二次函数教案设计(全)

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

二次函数教案(全)

二次函数教案(全)

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式.3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式. 教学重点:二次函数的概念和解析式教学难点:本节“合作学习"涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式.2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨. (1)y =πx 2 (2)y = 2000(1+x )2 = 20000x 2+40000x+20000 (3) y = (60—x —4)(x —2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系:(1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式。

2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000(3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法。

x教师归纳总结:上述三个函数解析式经化简后都具y=ax ²+bx+c (a,b,c 是常数, a ≠0)的形式.板书:我们把形如y=ax ²+bx+c(其中a,b,C 是常数,a ≠0)的函数叫做二次函数(quadratic funcion)称a 为二次项系数, b 为一次项系数,c 为常数项,请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项(二)做一做1、下列函数中,哪些是二次函数?(1)2x y = (2) 21xy -= (3) 122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -=3、若函数m m x m y --=2)1(2为二次函数,则m 的值为 。

三、例题示范,了解规律例1、已知二次函数 q px x y ++=2当x=1时,函数值是4;当x=2时,函数值是-5。

求这个二次函数的解析式。

此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法。

练习:已知二次函数c bx ax y ++=2 ,当x=2时,函数值是3;当x=-2时,函数值是2。

求这个二次函数的解析式。

例2、如图,一张正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分)。

设AE=BF=CG=DH=x(cm) ,四边形EFGH 的面积为y(cm 2),求:(1) y 关于x 的函数解析式和自变量x 的取值范围。

(2) 当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示。

AB E FCH方法:(1)学生独立分析思考,尝试写出y 关于x 的函数解析式,教师巡回辅导,适时点拨。

(2)对于第一个问题可以用多种方法解答,比如:求差法:四边形EFGH 的面积=正方形ABCD 的面积-直角三角形AEH 的面积DE4倍。

直接法:先证明四边形EFGH 是正方形,再由勾股定理求出EH 2(3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定。

(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x 与y 之间数值的对应关系和内在的规律性:随着x 的取值的增大,y 的值先减后增;y 的值具有对称性。

练习:用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x,矩形的面积为y,求:(1)写出y 关于x 的函数关系式.(2)当x=3时,矩形的面积为多少?四、 归纳小结,反思提高本节课你有什么收获?五、 布置作业课本作业题1.2二次函数的图像(1)教学目标:1、经历描点法画函数图像的过程;2、学会观察、归纳、概括函数图像的特征;3、掌握型二次函数图像的特征;4、经历从特殊到一般的认识过程,学会合情推理。

教学重点:2ax y =型二次函数图像的描绘和图像特征的归纳 教学难点:选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

教学设计:一、 回顾知识前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。

)引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即2ax y =入手。

因此本节课要讨论二次函数2ax y =(0≠a )的图像。

板书课题:二次函数2ax y =(0≠a )图像a 4ac 4b2-x二、探索图像1、用描点法画出二次函数 2x y =和2x y -=图像①无论x 取何值,对于2x y =来说,y 的值有什么特征?对于2x y -=来说,又有什么特征?②当x 取 1,21±±等互为相反数时,对应的y 的值有什么特征? (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).(3) 连线,用平滑曲线按照x 由小到大的顺序连接起来,从而分别得到2x y =和2x y -=的图像。

2、练习:在同一直角坐标系中画出二次函数22x y = 和22x y -=的图像。

学生画图像,教师巡视并辅导学困生。

(利用实物投影仪进行讲评)3、二次函数2ax y =(0≠a )的图像由上面的四个函数图像概括出:(1) 二次函数的2ax y =图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(2) 这条抛物线关于y 轴对称,y 轴就是抛物线的对称轴。

(3) 对称轴与抛物线的交点叫做抛物线的顶点。

注意:顶点不是与y 轴的交点。

(4) 当o a 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x 轴的上方(除顶点外);当o a 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x 轴的 下方(除顶点外)。

(最好是用几何画板演示,让学生加深理解与记忆)三、 课堂练习观察二次函数2x y =和2x y -=的图像(2)在同一坐标系内,抛物线2x y =和抛物线2x y -=的位置有什么关系?如果在同一个坐标系内画二次函数2ax y =和2ax y -=的图像怎样画更简便?(抛物线2x y =与抛物线2x y -=关于x 轴对称,只要画出2ax y =与2ax y -=中的一条抛物线,另一条可利用关于x 轴对称来画)四、例题讲解例题:已知二次函数2ax y =(0≠a )的图像经过点(-2,-3)。

(1) 求a 的值,并写出这个二次函数的解析式。

(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。

练习:(1)课本第31页课内练习第2题。

(2) 已知抛物线y=ax2经过点A (-2,-8)。

(1)求此抛物线的函数解析式;(2)判断点B (-1,- 4)是否在此抛物线上。

(3)求出此抛物线上纵坐标为-6的点的坐标。

五、谈收获1.二次函数y=ax2(a ≠0)的图像是一条抛物线.2.图象关于y 轴对称,顶点是坐标原点3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点六、作业:见作业本。

课题:1.2二次函数的图像(2)教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。

2、了解2ax y =,2)(m x a y +=,k m x a y ++=2)(三类二次函数图像之间的关系。

3、会从图像的平移变换的角度认识k m x a y ++=2)(型二次函数的图像特征。

教学重点:从图像的平移变换的角度认识k m x a y ++=2)(型二次函数的图像特征。

教学难点:对于平移变换的理解和确定,学生较难理解。

教学设计:一、 知识回顾二次函数2ax y =的图像和特征:1、名称 ;2、顶点坐标 ;3、对称轴 ;4、当o a 时,抛物线的开口向 ,顶点是抛物线上的最 点,图像在x 轴的 (除顶点外);当o a 时,抛物线的开口向 ,顶点是抛物线上的最 点图像在x 轴的 (除顶点外)。

二、合作学习 在同一坐标系中画出函数图像221x y =,,)2(212+=x y 2)2(21-=x y 的图像。

(1) 请比较这三个函数图像有什么共同特征?(2) 顶点和对称轴有什么关系?(3) 图像之间的位置能否通过适当的变换得到?(4) 由此,你发现了什么?三、探究二次函数2ax y =和2)(m x a y +=图像之间的关系1、结合学生所画图像,引导学生观察,)2(212+=x y 与221x y =的图像位置关系,直观得出221x y =的图像−−−−−→−向左平移两个单位,)2(212+=x y 的图像。

教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系 ,如: (0,0)−−−−−→−向左平移两个单位(-2,0) (2,2)−−−−−→−向左平移两个单位(0,2);(-2,2)−−−−−→−向左平移两个单位(-4,2) ②也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。

2、用同样的方法得出221x y =的图像−−−−−→−向右平移两个单位2)2(21-=x y 的图像。

3、请你总结二次函数y=a(x+ m)2的图象和性质.2ax y =(0≠a )的图像个单位时向右平移当个单位向左平移时当m 0m m 0m −−−−−→−2)2(21-=x y 的图像。

函数2)(m x a y +=的图像的顶点坐标是(-m,0),对称轴是直线x=-m4、做一做①、由抛物线y=2x ²向 平移 个单位可得到y= 2(x +1)2②、函数y= -5(x -4)2的图象。

可以由抛物线 向 平移 4 个单位而得到的。

相关文档
最新文档