小升初奥数题大全讲解学习

合集下载

2023年小升初50道经典奥数题及答案详细解析

2023年小升初50道经典奥数题及答案详细解析

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45公斤。

一箱梨比一箱苹果多5公斤,3箱梨重多少公斤?3.甲乙二人从两地同时相对而行,通过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,通过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆严禁通行,两车需互换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(互换乘客的时间略去不计)6.学校组织两个课外爱好小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队天天多修10米。

甲、乙两队天天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,协议规定每箱运费20元,假如损坏一箱,不仅不付运费还要补偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析之五兆芳芳创作1.已知一张桌子的代价是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需互换乘客,然后按原路前往各自出发的车站,到站时已是下午2点.甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米? (互换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外勾当.第一小组每小时走4.5千米,第二小组每小时行3.5千米.两组同时出发1小时后,第一小组停下来不雅赏一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨.甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队配合修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时辨别从甲乙两地相对开出.快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规则每箱运费20元,如果损坏一箱,不单不付运费还要赔偿100元.运后结算时,共付运费4400元.托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游.第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米.第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才干追上一中队?13.某厂运来一堆煤,如果每天烧1500千克,比筹划提前一天烧完,如果每天烧1000千克,将比筹划多烧一天.这堆煤有多少千克?14.妈妈让小红去商店买5支铅笔和8个练习本,按代价给小红3.8元钱.结果小红却买了8支铅笔和5本练习本,找回0.45元.求一支铅笔多少元?15.学校组织外出不雅赏,介入的师生一共360人.一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等.都乘卡车需要几辆?都乘大客车需要几辆?16.某筑路队承担了修一条公路的任务.原筹划每天修72 0米,实际每天比原筹划多修80米,这样实际修的差1200米就能提前3天完成.这条公路全长多少米?17.某鞋厂生产1800双鞋,把这些鞋辨别装入12个纸箱和4个木箱.如果3个纸箱加2个木箱装的鞋同样多.每个纸箱和每个木箱各装鞋多少双?18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍.每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱.每个保温瓶是每个茶杯代价的4倍,每个保温瓶和每个茶杯各多少元?20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同.这两个数辨别是多少?21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克.桶里原有水多少千克?24.小红和小华共有故事书36本.如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量.原来每桶油重多少千克?26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍.原有男工多少人?女工多少人?28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地前往甲地时因逆风多用1小时,前往时平均每小时行多少千米?29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米.如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个.三种球各有多少个?31.在一根粗钢管上接细钢管.如果接2根细钢管共长18米,如果接5根细钢管共长33米.一根粗钢管和一根细钢管各长多少米?32.水泥厂原筹划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原筹划每天生产水泥多少吨?33.学校举办歌舞晚会,共有80人介入了扮演.其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?34.学校举办语文、数学双科竞赛,三年级一班有59人,介入语文竞赛的有36人,介入数学竞赛的有38人,一科也没介入的有5人.双科都介入的有多少人?35.学校买了4张桌子和6把椅子,共用640元.2张桌子和5把椅子的代价相等,桌子和椅子的单价各是多少元?36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?38.光亮小学举办数学知识竞赛,一共20题.答对一题得5分,答错一题扣3分,不答得0分.小丽得了79分,她答对几道,答错几道,有几题没答?39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分.问小明从家里到学校有多远?42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米.这个长方形纸板原来的面积是多少?44.妈妈买苹果和梨各3千克,支出20元找回7.4元.每千克苹果2.4元,每千克梨多少元?45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇.甲的速度是乙的2倍,甲乙两人每小时各行多少千米?46.盒子里有同样数目的黑球和白球.每次取出8个黑球和5个白球,取出几回以后,黑球没有了,白球还剩12个.一共取了几回?盒子里共有多少个球?47.上午6时从汽车站同时收回1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间.48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支.问这盒铅笔最少有多少支?50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米.求这块平行四边形地原来的面积?50道奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的28 8元,正好是一把椅子代价的(10-1)倍,由此可求得一把椅子的代价.再按照椅子的代价,就可求得一张桌子的代价.解:一把椅子的代价:288÷(10-1)=32(元)一张桌子的代价:32×10=320(元)答:一张桌子320元,一把椅子32元.2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.解:45+5×3=45+15=60(千克)答:3箱梨重60千克.3、想:按照在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.便可求甲比乙每小时快多少千米.解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米.4、想:按照两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,便可求每支铅笔的代价.解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元.5、想:按照已知两车上午8时从两站出发,下午2点前往原车站,可求出两车所行驶的时间.按照两车的速度和行驶的时间可求两车行驶的总路程.解:下午2点是14时.往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米.6、想:第一小组停下来不雅赏果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程.又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间.解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组.7、想:按照甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨.若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨.8、想:按照甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就削减4个10米,这时的长度相当于乙(4+5)天修的.由此可求出乙队每天修的米数,进而再求两队每天共修的米数.解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2+10=80+10=90(米)答:两队每天修90米.9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应削减30×6元,这时的总价相当于(6+5)把椅子的代价,由此可求每把椅子的单价,再求每张桌子的单价.解:每把椅子的代价:(455-30×6)÷(6+5)=(455- 180)÷11=275÷11=25(元)每张桌子的代价:25+30=55(元)答:每张桌子55元,每把椅子25元.10、想:按照已知的两车的速度可求速度差,按照两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程.解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距 560千米.11、想:按照已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数.按照每损坏一箱,不单不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱.解:(20×250-4400)÷(10+20)=600÷120=5(箱)答:损坏了5箱.12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此便可求第二中队追上第一中队的时间.解:4×2÷(12-4)=4×2÷8=1(时)答:第二中队1小时能追上第一中队.13、想:由已知条件可知道,前后烧煤总数量相差(150 0+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原筹划烧的天数,进而再求出这堆煤的数量.解:原筹划烧煤天数:(1500+1000)÷(1500-1000)=2500÷500=5(天)这堆煤的重量:1500×(5-1)=1500×4=6000(千克)答:这堆煤有6000千克.14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计较,相差0.45元.由此可求练习本的单价比铅笔贵的钱数.从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数.进而可求出每支铅笔的代价.解:每本练习本比每支铅笔贵的钱数:0.45÷(8-5)=0.45÷3=0.15(元)8个练习本比8支铅笔贵的钱数:0.15×8=1.2(元)每支铅笔的代价:(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)也可以用方程解:设一枝铅笔X元,则一本练习本为元.答:每支铅笔0.2元.15、想:按照一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车的数量:360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)客车的数量:360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)答:可用卡车12辆,客车9辆.16、想:按照筹划每天修720米,这样实际提前的长度是(720×3-1200)米.按照每天多修80米可求已修的天数,进而求公路的全长.解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:(720+80)×12+1200=800×12+1200=9600+1200=10800(米)答:这条公路全长10800米.17、想:按照已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:12个纸箱相当木箱的个数:2×(12÷3)=2×4=8(个)一个木箱装鞋的双数:1800÷(8+4)=18000÷12=150(双)一个纸箱装鞋的双数:150×2÷3=100(双)答:每个纸箱可装鞋100双,每个木箱可装鞋150双18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才干同时用完.但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子.因此看120袋里有多少个少用的沙子袋数,便可求出用的天数.进而可求出沙子和水泥的总袋数.解:水泥用完的天数:120÷(30×2-40)=120÷20=6(天)水泥的总袋数:30×6=180(袋)沙子的总袋数:180×2=360(袋)答:运进水泥180袋,沙子360袋.19、想:按照每个保温瓶的代价是每个茶杯的4倍,可把5个保温瓶的代价转化为20个茶杯的代价.这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数.解:每个茶杯的代价:90÷(4×5+10)=3(元)每个保温瓶的代价:3×4=12(元)答:每个保温瓶12元,每个茶杯3元.20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍.解:第一个加数:572÷(10+1)=52第二个加数:52×10=520答:这两个加数辨别是52和520.21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量.9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量.解:9-(16-9)=9-7=2(千克)答:桶重2千克.22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量.解:(10-5.5)×2=9(千克)答:原来有油9千克.23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量.解:(22-10)÷(5-2)=12÷3=4(千克)答:桶里原有水4千克.24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍.解:小华有书的本数:(36-5×2)÷2=13(本)小红有书的本数:13+5×2=23(本)答:原来小红有23本,小华有13本.25、想:由已知条件知,5桶油共取出(15×5)千克.由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克.解:15×5÷(5-2)=25(千克)答:原来每桶油重25千克.26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步便可以求出锯成5段所需的时间.解:9÷(3-1)×(5-1)=18(分)答:锯成5段需要18分钟.27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人.这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍.这样就可求出现在女工多少人,然后再辨别求出男、女工原来各多少人.解:35÷(2-1)=35(人)女工原有:35+17=52(人)男工原有:52+35=87(人)答:原有男工87人,女工52人.28、想:由每小时行12千米,5小时到达可求出两地的路程,即前往时所行的路程.由去时5小时到达和前往时多用1小时,可求出前往时所用时间.解:12×5÷(5+1)=10(千米)答:前往时平均每小时行10千米.29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米.解:18÷(5+4)=2(小时)8×2=16(千米)答:狗跑了16千米.30、想:由条件知,(21+20+19)暗示三种球总个数的2倍,由此可求出三种球的总个数,再按照题目中的条件就可以求出三种球各多少个.解:总个数:(21+20+19)÷2=30(个)白球:30-21=9(个)红球:30-20=10(个)黄球:30-19=11(个)答:白球有9个,红球有10个,黄球有11个.31、想:按照题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度.解:(33-18)÷(5-2)=5(米)18-5×2=8(米)答:一根粗钢管长8米,一根细钢管长5米.32、想:由题意知,实际10天比原筹划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原筹划还需用(12-10)天才干完成,也就是说原筹划(12-10)天能生产水泥(4.8×10)吨.解:4.8×10÷(12-10)=24(吨)答:原筹划每天生产水泥24吨.33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去介入扮演的80人,就是既唱歌又跳舞的人数.解:70+30-80=100-80=20(人)答:既唱歌又跳舞的有20人.34、想:介入语文竞赛的36人中有介入数学竞赛的,同样介入数学竞赛的38人中也有介入语文竞赛的,如果把两者加起来,那么既介入语文竞赛又介入数学竞赛的人数就统计了两次,所以将介入语文竞赛的人数加上介入数学竞赛的人数再加上一科也没介入的人数减去全班人数就是双科都介入的人数.解:36+38+5-59=20(人)答:双科都介入的有20人.35、想:由“2张桌子和5把椅子的代价相等”这一条件,可以推出4张桌子就相当于10把椅子的代价,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元.解:5×(4÷2)+6=16(把)640÷16=40(元)40×5÷2=10O(元)答:桌子和椅子的单价辨别是100元、40元.36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄.解:(45-5)÷4+5=10+5=15(岁)答:今年儿子15岁.37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍.解:18×2÷(4-1)=12(千克)12×4=48(千克)答:原来甲桶有油48千克,乙桶有油12千克.38、想:按照题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分.小丽共失去(100-79)分.再按照(100-79)÷8=2(题)……5(分),阐发答对、答错和没答的题数.解:(5×20-75)÷8=2(题)……5(分)20-2-1=17(题)答:答对17题,答错2题,有1题没答.39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米.按照路程、速度和时间的关系,就可求得所需时间.解:(240+264)÷(20+16)=504÷30=14(秒)答:从两车头相遇到两车尾相离,需要14秒.40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和.解:(600+1150)÷700=1750÷700=2.5(分)答:火车通过隧道需2.5分.41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间.解:60×2÷(60-50)=12(分)50×12=600(米)答:小明从家里到学校是600米.42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,便可求第一次相遇时经过的时间.解:600÷(400-300)=600÷100=6(分)答:经过6分钟两人第一次相遇43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积.解:(12÷2)×(8÷2)=24(平方厘米)答:这个长方形纸板原来的面积是24平方厘米.44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数.从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数.=1.8(元)答:每千克梨1.8元.45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍.解:135÷3÷(2+1)=15(千米)15×2=30(千米)答:甲乙每小时辨别行30千米、15千米.46、想:两种球的数目相等,黑球取完时,白球还剩1 2个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几回.解:12÷(8-5)=4(次)8×4+5×4+12=64(个)或8×4×2=64(个)答:一共取了4次,盒子里共有64个球.47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数.也就是它们的最小公倍数.解:12和18的最小公倍数是366时+36分=6时36分答:下次同时发车时间是上午6时36分.48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍.又知今年儿子15岁,两个岁数的差就是所求的问题.解:(45-15)÷(11-1)=3(岁)15-3=12(年)答:12年前父亲的年龄是儿子年龄的11倍.49、想:按照题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题.解:2、3、4、5的最小公倍数是6060-1=59(支)答:这盒铅笔最少有59支.50、想:按照只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高.按照只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底.再用原来的底乘以原来的高就是要求的面积.解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米.。

小升初奥数题及答案解析

小升初奥数题及答案解析

小升初奥数题及答案解析过桥问题(1)1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。

2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米)火车速度:(米)答:这列火车每秒行30米。

3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。

火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。

这道题求山洞的长度也就相当于求桥长,我们就必须晓得总路程和车长,车长是已知条件,那末我们就要使用题中所给的车速和通过时间求出总路程。

总路程:山洞长:(米)答:这个山洞长60米。

和倍问题1.XXX和妈妈的年龄加在一起是40岁,妈妈的年龄是XXX年龄的4倍,问XXX和妈妈各是多少岁?“妈妈的年龄是XXX的4倍”,我们把XXX的年龄作为1倍,这样XXX和妈妈年龄的和就相当于XXX年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年岁:8×4=32岁综合:40÷4=32岁(4+1)=8岁8×为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算成效符合条件,以是解题正确。

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析:1.已知一桌子的价钱是一把椅子的10倍,又知一桌子比一把椅子多288元,一桌子和一把椅子各多少元?想:由已知条件可知,一桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一桌子的价钱:32×10=320(元)答:一桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、军和强付同样多的钱买了同一种铅笔,军要了13支,强要了7支,军又给强0.6元钱。

每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和军要了13支,强要了7支,可知每人应该得(13+7)÷2支,而军要了13支比应得的多了3支,因此又给强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析

小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。

根据题意可得0.01x = 0.1x - 9。

整理得到0.09x = 9,解得x = 100。

2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 3,解得x = 300。

3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。

4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。

根据题意可得0.01x = 0.02,解得x = 2。

5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。

解析:可以将四个小数都化为百分数进行比较。

0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。

显然,1%是最小的。

6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。

7. 将0.35表示成分数形式。

解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。

8. 填入下面的括号中:(2-3)÷(-2)=()。

解析:(2-3)÷(-2) = -1/(-2) = 1/2。

9. 计算:(-2)+3-5×(-4)÷(-2)。

解析:根据运算法则,先进行乘法和除法,再进行加法和减法。

(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。

10. 计算:(-12)-0.5×(2-3)+4÷2。

解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。

历年小升初常考50道奥数题及答案详细解析

历年小升初常考50道奥数题及答案详细解析

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?欧阳学文2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小升初最难的奥数题

小升初最难的奥数题

小升初最难的奥数题一、题目列举1. 工程问题类有一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

现在甲先做了3天,剩下的工程由甲乙合作完成,问还需要多少天?这题分值可以占20分。

解题思路就是把这项工程的工作量看作单位“1”,甲的工作效率就是1÷10 = 1/10,乙的工作效率是1÷15 = 1/15。

甲先做3天,完成的工作量是1/10×3 = 3/10,剩下的工作量是1 - 3/10 = 7/10。

甲乙合作的工作效率是1/10+1/15 = 1/6,那么剩下工程需要的时间就是7/10÷1/6 = 4.2天。

2. 行程问题类甲乙两车分别从A、B两地同时出发,相向而行。

甲车速度是每小时60千米,乙车速度是每小时40千米,两车相遇后继续前行,甲车到达B地后立即返回,乙车到达A地后也立即返回,第二次相遇时距离A地80千米,求A、B两地的距离。

这题分值可以是20分。

设A、B两地距离为x千米。

第一次相遇时,甲乙两车行驶的时间相同,所以路程比等于速度比,即甲行驶的路程:乙行驶的路程= 60:40 = 3:2,那么第一次相遇时甲行驶了3/5x千米,乙行驶了2/5x千米。

第二次相遇时,甲乙两车一共行驶了3x千米,甲行驶了2x - 80千米,乙行驶了x+80千米,根据时间相同路程比等于速度比,可列出方程(2x - 80):(x + 80)=3:2,解得x = 200千米。

3. 数论问题类一个数除以5余3,除以6余4,除以7余5,这个数最小是多少?这题分值15分。

这个数加上2就能被5、6、7整除。

5、6、7的最小公倍数是5×6×7 = 210,所以这个数最小是210 - 2 = 208。

4. 几何问题类有一个直角三角形,两条直角边分别是6厘米和8厘米,求这个三角形外接圆的半径。

这题分值15分。

直角三角形外接圆的半径等于斜边的一半。

根据勾股定理,斜边的长度是√(6²+8²)=10厘米,所以外接圆半径是5厘米。

小升初典型奥数题及详细答案解析

小升初典型奥数题及详细答案解析
分后,第二堆剩下的是笫一堆的3/4,每堆用多
13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有节果
正好是梨的5倍。原来买来苹果和梨共多少个?
14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。
15、一个时钟的时针长20厘米,如果走一昼夜,那么它的尖端所走过的路程有多长?时针所扫过的面积有多大 ?
33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
34、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问 男生转走了几人?
35、某船在睁水中的速度是每小时15千米,它从上游甲地开往下游乙是共用8小时,水速每小时3千米,它从乙 地返回甲地用。小时?
8×9=72,
20×3+12=72
正符合题中条件。
答:甲、乙、丙三个数分别是8、9、20。
8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动 ,重新插后发现,一共有四面彩旗没动问现在的彩旗间隔多少米?
【答案解析】:800米环岛每隔50米插一面彩旗,共插800÷50=16根,重新插完后,有4根没动,而这4根中的 任意相邻的两根间的距离为50×(16÷4)=200米,重新插完后每相邻的两根彩旗间的距离与50的最小公倍数是200,并 且这个距离一定小于50米.现在间隔为40米。
10、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级)
11、李明是个集邮爱好者。他收集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小 型张是邮票总数的九分之一,李明一共收集邮票多少张

小升初奥数50道经典奥数题答案解析

小升初奥数50道经典奥数题答案解析

小升初奥数50道经典奥数题答案解析1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。

根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。

6、想:第一小组停下来参观果园时间,第二小组多行了[3. 5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。

又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。

小升初奥数题及答案解析

小升初奥数题及答案解析

过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。

2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米)火车速度:(米)答:这列火车每秒行30米。

3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。

火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。

这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。

总路程:山洞长:(米)答:这个山洞长60米。

和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。

历年小升初常考50道奥数题及答案详细解析

历年小升初常考50道奥数题及答案详细解析

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。

运后结算时,共付运费4400元。

托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。

第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。

小升初分班考试奥数题

小升初分班考试奥数题

小升初分班考试奥数题第一题:小明的妈妈有2袋巧克力糖果,每袋里有6颗。

小明想要从妈妈的巧克力糖果中得到3颗,他应该从两袋中各拿走几颗?解析:小明的妈妈有2袋巧克力糖果,每袋里有6颗,所以总共有2 * 6 = 12颗巧克力糖果。

小明想要从妈妈的巧克力糖果中得到3颗,所以他应该从两袋中各拿走多少颗呢?现在假设小明从第一袋中拿走x颗,那么从第二袋中拿走的就是3 - x颗。

根据题意,我们可以得到方程式x + 3 - x = 12,即3 = 12,显然这个方程式无解。

那么小明是不可能从妈妈的巧克力糖果中得到3颗的。

第二题:一辆汽车以每小时60公里的速度行驶,若要行驶300公里,需要多长时间?解析:汽车以每小时60公里的速度行驶,我们可以计算出它行驶1小时可以走60公里,那么它行驶300公里需要多长时间呢?通过简单的计算,我们可以得知300公里除以60公里等于5小时,所以汽车需要5个小时才能行驶完300公里。

第三题:甲、乙两个小朋友一起做作业,甲比乙早开始30分钟,如乙比甲快做完15分钟,甲和乙花了多长时间才能一起完成作业?解析:甲和乙一起做作业,甲比乙早开始30分钟,乙比甲快做完15分钟,那么甲和乙花了多长时间才能一起完成作业呢?假设甲和乙一共花了x分钟一起完成作业,根据题意可以得到方程式(x - 30分) + (x + 15分) = 0,即2x = 15分,所以x = 7.5分。

所以甲和乙一起完成作业需要7.5分钟。

第四题:一个长方形花坛的面积是36平方米,它的长和宽之比是3:2,这个花坛的长和宽各是多少米?解析:一个长方形花坛的面积是36平方米,并且它的长和宽之比是3:2,我们可以设这个花坛的长为3x米,宽为2x米,那么根据面积公式,我们可以得到方程式3x * 2x = 36,即6x^2 = 36。

通过简单计算可以得知x的平方等于6,所以x等于正负根号6。

因为花坛的长和宽必须是正数,所以我们只取正根号6,即x = √6。

50道经典奥数题及答案详细解析

50道经典奥数题及答案详细解析

2016小升初参考:50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。

每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强元钱,即可求每支铅笔的价钱。

解:÷[13-(13+7)÷2]=÷[13-20÷2]=÷3=(元)答:每支铅笔元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小升初经典奥数题(附问题详解)

小升初经典奥数题(附问题详解)

周长:(高等难度)如图,把正方形ABCD的对角线AC任意分成10段,并以每一段为对角线作为正方形.设这10个小正方形的周长之和为P,大正方形的周长为L,则P与L的关系是______(填<,>,=)。

巧求周长部分题目:(高等难度)如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD 的周长是多少厘米。

年龄问题题目:(中等难度)甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?【试题】老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。

剩下的书每次搬20本,还要几次才能搬完?【试题】小华每分拍球25次,小英每分比小华少拍5次。

照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?【试题】同学们到车站义务劳动,3个同学擦12块玻璃。

(补充不同的条件求问题,编成两道不同的两步计算应用题)。

"照这样计算,9个同学可以擦多少块玻璃?"【试题】两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台?【试题】把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?5.在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花?6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析

小升初50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知道一张桌子比一把椅子多288元。

求一张桌子和一把椅子各多少元。

设一把椅子的价钱为x元,则一张桌子的价钱为10x元。

根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。

2.3箱苹果重45千克。

一箱梨比一箱苹果多5千克,求3箱梨重多少千克。

设一箱苹果的重量为x千克,则3箱苹果重量为3x千克。

根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克。

又因为一箱梨比一箱苹果多5千克,所以一箱梨的重量为20千克,3箱梨的重量为60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米。

设甲的速度为x千米/小时,则乙的速度为(x-4)千米/小时。

根据题意,有4x = (x-4)×4 + 4,解得x = 16,因此甲的速度为16千米/小时,乙的速度为12千米/小时,甲比乙每小时快4千米。

4.___和___同样多的钱买了同一种铅笔,___要了13支,___要了7支,___又给___5元钱。

求每支铅笔多少钱。

设每支铅笔的价钱为x元,则___付出13x元,___付出7x元。

又因为___给___5元钱,所以有13x = 7x + 5,解得x = 0.5,因此每支铅笔的价钱为0.5元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。

设两地相距为x千米,则甲乙两车相遇时,已经行驶了共(40+45)t千米,其中t为两车相遇后再返回各自出发车站的时间。

又因为两车同时到达河的两岸,所以甲车和乙车各自返回的时间相等,且均为(12-t)小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数题大全
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车距中点40千米处相遇。

东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。

已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。

如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。

客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。

已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。

求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)2006年7月1日是星期六,求10月1日是星期几?
11、(鸡兔同笼问题)小丽买回0、8元一本和0、4元一本的练习本共50本,付出人民币32元。

0、8元一本的练习本有多少本?
12、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?
13、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。

求有多少个学生?有多少个笔记本?
14、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?
15、置换问题)学校买回6张桌子和6把椅子共用去192元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?
16、(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
17、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9、75千克,原有油多少千克?桶重多少千克?
⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
19、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?
20、(相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?。

相关文档
最新文档