2018-2019学年最新苏科版八年级数学上册《轴对称图形》单元测试题4解析版-精品试题
【八年级数学试题】苏科版八上数学轴对称图形单元测试题(含答案)
苏科版八上数学轴对称图形单元测试题(含答案)
苏科版八上数学轴对称图形单元测试题(含答案)
一、选择题(每题3分,共18分)
⒈下列图形中,不是轴对称图形的是()
2.到三角形的三个顶点距离相等的点是()
A三条角平分线的交点 B三条中线的交点
c三条高的交点 D三条边的垂直平分线的交点
3.如图,△ABc是等腰三角形, AD是底边Bc上的高,DE⊥AB 于E,DF⊥Ac于F,图中除AB=Ac外,相等的线段共有 ( ) A.1对 B.2对 c.3对. D.4对.
4.如图,在△ABc中,AB=Ac,AD平分∠BAc,DE⊥AB,DF⊥Ac,
E、F为垂足,则下列四个结论,其中正确的个数是 ( )
①∠DEF=∠DFE ②AE=AF ③AD垂直平分EF ④EF垂直平分AD
A.1个B.2个 c.3个 D.4个
5.如图,在等边三角形△ABc中,BD=cE,AD与BE相交与点P,则∠APE的度数为()
A.45° B.55° c.60° D.75°
二、填空题(每空2分,共20分)
7.等腰△ABc中,若∠A=30°,则∠B=________.
8.等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角为________.
9.等腰三角形的两边长分别为7c和3c,则它的周长为________.10.等腰三角形的周长是22 c,一边长是8 c,则其他两边的长分别是_______.
11.等腰三角形的底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为_______
12.在等腰直角△ABc中,斜边上的中线长为5c,则斜边长为 , 面积为.。
苏科版八年级数学上《第2章轴对称图形》单元测试卷含答案解析初二数学试题试卷
《第2章轴对称图形》一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= °;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= ,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.《第2章轴对称图形》参考答案与试题解析一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;线段垂直平分线的性质.【专题】几何图形问题;综合题.【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.5【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】根据等腰三角形的性质,可分2种情况对本题讨论解答:①当腰长为3时,②当底为3时;结合题意,把不符合题意的去掉即可.【解答】解:设等腰三角形的腰长为l,底长为a,根据等腰三角形的性质得,S=2l+a;①、当l=3时,可得,a=7;则3+3<7,即2l<a,不符合题意,舍去;②、当a=3时,可得,l=5;则3+3>5,符合题意;所以这个等腰三角形的底边长为3.故选B.【点评】本题主要考查了等腰三角形的性质和三角形三边性质定理,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个【考点】等腰三角形的判定.【分析】由已知条件,根据三角形内角和等于180°、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:AB=AC,∠ABC=36°,∴∠BAC=108,∴∠BAD=∠DAE=∠EAC=36°.∴等腰三角形△ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.故选D.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°【考点】角平分线的性质;三角形内角和定理.【分析】由角平分线的性质可得MA=MB,再求解出∠MAB的大小,在△ABM中,则可求解∠MAB 的值.【解答】解:∵∠AOB=40°,且OM为其平分线,∴∠AOM=∠BOM=20°,又MA⊥OA,MB⊥OB,∴MA=MB,∠AMO=∠BMO=70°,∴∠AMB=140°,∴∠MAB=(180°﹣∠AMB)=×(180°﹣140°)=20°,故选D.【点评】本题考查了角平分线的性质;熟练掌握角平分线的性质,能够求解一些简单的计算问题.6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.7.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】根据∠COP=∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.【解答】解:∵∠COP=∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD.在△APO和△COD中,,∴△APO≌△COD(AAS),∴AP=CO,∵CO=AC﹣AO=6,∴AP=6.故选C.【点评】本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.二、耐心填一填9.请写出4个是轴对称图形的汉字:如中、日、土、甲等.【考点】轴对称图形.【分析】根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:答案不唯一,如中、日、土、甲等.【点评】解答此题的关键是掌握轴对称图形的概念,以及汉字的特征.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.若等腰三角形的一个外角为130°,则它的底角为65°或50°度.【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题;分类讨论.【分析】根据已知可求得与这个外角相邻的内角,因为没有指明这个内角是顶角还是底角,所以分两情况进行分析,从而不难求得其底角的度数.【解答】解:∵等腰三角形的一个外角为130°,∴与这个外角相邻的角的度数为50°,∴当50°角是顶角时,其底角为65°;当50°角是底角时,底角为50°;故答案为:65°或50°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为40cm .【考点】等腰梯形的性质.【专题】探究型.【分析】作DE∥AB交BC与点E.则四边形ABED是平行四边形,△DEC是等边三角形,即可求得CD,BE的长度,从而求解.【解答】解:作DE∥AB交BC与点E.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=AD=CD=DE=BE=8cm,∵∠C=60°,∴△DEC是等边三角形.∴EC=DC=AB=8cm.∴梯形ABCD的周长=AD+AB+BC+CD=AB+AD+BE+EC+CD=8×5=40cm.故答案为:40cm.【点评】本题考查等腰梯形的性质,正确作出辅助线,把等腰梯形转化成平行四边形与等边三角形是解答此题的关键.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= 15 °;(2)若BC=21cm,则△BCE的周长是53cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB交AC于E,可得AE=BE,然后由等腰三角形的性质,可求得∠ABE的度数,又由AB=AC,∠ABC的度数,继而求得答案;(2)由AB=AC=32cm,BC=21cm,△BCE的周长=AC+BC,即可求得答案.【解答】解:(1)∵DE垂直平分AB交AC于E,∴AE=BE,∵∠A=50°,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C==65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵AB=AC=32cm,BC=21cm,∴△BCE的周长是:BC+BE+EC=BC+_AE+EC=BC+AC=21+32=53(cm).故答案为:(1)15,(2)53cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是 3 cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD 即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= 5 ,理由是:直角三角形斜边上的中线等于斜边的一半.【考点】直角三角形斜边上的中线.【专题】网格型.【分析】先根据网格结构求出AB的长,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由图可知,AB=10,∵∠ACB=90°,M是AB的中点,∴CM=AB=×10=5(直角三角形斜边上的中线等于斜边的一半).故答案为:5,直角三角形斜边上的中线等于斜边的一半.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,读懂题目信息并熟练掌握性质是解题的关键.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长 5 cm.【考点】轴对称的性质.【分析】由O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,根据轴对称的性质,可得OE=ME,OF=NF,继而可得△OEF的周长=MN,则可求得答案.【解答】解:∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5.【点评】此题考查了轴对称的性质.此题比较简单,注意掌握转化思想的应用.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数45°或135°.【考点】等腰三角形的性质.【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135°.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故答案为45°或135°.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有8 个.【考点】等腰三角形的判定;勾股定理.【专题】网格型.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.【解答】解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.【点评】此题主要考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解,数形结合的思想是数学解题中很重要的解题思想.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【专题】压轴题;开放型.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.【点评】解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.【考点】全等三角形的判定与性质.【专题】证明题;压轴题.【分析】利用SAS证得△ACD≌△ABD,从而证得BD=CD,利用等边对等角证得结论即可.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ACD和△ABD中,∴△ACD≌△ABD,∴BD=CD,∴∠DBC=∠DCB.【点评】本题考查了全等三角形的判定与性质,特别是在应用SAS进行判定三角形全等时,主要A为两边的夹角.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC .猜想:EF与BE、CF之间的关系是EF=BE+CF .理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC .在第(1)问中EF与BE、CF 间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【考点】等腰三角形的判定.【专题】探究型.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE﹣FC.【解答】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.【点评】此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.。
苏科版数学八年级上第二单元《轴对称图形》单元考试(含答案解析)
苏科版数学八年级上第二单元《轴对称图形》单元考试一.选择题(共8小题)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°3.如图,已知四边形ABCD中,∠B=98°,∠D=62°,点E、F分别在边BC、CD上.将△CEF沿EF翻折得到△GEF,若GE∥AB,GF∥AD,则∠C的度数为()A.80°B.90°C.100°D.110°4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.25.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AB=AC,∠A=38°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.33°B.38°C.43°D.48°8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是()A.8B.7C.6D.5二.填空题(共9小题)9.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.10.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.题号一二三四五总分第分11.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF =AB;②∠BAF=∠CAF;③S四边形ADFE=AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是(填序号)12.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.14.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=21,则DE=.15.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.16.若等腰三角形的一边是6,另一边是3,则此等腰三角形的周长是.17.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=三.解答题(共10小题)18.已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.19.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.20.如图,在△ABC 中,AB =AC ,作AB 边的垂直平分线交直线BC 于M ,交AB 于点N.(1)如图(1),若∠A =40°,则∠NMB =度;(2)如图(2),若∠A =70°,则∠NMB =度;(3)如图(3),若∠A =120,则∠NMB =度;(4)由(1)(2)(3)问,你能发现∠NMB 与∠A 有什么关系?写出猜想,并证明.21.如图所示,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、AC 延长线于点F 、E .求证:DF ∥AC .证明:∵AD 平分∠BAC ∴∠=∠(角平分线的定义)∵EF 垂直平分AD ∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD =∠ADF ()∴∠DAC =∠ADF (等量代换)∴DF ∥AC ()22.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E .(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =2,求AB的长.23.在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且∠B =2∠BCE ,求证:DC =BE.24.等腰△ABC 中,AB =AC ,CE 为△ABC 的外角∠ACD 的平分线,∠ACB =2∠D ,BF ⊥AD .(1)求证:BF ∥CE ;(2)若∠BAC =40°,求∠ABF的度数.25.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.26.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)27.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A 、是轴对称图形,不合题意;B 、不是轴对称图形,符合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:B .【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【分析】连接AO 、BO .由题意EA =EB =EO ,推出∠AOB =90°,∠OAB +∠OBA =90°,由DO =DA ,FO =FB ,推出∠DAO =∠DOA ,∠FOB =∠FBO ,推出∠CDO =2∠DAO ,∠CFO =2∠FBO ,由∠CDO +∠CFO =106°,推出2∠DAO +2∠FBO =106°,推出∠DAO +∠FBO =53°,由此即可解决问题.【解答】解:如图,连接AO 、BO .由题意EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°,∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,∠CFO =2∠FBO ,∵∠CDO +∠CFO =106°,∴2∠DAO +2∠FBO =106°,∴∠DAO +∠FBO =53°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =143°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣143°=37°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.3.【分析】依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE ∥AB ,GF ∥AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =(360°﹣98°﹣62°)=100°,故选:C .【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.【分析】先求出CD 的长,过点D 作DE ⊥AB 于点E ,根据角平分线上的点到角的两边的距离相等的性质可得DE =CD ,从而得解.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BC =12cm ,BD =8cm ,∴CD =BC ﹣BD =12﹣8=4cm ,∵∠C =90°,AD 平分∠CAB ,∴DE =CD =4cm ,即点D 到直线AB 的距离是4cm .故选:B .【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6.【分析】直接利用线段垂直平分线的性质得出AE =BE ,进而得出答案.【解答】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE ,∵AC =8,BC =5,∴△BEC 的周长是:BE +EC +BC =AE +EC +BC =AC +BC =13.故选:B .【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.7.【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD =BD ,根据等边对等角的性质,可得∠ABD =∠A ,然后求∠DBC 的度数即可.【解答】解:∵AB =AC ,∠A =38°,∴∠ABC =(180°﹣∠A )=(180°﹣38°)=71°,∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC ﹣∠ABD =71°﹣38°=33°.故选:A .【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.8.【分析】首先由角平分线的性质可知DF =DE =4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=×8×4+×AC ×4,∴AC =6.故选:C .【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.二.填空题(共9小题)9.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.10.【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6,∴BD =BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故答案为:12.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】根据翻折变换的性质可得AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,根据平行线的性质和等腰三角形三线合一的性质判断只有AB =AC 时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S 四边形ADFE =AF •DE ,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE 和∠AED ,然后利用三角形的内角和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.【解答】解:∵△ABC 沿DE 折叠点A 与BC 边的中点F 重合,∴AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,只有AB =AC 时,∠BAF =∠CAF =∠AFE ,EF ∥AB ,故①②错误;∵AF ⊥DE ,∴S 四边形ADFE =AF •DE ,故③正确;由翻折的性质得,∠ADE =(180°﹣∠BDF),∠AED =(180°﹣∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴(180°﹣∠BDF)+(180°﹣∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.【点评】本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.12.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.【点评】本题主要考查的是利用轴对称的性质设计图案,掌握轴对称图形的性质是解题的关键.13.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE +BC•DF =×6DE +×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.15.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【解答】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.【点评】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.16.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故答案为:15.【点评】本题考查了等腰三角形的性质,注意要分情况讨论并利用三角形的三边关系判断是否能够组成三角形,然后再求解.17.【分析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【解答】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,熟记性质是解题的关键.三.解答题(共10小题)18.【分析】分别作出点B与点C关于直线l的对称点,然后连接AB′,AC′,B′C′.即可得到△ABC关于对称轴l的轴对称图形△A′B′C′.【解答】解:【点评】作一个图形的对称图形就是作各个顶点关于对称轴的对称点,把作对称图形的问题可以转化为作点的对称点的问题.19.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.20.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB =(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】根据角平分线的定义,线段垂直平分线的性质,等边对等角解决问题即可.【解答】证明:∵AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)∵EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF∥AC(内错角相等两直线平行).故答案为:BAD,DAC,FD,FA,等边对等角,内错角相等两直线平行.【点评】本题考查线段的垂直平分线的性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD =4,Rt△ABC中,AB=2AC=8.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=4,∴Rt△ABC中,AB=2AC=8.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.23.【分析】连接DE.想办法证明∠BCE=∠DEC即可解决问题.【解答】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.【点评】本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.25.【分析】(1)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA =∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA =∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB =∠YBA ﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C =×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.26.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE =∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.27.【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.【点评】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.第13页(共13页)。
八年级上册数学单元测试卷-第二章 轴对称图形-苏科版(含答案)
八年级上册数学单元测试卷-第二章轴对称图形-苏科版(含答案)一、单选题(共15题,共计45分)1、下列图形中是轴对称图形的是()A. B. C. D.2、如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A.4B.C.D.3、有下列说法:①线段的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③到直线a的距离相等的两个点关于直线a对称;④全等的两个图形成轴对称.其中正确的有()A.1个B.2个C.3个D.4个4、如图,等腰△ABC的顶角∠A=36°,若将其绕点C顺时针旋转36°,得到△A′B′C,点B′在AB边上,A′B′交AC于E,连接AA′.有下列结论:①△ABC≌△A′B′C;②四边形A′ABC是平行四边形;③图中所有的三角形都是等腰三角形;其中正确的结论是()A.①②B.①③C.②③D.①②③5、下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等6、如图,正方形内接于,线段在对角线上运动,若的面积为,,则周长的最小值是()A.3B.4C.5D.67、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若与成轴对称,则一定与全等;④有一个角是度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A. B. C. D.8、如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.10C.8D.129、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.10、如图图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.11、如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 ,AD=2,将△ABC绕点C 顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B=2,则A =()A. B.2 C. D.12、如图,在△ABC中,AD是∠BAC的平分线,为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°13、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.415、始于唐代的青花瓷给人以古朴、典雅之美.关于如图所示的青花瓷图案,下列说法正确的是()A.它是中心对称图形,但不是轴对称图形B.它是轴对称图形,但不是中心对称图形C.它既是中心对称图形,又是轴对称图形D.它既不是中心对称图形,又不是轴对称图形二、填空题(共10题,共计30分)16、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.17、如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .若AB=5cm ,AC=6cm , BC=7cm,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′,再连结A′C、A′B,即可得△A′BC .18、如图,在中,点分别在边、上,,将沿直线翻折后与重合,、分别与边交于点、,如果,,那么的长是 ________ .19、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC 的面积为12cm2,则图中阴影部分的面积是________ cm2.20、设计一个商标图形(如图8所示),在△ABC中,AB=AC=2cm,∠B=30°,以A为圆心,AB为半径作,以BC为直径作半圆,则商标图案(阴影)面积等于________ cm2.21、如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是________.22、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=5cm,BD=3cm,则点D到AB的距离是________cm.23、下列图形中轴对称图形的个数是________.24、如图,在△ABC中,∠ACB=75°,∠ABC=45°,分别以点B、C为圆心,大于BC的长为半径作弧,两弧相交于点M、N。
最新苏科版2018-2019学年八年级数学上册《设计轴对称图案》单元测试题解析版-精品试题
《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2.3 设计轴对称图案》参考答案与试题解析一、选择题1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:美、善都是轴对称图形;而洋、祥都不是轴对称图形.故选B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【专题】计算题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.3.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2【考点】剪纸问题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.故选D.【点评】本题主要考查了剪纸问题以及考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.【考点】规律型:图形的变化类.【分析】仔细观察会发现它们都是轴对称图形,所以在空白处再画一个轴对称图形即可.【解答】解:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1﹣7的数字,所以画一个轴对称图形且数字为6即可.故答案为:.【点评】本题是一道规律型的题,首先要从图中找出规律,然后再根据规律画图.但还是考查了轴对称图形的性质.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)【考点】图形的剪拼;利用轴对称设计图案.【分析】根据轴对称图形的法则去画即可,有多种图形.【解答】解:(1)所作图形如下所示:【点评】此题是图形的剪拼,主要考查学生对轴对称图形的理解以及操作能力.7.以直线l为对称轴,画出图形的另一半.【考点】作图-轴对称变换.【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:如图所示:【点评】此题主要考查了作轴对称变换,正确得出对应点位置是解题关键.8.利用如图设计出一个轴对称图案.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.【考点】利用轴对称设计图案.【专题】方案型;开放型.【分析】根据轴对称图形的定义设计.即图形沿某一直线对折,图形能完全重合.【解答】解:【点评】本题主要考查了轴对称图形的性质.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.【考点】轴对称图形.【分析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.【考点】利用轴对称设计图案.【分析】只要满足12个场馆排成6排,且形成的图形是轴对称图形即可.【解答】解:如图所示:.【点评】本题考查了利用轴对称设计图案的知识,属于开放型题目,答案不唯一.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.](答案不唯一)【点评】本题考查轴对称图形的特点:沿某条直线折叠,直线两旁的部分能够互相重合.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念作图.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴,以16个相同的小正方形构成的大正方形的对称轴作出图形即可.【解答】解:作图如下:【点评】此题考查了轴对称图形和轴对称的作图方法.轴对称图形要找对称轴,轴对称要找关于对称轴对应的点.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.【考点】利用轴对称设计图案;等边三角形的性质.【分析】根据轴对称轴图形的定义,画出图形即可.【解答】解:如图所示,①表示劳动工具,②电灯泡,③路标.【点评】本题考查对称轴图形的定义、等边三角形的性质等知识,解题的关键是理解题意,属于创新题目.。
最新2019-2020年度苏科版八年级数学上册《轴对称轴对称图形》单元测试题解析版-精品试题
《2.1 轴对称与轴对称图形》一、填空题1.把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形,这条直线就是.2.轴对称是指个图形的位置关系,轴对称图形是指个具有特殊形状的图形.3.计算器显示器上的十个数字中是轴对称图形的数字有.4.请写出3个是轴对称图形的汉字:.5.下列各图中,为轴对称图形的是()A.B.C.D.6.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是()A.B.C.D.7.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.8.已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合拼成一个轴对称图形,并把它画在答题卡的表格中.9.下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.思考:正三角形有条对称轴;正四边形有条对称轴;正五边形有条对称轴;正六边形有条对称轴;正n边形有条对称轴.当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?二、选择题10.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.五、解答题11.用两个圆:O、O,两个三角形:△、△,两条线段:、拼出至少两个对称图形.(画在以下方框内)12.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.13.下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形14.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.15.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.16.下列四个图形中,不是轴对称图形的是()A.B.C.D.17.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形 D.正方形18.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.《2.1 轴对称与轴对称图形》参考答案与试题解析一、填空题1.把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是对称轴.【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质填空即可.【解答】解:把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是对称轴.故答案为:关于这条直线对称;对称轴.【点评】本题考查了翻折变换的性质,是基础题,熟记概念与性质是解题的关键.2.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【考点】轴对称图形.【分析】关于某条直线对称的一个图形叫轴对称图形.直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.【解答】解:轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【点评】需理解掌握轴对称和轴对称图形的概念.3.计算器显示器上的十个数字中是轴对称图形的数字有1,3,8,0 .【考点】轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此判断即可.【解答】解:根据轴对称图形的意义可知:数字1,3,8,0是轴对称图形;故答案为:1,3,8,0.【点评】本题考查了轴对称图形,轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.4.请写出3个是轴对称图形的汉字:中,大,目.【考点】轴对称图形.【专题】开放型.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:轴对称图形的汉字:中,大,目,故答案为:中,大,目.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.下列各图中,为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.6.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念,分别分析四个图形的对称轴,再作答.【解答】解:A、等边三角形的对称轴是三边的垂直平分线,有3条;B、直角三角形不是轴对称图形;C、等腰梯形有1条对称轴,即底的垂直平分线;D、正方形有四条对称轴,即对角线所在的直线以及对边的垂直平分线.故选C.【点评】把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.这条直线,就是对称轴.7.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.【考点】作图-轴对称变换.【分析】直接利用轴对称图形的性质分别分析得出答案.【解答】解:如图(1)所示:一共有6条对称轴;如图(2)所示:一共有4条对称轴;如图(3)所示:一共有1条对称轴;如图(4)所示:一共有2条对称轴;如图(5)所示:一共有1条对称轴;如图(6)所示:一共有1条对称轴.【点评】此题主要考查了轴对称变换,正确掌握轴对称图形的性质是解题关键.8.(2009•清远)已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合拼成一个轴对称图形,并把它画在答题卡的表格中.【考点】利用轴对称设计图案.【专题】作图题.【分析】由于小正方形是轴对称图形,所以只要构成的大图对称即可.【解答】解:拼成正确图形之一的给5分.例如:【点评】解答此题要明确轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.9.(2015秋•常熟市校级月考)下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.思考:正三角形有 3 条对称轴;正四边形有 4 条对称轴;正五边形有 5 条对称轴;正六边形有 6 条对称轴;正n边形有n 条对称轴.当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?【考点】作图-轴对称变换.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答.【解答】解:正三角形有3条对称轴;正四边形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正n边形有n条对称轴.当n越来越大时,正多边形接近于圆形,它有无数条对称轴.故答案为:3,4,5,6,n.作图如下:【点评】此题考查轴对称图形的作图,掌握轴对称图形的性质与意义是解决问题的关键.二、选择题10.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】本题需先根据轴对称图形的有关概念沿某直线折叠后直线两旁的部分互相重合对每一个图形进行分析即可得出正确答案.【解答】解:A∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形B、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形C、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形D、根据轴对称定义它不是轴对称图形故选D.【点评】本题主要考查了轴对称图形的有关概念,在解题时要注意轴对称图形的概念与实际相结合是本题的关键.五、解答题11.(2015秋•睢宁县校级月考)用两个圆:O、O,两个三角形:△、△,两条线段:、拼出至少两个对称图形.(画在以下方框内)【考点】利用轴对称设计图案.【分析】利用给出图形的数量和形状,结合现实生活中的实物,画出图形即可.【解答】解:如图,【点评】本题主要考查了作图与应用作图以及轴对称设计图案的知识,属于开放型,掌握轴对称图形的性质是解决问题的关键.12.(2011秋•扬中市期中)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.【考点】利用轴对称设计图案.【分析】根据轴对称与对称轴的定义,即可求得答案,注意此题答案不唯一.【解答】解:参考图如下图:【点评】此题考查了利用轴对称设计图案的知识.此题难度适中,注意如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.13.下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念,分别判断四个图形的对称轴的条数.【解答】解:A、有无数条对称轴;B、有3条对称轴;C、有2条对称轴;D、有1条对称轴.故选C.【点评】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,能够正确找出各个图形的对称轴的条数是解题的关键.14.下面所给的交通标志图中是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.16.下列四个图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.17.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.18.(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.【考点】作图-轴对称变换.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l 于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【解答】解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.【点评】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.。
2018-2019学年最新苏科版八年级数学(上)第一章轴对称图形(ⅰ卷)及答案-精品试题
八(上) 数学第一章轴对称图形(Ⅰ卷)时间:45分钟满分:100分一、选择题(每题3分,其30分)题号 1 2 3 4 5 6 7 8 9 10 答案1.“羊”字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的个数是( )A.1 B.2 C.3 D.42.平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作( ) A.3个B.4个C.6个D.无数个3.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于( )A.50°B.40°C.30°D.20°4.已知等腰三角形的一个外角等于100°,则它的顶角是( ) A.80°B.20°C.80°或20°D.不能确定5.直角三角形三边垂直平分线的交点位于三角形的( ) A.形内B.形外C.斜边的中点D.不能确定6.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于( ) A.12 B.12或15 C.15 D.15或187.如图,在△ABC中,AB=AC,∠A=36°,两条角平分线BD、CE相交于点F,则图中的等腰三角形共有( ) A.6个B.7个C.8个D.9个8.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )9.如图,DE是△ABC中边AC的垂直平分线,若BC=18 cm,AB=10 cm,则△ABD的周长为( )A.16 cm B.28 cmC.26 cm D.18 cm10.下列语句中,正确的有( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1个B.2个C.3个D.4个二、细心填一填(每题3分,共30分)11.若直角三角形斜边上的高和中线长分别是5 cm,6 cm,则它的面积是________.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC=BC,E是BA、CD延长线上的交点,∠E=40°,则∠ACD=___________.13.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有_________对.14.如图,在∠MON的两边上顺次取点.使DE=CD=BC=AB=OA,若∠MON=22°,则∠NDE=__________.15.如图,AB=AC=4 cm,DB=DC,若∠ABC为60度,则BE为__________.16.在△ABC中,AB=BC,其周长为20 cm,若AB=8 cm,则AC=__________.17.△ABC和△DEF关于直线l对称,若△ABC的周长为12 cm,△DEF的面积为8 cm2,则△DEF的周长为__________,△ABC的面积为__________.18.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB=_______.19.数的计算中有一些有趣的对称,形式如:12×231=132×21.仿照上面的形式填空,并判断等式是否成立:(1)12×462=_________×_________( ),(2)18×891=________×__________( ).20.如图,点D、E分别为边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=_________.三、耐心解一解(第21题6分,第25题10分,其余每题8分,共40分)21.如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)22.如图,已知△ABC.(1)画出△A1B1C1,使△A1B1C1和△ABC关于直线MN成轴对称.(2)画出△A2B2C2,使△A2B2C2和△ABC关于直线PQ成轴对称.(3)△A1B1C1与△A2B2C2成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由.23.如图,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边的中点.试说明:AE=DE.24.如图,在△ABC中,AB=AC,点D在BC边上,且BD=AD,DC=AC.将图中的等腰三角形全都写出来.并求∠B的度数.25.如图,已知Rt△ABC中,∠C=90°,沿过点B的直线BE折叠这个三角形,使点C落在AB边上的点D处.要使点D恰为AB的中点,则在图中还要添加什么条件?(直接填写答案)(1)写出两条边满足的条件:__________________.(2)写出两个角满足的条件:__________________.(3)写出一个除边、角以外的其他满足的条件:___________.参考答案1.B 2.C 3.D 4.C 5.C 6.C 7.C 8.C 9.B 10.B 11.30 cm 2 12.30° 13.4 14.110° 15.216.4 17.12 cm 8 cm 2 18.15° 19.264 21 √ 198 81 √ 20.80° 21.略 22.(1)略 (2)略 (3)不成,理由略 23.∵ 四边形ABCD 为梯形,∠B=∠C ,∴ 梯形ABCD 为等腰梯形.(同一底上底角相等的梯形为等腰梯形) ∴ AB=DC . ∵ 点E 为BC 中点, ∴ BE=CE .在△ABE 与△DCE 中,.AB DC B C BE CE =⎧⎪∠=∠⎨⎪=⎩,,∴ △ABE ≌△DCE(SAS).∴ AE=DE .(全等三角形对应边相等)24.△ABC 、△DAB 、△CAD 均为等腰三角形,∠B=36°. 设∠B=x °, ∵ AB=AC , ∴ ∠C=∠B=x .又DB=DA,∴∠DAB=∠B=x.∴∠CDA=2x.又CM=CD,∴∠CAD=∠CDA=2x.在△CAD中,∠C+∠CDA+∠CAD=180°,∴x+2x+2x=180°.∴x=36.25.(1)①AB=2BC或②BE=AE等;(2)①∠A=30°或②∠A=∠DBE等;(3)△BEC≌△AED等.。
最新苏科版八年级数学上册 轴对称与轴对称图形(含解析)
轴对称与轴对称图形一.选择题(共10小题)1.(2022•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.2.(2022•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.3.(2022•东营)下列图形中,是轴对称图形的是()A.B.C.D.4.(2022•泰安)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④5.(2022•泰州)如图图形中的轴对称图形是()A.B.C.D.6.(2018•资阳)下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形C.矩形D.正方形7.(2018•苏州)下列四个图案中,不是轴对称图案的是()A.B.C.D.8.(2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l4 9.(2018•无锡)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个10.(2018•重庆)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形二.填空题(共6小题)11.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是.12.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有种.13.(2022•滨湖区一模)给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是(填写序号).14.(2022•海安县一模)在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.15.(2018•和平区二模)如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,点E、F、P、Q分别在边AB、BC、CD、AD上,点M、N在边HG上,且组成的图形为轴对称图形,则正方形ABCD的面积为.16.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD =3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.三.解答题(共4小题)17.(2018秋•徐州期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.18.仔细观察下列图案,并按规律在横线上画出合适的图案.19.(2018秋•张家港市校级期末)如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.20.(2018秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,3 4 5 6 7 …正多边形的边数对称轴…的条数根据上表,猜想正n边形有条对称轴.答案与解析一.选择题(共10小题)1.(2022•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2022•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.(2022•东营)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(2022•泰安)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答】解:①是轴对称图形且有两条对称轴,故本选项正确;②是轴对称图形且有两条对称轴,故本选项正确;③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2022•泰州)如图图形中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2018•资阳)下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.7.(2018•苏州)下列四个图案中,不是轴对称图案的是()A.B.C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l4【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:该图形的对称轴是直线l3,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.9.(2018•无锡)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个【分析】直接利用轴对称图形的性质画出对称轴得出答案.【解答】解:如图所示:直线l即为各图形的对称轴.,故选:D.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.10.(2018•重庆)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二.填空题(共6小题)11.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是21:05 .【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故答案为:21:05.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.12.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有 4 种.【分析】结合图象根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,一共有四种涂法,如下图所示:.故答案为:4.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.(2022•滨湖区一模)给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是③(填写序号).【分析】直接利用轴对称图形的概念分析得出答案.【解答】解:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是③.故答案为:③.【点评】此题主要考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.14.(2022•海安县一模)在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有6 种.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.15.(2018•和平区二模)如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,点E、F、P、Q分别在边AB、BC、CD、AD上,点M、N在边HG上,且组成的图形为轴对称图形,则正方形ABCD的面积为+.【分析】连接BD,交PQ于R,交HG于S,交EF于K,依据轴对称图形的性质,即可得到BD的长,进而得到正方形ABCD的面积.【解答】解:如图,连接BD,交PQ于R,交HG于S,交EF于K,∵正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,∴EH=EF=2,MQ=QP=,又∵组成的图形为轴对称图形,∴BD为对称轴,∴△BEF、△DPQ为等腰直角三角形,四边形EKSH、四边形MSRQ 为矩形,∴EK=BK=EF=1,DR=QR=PQ=,KN=EH=2,RS=MQ=,∴BD=1+2++=3+,∴正方形ABCD的面积=BD2=×(3+)2=+,故答案为:+.【点评】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.16.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD =3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入 D 洞,在落入洞之前,撞击BC边 4 次.【分析】根据当AB=4,AD=3时的例图及弹子的运行规律:每一条运行轨迹都是一个正方形的对角线,画出图形,即可得出结论.【解答】解:当AB=9,AD=8时,弹子的弹射路径如图所示:∴弹子最后落入D洞,在落入洞之前,撞击BC边4次.故答案为:D,4.【点评】此题考查了生活中的轴对称现象,读懂题意,根据题意总结出弹子的运行规律,画出图形是解题的关键.三.解答题(共4小题)17.(2018秋•徐州期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称图形的性质,正确把握轴对称图形的性质是解题关键.18.仔细观察下列图案,并按规律在横线上画出合适的图案.【分析】观察图形规律,可得空白处应该为字母E和它的轴对称图形,作出图形即可.【解答】解:如图所示:.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.19.(2018秋•张家港市校级期末)如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.【分析】作出BC和AD的入射光线,相交处即为点S所在位置.【解答】解:【点评】用到的知识点为:入射角等于反射角;两条入射光线的交点处是点光源所在处.20.(2018秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,3 4 5 6 7 …正多边形的边数…对称轴的条数根据上表,猜想正n边形有n 条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:如图,故填3,4,5,6,7,n.【点评】正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.。
苏科版八年级上册数学第2章《轴对称图形》单元测试卷(基础卷)(含解析)
第2章 轴对称图形(基础卷)一、选择题(每小题3分,共18分)1.2022年冬奥会在北京举行,以下历届冬奥会会徽是轴对称图形的是( )A .B .C .D .2.如图,将一张长方形纸片ABCD沿EF折叠,点A 、B 分别落在点、处,若,则的度数是( )A .65°B .60°C .50°D .57.5°3.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形.则这个格子内标有的数字是( )A .1B .2C .3D .44.如图,在△ABC 中,cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是13cm ,则BC 的长为( )A .6cmB .7cmC .8cmD .13cm5.如图,点在正五边形的内部,为等边三角形,则等于( )A 'B '165∠=︒A ED '∠6AC =F ABCDE ABF EAF ∠一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为19cm(第13题图)13.图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是轴对称图形,则这个正方形应该添加在区域___________.(填序号)14.如图,在中,,点在延长线上,于点,交于点,若,,则的长度为___________.(第14题图)(第15题 图)15.如图,在中,,是的角平分线,若,,则的面积是__________.16.已知在中,,,,点E 为边上的动点,点F 为边上的动点,则线段的最小值是_______________.三、解答题(共62分)17.(6分)如图,已知△ABC 的顶点分别为A (-2,2),B (-4,5),C (-5,1)和直线m (直线上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形,并写出点的坐标;(2)作出△ABC 关于y 轴对称的图形,并写出点的坐标.ABC AB AC =E CA EP BC ⊥P AB F 10CE =3AF =BF Rt ABC 90C ∠=︒AD ABC 4CD =15AB =ABD △Rt ABC △90C ∠=︒75ABC ∠=︒6AB =AC AB FE EB +111A B C △1B 222A B C △2B18.(8分)如图,把长方形ABCD 的两角折叠,折痕分别为EF 、HG ,点B 、D 折叠后的对应点分别是、D',并且使与在同一直线上,已知长方形的两组对边分别平行,试说明两条折痕EF 、GH 也相互平行.19.(8分)如图,是的角平分线,、分别垂直于、,垂足为、,求证:垂直平分.B 'HD 'B F 'AD ABC ∆DE DF AB AC E F AD EF20.(10分)如图,在中,的平分线与的外角的平分线交于点,于点,,交的延长线于点.(1)若点到直线的距离为5cm ,求点到直线的距离;(2)求证:点在的平分线上.21.(10分)如图,BD 是△ABC 中AC 边上的中线,过点C 作,交BD 的延长线于点E ,F 为△ABC 外一点,连接CF 、DF ,且DE =DF 、∠ADF =∠CDE .求证:(1)△ABD ≌△CED ;(2)CA 平分∠BCF.ABC ∆ABC ∠ABC ∆ACE ∠P PD AC ⊥D PH BA ⊥BA H P BA P BC P HAC ∠CE AB ∥22.(10分)如图所示,点E ,F 在BC 上且.(1)求证:;(2)若PO 平分,则PO 与线段BC 有什么关系?为什么?23.(10分)如图(1),在中,的平分线交边于点D .(1)求证:为等腰三角形;(2)若的平分线交边于点E ,如图(2),求证:;(3)若外角的平分线交的延长线于点E ,请你探究(2)中的结论是否仍然成立,若不成立,请写出正确的结论,并说明理由.90,A D AB DC ∠=∠=︒=BE CF =E F ∠=∠EPF ∠ABC 75,35,BAC ACB ABC ∠=︒∠=︒∠BD AC BCD BAC ∠AE BC BD AD AB BE +=+BAC ∠AE CB参考答案一、选择题(每小题3分,共18分)1、B【解析】解:选项A 、C 、D 不能找到这样一条直线使图形沿着一条直线折叠,直线旁的两个部分能够互相重合,所以不是轴对称图形;选项B 能能找到这样一条直线使图形沿着一条直线折叠,直线旁的两个部分能够互相重合,所以是轴对称图形.故选B .2、C【解析】解:由折叠可得,∠1=∠A 'EF =65°,∴∠AEA '=130°,∴∠A 'ED =180°-130°=50°,故选:C .3、C【解析】解:由轴对称图形的定义可知,这个格子内标有的数字是3,故选:C .4、B【解析】解:线段的垂直平分线交于点,,,又的周长是,,故选:B .5、B【解析】∵五边形ABCDE 是正五边形,∴ ,∵△ABF 为等边三角形,∴,∴,故选:B .AB AC N AN BN ∴=6BN CN AN CN AC cm ∴+=+==BCN ∆ 13cm ()()131367BC BN CN cm ∴=-+=-=(52)1805108BAE =-⋅︒÷=︒∠60FAB ABF AFB ===︒∠∠∠1086048EAF EAB BAF =-=︒-︒=︒∠∠∠6、D【解析】解:由作图可知,在△OCD 和△OCE 中,,∴△OCD ≌△OCE (SSS ),∴∠DCO =∠ECO ,∠1=∠2,∵OD =OE ,CD =CE ,∴OC 垂直平分线段DE ,故A ,B ,C 正确,没有条件能证明CE =OE ,故选:D .二、填空题(每小题2分,共20分)7、圆(答案不唯一)【解析】解:若一个图形是轴对称图形,则这个图形可以是圆.故答案为:圆(答案不唯一).8、22【解析】解:①当4为腰时,边长为4、4、9, 4+4<9,不能构成三角形,舍去;②当9为腰时,边长为4、9、9, 能构成三角形,此时三角形的周长为.故答案为22.9、H•8379【解析】解:如图所示:该车牌照号码为:H•8379.故答案为:H•8379.10、7【解析】解:∵AD 平分∠BAC 交BC 于点D ,,DE ⊥AB ,∴CD =ED .∵,∴BD +CD =7,∴,故答案为:7.11、9cm 、1cm 或5cm 、5cm .【解析】解:①当9cm 为腰长时,则腰长为9cm ,底边=19-9-9=1cm ,因为9+1>9,所以能构成三角形;②当9cm 为底边时,则腰长=(19-9)÷2=5cm ,因为5+5>9,所以能构成三角形.OD OE DC EC OC OC =⎧⎪=⎨⎪=⎩49922++=90C ∠=︒7CB =7DE DB +=14、4【解析】(1)解:过点作于,点在的平分线,,,cm ,即点到直线的距离为;(2)证明:点在的平分线,,,,同理:,,,,点在的平分线上.21.(1)证明见解析;(2)证明见解析【解析】(1)证明:∵,∴∠ABD =∠CED ,∠BAD =∠DCE ,∵BD 是△ABC 中AC 边上的中线,∴AD =CD ,在△ABD 和△CED 中,∵,∴△ABD ≌△CED (AAS ).(2)证明:∵△ABD ≌△CED ,∴BD =DE ,∠ADB =∠CDE ,又∵DE =DF ,∴BD =DF ,∵∠ADF =∠CDE ,∠CDE =∠ADB ,∴∠ADB =∠ADF ,∴,∴∠BDC =∠FDC ,在△BDC 和△FDC中,P PF BE ⊥F P ABC ∠PH BA ⊥PF BE ⊥5PF PH ∴==P BC 5cm P ACE ∠PD AC ⊥PF BE ⊥PF PD ∴=PF PH =PD PH ∴=PD AC ⊥ PH BA ⊥∴P HAC ∠CE AB ∥ABD CED BAD DCE AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩180180ADB ADF ︒-∠=︒-∠∵,∴△BDC ≌△FDC (SAS ),∴∠BCD =∠FCD ,∴CA 平分∠BCF .22.(1)见详解;(2)PO 垂直平分BC ;理由见详解【解析】(1)证明:∵BE =CF ,BC =CB ,∴BF =CE ,在Rt △ABF 与Rt △DCE 中,∵∴Rt △ABF ≌Rt △DCE (HL ),∴;(2)解:PO 垂直平分BC ,∵Rt △ABF ≌Rt △DCE ,∴∠E =∠F ,∴△PEF 为等腰三角形,又∵PO 平分∠EPF ,∴PO ⊥BC (三线合一),EO =FO (三线合一),又∵EB =FC ,∴BO =CO ,∴PO 垂直平分BC .23.(1)见解析;(2)见解析;(3)不成立,正确结论:,理由见解析【解析】(1)【证明】在中,,,∴.∵平分,∴,∴,∴,∴为等腰三角形.(2)【证明】如图(1),在AC 上截取,连接.由(1)得为等腰三角形,∴,∴.∵平分,∴,∴,∴,∴,∴,∴,∴,∴.BD DF BDC FDC DC DC =⎧⎪∠=∠⎨⎪=⎩BF CE AB DC =⎧⎨=⎩E F ∠=∠BD AD BE AB +=-ABC 75BAC ∠=︒35ACB ∠=︒18070∠=︒-∠-∠=︒ABC BAC ACB BD ABC ∠1352∠=∠=︒DBC ABC DBC ACB ∠=∠BD DC =BCD AH AB =EH BCD BD CD =+=+=BD AD CD AD AC AE BAC ∠∠=∠EAB EAH ABE AHE ≌△△,70=∠=∠=︒BE EH AHE ABE 35∠=∠-∠=︒HEC AHE ACB ∠=∠HEC ACB EH HC =+=+=AB BE AH HC AC BD AD AB BE +=+。
苏科新版八年级上册数学《第2章 轴对称图形》单元测试卷【含答案】
苏科新版八年级上册数学《第2章轴对称图形》单元测试卷一.选择题1.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D到AB的距离DE是( )A.5cm B.4cm C.3cm D.2cm2.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或123.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画( )A.2条B.3条C.4条D.5条4.下列判断错误的是( )A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合5.△ABC是等边三角形,D,E,F为各边中点,则图中共有正三角形( )A.2个B.3个C.4个D.5个6.在△ABC中,∠A=90°,∠C=30°,AB=4,则BC等于( )A.2B.C.D.87.如图,在△ABC中,AB=5,BC=6,AC的垂直平分线分别交BC、AC于点D、E,则△ABD的周长为( )A.8B.11C.16D.178.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为( )A.3B.4C.5D.69.如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于( )A.4B.5C.5.5D.610.一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B 地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距( )A.100海里B.80海里C.60海里D.40海里二.填空题11.如果一个等腰三角形的两边长分别为4cm和9cm,则此等腰三角形的周长 cm.12.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.13.已知等边三角形的边长是2,则这个三角形的面积是 .(保留准确值)14.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为 .15.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为 .16.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,则DF等于 .17.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为 .18.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有 (填序号).19.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB= cm.20.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB= .三.解答题21.如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30°,求证:△ABC是等边三角形.22.如图,AD是等边△ABC的中线,AE=AD,求∠EDC的度数.23.已知:如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA,PE⊥OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.24.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.25.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.26.如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.27.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE(要求:不用三角形全等的方法)参考答案与试题解析一.选择题1.解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.2.解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.3.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.4.解:A、等腰三角形是轴对称图形,正确;B、两条边相等的三角形叫做等腰三角形,正确;C、等腰三角形的两腰相等,两个底角相等,正确;D、等腰三角形顶角的角平分线与底边上的中线、底边上的高线互相重合,故本选项错误;故选:D.5.因为△ABC为等边三角形,所以AB=BC=AC,又因为D,E,F为各边中点,所以AE=EB=BF=FC=CD=DA;又因为DE,DF,EF分别为中位线,所以DE=BC,EF=AC,DF=AB,即DE=EF=DF.所以AE=EB=BF=FC=CD=DA=DE=EF=FD.所以此图中所有的三角形均为等边三角形.因此应选择5个,故选:D.6.解:根据含30度角的直角三角形的性质可知:BC=2AB=8.故选:D.7.解:∵DE是线段AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=11,故选:B.8.解:∵在等边△ABC中,D是AB的中点,AB=8,∴AD=4,AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故选:C.9.解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3,∴AB=AC=6,故选:D.10.解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠CBA=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.二.填空题11.解:当腰长为4cm时,则三边分别为4cm,4cm,9cm,因为4+4<9,所以不能构成直角三角形;当腰长为9cm时,三边长分别为4cm,9cm,9cm,符合三角形三边关系,此时其周长=4+9+9=22cm.故答案为22.12.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.13.解:如图,过点A作AD⊥BC于点D,∵等边三角形的边长是2,∴BD=BC=×2=1,在Rt△ABD中,AD==,所以,三角形的面积=×2×=.故答案为:.14.解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.15.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.16.解:过D作DM⊥AC,∵∠DAE=∠ADE=15°,∴∠DEC=30°,AE=DE,∵AE=10,∴DE=10,∴DM=5,∵DE∥AB,∴∠BAD=∠ADE=15°,∴∠BAD=∠DAC,∵DF⊥AB,DM⊥AC,∴DF=DM=5.故答案为:5.17.解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.18.解:①有两个角等于60°的三角形是等边三角形.②有一个角等于60°的等腰三角形是等边三角形.③三个角都相等的三角形是等边三角形④三边都相等的三角形是等边三角形,故答案为①②③④.19.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.20.解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.三.解答题21.证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).∵∠BDE=30°,DE⊥AB,∴∠B=60°,∴△ABC是等边三角形.22.解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.23.证明:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL),∴OD=OE,∵OC是∠AOB的平分线,∴∠DOF=∠EOF,在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.24.解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16﹣(BE+AE)=16﹣9=7cm.25.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;∵BE=BE,∠ABE=∠DEB,∴△ABE≌△DBE(SAS),∴AB=BD,∴△ABD和△ADE均为等腰三角形;∵∠C=45°,ED⊥DC,∴△EDC也符合题意,综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.证明:∵△ABE≌△DBE(SAS),∴BA=BD,EA=EC,∴BE垂直平分相等AD,即AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.26.证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,27.证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,BD=CD,∴BE=CE.。
苏科版数学八年级上册 轴对称解答题单元测试卷(解析版)
苏科版数学八年级上册轴对称解答题单元测试卷(解析版)一、八年级数学轴对称解答题压轴题(难)1.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACFDC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.2.已知:三角形ABC 中,∠A=90°,AB=AC,D 为BC 的中点.(1)如图,E 、F 分别是AB 、AC 上的点,且BE=AF,求证:△DEF 为等腰直角三角形.(2)若E 、F 分别为AB,CA 延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF ≌△DBE (SAS ),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.3.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC∴=,CD CE=,60ACB DCE∠=∠=︒,60ACD ACE BCE ACE∴∠+∠=∠+∠=︒,ACD BCE∠∠∴=,在ACD∆和BCE∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.4.如图,在ABC∆中,CE为三角形的角平分线,AD CE⊥于点F交BC于点D (1)若9628BAC B︒︒∠=∠=,,直接写出BAD∠=度(2)若2ACB B∠=∠,①求证:2AB CF=②若,CF a EF b==,直接写出BDCD=(用含,a b的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC ∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.5.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE .(1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直线..AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE . 在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°.由(1)得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.③当点D在线段MA的延长线上时.∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠ACE=∠BCE+∠ACE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD.由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.6.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB ∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.7.如图所示,已知ABC∆中,10AB AC BC===厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形AMN∆?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰AMN∆,如果存在,请求出此时M、N运动的时间?【答案】(1)10;(2)点M、N运动103秒后,可得到等边三角形AMN∆;(3)当点M、N在BC边上运动时,能得到以MN为底边的等腰AMN∆,此时M、N运动的时间为403秒.【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302 y y -=-解得:403y=,故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰AMN∆,此时M、N运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.8.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0°<α<60°),点A关于射线CP 的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC 、BD 相交于点H ,如图2,由轴对称的性质可证明△ACE ≌△DCE ,可得∠CAE =∠CDE ,进而得∠DBC =∠CAE ,然后根据三角形的内角和可得∠AEB =∠BCA ,即可作出判断;(3)如图3,在BD 上取一点M ,使得CM=CE ,先利用三角形的外角性质得出∠BEC 60=︒,进而得△CME 是等边三角形,可得∠MCE =60°,ME=CE ,然后利用角的和差关系可得∠BCM =∠DCE ,再根据SAS 证明△BCM ≌△DCE ,于是BM=DE ,进一步即可得出线段AE ,BD ,CE 之间的数量关系.【详解】解:(1)如图1,连接CD ,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,∠DCP =∠ACP =α,∵△ABC 是等边三角形,∴AC=BC ,∠ACB =60°,∴∠BCD =602α︒+,BC=DC ,∴∠DBC =∠BDC ()1806021806022BCD αα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.9.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.10.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP ∥BC 交AB 于点P ,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DQ=AB,∴AE+AB=BD+DQ,∴BE=BQ.∵∠B=60°,∴△BEQ为等边三角形,∴∠B=∠Q=60°,BE=QE.∵DQ=AB,∴BC=DQ.∴在△BCE和△QDE中,BC DQB QBE QE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△QDE(SAS),∴EC=ED.∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.。
苏科版数学八年级上册 轴对称解答题单元测试卷附答案
苏科版数学八年级上册 轴对称解答题单元测试卷附答案一、八年级数学 轴对称解答题压轴题(难)1.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.2.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.3.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.4.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(1)5;(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22+=22AC BC+=5.12故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =512-,∴矩形BCDE 是黄金矩形. ∵MN DN =215+=512-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH =5﹣1,宽HE =3﹣5.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.5.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案;(3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ, ∵3342A A A A =,∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.6.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G . (1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM =.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM .【详解】(1)∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°,∴∠CAE =∠BCG .又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.8.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =-解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.9.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)23;(2)DE =CE ,理由见解析;(3)这个最小值为27;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=3=∴DH =DB +BH =2+1=3,∴DE2293=+=+=23.DH EH故答案为:23;(2)DE=CE.理由如下:如图②,过E作EF∥BC交AC于F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∴∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∴AB﹣AE=AC﹣AF,∴BE=CF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,且AE=EF=DB,BE=CF,∴△DBE≌△EFC(SAS),∴DE=CE,(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H.∵将△ABC沿AB翻折得到△ABC',∴AC=AC'=BC=BC'=4,∠BAC=∠BAC'=60°,且AE'=AE',∴△ACE'≌△AC'E'(SAS),∴C'E'=CE',由(2)可知:DE'=CE',∴C'E'=CE'=DE'.∵DE+EF=C'E+EF=C'E'+EF,∴当点C',点E',点F三点共线时,DE+EF的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC∆为等边三角形∴60BAC∠=︒∵O为BC中点∴1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒∵OA OD=∴AOD∆中,30D CAO∠=∠=︒∴180120 AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E ∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O作//OE AB,OE交AD于E由(2)得AOE DOC∆≅∆∴AOE DOC∠=∠又∵POC DOC∠=∠∴AOE POF∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE∠=∠∵AB∥OE,∠B=60°∴60COE B∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形.【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.。
最新2019-2020年度苏科版八年级数学上册《轴对称图形》单元综合测试题解析版-精品试题
《第2章轴对称图形》一、选择题1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.下列说法中正确的是()A.两个全等三角形成轴对称B.两个三角形关于某直线对称,不一定全等C.线段AB的对称轴垂直平分ABD.直线MN垂直平分线段AB,则直线MN是线段AB的对称轴3.如图是轴对称图形,它的对称轴有()A.2条B.3条C.4条D.5条4.下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段5.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()A.1 B.2 C.3 D.46.如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中共有全等三角形()A.1对B.2对C.3对D.4对7.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45° B.60° C.55°D.75°8.如图,在△ABC中,∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB,EF∥BC,则图中的等腰三角形的个数是()A.2 B.3 C.4 D.59.如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是()A.8个B.10个C.12个D.13个10.下列三角形纸片中能沿直线剪一刀得到等腰梯形的是()A.一个角为50°,一个角为90°的三角形纸片B.一个角为40°,一个角为120°的三角形纸片C.一个角为36°,一个角为72°的三角形纸片D.一个角为50°,一个角为70°的三角形纸片二、填空题11.观察下列各组图形,其中成轴对称的图形是______.(填写序号)12.线段的对称轴除了它自身外,还有一条是______;角是轴对称图形,它的对称轴是______.13.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=______.14.已知△ABC中,∠C=90°,AC=BC,则∠A=______,∠B=______.15.等腰三角形一腰上的高与另一腰的夹角为50°,它的底角为______.16.如图,△ABC是等腰三角形,AD是底边BC上的高,若AB=5cm,BD=3cm,则△ABC的周长是______.17.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=120°,BD平分∠ABC,则∠BDC=______.18.给出下列图形:①线段;②射线;③直线;④圆;⑤等腰直角三角形;⑥等边三角形;⑦等腰梯形.其中只有一条对称轴的图形有______.(填序号)三、解答题19.下列各图分别是对称图形的一部分,其中虚线是对称轴,试画出它们完整的图形.20.如图,△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试找出图中除△ABC外的等腰三角形,并说明你的理由.21.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.22.如图,在四边形ABCD中,AB=DC,AC=BD,AD≠CB.求证:四边形ABCD是等腰梯形.23.如图,在△ABC中,CD与CF分别是△ABC的内角、外角平分线,DF∥BC交AC于点E.试说明:(1)△DCF为直角三角形;(2)DE=EF.24.已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.《第2章轴对称图形》参考答案一、选择题1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.4【解答】解:美、善都是轴对称图形;而洋、祥都不是轴对称图形.故选B.2.下列说法中正确的是()A.两个全等三角形成轴对称B.两个三角形关于某直线对称,不一定全等C.线段AB的对称轴垂直平分ABD.直线MN垂直平分线段AB,则直线MN是线段AB的对称轴【解答】解:A、两个全等三角形不一定成轴对称,因为它们不一定关于某直线对称,故本选项错误;B、两个三角形关于某直线对称,则一定全等,故本选项错误;C、线段AB的对称轴垂直平分AB或是线段AB本身所在的直线,故本选项错误;D、直线MN垂直平分线段AB,则直线MN是线段AB的对称轴,正确,故本选项正确.故选D.3.如图是轴对称图形,它的对称轴有()A.2条B.3条C.4条D.5条【解答】解:如图所示:,共4条对称轴.故选C.4.下列图形对称轴最多的是()A.正方形B.等边三角形C.等腰三角形D.线段【解答】解:A、有4条对称轴,即两条对角线所在的直线和两组对边的垂直平分线;B、有3条对称轴,即各边的垂直平分线;C、有1条对称轴,即底边的垂直平分线;D、有2条对称轴.故选:A.5.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是()A.1 B.2 C.3 D.4【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故选B.6.如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中共有全等三角形()A.1对B.2对C.3对D.4对【解答】解:∵四边形ABCD是等腰梯形,∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.故选C.7.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45° B.60° C.55°D.75°【解答】解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.8.如图,在△ABC中,∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB,EF∥BC,则图中的等腰三角形的个数是()A.2 B.3 C.4 D.5【解答】解:∵∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB,∴AB=AC,∠EBO=∠OBC=∠OCB=∠OCF,∴OB=OB,∴△ABC,△OBC是等腰三角形,又∵EF∥BC,∴∠AEC=∠ABC=∠AFE=∠ACB,∠EOB=∠OBC=∠FOC=∠OCB,∴AE=AF,OE=EB,OF=FC,∴△AEF,△OEB,△OFC是等腰三角形,共5个等腰三角形.故选D.9.如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是()A.8个B.10个C.12个D.13个【解答】解:∵AB⊥AC,点D是BC的中点,AD⊥BC,∴AB=AC,AD=BD,AD=CD,∴△ABC,△ADB,△ADC是等腰直角三角形,同理△BDE,△ADE,△ADF,△CDF是等腰直角三角形,∵DE=AE,DF=AF,AE=AF,∠EAF=90°,∴四边形AEDF是正方形,∴△AOE,△AOF,△DOE,△DOF,△AEF,△EFD是等腰直角三角形,∴图中等腰直角三角形的个数是13个.故选D.10.下列三角形纸片中能沿直线剪一刀得到等腰梯形的是()A.一个角为50°,一个角为90°的三角形纸片B.一个角为40°,一个角为120°的三角形纸片C.一个角为36°,一个角为72°的三角形纸片D.一个角为50°,一个角为70°的三角形纸片【解答】解:作三角形的一边的平行线即可得到梯形;A.一个角为50°,一个角为90°时,第三个角是40°,沿任何平行于三角形的一边的直线剪一刀都不能得到同一底上两角相等,即不能得到等腰梯形;B.一个角为40°,一个角为120°时,第三个角是20°,沿任何平行于三角形的一边的直线剪一刀都不能得到同一底上两角相等,即不能得到等腰梯形C.一个角为36°,一个角为72°时,第三个角是72°,是等腰三角形;只要沿平行于三角形的底边的直线剪一刀即可得到等腰梯形;D.一个角为50°,一个角为70°时,第三个角是60°,沿任何平行于三角形的一边的直线剪一刀都不能得到同一底上两角相等,即不能得到等腰梯形;故选:C.二、填空题11.观察下列各组图形,其中成轴对称的图形是②.(填写序号)【解答】解:第②个图形为轴对称图形.故答案为:②.12.线段的对称轴除了它自身外,还有一条是它的垂直平分线;角是轴对称图形,它的对称轴是角平分线所在的直线.【解答】解:线段的对称轴除了它自身外,还有一条是它的垂直平分线;角是轴对称图形,它的对称轴是角平分线所在的直线.故答案为:它的垂直平分线;角平分线所在的直线.13.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC= 3 .【解答】解:∵AD⊥BC,BD=CD,∴AC=AB=3,故答案为:3.14.已知△ABC中,∠C=90°,AC=BC,则∠A= 45°,∠B= 45°.【解答】解;∵△ABC中,∠C=90°,∴∠A+∠B=90°,∵AC=BC,∴∠A=∠B,∴∠A=∠B=45°.故答案为45°,45°.15.等腰三角形一腰上的高与另一腰的夹角为50°,它的底角为20°或70°.【解答】解:①如图1,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠A=90°﹣50°=40°,∴∠C=∠ABC==70°;②如图2,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠BAD=90°﹣50°=40°,又∵∠BAD=∠ABC+∠C,∠ABC=∠C,∴∠C=∠ABC=∠BAD=×40°=20°.故答案为:70°或20°.16.如图,△ABC是等腰三角形,AD是底边BC上的高,若AB=5cm,BD=3cm,则△ABC的周长是16cm .【解答】解:∵△ABC是等腰三角形,AD是底边BC上的高,BD=3cm,∴BC=2BD=6cm,∴△ABC的周长=AB+AC+BC=5+5+6=16(cm).故答案为:16cm.17.如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=120°,BD平分∠ABC,则∠BDC= 90°.【解答】解:∵四边形ABCD是等腰梯形,AD∥BC,∴∠ADC=∠A=120°,∠A+∠ABC=180°,∠ADB=∠CBD,∴∠ABC=60°,∵BD平分∠ABC,∴∠CBD=∠ABC=30°,∴∠ADB=30°,∴∠BDC=∠ADC﹣∠ADB=90°;故答案为:90°.18.给出下列图形:①线段;②射线;③直线;④圆;⑤等腰直角三角形;⑥等边三角形;⑦等腰梯形.其中只有一条对称轴的图形有②⑤⑦.(填序号)【解答】解:①线段,有两条对称轴;②射线,有1条对称轴;③直线,不是轴对称图形;④圆,有无数条对称轴;⑤等腰直角三角形,有1条对称轴;⑥等边三角形,有3条对称轴;⑦等腰梯形,有1条对称轴.故只有一条对称轴的图形有②⑤⑦.故答案为:②⑤⑦.三、解答题19.下列各图分别是对称图形的一部分,其中虚线是对称轴,试画出它们完整的图形.【解答】解:如图所示.20.如图,△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试找出图中除△ABC外的等腰三角形,并说明你的理由.【解答】解:△AEC和△DCE都是等腰三角形.理由如下∵△ABC是等腰三角形,∠B=∠C,AD是底边BC上的高,∴AD平分∠BAC,∴∠BAD=∠CAD,又∵DE∥AB,∴∠B=∠EDC,∠BAD=∠ADE,∴∠EDC=∠C,∠ADE=∠CAD,∴△AED和△DCE都是等腰三角形.21.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,CP=P1C,PD=P2D,则△PCD的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,△PCD的周长=P1P2,∴P1P2=OP1=OP2=OP=24cm.22.如图,在四边形ABCD中,AB=DC,AC=BD,AD≠CB.求证:四边形ABCD是等腰梯形.【解答】证明:∵AB=DC,AC=BD,BC=BC,∴△ABC≌△DCB.∴∠ACB=∠DBC.∴OB=OC.∵AC=BD,∴AC﹣CO=DB﹣BO,即:OA=OD.∴∠DAO=∠ADO,∵∠AOD=∠BOC,∴∠DAO=∠ACB.∴AD∥BC.∵AD≠CB,AB=DC,∴四边形ABCD是等腰梯形.23.如图,在△ABC中,CD与CF分别是△ABC的内角、外角平分线,DF∥BC交AC于点E.试说明:(1)△DCF为直角三角形;(2)DE=EF.【解答】证明:(1)∵CD与CF分别是△ABC的内角、外角平分线,∴∠DCE=∠ACB,∠ECF=∠ACG,∵∠ACB+∠ACG=180°,∴∠DCE+∠ECF=90°,∴△DCF为直角三角形;(2)∵DF∥BC,∴∠EDC=∠BCD,∵∠ECD=∠BCD,∴∠EDC=∠ECD,∴ED=EC,同理,EF=EC,∴DE=EF.24.已知:如图,等腰梯形ABCD中,AB=CD,AD∥BC,E是梯形外一点,且EA=ED,求证:EB=EC.【解答】证明:在等腰梯形ABCD中AB=CD,∴∠BAD=∠CDA.∵EA=ED,∴∠EAD=∠EDA.∴∠EAB=∠EDC.(2分)在△ABE和△DCE中∵,∴△ABE≌△DCE.(5分)∴EB=EC.。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试【解析】
苏科版⼋年级上册第⼆章《轴对称图形》(难题)单元测试【解析】苏科版⼋上第⼆章《轴对称图形》(难题)单元测试(2)班级:___________姓名:___________得分:___________⼀、选择题1.如图,A,B,C三幢居民楼的位置成三⾓形,现决定在三幢楼之间修建⼀个禁毒宣传栏,使宣传栏到三个⼩区的距离相等,则宣传栏应建在()A. AC,BC两边中线的交点处B. AC,BC两边⾼线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内⾓平分线的交点处2.如图所⽰的2×4的正⽅形⽹格中,△ABC的顶点都在⼩正⽅形的格点上,这样的三⾓形称为格点三⾓形,在⽹格中与△ABC成轴对称的格点三⾓形⼀共有()A. 2个B. 3个C. 4个D. 5个3.如图,⼀张三⾓形纸⽚ABC,其中∠C=90°,AC=4,BC=3.现⼩林将纸⽚做三次折叠:第⼀次使点A落在C处;将纸⽚展平做第⼆次折叠,使点B落在C处;再将纸⽚展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的⼤⼩关系是()A. c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,⾯积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上⼀动点,则△CDM周长的最⼩值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上⼀点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸⽚ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上⼀点.∠ABC的⾓平分线与∠ACD的⾓平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的⾓平分线与∠NCB的⾓平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138°B. 114°C. 102°D. 100°8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④⼆、填空题9.把⼀张长⽅形纸条按图的⽅式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三⾓形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的⾯积是_____.12.已知等腰三⾓形的周长为10,从底边上的⼀个顶点引腰的中线,分三⾓形的周长为两部分,其中⼀部分⽐另⼀部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任⼀点,则AP+BP的最⼩值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的⾓平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三⾓形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最⼩值是______________.三、解答题17.如图,和均为等腰直⾓三⾓形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作⼀点P,使得点P到∠AOB两边OA、OB的距离相等,且满⾜PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,?ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的⼤⼩关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直⾓三⾓形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,⽽是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直⾓,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直⾓,⽽(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在⽹格中作出与△ABC成轴对称的格点三⾓形如下图所⽰:∴在此⽹格中与△ABC成对称的格点三⾓形⼀共有3个.3.D解:第⼀次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第⼆次折叠如图2,折痕为MN,由折叠得:BN =NC =12BC =12×3=32,MN ⊥BC ,∵∠ACB =90°,∴MN//AC ,∴b =MN =12AC =12×4=2;第三次折叠如图3,折痕为GH ,由勾股定理得:AB =√32+42=5,由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH ,∴AC AG =BC GH ,∴452=3GH ,∴GH =158,即c =158.∵2>158>32,∴b >c >a .4. D解:连接AD ,MA .∵△ABC是等腰三⾓形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC?AD=1解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最⼩值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=6+12×6=6+3=9.5.B解:∵点A,C分别在线段BE,BD的中垂线上,∴AE=AB,BC=DC.∵∠A=58°,∠C=100°,∴∠ABE=180°?58°2=61°,∠CBD=180°?100°2=40°.∵∠EBD=36°,∴∠ABC=∠ABE+∠EBD+∠CBD=61°+36°+40°=137°,∴∠ADC=360°?∠A?∠C?∠ABC=360°?58°?100°?137°=65°.故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°?130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的⾓平分线与∠ACD的⾓平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM?∠DBM=1=12∠A=24°,由折叠可得,∠N=∠M=24°,⼜∵∠NBC的⾓平分线与∠NCB的⾓平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°?(∠CBQ+∠BCQ) =180°?12(∠CBN+∠BCN)=180°?12×(180°?∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第2章轴对称图形》一、选择题1.下列图案中,属于轴对称图形的是()A.B. C.D.2.到三角形三个顶点距离相等的是()A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点 D.三条内角平分线的交点3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°4.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°二、填空题(共6小题,每小题3分,满分18分)5.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D= °.6.如图,△ABC中,∠B,∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5cm,则DE等于cm.7.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.8.点P在线段AB的垂直平分线上,PA=10,则PB= .9.如图,△ABC中,∠ACB=90°,AD平分∠BAC,AD=10,AC=8.则点D到AB边的距离为.10.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为cm.三、解答题11.已知:如图,在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E.证明:BD垂直平分AE.12.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.13.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数;(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由;(3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC 有怎样的大小关系?14.有一条道路和两个养鸡场.(1)把这条道路看成一条直线,两个养鸡场分别看成点A、B,点A、B与直线有多少种不同的位置关系?画出可能位置的图形.(2)现要在道路旁建一座冷藏库,冷藏库应建在何处,可使两个养鸡场到该冷藏库的距离和最短?《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图案中,属于轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.到三角形三个顶点距离相等的是()A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点 D.三条内角平分线的交点【考点】线段垂直平分线的性质.【分析】根据题意得出到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,画出图形后根据线段垂直平分线定理得出PA=PC,PC=PB,推出PA=PC=PB即可.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,理由是:∵P在AB的垂直平分线EF上,∴PA=PB,∵P在AC的垂直平分线MN上,∴PA=PC,∴PA=PC=PB,即P是到三角形三个顶点的距离相等的点.故选C.【点评】本题考查了线段垂直平分线定理,注意:线段垂直平分线的交点到三角形三个顶点的距离相等,而三角形三个角平分线的交点到三角形三边的距离相等.3.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【考点】轴对称的性质;三角形内角和定理.【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.4.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.二、填空题(共6小题,每小题3分,满分18分)5.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D= 35 °.【考点】平行线的性质;角平分线的定义.【专题】计算题.【分析】根据平行线的性质先求得∠ABC的度数,再根据角平分线的性质及平行线的性质求得∠D的度数.【解答】解:∵AD∥BC,∠A=110°,∴∠ABC=180﹣∠A=70°;又∵BD平分∠ABC,∴∠DBC=35°;∵AD∥BC,∴∠D=∠DBC=35°.故答案为:35.【点评】此题考查了角平分线的性质及平行线的性质,比较简单.6.如图,△ABC中,∠B,∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5cm,则DE等于5 cm.【考点】等腰三角形的判定与性质.【专题】计算题.【分析】根据∠B,∠C的平分线相交于点O,可得出∠OBD=∠OBC,∠OCE=∠OCB,再由DE∥BC,得出∠DOB=∠OBC,∠EOC=∠OCB,从而得出∠OBD=∠DOB,∠EOC=∠ECO,则OD=BD,OE=CE,从而得出DE=BD+EC.【解答】解:∵∠B,∠C的平分线相交于点O,∴∠OBD=∠OBC,∠OCE=∠OCB,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠OBD=∠DOB,∠EOC=∠ECO,∴OD=BD,OE=CE,∴DE=OD+OE=BD+EC,∵BD+EC=5cm,∴DE=5cm.故答案为5.【点评】本题考查了等腰三角形的判定和性质,以及平行线的性质和角平分线的定义,是基础知识要熟练掌握.7.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称-最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.8.点P在线段AB的垂直平分线上,PA=10,则PB= 10 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出PA=PB,即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,∴PA=PB,∵PA=10,∴PB=10,故答案为:10.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.如图,△ABC中,∠ACB=90°,AD平分∠BAC,AD=10,AC=8.则点D到AB边的距离为 6 .【考点】角平分线的性质.【分析】根据勾股定理求出CD,过D作DE⊥AB于E,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在△ABC中,∠ACB=90°,AD=10,AC=8,由勾股定理得:CD==6,过D作DE⊥AB于E,∵,DE⊥AB,∠ACB=90°,AD平分∠BAC,∴DE=CD=6,故答案为:6.【点评】本题考查了角平分线性质和勾股定理的应用,注意:角平分线上的点到角两边的距离相等.10.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为 6 cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.三、解答题11.(2014秋•海陵区期中)已知:如图,在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E.证明:BD垂直平分AE.【考点】线段垂直平分线的性质;角平分线的性质.【专题】证明题.【分析】根据已知和角平分线性质求出AD=DE,∠ABD=∠EBD,∠BAD=∠BED=90°,证△BAD≌△BED,推出AB=BE,根据等腰三角形的性质得出即可.【解答】证明:∵∠BAC=90°,BD平分∠ABC,DE⊥BC,∴AD=DE,∠ABD=∠EBD,∠BAD=∠BED=90°,在△BAD和△BED中∴△BAD≌△BED(AAS),∴AB=BE,∵BD平分∠ABE,∴BD垂直平分AE,【点评】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质的应用,解此题的关键是求出AB=BE.12.(2014秋•无锡校级期末)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【专题】证明题.【分析】连接BE、DE,根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=AC,再根据等腰三角形三线合一的性质证明.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线是解题的关键.13.(2008秋•南通期末)(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数;(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?说明理由;(3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC 有怎样的大小关系?【考点】等腰三角形的性质;三角形内角和定理.【分析】(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=∠ACB=45°,又因为BD=BA,可求∠BAD=∠BDA=67.5°,再由CE=CA,可求∠CAE=∠E=22.5°,所以∠DAE=∠BAE﹣∠BAD=112.5°﹣67.5°=45度;(2)先设∠CAE=x,由已知CA=CE可求∠ACB=∠CAE+∠E=2x,∠B=90°﹣2x,又因为BD=BA,所以∠BAD=∠BDA=x+45°,再根据三角形的内角和是180°,可求∠BAE=90°+x,即∠DAE=∠BAE ﹣∠BAD=(90°+x)﹣(x+45°)=45度;(3)可设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,所以∠BAE=180°﹣∠B﹣∠E=2y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x,即∠DAE=∠BAC.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,在△ABE中,∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=112.5°﹣67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°﹣∠ACB=90°﹣2x,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=x+45°,在△ABE中,∠BAE=180°﹣∠B﹣∠E,=180°﹣(90°﹣2x)﹣x=90°+x,∴∠DAE=∠BAE﹣∠BAD,=(90°+x)﹣(x+45°)=45°;(3)∠DAE=∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x,∴∠DAE=∠BAC.【点评】本题考查三角形外角的性质及三角形的内角和定理以及等腰三角形的性质;求角的度数常常要用到“三角形的内角和是180°这一隐含的条件和三角形的一个外角等于与它不相邻的两个内角的和.本题由易到难,由特例到一般,是一道提高学生能力的训练题.14.有一条道路和两个养鸡场.(1)把这条道路看成一条直线,两个养鸡场分别看成点A、B,点A、B与直线有多少种不同的位置关系?画出可能位置的图形.(2)现要在道路旁建一座冷藏库,冷藏库应建在何处,可使两个养鸡场到该冷藏库的距离和最短?【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】(1)由题意可知点A、B与直线有2种位置关系,一是点A、B与直线L同侧,另一个是点A、B与直线L异侧;(2)当A、B与直线l同侧时,过点A作l的对称点A1,连接BA1,相交l于O,O即为冷藏库位置;当A、B与直线l异侧时,连接AB,相交L于O′,O′即为冷藏库位置.【解答】解:(1)如图所示:(2)如图所示:【点评】本题考查了应用与设计作图,此类题目主要把简单作图放入实际问题中,解题关键是首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.。