函数图象的理解分析与计算

合集下载

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。

注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。

函数的图像与性质分析

函数的图像与性质分析

函数的图像与性质分析函数是数学中的一个重要概念,它是数学中最基本的工具之一。

我们常常会通过观察函数的图像来了解函数的性质。

在本文中,我将通过几个例子来说明函数的图像与性质分析的方法和技巧。

例一:线性函数首先,我们来看一个简单的例子,即线性函数。

线性函数的图像是一条直线,它的一般形式为y = kx + b,其中k和b是常数。

我们可以通过观察直线的斜率k 和截距b来了解函数的性质。

如果k>0,那么直线是上升的,表示函数是增函数;如果k<0,那么直线是下降的,表示函数是减函数。

而截距b表示函数与y轴的交点,可以用来判断函数的零点。

例如,对于函数y = 2x + 1,我们可以知道它是一条上升的直线,斜率为2,截距为1。

这意味着函数是增函数,并且与y轴交于点(0,1)。

例二:二次函数接下来,我们来看一个稍微复杂一些的例子,即二次函数。

二次函数的图像是一条抛物线,它的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。

我们可以通过观察抛物线的开口方向、顶点坐标以及对称轴来了解函数的性质。

如果a>0,那么抛物线开口向上,表示函数是上凸的;如果a<0,那么抛物线开口向下,表示函数是下凸的。

顶点坐标表示抛物线的最低点或最高点,可以用来判断函数的极值。

对称轴是抛物线的中轴线,可以用来判断函数的对称性。

例如,对于函数y = x^2 - 2x + 1,我们可以知道它是一条开口向上的抛物线,顶点坐标为(1,0),对称轴为x = 1。

这意味着函数是上凸的,并且在x = 1处取得极小值。

例三:指数函数最后,我们来看一个指数函数的例子。

指数函数的图像是一条逐渐增长或逐渐衰减的曲线,它的一般形式为y = a^x,其中a是常数。

我们可以通过观察曲线的增长趋势和与坐标轴的交点来了解函数的性质。

如果a>1,那么曲线逐渐增长;如果0<a<1,那么曲线逐渐衰减。

与x轴的交点表示函数的零点,可以用来判断函数的定义域。

函数的基本概念与图像分析

函数的基本概念与图像分析

函数的基本概念与图像分析函数是数学中一个重要的概念,它在许多领域都有广泛的应用。

本文将介绍函数的基本概念,以及如何通过图像分析函数。

首先,我们来了解函数的定义。

在数学中,函数是一种将一个集合中的每个元素都对应到另一个集合中的元素的规则。

通常用字母表示函数,比如 f(x)。

其中,f 是函数的名称,而 x 则是自变量,它表示函数的输入值。

而 f(x) 则是函数的值,也被称为因变量,它表示函数对应的输出值。

函数可以通过不同的表示方法来进行分析,其中一种方式是通过图像。

图像可以直观地展示函数的特点和性质。

在图像上,自变量通常在 x 轴上表示,因变量则在 y 轴上表示。

通过绘制函数的图像,我们可以观察函数的变化情况,以及其它一些重要的特征。

函数的图像可以通过一些基本的观察和分析来获得更多的信息。

以下是一些常见的图像分析方法:1. 零点和极值点:函数的零点是指在图像上函数与 x 轴交点的地方。

而极值点则是函数图像上的局部最高点或最低点。

通过观察图像,我们可以找到函数的零点和极值点,并进一步研究其特征。

2. 斜率:函数图像上的一条直线的斜率可以用来表示函数在该点的变化趋势。

通过计算斜率,我们可以了解函数的增减情况以及变化的速率。

斜率的正负和大小对函数的性质有重要的影响。

3. 对称性:函数图像可能存在一些对称性。

例如,奇函数具有关于原点对称的性质,即 f(-x) = -f(x)。

而偶函数则具有关于 y 轴对称的性质,即 f(-x) = f(x)。

通过分析函数图像的对称性,我们可以简化对函数的研究。

4. 渐进线:函数图像在无穷远处可能会有一些特殊的趋势。

这些趋势被称为渐进线。

常见的渐进线有水平渐近线和斜渐近线。

水平渐近线是指函数图像在无穷远处水平靠近某个值的情况。

而斜渐近线则是指函数图像在无穷远处斜向某个方向靠近的情况。

通过以上的图像分析方法,我们可以更好地理解函数的性质和行为。

这些分析方法可以为我们解决各种实际问题提供有力的工具和方法。

函数的图像与性质分析方法

函数的图像与性质分析方法

函数的图像与性质分析方法函数是数学中的重要概念,它描述了自变量和因变量之间的关系。

通过分析函数的图像和性质,我们可以深入理解函数的行为和特点。

本文将介绍一些常用的函数图像与性质分析方法。

一、函数的图像分析方法1. 函数的定义域和值域分析:首先确定函数的定义域,即自变量的取值范围。

然后通过对函数进行计算,确定其对应的值域,即函数的取值范围。

这样我们可以得到函数的定义域和值域的范围,从而有利于后续的图像分析。

2. 函数的奇偶性分析:对于定义在对称区间上的函数,可以通过奇偶性来判断其图像是否对称。

若函数满足$f(x)=f(-x)$,则函数为偶函数,其图像关于y轴对称;若函数满足$f(x)=-f(-x)$,则函数为奇函数,其图像关于原点对称。

3. 函数的单调性分析:通过计算函数的导数或利用函数的增减性质,可以判断函数在定义域上的单调性。

若函数的导数恒大于0,则函数在该区间上单调递增;若函数的导数恒小于0,则函数在该区间上单调递减。

4. 函数的极值点和拐点分析:通过计算函数的导数和二阶导数,可以确定函数的极值点和拐点。

函数的极值点对应函数图像上的局部最大值或最小值,而拐点则对应函数图像上的转折点。

5. 函数的渐近线分析:函数的渐近线是指函数图像在无穷远处的趋势。

常见的渐近线包括水平渐近线、垂直渐近线和斜渐近线。

通过计算函数在无穷大或无穷小处的极限值,可以确定函数的渐近线。

二、函数的性质分析方法1. 函数的周期性分析:对于周期函数,可以通过计算函数的周期来确定其周期性。

周期函数的图像在一个周期内重复出现,具有明显的重复性。

2. 函数的对称性分析:函数的对称性可以分为轴对称和中心对称两种情况。

轴对称函数的图像关于某条直线对称,而中心对称函数的图像关于某个点对称。

3. 函数的增减性分析:通过计算函数的导数或利用函数的增减性质,可以判断函数在定义域上的增减情况。

函数的增减性对应函数图像上的上升和下降趋势。

4. 函数的凹凸性分析:通过计算函数的二阶导数或利用函数的凹凸性质,可以判断函数在定义域上的凹凸情况。

高中常见函数图像及基本性质

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。

函数的图象(解析版)

函数的图象(解析版)

考点12 函数的图象【命题解读】 关于函数图象的考查: (1)函数图象的辨识与变换。

(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力。

【基础知识回顾】 1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换y =f (x )的图象――――――→关于x 轴对称y =-f (x )的图象; y =f (x )的图象――――――――→关于y 轴对称y =f (-x )的图象;y =f (x )的图象――――――――→关于原点对称y =-f (-x )的图象;y =a x (a >0,且a ≠1)的图象――――――――――→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )―――――――――――――――――→纵坐标不变各点横坐标变为原来的1a (a >0)倍y =f (ax ).y =f (x )―――――――――――――――――→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ). (4)翻折变换y =f (x )的图象―――――――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;y =f (x )的图象―――――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. [常用结论与微点提醒] 1.记住几个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.图象的左右平移仅仅是相对于...x .而言,如果x 的系数不是1,常需把系数提出来,再进行变换.3.图象的上下平移仅仅是相对于...y .而言的,利用“上减下加”进行.1、(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A2、.(2020·深圳调研)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )【答案】 C【解析】 由函数f (x )的图象知a >1,-1<b <0. ∴g (x )=a x +b 在R 上是增函数,且g (0)=1+b >0. 因此选项C 满足要求.3、已知函数f(x)=log a x(0<a <1),则函数y =f(|x|+1)的图象大致为( )A B C D【答案】A【解析】 先作出函数f(x)=log a x(0<a <1)的图象,当x>0时,y =f(|x|+1)=f(x +1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y =f(|x|+1)为偶函数,∴再将函数y =f(x +1)(x>0)的图象关于y 轴对称翻折到y 轴左边,得到x <0时的图象.故选A .4、定义:在平面直角坐标系xOy 中,若存在常数(0)ϕϕ>,使得函数()y f x =的图象向右平移ϕ个单位长度后,恰与函数()y g x =的图象重合,则称函数()y f x =是函数()y g x =的“原形函数”.下列四个选项中,函数()y f x =是函数()y g x =的“原形函数”的是( ) A .f 2()x x =,2()21g x x x =-+ B .f ()sin x = x ,()cos g x = xC .f ()x ln = x ,()g x ln =2x D .f 1()()3x x =,1()2()3x g x =【答案】ABD【解析】由2()f x x =,2()(1)g x x =-知,()f x 向右移动一个单位可得到()g x ,故选项A 正确; 由3()sin ,()cos sin()2f x xg x x x π===-知,()f x 向右移动32π个单位可得到()g x ,故选项B 正确;由1(),()()22f x lnxg x ln x lnx ln ===-知,()f x 项下移动2ln 个单位可得到()g x ,故选项C 不正确; 由31321211()()11133()(),()2()()13331()23x xx log x x log f x g x -=====知,()f x 向右移动3log 2个单位可得到()g x ,故选项D 正确; 故选:ABD .5、已知函数f (x )=|x |(x -a ),a >0.(1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值.【解析】(1)f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥0,-x (x -a ),x <0,其图象如图所示. (2)由图知,f (x )的单调递增区间是(-∞,0),⎝ ⎛⎭⎪⎫a 2,+∞;单调递减区间是⎝ ⎛⎭⎪⎫0,a 2.(3)由图象知,当a2>1,即a >2时,f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 24.综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.考向一 作函数的图象例1、作出下列函数的图象: (1)(1)y =2-2x ;(2)y =log 13 [3(x +2)]; (3)y =|log 12(-x )|. 【解析】:(1)作函数y =2x 的图象关于x 轴对称的图象得到y =-2x 的图象,再将图象向上平移2个单位,可得y =2-2x 的图象.如图1;(2)因为y =log 13[3(x +2)]=-log 3[3(x +2)]=-log 3(x +2)-1.所以可以先将函数y =log 3x 的图象向左平移2个单位,可得y =log 3(x +2)的图象,再作图象关于x 轴对称的图象,得y =-log 3(x +2)的图象,最后将图象向下平移1个单位,得y =-log 3(x +2)-1的图象, 即为y =log 13[3(x +2)]的图象.如图2;(3)作y =log 12x 的图象关于y 轴对称的图象,得y =log 12(-x )的图象,再把x 轴下方的部分翻折到x 轴上方,可得到y =|log 12(-x )|的图象.如图3.变式1、分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1; (4)y =x +2x -1.【解析】(1)y =⎩⎪⎨⎪⎧lg x x ≥1,-lg x 0<x <1图象如图①.(2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 x ≥0x 2+2x -1x <0.图象如图③.(4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y=x +2x -1的图象,如图④.变式2、作出下列函数的图象:(1)y =12x⎛⎫ ⎪⎝⎭; (2)y =|log 2(x +1)|; (3)y =2x -1x -1; (4)y =x 2-2|x|-1. 【解析】(1)作出y =12x ⎛⎫ ⎪⎝⎭的图象,保留y =的图象中x ≥0的部分,加上y =的图象中x>0部分关于y 轴的对称部分,即得y =的图象,如图①实线部分.①②(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即得函数y =|log 2(x +1)|的图象,如图②.(3)∵y =2x -1x -1=2+1x -1,故函数图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位而得,如图③.(4)∵y =22x 21,021,0x x x x x ⎧--⎪⎨+-⎪⎩≥,<,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,如图④.③ ④方法总结:1.作函数图象的一般步骤为: (1)确定函数的定义域. (2)化简函数解析式.12x ⎛⎫ ⎪⎝⎭12x⎛⎫ ⎪⎝⎭12x⎛⎫⎪⎝⎭(3)讨论函数的性质(如函数的单调性、奇偶性、周期性、最值、极限等)以及图象上的特殊点(如极值点、与坐标轴的交点、间断点等)、线(如对称轴、渐近线等). (4)选择描点法或图象变换法作出相应的函数图象.2.采用图象变换法时,变换后的函数图象要标出特殊的线(如渐近线)和特殊的点,以显示图象的主要特征,处理这类问题的关键是找出基本函数,将函数的解析式分解为只有单一变换的函数链,然后依次进行单一变换,最终得到所要的函数图象.考向二 图象的辨识例2、(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( ) A . B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D , 当0x >且0x →,()f x →+∞,排除C . 故选:A.变式1、(2020·浙江镇海中学高三3月模拟)函数(ln cos 2y x x =⋅的图象可能是( )A .B .C .D .【答案】D 【解析】由于0x ,所以()f x 的定义域为R ,因为()ln(cos(2)f x x x -=-+⋅-)cos 2x x =⋅1)cos2x x -=⋅)cos2x x =-⋅ ()f x =-所以()f x 为奇函数,其图象关于原点对称,所以排除A ,B因为ln cos 0222f πππ⎛⎛⎫ =+⋅= ⎪ ⎝⎭⎝,()ln(cos ln(1f ππππ=+⋅=-<-,333ln cos 0222f πππ⎛⎛⎫ =+⋅= ⎪ ⎝⎭⎝ 所以排除C 故选:D变式2、(2020·浙江学军中学高三3月月考)函数f (x )=2sin cos x xx x++在[—π,π]的图象大致为 A . B .C .D .【答案】D【解析】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 变式3、(2020届山东省九校高三上学期联考)若函数()y f x =的大致图象如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;极限思想分析,0,222,022x xx xxx +--→+→→+,A 错误; 220,222,x xxxx x-+-+→+→→+∞,C 符合题意.故选:C变式4、(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D. 满足条件的只有A. 故选:A方法总结:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项考向三 函数图象的应用例3、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( )A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4- 【答案】A【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m <故选:A变式1、(2020届山东省滨州市高三上期末)已知31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .b c a <<D .b a c <<【答案】C【解析】 在同一直角坐标系内,作出函数13x y ⎛⎫= ⎪⎝⎭,3log y x =,3x y =,13log y x =的图象如下: 因为31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,所以a 是13x y ⎛⎫= ⎪⎝⎭与3log y x =交点的横坐标;b 是3x y =与13log y x =交点的横坐标;c 是13xy ⎛⎫= ⎪⎝⎭与13log y x =交点的横坐标;由图象可得:b c a <<.故选:C.变式2、函数f (x )=2sin x sin ⎝ ⎛⎭⎪⎫x +π2-x 2的零点个数为________.【答案】2【解析】f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图象的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图象如图所示:由图可知两函数图象有2个交点,则f (x )的零点个数为2.变式3、已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围.【解析】 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x x -4=x -22-4,x ≥4,-x x -4=-x -22+4,x <4.f (x )的图象如图所示:(3)f (x )的减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞).方法总结: 函数的图象在解题中有着十分广泛的应用,常见的有:研究函数的性质,解不等式,求函数的零点等.(1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应法则.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.1、(2020天津3)函数241x y x =+的图象大致为( ) A . B .C .D .【答案】A【思路导引】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【解析】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选A . 2、(2019全国Ⅲ理7)函数在的图象大致为 A . B .C .D .【答案】B【解析】 因为,所以是上的奇函数,因此排除C ,又,因此排除A ,D .故选B . 3、(2018全国卷Ⅱ)函数2()--=x xe ef x x的图象大致为【答案】B3222x x x y -=+[]6,6-332()2()()2222x x x x x x f x f x ----==-=-++()f x []6,6-1182(4)721f =>+【解析】当0<x 时,因为0--<x xe e ,所以此时2()0--=<x xe ef x x ,故排除A .D ;又1(1)2=->f e e ,故排除C ,选B .4、(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【答案】D【解析】当0x ≤时,函数()2x f x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .5、(2015安徽)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C 【解析】∵2()()ax b f x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N 的横坐标均为正,∴0b x a =->,20b y c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c .6、已知函数222,0()||,0x x x f x log x x ⎧--⎪=⎨>⎪⎩,若1234x x x x <<<,且1234()()()()f x f x f x f x ===,则下列结论正确的是( )A .121x x +=-B .341x x =C .412x <<D .123401x x x x <<【答案】BCD【解析】由函数222,0()||,0x x x f x log x x ⎧--⎪=⎨>⎪⎩,作出其函数图象:由图可知,122x x +=-,121x -<<-;当1y =时,2|log |1x =,有1,22x =; 所以341122x x <<<<; 由34()()f x f x =有2324|log ||log |x x =,即2324log log 0x x +=; 所以341x x =;则2123412111(2)(1)1(0,1)x x x x x x x x x ==--=-++∈; 故选:BCD .。

数学中的函数图像分析与变换

数学中的函数图像分析与变换

数学中的函数图像分析与变换函数是数学中一种非常重要的概念,它描述了数值之间的关系。

在数学中,函数图像分析与变换是研究函数图像的性质、形状以及如何通过变换改变函数图像的过程。

本文将介绍函数图像分析与变换的基本概念和方法。

一、函数图像分析函数图像分析是研究函数图像的性质和特点,通过分析函数图像可以了解函数的增减性、极值点、拐点等重要信息。

1. 函数的增减性分析函数的增减性描述了函数在定义域上的增减趋势。

要分析函数的增减性,可以通过求函数的导数来确定。

当函数的导数大于零时,函数在该区间上是递增的;当函数的导数小于零时,函数在该区间上是递减的。

2. 函数的极值点分析函数的极值点是函数图像上的局部最大值或最小值点。

要找到函数的极值点,可以通过求函数的导数和导数的零点来确定。

当导数的零点为函数的极值点,且导数在该点的左侧由正变负或由负变正时,该点为函数的极大值点或极小值点。

3. 函数的拐点分析函数的拐点是函数图像上的曲线由凹转凸或由凸转凹的点。

要确定函数的拐点,可以通过求函数的二阶导数来判断。

当函数的二阶导数大于零时,函数的图像是凸的;当函数的二阶导数小于零时,函数的图像是凹的。

而函数的拐点就是二阶导数等于零的点。

二、函数图像变换函数图像变换是通过对函数进行平移、伸缩、翻转等操作,改变函数图像的形状和位置。

常见的函数图像变换包括平移变换、纵向伸缩变换和横向伸缩变换。

1. 平移变换平移变换是将函数图像沿横轴或纵轴方向移动一定的距离。

对于函数y=f(x),进行平移变换后得到y=f(x-a),表示函数图像沿横轴正方向平移a个单位;y=f(x)+b,表示函数图像沿纵轴正方向平移b个单位。

2. 纵向伸缩变换纵向伸缩变换是改变函数图像在纵向上的形状。

对于函数y=f(x),进行纵向伸缩变换后得到y=a*f(x),其中a为正数,表示函数图像在纵向上被压缩,a为大于1的数;a为小于1的数时,表示函数图像在纵向上被拉伸。

3. 横向伸缩变换横向伸缩变换是改变函数图像在横向上的形状。

函数及其图象函数的图像函数的图象

函数及其图象函数的图像函数的图象

函数及其图象xx年xx月xx日•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。

集合D称为函数的定义域,x称为自变量,y称为因变量。

函数的定义函数的表示方法解析法用等式表示函数,如y=2x+1。

图象法用图象表示函数,如f(x)=sinx的图象为一条周期性变化的曲线。

表列法用表格列出函数值,如f(x)={1,2,3,4}。

010203函数的分类•常数函数:f(x)=const,如f(x)=0。

•一次函数:f(x)=kx+b,如f(x)=2x+1。

•二次函数:f(x)=ax^2+bx+c,如f(x)=x^2-2x+1。

•反比例函数:f(x)=k/x,如f(x)=2/x。

•对数函数:f(x)=logax,如f(x)=log2x。

•幂函数:f(x)=xn,如f(x)=x^3。

•复合函数:由若干个基本初等函数复合而成,如f(x)=sin(x^2)。

02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。

函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。

坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。

函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。

图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。

绘制函数图像的方法平移将函数图像沿横轴或纵轴方向移动一定距离。

将函数图像按比例进行缩放,使横轴或纵轴的长度发生改变。

将函数图像沿着一条直线翻折,使图像呈现镜像效果。

将函数图像沿着一定角度旋转一定角度,使图像的位置发生改变。

函数图像的变换伸缩翻折位移03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。

函数的图象(精品课件)

函数的图象(精品课件)
解:(1)汽车从出发到最后停止共经历了24分钟,它的最高速度是90千米/时.
三、认真观察 学会识图:
1.汽车在行驶的过程中,速度往往是变化的,下图表示一辆汽车的速度 随时间变化而变化的情况. (2)汽车在哪些时间段保持匀速行驶?时速分别是多少?
解:(2)在2分钟到6分钟,18分钟到22分钟之间汽车匀速行驶,速度分 别是30千米/时和90千米/时.
S 0 0.25 1 2.25 4 6.25 9 12.25 16 描点:在直角坐标系中,画出表格中各对数
值所对应的点.
连线:把所描出的各点用平滑
S
16
的曲线连接起来.
接下来怎么办呢?
9
4 1 O 1234 x
一般地,对于一个函数,如果把自变 量与函数的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
0-8分钟,离家越来越远;8-25分钟,离家 距离不变,为0.6千米;25-28分钟,离家距离由 0.6千米增加到0.8千米;28-58分钟,离家0.8千 米;58-68分钟,离家越来越近,直至回家.
解答
(1)食堂离小明家多远?小明从家到食堂用了多少 时间? 食堂离小明家0.6km;小明从家到食堂用了8min. (2)小明吃早餐用了多长时间? 25-8=17 小明吃早餐用了17min.
5.温度在零度以下的时间长呢?还是在零度以上
的时间长?
温度在零度以上的时间长
随堂练习
1、下图是某一天北京与上海的气温随时间变 化的图象.
(1)这一天内,上海与北京何时气温相同? (2)这一天内,上海在哪段时间比北京气温高?在 哪段时间比北京气温低?
(1)7,12 (2)高:0~7,12~24 低:7~12

二次函数的图像和性质、解析式求法(学生版)

二次函数的图像和性质、解析式求法(学生版)
D.
例1.1.3若 是二次函数,则 的值是__________.
例1.1.4二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )
A.-3
B.-1
C.2
D.5
随练1.1已知函数① ,② ,③ ,④ ,⑤ ,其中二次函数的个数为()
随练1.2已知函数 ,当 _________时,它是二次函数.
4.已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例).
一.考点:二次函数解析式的求法.
二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
随练5.1已知一个二次函数过 , , 三点,求二次函数的解析式.
随练5.2将二次函数 化为 的形式,结果为()
A.
B.
C.
D.
随练5.3已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.
随练5.4已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是____.
2.画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.
一.考点: 的图象和性质.
二.重难点: 的图象和性质,参数对图像的影响.
三.易错点:利用函数图像推断参数的取值范围或者利用参数的取值范围推断函数图像.
题模一:y=a^2+bx+c的图象和性质
例4.1.1已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()

第04讲 函数的图象(解析版)

第04讲 函数的图象(解析版)

第04讲 函数的图象【知识点总结】一、掌握基本初等函数的图像 (1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等). 2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的;②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的;③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的;④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的;(2)对称变换①()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的②()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数. 三、函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.【典型例题】例1.(2022·浙江·高三专题练习)函数2ln ()1||x f x x =+的大致图象为( ) A . B .C .D .【答案】C 【详解】当0x >时2ln ()1x f x x=+,则()222222212ln 2ln 2(1ln )x x x x x f x x x x ⋅---'===. 当0e x <<时,()0f x '>,所以()f x 在区间(0,e)上单调递增, 当e x >时()0f x '<,所以()f x 在区间(e,)+∞上单调递减,排除A ,B . 又2ln e 2(e)110lel ef =+=+>,排除D . 故选:C .例2.(2022·全国·高三专题练习)已知()21πsin 42f x x x ⎛⎫=++ ⎪⎝⎭,()f x '为()f x 的导函数,则()f x '的大致图象是( )A .B .C .D .【答案】A 【详解】 ∵()221π1sin cos 424f x x x x x ⎛⎫=++=+ ⎪⎝⎭, ∴()1sin 2f x x x '=- 易知()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B 和D ,由ππ106122f ⎛⎫'=-< ⎪⎝⎭,排除C ,所以A 正确.故选:A.例3.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H Hπππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例4.(2022·全国·模拟预测)函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .3()cos f x x x =-B .1()sin f x x x =+C .21()cos f x x x =- D .1()sin f x x x=-【答案】D 【详解】由图知0x ≠,排除A 选项;当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,排除B ; 又C 选项中2211()cos()cos ()()f x x x f x x x -=--=-=-,其图象关于y 轴对称,不符合. 故选:D.例5.(2022·全国·高三专题练习)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=++⨯> ⎪⎝⎭,与图象不符,排除C. 故选:D.【技能提升训练】一、单选题1.(2022·全国·高三专题练习)函数()()1xxa f x a x=>的大致图象是( ) A . B .C .D .【答案】C 【分析】按x 的正负分类讨论,结合指数函数图象确定结论. 【详解】由题意,0,0x x a x y a x ⎧>=⎨-<⎩,∵1a >,∴只有C 符合. 故选:C.2.(2022·全国·高三专题练习)函数()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭的图象大致形状为( ).A .B .C .D .【答案】A 【分析】首先判断函数的奇偶性,再根据特殊点的函数值判断可得; 【详解】解:因为()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭,所以定义域为R ,且()()()221sin 1sin 11x xf x x x f x e e -⎛⎫⎛⎫-=--=-= ⎪ ⎪++⎝⎭⎝⎭,即()f x 为偶函数,函数图象关于y 轴对称,故排除C 、D ;当2x =时,222210111e e e--=<++,sin 20>,所以()2221sin 201f e ⎛⎫=-< ⎪+⎝⎭,故排除B ; 故选:A3.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A4.(2022·江苏·高三专题练习)设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .【答案】B 【分析】根据导函数看正负,原函数看升降,分析出大致图像,在结合每个选项可得出答案.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值, 所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>; 所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意. 故选:B .5.(2022·全国·高三专题练习)函数()ln ,0ln(),0x x e x x f x e x x -⎧>=⎨-<⎩在[)(]2,00,2-上的大致图象是( )A .B .C .D .【答案】D 【分析】通过函数的奇偶性可排除A ,B ;通过计算(2)f 的值可排除C ,进而可得结果. 【详解】由题可知函数()f x 的定义域关于原点对称,且当0x >时,0x -<,[]()()ln ()ln ()x x f x ex e x f x ---=⋅--=⋅=, 当0x <时,0x ->,()ln()()x f x e x f x --=⋅-=,故()f x 为偶函数,排除A ,B ;而222(2)ln 232e f e e =>>,排除C .故选:D .6.(2022·全国·高三专题练习)已知函数f (x )=x +12x -,x ∈(2,8),当x =m 时,f (x )有最小值为n .则在平面直角坐标系中,函数1()log mg x x n =+的图象是( )A .B .C .D .【答案】A 【分析】由均值不等式易知m =3,n =4,则函数13()log |4|g x x =+,判断函数g (x )的单调性,结合选项即可得解. 【详解】∵函数1()2224,(2,8)2f x x x x =-++≥=∈-,当且仅当122x x -=-,即m=3时取等号, ∴m =3,n =4, 则函数13()log |4|g x x =+的图象在(﹣4,+∞)上单调递减,在(﹣∞,﹣4)上单调递增,观察选项可知,选项A 符合. 故选:A .7.(2022·全国·高三专题练习)函数()||3e x x xf =的部分图象大致为( )A .B .C .D .【答案】C 【分析】先求解()f x 的定义域并判断奇偶性,然后根据()1f 的值以及()f x 在()0,∞+上的单调性选择合适图象. 【详解】()e3xf x x =定义域为()(),00,-∞⋃+∞,()e 3xf x x-=-, 则()()f x f x -=-,()f x 为奇函数,图象关于原点对称,故排除B ;()e113f =<,故排除A ; ∵()e3xf x x =,当0x >时,可得()()21e 3xx f x x -'=,当1x >时,()0f x '>,()f x 单调递增,故排除D. 故选:C.8.(2022·全国·高三专题练习)函数y 3)A .B .C .D .【答案】A 【分析】判定奇偶性,根据奇函数的图象性质排除C;考察在(0,1)和(1,+∞)上的函数值的正负,进一步取舍判定.(也可使用赋值法) 【详解】 由题意,设3()f x =3()()f x f x -==-,所以函数的奇函数,故排除C;当01x <<时,()410,0x f x -<∴<,当1x >时,()41,0x f x >∴>,排除BD ,故选:A.9.(2022·全国·高三专题练习(文))已知函数()2,101x x f x x --≤≤⎧⎪=<≤,则下列图象错误的是( )A .()y f x =的图象:B .()1y f x =-的图象:C .()y f x =的图象:D .()y f x =-的图象:【答案】C 【分析】作出函数()2,101x x f x x --≤≤⎧⎪=<≤,结合四个选项的函数及图象变换,即可得出图象错误的选项,得到答案. 【详解】先作出()2,101x x f x x --≤≤⎧⎪=<≤的图象,如图所示,所以A 正确;对于B ,()1y f x =-的图象()f x 是由的图象向右平移一个单位得到,故B 正确; 对于C ,当0x >时,()y f x =的图象与()f x 的图象相同,且函数()y f x =的图象关于y 轴对称,故C 错误;对于D ,()y f x =-的图象与()f x 的图象关于y 轴对称而得到,故D 正确. 故选:C .10.(2022·全国·高三专题练习(文))下列四个图象中,与所给三个事件吻合最好的顺序为( )①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.其中y 表示离开家的距离,t 表示所用时间. A .④①② B .③①②C .②①④D .③②①【答案】A 【分析】根据三个事件的特征,分析离家距离的变化情况,选出符合事件的图像. 【详解】对于事件①,中途返回家,离家距离为0,故图像④符合;对于事件②,堵车中途耽搁了一些时间,中间有段时间离家距离不变,故图像①符合; 对于事件③,前面速度慢,后面赶时间加快速度,故图像②符合; 故选:A.11.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x hr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A12.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >【答案】A 【分析】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,由图像可知函数是减函数,则101a<<,从而可求出a 的范围,由0(0)1f <<可求出b 的取值范围 【详解】 由()b xf x a-=,可得1()x bf x a -⎛⎫= ⎪⎝⎭,因为由图像可知函数是减函数,所以101a<<,所以1a >, 因为0(0)1f <<,所以001b a a <<=,所以0b <, 故选:A13.(2022·浙江·高三专题练习)函数2()x xe ef x ax bx c-+=++的图象如图所示,则( )A .0,0,0a b c <=<B .0,0,0a b c <<=C .0,0,0a b c >=>D .0,0,0a b c >=<【答案】D 【分析】由函数的奇偶性可求出0b =,再由函数图象不连续即可知分母等于零有解,即可排除AC. 【详解】解:由图象可知,函数的偶函数,即()()f x f x -=,即22x x x xe e e e ax bx c ax bx c--++=+++-,则0b =,B 不正确;由图象可知,20ax bx c ++=有解,即0ac <,故AC 不正确, 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.14.(2022·全国·高三专题练习)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B 【分析】 令()0f x =得到1ln x n m=,再根据函数图象与x 轴的交点和函数的单调性判断. 【详解】令()0f x =得mx e n =,即ln mx n =, 解得1ln x n m=, 由图象知1l 0n x mn =>, 当0m >时,1n >,当0m <时,01n <<,故排除AD , 当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B15.(2022·全国·高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【分析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可. 【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ; 当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .16.(2022·江苏·高三专题练习)为调整某学校路段的车流量问题,对该学校路段115时的车流量进行了统计,折线图如图,则下列结论错误的是( )A .9时前车流量在逐渐上升B .车流量的高峰期在9时左右C .车流量的第二高峰期为12时D .9时开始车流量逐渐下降【答案】D 【分析】根据图象得出车流量的增减性与最值,由此可得出结论. 【详解】由折线图知,9时前车流量在逐渐增加,选项A 正确; 车流量的高峰期在9时左右,选项B 正确;12时是车流量的第二高峰期,选项C 正确;12时左右车流量又有些回升,所以9时开始车流量逐渐下降错误,选项D 错误.故选:D .17.(2022·全国·高三专题练习)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是A .B .C .D .【答案】D 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 18.(2022·全国·高三专题练习)函数(1)lg ||()|1|x x g x x +=+的图象向右平移1个单位长度得到函数()f x 的图象,则()f x 的图象大致为( )A .B .C .D .【答案】D【分析】根据函数图象的变换,求得函数lg |1|()||x x f x x -=,根据当0x <时,得到()0f x <,可排除A 、B ;当01x <<时,得到()0f x <,可排除C ,进而求解. 【详解】由题意,可得lg |1|()(1)||x x f x g x x -=-=,其定义域为(,0)(0,1)(1,)-∞⋃⋃+∞, 当0x <时,11x -+>,函数lg |1|lg(1)()||x x x x f x x x--+===-lg(1)0x --+<, 故排除A 、B 选项;当01x <<时,011x <-+<,故函数lg |1|()||x x f x x -==lg(1)lg(1)0x x x x-+=-+<,故排除C 选项;当x 1>时,函数lg |1|lg(1)()lg(1)||x x x x f x x x x--===-, 该函数图象可以看成将函数lg y x =的图象向右平移一个单位得到,选项D 符合. 故选:D .19.(2022·全国·高三专题练习)已知函数f (x )的图像如图所示,则函数f (x )的解析式可能是( )A .()()44||x xf x x -=+ B .()2()44log ||x xf x x -=-C .()2()44log ||x xf x x -=+D .()12()44log ||x xf x x -=+【答案】C 【分析】()(44)||x x f x x -=+, f (1)≠0,A 不正确;2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+,当x ∈(0,1)时,()0f x >,不满足题意,D 不正确.【详解】由函数f (x )的图像知函数f (x )是偶函数,且当x=1时,f (1)=0. ()(44)||x x f x x -=+是偶函数,但是f (1)≠0,A 不正确; 2()(44)log ||x x f x x -=-是奇函数,不满足题意,B 不正确;12()(44)log ||x x f x x -=+是偶函数,f (1)=0,但当x ∈(0,1)时,()0f x >,不满足题意,D不正确. 故选:C.20.(2022·全国·高三专题练习)已知函数f (x )的图象如图所示,则函数f (x )的解析式可能是( )A .f (x )=(4x ﹣4﹣x )|x |B .f (x )=(4x ﹣4﹣x )log 2|x |C .f (x )=(4x +4﹣x )|x |D .f (x )=(4x +4﹣x )log 2|x |【答案】D 【分析】根据题意,用排除法分析:利用函数的奇偶性可排除A 、B ,由区间(0,1)上,函数值的符号排除C ,即可得答案. 【详解】根据题意,用排除法分析:对于A ,f (x )=(4x ﹣4﹣x )|x |,其定义域为R ,有f (﹣x )=(4﹣x ﹣4x )|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于B ,f (x )=(4x ﹣4﹣x )log 2|x |,其定义域为{x |x ≠0},有f (﹣x )=(4﹣x ﹣4x )log 2|x |=﹣f (x ),则函数f (x )为奇函数,不符合题意;对于C ,f (x )=(4x +4﹣x )|x |,在区间(0,1)上,f (x )>0,不符合题意;对于D , f (﹣x )=(4x +4﹣x )log 2|x |=f (x )为偶函数,且在区间(0,1)上,f (x )<0,符合题意 故选:D21.(2022·全国·高三专题练习)已知某函数的部分图象大致如图所示,则下列函数中最合适的函数是( )A .()()sin x xf x e e -=+ B .()()sin x xf x e e -=- C .()()cos x xf x e e -=-D .()()cos x xf x e e -=+【答案】D 【分析】根据特殊值排除A 、C ,再判断函数的奇偶性即可排除B ; 【详解】解:对于A :()()sin x x f x e e -=+,()()000sin sin 20f e e =+=>,故A 错误; 对于B :()()sin x xf x e e -=-,则()()()()sin sin x x x x f x e e e e f x ---=-=--=-,故()()sin x x f x e e -=-为奇函数,故B 错误;对于C :()()cos x x f x e e -=-,则()()000cos cos01f e e =-==,故C 错误;对于D :()()cos x x f x e e -=+,()()000cos cos 20f e e =+=<,且()()()cos x xf x e e f x --=+=,即()()cos x xf x e e -=+为偶函数,满足条件;故选:D22.(2022·全国·高三专题练习)已知函数()y f x =的图象如图所示,则此函数可能是( )A .()sin ln f x x x =⋅B .()sin ln f x x x =-⋅C .()sin ln f x x x =⋅D .()sin ln f x x x =⋅【答案】A 【分析】由图象对称性确定奇偶性,再由函数值的正负排除错误选项,得出正确结论. 【详解】图象关于原点对称,为奇函数,选项BCD 中定义域都是{|0}x x >,不合,排除, 选项A 是奇函数. 故选:A . 【点睛】思路点睛:本题考查由函数图象选择函数解析式,可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.23.(2022·浙江·高三专题练习)已知函数()f x 的大致图象如下,下列选项中e 为自然对数的底数,则函数()f x 的解析式可能为( )A .x x eB .1x x e +C .2x x e e --D .x xx x e e e e--+-【答案】D 【分析】分析各选项中函数的奇偶性,结合特殊值法可得出合适的选项. 【详解】由图可知,函数()f x 为奇函数. 对于A 选项,函数()x x f x e =的定义域为R,()()x xx xf x f x e e ---=≠-=-, 函数()xxf x e =不是奇函数,排除A 选项; 对于B 选项,函数()1x x f x e +=的定义域为R,()()11x xx x f x f x e e --+-=≠-=-,函数()1xx f x e +=不是奇函数,排除B 选项; 对于C 选项,由0x x e e --≠可得0x ≠,即函数()2x x e ef x -=-的定义域为{}0x x ≠, ()()2x x f x f x e e --==--,函数()2x x e e f x -=-为奇函数,()22221f e e-=<-, C 选项不满足要求;对于D 选项,由0xxe e --≠可得0x ≠,即函数x x x xe ef xe e的定义域为{}0x x ≠,()()x xx x e e f x f x e e --+-==--,函数x x x xe ef xe e为奇函数,当0x >时,()1x xx x e e f x e e--+=>-,满足题意.故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.二、多选题24.(2022·全国·高三专题练习)函数()||()af x x a R x=+∈的图象可能是( )A .B .C .D .【答案】ABD 【分析】根据题意,分0a =、0a >以及0a <三种情况讨论函数的图象,分析选项即可得答案.【详解】 解:根据题意,当0a =时,()||f x x =,(0)x ≠,其图象与选项A 对应,当0a >时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()a f x x x =+,其图象在第一象限先减后增,在区间(,0)-∞上,()f x 为减函数,其图象与选项B 对应,当0a <时,,0(),0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩,在区间(0,)+∞上,()f x 为增函数,在区间(,0)-∞上,()[()]a af x x x x x-=-+=-+-,其图象在第二象限先减后增,其图象与选项D 对应, 故选:ABD .25.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.26.(2022·全国·高三专题练习)如图所示的四个容器高度都相同.将水从容器项部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中正确的是( )A .B .C .D .【答案】BCD 【分析】根据几何体的形状判断每增加一个高度需要的水是越多那么增加的比较平缓,每增加一个高度需要的水越少,那么增加的比较快,比较图象判断选项. 【详解】对于第一幅图,不难得知水面高度的增加应是均匀的,因此A 不正确;对于第二幅图,随着时间的增加,越往上,增加同一个高度,需要的水越多,因此趋势愈加平稳,所以B 正确;对于第三幅图,开始是下面窄,上面宽,增加同一个高度需要的水越多,因此趋势愈加平稳,过了一半以后,越往上面越窄,增加同一个高度需要的水越少,因此趋势越快,所以C 正确;对于第四幅图,开始下面宽,上面窄,随着时间的增加,越往上,增加同一个高度,需要的水越少,因此趋势越快,过了一半以后,越往上面越宽,增加同一个高度,需要的水水越多,因此趋势越平稳,所以D 正确. 故选:BCD 【点睛】本题考查根据实际问题判断函数的图象,重点考查理解能力,属于中档题型. 27.(2022·全国·高三专题练习)已知函数f(x)的局部图象如图所示,则下列选项中不可能是函数f(x)解析式的是()A.y=x2cos x B.y=x cos x C.y=x2sin x D.y=x sin x【答案】ABCD【分析】根据图象判断函数为奇函数,且当x>0,f(x)>0,利用排除法进行判断即可.【详解】由图象知函数为奇函数,则排除A,D,两个函数为偶函数,当x>0时,f(x)>0,排除B,C,故ABCD都不成立,故选:ABCD.三、填空题28.(2022·全国·高三专题练习)在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图像只有一个交点,则a的值为________.【答案】1 2【分析】在同一平面直角坐标系内,作出函数图象,找出符合题意的临界条件,求出a的值,【详解】在同一平面直角坐标系内,作出函数y=2a与y=|x-a|-1的大致图象,如图所示.由题意,可知2a=-1,则a=1 2 -.故答案为:1 2 -【点睛】本题考查函数的图象,考查学生数形结合思想,属于基础题.。

一次函数的图像(解析版)

一次函数的图像(解析版)

5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。

正弦函数、余弦函数的图像(基础知识+基本题型)(含解析)

正弦函数、余弦函数的图像(基础知识+基本题型)(含解析)

5.4.1 正弦函数、余弦函数的图像(基础知识+基本题型)知识点一 正弦函数的图象 1.正弦曲线的几何作法正弦函数sin ,y x x R 的图象如图,我们把正弦函数的图象叫做正弦曲线.如图,在直角坐标系的x 轴上取一点1O ,以1O 为圆心,单位长为半径作圆,从圆1O 与x 轴的交点A 起,把圆1O 分成12等份(份数越多,画出的图象越精确).过圆1O 上各分点作x 轴的垂线,得到对应于0,,,,,2632等角的正弦线,相应地,再把x 轴上从0到2这一段分成12等份,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,再把这些正弦线的终点用光滑曲线连接起来,即得sin ,[0,2]y x x 的图象.2.用“五点法”作sin ,[0,2]y x x 的简图在函数sin ,[0,2]y x x 的图象上,起关键作用的点有五个:(0,0),(,1)2,(,0),3(,1)2,(2,0). 一般地,在精确度要求不高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,就得到正弦函数在[0,2]上的简图.这种方法叫“五点法”.【提示】(1)“五点法”作三角函数图象的实质是分别找到函数图象的最高点、最低点及三个平衡点,这五个点大致确定了函数图象的位置与形状.(2)用“五点法”作sin ,[0,2]y x x 的图象后,将其向左右平移(每次2个单位长度),可得出sin ,y x x R 的图象.知识点二 余弦函数的图象 1.利用图象变换作余弦函数的图象 由诱导公式六,有cos sin()2y x x .因此,将正弦函数sin ,y x x R 的图象向右平移2个单位长度,就得到函数sin()cos ,2y x x x R 的图象. 我们把余弦函数cos ,y x x R 的图象叫做余弦曲线,如图所示.2.用“五点法”作cos ,[0,2]y x x 的简图在函数cos ,[0,2]y x x 的图象上,起关键作用的点是它与x 轴的交点、函数图象的最高点和最低点,它们的坐标依次为:(0,1),(,0)2,(,1),3(,0)2,(2,1).用光滑的曲线将它们连接起来,就得到余弦函数在[0,2]上的简图.【提示】(1)作余弦函数图象时,可通过正弦函数的图象平移得到,但要注意平移的单位长度. (2)作x R 的余弦函数图象,可由cos ,[0,2]y x x 的图象左右平移得到,也可由 sin ,y x x R 的图象向左平移2个单位长度得到.考点一 通过图象变换作函数的图象 【例1】作函数32sin y x π⎛⎫=+⎪⎝⎭的图象. 解:3sin |cos |2y x x π⎛⎫=+= ⎪⎝⎭cos 22,Z 22,3cos 22,Z .22x k x k k x k x k k ππππππππ⎧⎛⎫-+≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<<+∈ ⎪⎪⎝⎭⎩故|cos |y x =的图象实际就是cos y x =的图象在x 轴下方的部分翻折到x 轴上方后得到的图象,如图由于余弦函数的图象是利用诱导公式依据图象变换画出的,故掌握利用诱导公式化简三角函数式也是画三角函数图象的切入点。

函数的图像与图像的特征分析

函数的图像与图像的特征分析

函数的图像与图像的特征分析函数图像是数学中常见的一种表示方法,通过绘制函数的图像,可以直观地了解函数的性质和特征。

本文将探讨函数图像的分析方法,包括图像的形状、对称性、零点、极值点等特征。

一、图像的形状函数的图像形状可以通过观察函数的导数来确定。

导数表示函数的变化率,可以帮助我们判断函数图像的增减性和凹凸性。

1. 当导数大于零时,函数图像上升,表示函数递增;2. 当导数小于零时,函数图像下降,表示函数递减;3. 当导数等于零时,函数图像可能存在极值点或拐点。

通过观察函数图像的升降和凹凸性,可以进一步分析函数的特征。

二、图像的对称性函数图像的对称性可以通过观察函数的表达式得到。

常见的对称性包括:1. 偶函数:当函数满足f(x) = f(-x)时,函数具有关于y轴对称的特点,图像关于y轴对称;2. 奇函数:当函数满足f(x) = -f(-x)时,函数具有关于原点对称的特点,图像关于原点对称。

通过观察函数图像的对称性,可以简化函数分析的过程。

三、图像的零点函数的零点是指使函数取值为零的输入值。

通过观察函数图像与x轴的交点,可以得到函数的零点。

零点对应于函数的根,可以帮助我们求解方程和解决实际问题。

四、图像的极值点函数的极值点是指函数在某一区间内取得最大值或最小值的点。

通过观察函数图像的局部最高点和最低点,可以确定函数的极值点。

1. 极大值点:当函数在某一区间内最高点对应的y值大于相邻点的y值时,该点为函数的极大值点;2. 极小值点:当函数在某一区间内最低点对应的y值小于相邻点的y值时,该点为函数的极小值点。

通过观察函数图像的极值点,可以进一步分析函数的变化趋势和特征。

综上所述,通过对函数图像的形状、对称性、零点和极值点的分析,可以全面了解函数的特征和性质。

函数图像分析是数学中重要的工具和方法,可以应用于各个领域的问题求解和模型建立。

通过深入理解函数图像的特征,我们可以更好地理解函数的行为和变化规律,为数学学习和实际应用提供有力支持。

高中数学函数图像的绘制与分析方法

高中数学函数图像的绘制与分析方法

高中数学函数图像的绘制与分析方法在高中数学的学习中,函数是一个非常重要的概念,而函数图像则是直观理解函数性质的有力工具。

掌握函数图像的绘制与分析方法,对于解决函数相关的问题具有重要意义。

一、函数图像的绘制1、列表取值首先,我们需要选取一些自变量的值,计算出相应的函数值,列出一个表格。

取值时要注意涵盖函数的关键部分,比如零点、极值点等,同时要保证取值有一定的代表性和规律性。

2、描点连线根据列表中的数值,在平面直角坐标系中描出对应的点。

然后,用平滑的曲线将这些点依次连接起来。

需要注意的是,如果函数在某个区间内是连续的,那么连接的曲线应该是连续的;如果函数在某个点处不连续,比如分段函数,那么在不连续点处要分开绘制。

3、考虑函数的性质在绘制函数图像时,要充分考虑函数的性质,比如奇偶性、单调性、周期性等。

如果函数是偶函数,其图像关于y 轴对称;如果是奇函数,图像关于原点对称。

如果函数是单调递增的,图像是上升的;单调递减的,图像是下降的。

周期性函数的图像会在一定的区间内重复出现。

以最简单的一次函数 y = 2x + 1 为例,我们可以先取 x =-2,-1,0,1,2 等值,计算出对应的 y 值,列出表格:| x |-2 |-1 | 0 | 1 | 2 ||||||||| y |-3 |-1 | 1 | 3 | 5 |然后在坐标系中描点(-2,-3),(-1,-1),(0,1),(1,3),(2,5),最后用直线连接这些点,就得到了一次函数 y= 2x + 1 的图像。

再比如二次函数 y = x² 2x 3,我们可以通过配方法将其化为顶点式 y =(x 1)² 4,由此可知其顶点坐标为(1,-4),对称轴为 x =1。

然后取一些点,如 x =-1,0,2,3 等,计算出对应的 y 值,列表并描点连线,就能得到二次函数的图像。

二、函数图像的分析方法1、观察定义域和值域定义域是函数自变量的取值范围,值域是函数值的取值范围。

三角函数的图象与性质(解析版)

三角函数的图象与性质(解析版)

三角函数的图象与性质(解析版)三角函数的图象与性质(解析版)三角函数是数学中重要的函数之一,它们在解析几何、物理、工程等领域中具有广泛的应用。

本文将对三角函数的图象与性质进行解析,便于读者更好地理解与掌握三角函数的特点。

一、正弦函数的图象与性质正弦函数是最基本的三角函数之一,它的图象是一条连续的波浪线。

我们可以通过数学方法推导出正弦函数的周期性、奇偶性和对称性等性质。

1. 图象特点:正弦函数的图象是一条在坐标平面上连续波动的曲线。

它的振幅表示峰值与谷值之间的差距,周期则代表两个峰值或谷值之间的距离。

2. 周期性:正弦函数的一个周期内,曲线的形状相同,并且可以无限延伸。

周期为2π,即当x增加2π时,曲线的形状重复出现。

3. 奇偶性:正弦函数是奇函数,即f(x) = -f(-x)。

这意味着当自变量x取负值时,函数值会发生变号。

4. 对称性:正弦函数关于原点对称,即f(x) = -f(x + π)。

这意味着以原点为对称中心,曲线的左右两侧完全相同。

二、余弦函数的图象与性质余弦函数也是常见的三角函数之一,它的图象是一条连续的波浪线。

与正弦函数相似,余弦函数也有周期性、奇偶性和对称性等特点。

1. 图象特点:余弦函数的图象是一条波动的曲线,与正弦函数相比,它的最高点与最低点位置不同。

余弦函数的振幅表示波峰与波谷之间的差距,周期代表两个波峰或波谷之间的距离。

2. 周期性:余弦函数的周期也是2π,当自变量x增加2π时,曲线的形状重复出现。

3. 奇偶性:余弦函数是偶函数,即f(x) = f(-x)。

这意味着当自变量x取负值时,函数值保持不变。

4. 对称性:余弦函数关于y轴对称,即f(x) = f(π - x)。

这意味着以y轴为对称中心,曲线的左右两侧完全相同。

三、正切函数的图象与性质正切函数是三角函数中的另一个重要函数,它的图象是一条连续的波动曲线。

我们也可以通过数学方法推导出正切函数的周期性、奇偶性和对称性等性质。

函数图象的分析与作图(讲义及答案)

函数图象的分析与作图(讲义及答案)

函数图象的分析与作图1.已知在平面直角坐标系xOy中(如图),抛物线y=-x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,连接AM,用含m的代数式表示∠AMB的正切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.2.在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,作线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹).3. 已知二次函数y =ax 2-2ax +c (a <0)的最大值为4,且抛物线过点()24,,点P (t ,0)是x 轴上的动点,抛物线与y 轴交点为C ,顶点为D .(1)求该二次函数的解析式及顶点D 的坐标; (2)求|PC -PD |的最大值及对应的点P 的坐标;(3)设Q (0,2t )是y 轴上的动点,若线段PQ 与函数y =a |x |2-2a |x |+c 的图象只有一个公共点,请直接写出t 的取值.4. 如图,抛物线L :()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线ky x=(k >0,x >0)于点P ,且12OA MP ⋅=.(1)求k 的值;(2)当t =1时,求AB 的长,并求直线MP 与L 对称轴之间的距离; (3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.,2),(2,1),若抛物线y=ax2-x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤-1或1143a<≤B.1143a<≤C.14a≤或13a>D.1a-≤或14a≥6.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1-x2)(y1-y2)>0;当0<x1<x2时,(x1-x2)(y1-y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:P A平分∠MPN.7.如图,二次函数y=x2-3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式.(2)点P(m,n)在二次函数y=x2-3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①求点Q的坐标(横、纵坐标均用含m的代数式表示);②连接AP,若2AP>OQ,求m的取值范围;③当点Q在第一象限内,过点Q作Q Q′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2-3x的图象交于点M,N(M 在N的左侧),直线OQ′与二次函数y=x2-3x的图象交于点P′,△Q′P′M∽△QB′N,则线段NQ的长度等于___________.【参考答案】1. (1)抛物线的表达式为y =-x 2+2x +2;点B (1,3);(2)tan ∠AMB =12m -;(3)点Q 的坐标为32-),,32-). 2. (1)作图略;(2)①21122y x =+,曲线L 是抛物线;②d 1+d 2≥12;P 1(3,5),P 2(-3,5);③k 的取值范围为33k -<<. 3. (1)二次函数的解析式为y =-x 2+2x +3;顶点D (1,4);(2)|PC -PD |P 坐标为(-3,0);(3)32≤t <3,72t =或t ≤-3.4. (1)k 的值为6;(2)直线MP 与L 对称轴之间的距离为32;(3)图象G 最高点的坐标为(2t,28t t -+);(4)t 的取值范围为5≤t ≤8,7≤t ≤8.5. A6. (1)1a =-; (2)①抛物线的解析式为y =-x 2+2; ②证明略;7. (1)图略,二次函数的表达式为2132y x x =-; (2)①Q (2m ,2m 2-6m );②m 的取值范围是11m <<+m ≠0; ③6.。

函数及其图象函数的图像函数的图象

函数及其图象函数的图像函数的图象
数据可视化
在数据处理和分析中,通过绘制图像将数据呈现出来,帮助我 们更好地理解和分析数据。
04
函数的图象及其应用
图象的几何意义
点的坐标
函数图象上的每一个点都代表 一个坐标点,横坐标为自变量
,纵坐标为因变量。
曲线的形状
函数图象的形状可以反映函数 的性质,例如单调性、极值等

曲线的交点
函数图象的交点代表了两个函 数在某一点的值相等。
图象的物理意义
01
02
03
波动现象
函数图象可以描述波动现 象,例如振动、波动传播 等。
运动轨迹
函数图象可以描述物体的 运动轨迹,例如平动、转 动等。
图像处理
函数图象可以用于图像处 理中的滤波、变换等操作 。
图象在各领域的应用
数学领域
函数图象在数学领域中有着广泛的 应用,例如解方程、求最值、证明 定理等。
物理领域
函数图象可以描述物理现象和规律 ,例如力学、电磁学、光学等。
工程领域
函数图象可以用于工程设计、优化 和控制系统分析等。
社会科学领域
函数图象可以用于描述社会现象和 规律,例如人口统计、经济分析、 心理测试等。
THANKS
《函数及其图象函数的图像函数的 图象》
xx年xx月xx日
目 录
• 函数的概念 • 函数的图像 • 函数的图像表示 • 函数的图象及其应用
01
函数的概念
函数的定义
函数的定义
函数是数学上的一种概念,它表示一个变量和另一个变量之间的关系。这种关系 可以用一个公式或一个表格来表示。在一个函数中,被表示的变量被称为因变量 ,而决定因变量的变量被称为自变量。
函数的图像
图像的绘制

多次函数的图像与方程分析

多次函数的图像与方程分析

多次函数的图像与方程分析多次函数是数学中常见的一类函数,其图像和方程分析对于我们理解函数的性质和解题有着重要的意义。

在本文中,我们将探讨多次函数的图像和方程分析,从而深入了解多次函数的特点和应用。

一、多次函数的定义和性质多次函数是指次数大于1的整数次幂的函数,其一般形式为f(x) = ax^n +bx^(n-1) + ... + k,其中a、b、k为常数,n为正整数,且a≠0。

多次函数的次数决定了其图像的形状和特点。

二、多次函数的图像分析1. 首先,我们关注多次函数的开口方向。

当n为偶数时,多次函数的图像开口向上或向下取决于a的正负;当n为奇数时,多次函数的图像必然经过原点并开口向上或向下取决于a的正负。

2. 其次,我们研究多次函数的对称性。

多次函数的对称轴可以是y轴、x轴或y=x轴。

当多次函数的对称轴为y轴时,其图像关于y轴对称;当对称轴为x轴时,其图像关于x轴对称;当对称轴为y=x轴时,其图像关于y=x轴对称。

3. 再次,我们考察多次函数的零点和极值。

多次函数的零点即为方程f(x) = 0的解,可以通过因式分解、配方法等求解。

多次函数的极值点可以通过求导数来确定,极大值点对应函数图像的局部最高点,极小值点对应函数图像的局部最低点。

4. 最后,我们关注多次函数的渐近线。

多次函数的水平渐近线可以通过求极限来确定,当x趋向正无穷或负无穷时,函数值趋向于某个常数;多次函数的斜渐近线可以通过求斜率来确定,当x趋向正无穷或负无穷时,函数值与直线的距离趋向于0。

三、多次函数的方程分析1. 我们可以通过给定多次函数的图像来确定其方程。

首先,我们可以通过图像的开口方向、对称性和零点来确定多次函数的形式;然后,我们可以通过已知点的坐标来确定多次函数的具体参数。

2. 反过来,我们可以通过给定多次函数的方程来分析其图像。

首先,我们可以通过方程的次数来确定图像的开口方向;然后,我们可以通过方程的系数来确定图像的对称性、零点和极值点;最后,我们可以通过方程的常数项来确定图像的纵向平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练函数图象的理解分析与计算
中考说明:能结合图像对简单实际问题中的函数关系进行分析。

方法技巧:读懂题意,抓住图象上的关键点解决问题。

例题解析:
例1.(重庆●2016 B卷)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.
例2. (重庆●2016 A卷)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.
过关练习一:
1. 甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率提高了50%.两组各自加工零件的数量y(件)与时间x(时)的函数图
象如图所示.甲、乙两组加工出的零件合在一起装箱,每满310件装一箱,
零件装箱的时间忽略不计,经过小时恰好装满第1箱.
2. 甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休,与甲车相遇,后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km), y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,当两车相距40km时,对应的时间是小时.
(这题答案好像有点点问题,
两种算法结果不样)
过关练习二:
3.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图像的一部分如图所示.则甲乙两人分钟时相距360米.
4.如图所示,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现拿错了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家(小明在家中耽搁和还作业的时间忽略不计),结果小明比小亮晚回到家中,如图所示是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则小明的家和小亮的家相距_________米.
课堂小结
方法提练
课后作业:
1.在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。

两车同时出发,匀速行驶。

右图是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.则客货
车相遇的时间是_________小时.
2. 在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲设甲、乙两船行驶x(h)后,与B港的距离分别为y(km),y与x 的函数关系如图所示.当两船相距10km时,对应的时间是小时.
3. 在2016年中考期间,一名考生步行前往考场,10分钟走了总路程的4
1,他估计步行不能准时到达考场,于是马上改乘出租车赶往考场,他的行程与时间之间的关系如图所示(设总路程为1),则
他实际到达考场所花的时间比一直步行所花的时间少 分钟.
4. 甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,
当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先
到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y (米)与乙出发的时间x (秒)
之间的关系如图所示,则甲到终点时,乙跑了__________米.
5. 甲、乙两车分别从A 、B 两地同时出发,相向而行,甲车从A 地行驶到B 地后,立即按原速度返
回A 地,乙车从B 地行驶到A 地,两车到达A 地均停止运动.两车之间的距离y (单位:千米)与
乙车行驶时间x (单位:小时)之间的函数关系如图所示,问两车第二次相遇时乙车行驶的时间为 小时.。

相关文档
最新文档