解释 (1)
极限的几何解释 (2)
极限的几何解释 (3)
海涅定理
渐近线
水平渐近线
铅直渐近线
y=(x+1)/(x-1)
y=sinx/x (x->∞)
夹逼定理(1)
夹逼定理(2)
数列的夹逼性 (1)
数列的夹逼性 (2)
(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)
极限的性质 (1) (局部保号性)
极限的性质 (2) (局部保号性)
极限的性质 (3) (不等式性质)
极限的性质 (4) (局部有界性)
极限的性质 (5) (局部有界性)
两个重要极限
y=sinx/x (1)
y=sinx/x (2)
limsinx/x的一般形式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思源实验学校八年级数学导学稿
函 数 图 象(一)
撰写人:董俊峰 审稿人:付学
[教学目标]1.以熟悉的情景为基础,在探求变量之间关系中,理解认识函数图象的意义,初步
认识函数与图象的对应关系;
2.学会观察图象,识别图象及理解图象所表达的含义.
3.渗透数形结合思想,体会到数学来源于生活,又服务于生活.
[教学重点]函数的图象
[教学难点]把实际问题转化为函数图象,数形结合解答问题. [教学过程] 一、课前预习
1.油箱中有油30千克,油从管道中匀速流出,1小时流完,则油箱中的余油量Q(千克)与流出时间t (分钟)之间的函数关系式是 .
2.课本P 96思考(一)与P 100的思考,二者有何共同点?①都是用图象描述两个变量之间的关系;②图上的点都是以 为横坐标, 为纵坐标;③所有②中的点组成了 .问:这两个函数关系可以用式子来表示吗? 二、课中研讨
1.有些问题中的函数关系很难由式子表示,那么用式子表示的函数关系是否也可以用图象直观表达呢?
问题:正方形的边长x 与面积S 的函数关系为
)0(2>=x x S ,它能用图象直观表达吗?(图象是由点组成
的,那么点是如何确定的呢?) (1)计算并填写下表:
(2)在坐标系中,将上面表格中各对数值对应的点画出,用平
滑的曲线连接这些点,所得曲线上的每一个点都代表 .
归纳:一般地,对于一个函数, 就是这个函数的图象. 思考:①表中x 的值能随便取吗?②画函数图象有哪些步骤? 2.自学课本P 100思考.
3.解决问题:下面的图象反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x 表示时间,y y 表示小明离他家的距离,小明家、菜地、玉米地在同一条直线上.
根据图象回答下列问题:
(1)菜地离小明家多远?小明从家到菜地用了多少时间? (2)小明给菜地浇水用了多少时间?
(3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间? (4)小明给玉米地锄草用了多少时间?
(5)玉米地离小明家多远?小明从玉米地回家的平均速度是多少?
三、当堂检测
1.在全民健身环城越野赛中,甲、乙两选手的行程y (千米)随时间
x (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小
时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个
2.如图是甲、乙两人都从一条路由A 地去B 地,从图中你获得哪些信息.
3.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.其中x 表示时间,y 表示张强离家的距离. 根据图象回答下列问题:
(1)体育场离张强家多远?张强从家到体育 场用了多少时间? (2)体育场离文具店多远?
(3)张强在文具店停留了多少时间?
(4)张强从文具店回家的平均速度是多少?
四、当堂小结:这节课我们学习了:①函数图象的定义,并初步了解了画函数图象的步骤;②如何读图,即从函数图象中获取信息. 五、拓展延伸
当堂检测中的第2题,甲、乙二人是何时相遇的,相遇时它们离出发地有多远?
思源实验学校八年级数学导学稿
函 数 图 象(二)
撰写人:董俊峰 审稿人:付学
[教学目标]1.学会用描点法画出简单函数图象,初步了解函数关系式与函数图象之间的关系.
2.渗透数形结合思想,让学生学会函数图象的基本画法.
3.通过细心画图,培养学生养成严谨细致的学习习惯,同时体验探索成功的快乐.
[教学重点]了解画函数图象的一般步骤,会画简单函数的图象. [教学难点]函数关系式与函数图象之间的对应关系. [教学过程] 一、课前预习 1.什么叫函数图象?
2.如图是向上同学骑车从家里去上学校途中时间与骑车速度的关系,根据图象回答: (1)行驶时间是多少? (2)最大速度是多少?
(3)在哪一段时间内,速度是匀速的.
(4)去发后10分钟到15分钟发生了什么现象?
思考:既然图象上点的坐标是自变量与函数的每一对对应值,那么我们把所有的自变量与函数的
对应值转化为点的坐标,就可以画出函数的图象,那么如何正确地画出一个函数的图象呢? 二、课中研讨
问题:在下列式子中,对于x 的每一个可取值,y 都有唯一的对应值,即y 是x 的函数.画出这些函数的图象.(分组探讨画法)
(1)5.0+=x y
(2))0(6
>=
x x
y
思考:1.你认为描点法画函数图象的一般步骤是什么?
2.列表取值需要考虑自变量的取值范围吗?取值要注意什么?
3.连线时有哪些注意事项?
4.在画出的两个函数图象上,由左向右看时,x 、y 是如何变化的呢?你会概括吗?
三、当堂检测
1.画出函数13-=x y 的图象.
2.判断点A(2
1
-
,2),B(1,5),C(-2,1)是否在函数32+=x y 的图象上.
3.下图是一种古代计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系(暂不考虑水量变化对压力的影响)?
4.如图所示,正方形ABCD 的边长为2,动点P 从C 出发,在正方形的边上沿着C →B →A 的方向运动(点P 与A 不重合).设点P 的运动路程为x ,则下列图象中表示ADP ∆的面积y 关于x 的函数关系的是( )
四、当堂小结:这节课学习了用描点法画函数图象,还了解了读图象的一般方法.
五、拓展延伸
1.已知点A(2a+1,5a)在函数3--=x y 上,求a 的值.
2.已知等腰△ABC 的周长为20cm ,腰长为x cm ,底边长为y cm ,将y 表示为x 的函数,并画出这个函数图象.。

相关文档
最新文档