二次函数的概念教学设计

合集下载

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

二次函数的概念教学设计

二次函数的概念教学设计

二次函数的概念教学设计教学设计:二次函数的概念一、设计意图:二次函数是高中数学中重要的一部分内容,是学生数学思维能力和解决实际问题的重要工具。

本教学设计旨在通过引导学生深入了解二次函数的定义、性质和图像的特点,发展学生的观察、思考和解决问题的能力。

二、教学目标:1.掌握二次函数的定义和一般形式;2.熟练掌握二次函数的图像;3.理解二次函数的性质,包括:对称性、最值和单调性等;4.能够运用二次函数解决实际问题。

三、教学内容与步骤:第一步:导入与热身(5分钟)通过展示或提问的方式,激发学生对二次函数的兴趣,引发学生对二次函数的初步认识。

导入问题:你能否举出身边的实例来说明二次函数的应用呢?第二步:引入二次函数的定义与表示方式(15分钟)1.通过举例的方式,引导学生理解二次函数的定义;教师:请你根据自己的理解,给出二次函数的定义并举例说明。

2. 引入一般形式:y = ax² + bx + c,讲解各个参数的意义;教师:请问,一般形式中a、b、c代表着什么意义?3.设计练习题,巩固学生对二次函数定义和一般形式的理解与掌握。

第三步:二次函数的图像与性质(30分钟)1.展示二次函数图像,并让学生观察和讨论二次函数图像的特点;2.引导学生找出二次函数图像的对称轴、顶点、开口方向等特征;3.讲解二次函数图像的具体性质,包括:对称性、最值和单调性等;4.设计练习题,让学生运用学到的知识判断图像的性质和找出图像的相关特点。

第四步:实际问题的实际应用(30分钟)1.通过实际问题的引入,让学生理解二次函数的实际应用;2.引导学生将实际问题抽象成二次函数的形式,并解决问题;3.调动学生思维,设计一些开放性问题,供学生讨论和解决。

第五步:课堂总结与反思(10分钟)1.小结本节课的主要内容与要点;2.指导学生针对学习内容回答问题或进行思考;3.强调二次函数的重要性和应用,并展示学生在本节课中的学习成果。

四、教学评估方法:1.在课堂上布置一些小练习,检测学生对二次函数的定义和性质的掌握情况;2.设计一些开放性问题,供学生进行讨论和解答,评估学生的实际问题解决能力。

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。

学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。

之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。

重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。

教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。

4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。

观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。

(指名学生回答)。

师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。

师:这个猜想是否正确呢?这节课我们一起来验证一下。

(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

(完整版)二次函数教学设计

(完整版)二次函数教学设计

(完整版)二次函数教学设计引言本教学设计旨在帮助学生理解和掌握二次函数的基本概念、性质和应用。

通过合理的教学安排和活动设计,希望能够提高学生的研究兴趣和参与度,使他们在研究二次函数的过程中获得良好的研究成果。

教学目标- 掌握二次函数的基本定义和表示形式- 理解二次函数的图像特征和性质- 学会求解二次函数的零点和顶点- 掌握二次函数的应用,如最值问题和解析几何问题教学内容和安排第一课时:二次函数的基本定义和表示形式(40分钟)- 引导学生回顾线性函数的概念和特征- 介绍二次函数的定义和一般形式:$y=ax^2+bx+c$- 解释二次函数的系数对图像的影响,包括平移、压缩和翻转等- 通过示例和练让学生熟练掌握二次函数的表示形式和图像第二课时:二次函数的图像特征和性质(40分钟)- 分析二次函数图像的对称轴、顶点和开口方向- 解释顶点与最值的关系以及对称轴的作用- 引导学生观察和推断二次函数图像的性质- 通过练巩固学生对二次函数图像的理解第三课时:二次函数的零点和顶点(40分钟)- 教授求解二次函数零点的方法和步骤- 解释零点的概念和意义,以及与方程解的关系- 引导学生利用顶点公式求解二次函数的顶点- 通过练让学生掌握求解二次函数零点和顶点的技巧第四课时:二次函数的应用(40分钟)- 介绍二次函数在最值问题中的应用场景,如求解最大或最小值- 解释应用问题的转化为二次函数模型的方法- 引导学生通过实际问题求解二次函数的最值问题- 关注解析几何问题,如求解抛物线和直线的交点等教学评估- 针对每个课时的教学目标设计对应的练和作业- 借助课堂讨论和互动,了解学生的研究进展和掌握程度- 对学生进行小测验和考试,评估他们对二次函数知识的掌握情况教学资源- 二次函数教材- 课堂展示工具,如投影仪和白板- 练册和作业本- 计算器和图形绘制工具结语本教学设计通过合理的教学安排和活动设计,能够帮助学生全面了解二次函数的基本概念、性质和应用。

二次函数教学设计(精选19篇)

二次函数教学设计(精选19篇)

二次函数教学设计二次函数教学设计(精选19篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

以下是小编为大家收集的二次函数教学设计,欢迎阅读与收藏。

二次函数教学设计篇1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π·( )2=π· = ≈796(m2).所以圆的面积最大.二次函数教学设计篇2一、教学目标:1。

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计一. 教材分析沪教版数学九年级上册第26.1节《二次函数的概念》是整个初中数学阶段的重要内容,它为学生以后学习高中数学乃至大学数学打下基础。

本节内容主要介绍二次函数的定义、一般形式以及二次函数的图像特征。

教材通过实例引导学生理解二次函数的概念,并通过自主探究活动,让学生掌握二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,例如一次函数和正比例函数。

他们在学习过程中能初步运用观察、实验、猜测、推理、交流等数学活动方式,进一步抽象和概括数学问题。

但二次函数的概念较为抽象,学生理解起来存在一定困难,因此,在教学过程中,需要教师引导学生通过实际问题来感受二次函数的实际意义,激发学生的学习兴趣。

三. 教学目标1.让学生理解二次函数的概念,掌握二次函数的一般形式。

2.使学生能够通过实际问题,运用二次函数的知识进行分析。

3.培养学生运用数学语言描述和解决问题的能力。

四. 教学重难点1.重点:二次函数的概念,二次函数的一般形式。

2.难点:理解二次函数的图像特征,能够运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数的实际意义。

2.自主探究法:教师提出问题,引导学生分组讨论,共同探究二次函数的性质。

3.讲解法:教师对二次函数的概念、性质进行系统的讲解。

4.练习法:通过课堂练习,巩固所学知识。

六. 教学准备1.课件:制作关于二次函数概念、图像特征的课件。

2.练习题:准备一些关于二次函数的练习题,用于课堂练习和课后作业。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动,引出二次函数的概念。

提问:你们认为什么是二次函数?2.呈现(10分钟)呈现二次函数的一般形式,y=ax^2+bx+c(a≠0)。

讲解二次函数的各部分含义,让学生理解二次函数的定义。

3.操练(10分钟)让学生分组讨论,探究二次函数的性质。

《二次函数》教学设计 【完整版】

《二次函数》教学设计 【完整版】

第1课时二次函数.教学目标1.理解二次函数的概念,掌握二次函数的形式.2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.3.让学生从实际问题情境中经历探索、分析和建立两个变量之间的二次函数关系模型的过程,发展概括及分析问题、解次问题的能力.4.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.教学重点理解二次函数y=ax2+bx+c(a、b、c)是常数,且a≠0的概念.教学难点教材中涉及的实际问题有的较为复杂,要求学生有较强的抽象概括能力.教学过程一、导入新课正方体的六个面是全等的正方形(下图),设正方体的棱长为x ,表面积为y .如果改变正方体的棱长x ,那么正方体的表面积y 会随之改变,y 与x 之间有什么关系?教师引导学生思考问题,列出方程.导入新课的教学.二、新课教学显然,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数,它们的具体关系可以表示为y =6x 2.问题1n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系每个队要与其他(n -1)个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数m =21n (n -1), 即m =21n 2-21n .这个函数解析式表示比赛的场次数m 与球队数n 的关系,对于n 的每一个值,m 都有一个对应值,即m 是n 的函数.问题2某种产品现在的年产量是20t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示这种产品的原产量是20t ,一年后的产量是20(1+x )t ,再经过一年后的产量是20(1+x )(1+x )t ,即两年后的产量 y =20(1+x )2,即y =20x +40x +40.这个函数解析式表示了两年后的产量y 与计划增产的倍数x 之间的关系,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数.思考:函数y =6x 2、m =21n 2-21n 、y =20x +40x +40有什么共同特点在上面的问题中,函数都是用自变量的二次式表示的.一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.三、巩固练习教材第29页练习1、2.四、课堂小结今天你学习了什么二次函数的概念是什么五、布置作业习题第1、2题.。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

二次函数教案范文3篇

二次函数教案范文3篇

⼆次函数教案范⽂3篇《⼆次函数》教案⼀、教学⽬标1.知识与技能⽬标。

(1)使学⽣理解并掌握⼆次例函数的概念。

(2)能判断⼀个给定的函数是否为⼆次例函数,并会⽤待定系数法求函数解析式。

(3)能根据实际问题中的条件确定⼆次例函数的解析式,体会函数的模型思想。

2.过程与⽅法⽬标。

通过“探究——感悟——练习”,采⽤探究、讨论等⽅法进⾏。

3.情感态度与价值观。

通过对⼏个特殊的⼆次函数的讲解,向学⽣进⾏⼀般与特殊的辩证唯物主义教育。

⼆、教学重、难点1.重点。

理解⼆次例函数的概念,能根据已知条件写出函数解析式。

2.难点:理解⼆次例函数的概念。

三、教具准备从⽹上及相关资料搜集与本节课有关的材料,远程资源。

四、教学过程1.新课导⼊。

(1)⼀元⼆次⽅程的⼀般形式是什么?(2)回忆⼀下什么是正⽐例函数、⼀次函数?它们的⼀般形式是怎样的?2.新课。

问题1,正⽅体的六个⾯是全等的正⽅形,如果正⽅形的棱长为x,表⾯积为y,那么y与x的关系可表⽰为?[y=6x2问题2,某⼯⼚⼀种产品现在的年产量是20件,计划今后两年增加产量。

如果每年都⽐上⼀年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值⽽定,y与x之间的关系怎样表⽰? y=20x2+40x+20观察以上三个问题所写出来的三个函数关系式有什么特点?经化简后都具有y=ax2+bx+c的形式,(a,b,c是常数, a≠0 )。

我们把形如y=ax2+bx+c(其中a,b, c是常数,a≠0)的函数叫做⼆次函数。

称,a为⼆次项系数,ax2叫做⼆次项;b为⼀次项系数,bx叫做⼀次项;c为常数项。

⼜例:y=x2+ 2x–33.巩固练习。

1.下列函数中,哪些是⼆次函数?(1)y=3x-1 (2)y=3x2+2 (3)y=3x3+2x2(4)y=2x2-2x+1(5)y=x2-x(1+x)(6)y=x-2+x(7)y=1/2(8)y=x(1-x)(9)(1)y=x22.做⼀做。

22.1.1二次函数_教案

22.1.1二次函数_教案

22.1.1 二次函数教学设计一、教学目标:1. 能结合具体情境体会二次函数的意义,理解二次函数的有关概念;2. 能够表示简单变量之间的二次函数关系.二、重点难点:重点:结合具体情境体会二次函数的意义,掌握二次函数的有关概念.难点:1.能通过生活中的实际问题情境,构建二次函数关系; 2.重视二次函数2=++中a≠0这一隐含条件.y ax bx c三、教学过程:(一).复习导入:导出22.1 二次函数的图象和性质22.1.1 二次函数回顾旧知:函数的定义:在变化过程中,有两个变量x和y,当x每确定一个值时,y都有唯一一个值与其对应,我们称x为自变量,y为x的函数我们学习过哪些函数?一次函数的一般形式是:下列函数:1、21y x=+2、2=3、4y x5=-4、y x1=+y ax其中,y是x的一次函数有:变量之间的关系→函数→一次函数概念图象和性质与相应方程的联系实际问题设计意图:使学生进一步认识数学是与实际问题密不可分,人们的需要产生数学。

通过这些实际问题,有利于加深学生对函数概念的理解,引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.(二).过程探究引言正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.则y 关于x 的关系式为①式表示了正方体的表面积y 与棱长x 之间的关系,对于x 的每一个值,y 都有唯一的值与之对应,即y 是x 的函数.问题1 n 个球队参加比赛,每两队之间进行一场比赛. 比赛的场次数m 与球队数n 有什么关系?问题2 某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y与x 之间的关系应怎样表示?观察:函数①,②,③有什么共同点?上面问题中,自变量的最高次幂是2.-------二次函数定义:一般地,形如2=++( a,b,c是常数,a≠0) 的函数,叫做二y ax bx c次函数。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。

数学《二次函数》优秀教案

数学《二次函数》优秀教案

数学《二次函数》优秀教案数学《二次函数》优秀教案(精选7篇)作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。

教案要怎么写呢?以下是店铺为大家整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2、具有初步的创新精神和实践能力。

教学重点1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1、探索方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法讨论探索法。

教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的概念教学设计教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.教学重点:对二次函数概念的理解。

教学难点:学生对关于x的整式这一概念容易忽略。

教法学法设计:1、从创设情境入手,通过知识再现,孕伏教学过程2、从学生活动出发,通过以旧引新,顺势教学过程3、利用探索、研究手段,通过思维深入,领悟教学过程教学过程:一、复习提问1一次函数的定义是什么?【设计意图】复习这些问题是为了引入一元二次此函数做铺垫,帮助学生加深对函数定义的理解.二、引入新课电脑演示:拱桥、喷泉等与一元二次函数图像有关的图片引起学生对一元二次函数的好奇和兴趣。

探索问题1正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为?由学生认真思考并与同桌交流,然后回答下面的问题1 设矩形靠墙的一边AB的长xm,矩形的面积ym2.能用含x的代数式来表示y吗?2 试填表(见课本)3我们发现y是x的函数,试写出这个函数的关系式教师提问:以上例子所列出的函数有什么特点,学生观察并讨论。

【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,对比一次函数归纳出二次函数的定义三、讲解新课引入二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:提问:1.上述概念中的a为什么不能是0?2. 对于二次函数y= ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?思考:1. 由问题1和2你认为判断二次函数的关键是什么?判断一个函数是否是二次函数的关键是:看二次项的系数是否为0.【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

例1:下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项。

(1) y=3(x-1)²+1 (2) y=x+(3) s=3-2t² (4) y=(x+3)²-x²(5)y=-x (6) v=8πr²例2:m取何值时,函数y= (m+1)x m2—2m-1+(m-3)x+m是二次函数?解:根据题意得m2—2m-1=2且 m+1 ≠0∴m=3【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

四、课堂练习1、下列函数中,(x是自变量),是二次函数的有。

A y=ax2+bx+cB y2=x2-4x+1C y=x2D y=2+ √x2+12.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( )A m,n是常数,且m≠0B m,n是常数,且n≠0C m,n是常数,且m≠nD m,n为任何实数五、小结思考:本节课你有哪些收获?还有什么不清楚的地方?【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。

而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

六、作业布置:必做题:1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。

这个函数是二次函数吗?2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:1.已知函数是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。

另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

七、板书设计二次函数一、复习提问,情境导入1、复习提问:12、情境引入:探究1二、二次函数的定义:三、例1 例2四、课堂练习:1、2、五、小结:本节课你有哪些收获?六、作业布置:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.引入新课函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

看下面三个例子中两个变量之间存在怎样的关系。

(电脑演示)正方体的六个面是全等的正方形,设正方形的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为?【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。

(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:1、强调“形如”,即由形来定义函数名称。

二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。

但在实际问题中,自变量的取值范围是使实际问题有意义的值。

(如例1中要求r>0)3、为什么二次函数定义中要求a≠0 ?(若a=0,ax2+bx+c就不是关于x的二次多项式了)4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.5、b和c是否可以为零?由例1可知,b和c均可为零.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.(1)y=3(x-1)²+1 (2) x x y 12+=(3)s=3-2t² (4)y=(x+3)²- x ²(5) s=10πr² (6) y=2²+2x(8)y=x 4+2x 2+1(可指出y 是关于x 2的二次函数)【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

四、巩固练习1、下列函数中,(x 是自变量),是二次函数的有 。

A y=ax2+bx+cB y2=x2-4x+1C y=x2D y=2+ √x2+12.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( )A m,n 是常数,且m ≠0B m,n 是常数,且n ≠0C m,n 是常数,且m ≠nD m,n 为任何实数(五)拓展延伸1. 已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a 、b 、c ,并写出函数解析式.【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k 的值(1)如果函数y= x k^2-3k+2 +kx+1是二次函数,则k 的值一定是______(2)如果函数y=(k-3)x k^2-3k+2+kx+1是二次函数,则k 的值一定是______【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.(六) 小结思考:本节课你有哪些收获?还有什么不清楚的地方?【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。

而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置:必做题:1. 正方形的边长为4,如果边长增加x ,则面积增加y ,求y 关于x 的函数关系式。

这个函数是二次函数吗?2. 在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木板的面积y(cm 2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:1.已知函数72)3(--=m x m y 是二次函数,求m 的值。

2.试在平面直角坐标系画出二次函数y=x 2和y=-x 2图象【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。

另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

【教学反思】本节课主要讲了二次函数的概念,由实际问题的引入来理解,主要是让学生理解二次函数的解析式中二次项的必不可少,即二次项的系数不能为零,最高次项必须为二次,一次项以及常数项可以没有,但是等号右边必须是关于x 的整式。

相关文档
最新文档