8.3.3直线与直线的位置关系

合集下载

高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教

高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教

高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教【课题】8.3 两条直线的位置关系(二)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线的位置关系,点到直线的距离公式.【教学难点】两条直线的位置关系的判断及应用.【教学设计】与倾角的定义相类似,本教材将两条直线夹角的定义建立在任意角定义的基础上.两条直线相交所形成的最小正角叫做这两条直线的夹角.同时规定,两条直线平行或重合时两条直线的夹角为零角,这样两条直线的夹角的范围是?0,90?.??教材采用“数形结合”、“看图说话”的方法,导入两条直线垂直的条件,过程简单易懂.两条直线垂直的实质就是这两条直线的夹角为90.运用垂直条件时,要注意斜率不存在的情况.例4是巩固性题目.属于基础性题.首先将直线的方程化为斜截式方程,再根据斜率判断两条直线垂直是本套教材判断两条直线垂直的主要方法.例5是利用垂直条件求直线的方程的题目,属于基础性题.首先利用垂直条件求出直线的斜率,然后写出直线的点斜式方程,最后将方程化为一般式方程.这一系列解题程序,蕴含着“解析法”的思想方法.需要强调,点到直线的距离公式中的直线方程必须是一般式方程.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程 *揭示课题教师学生教学时行为行为意图间介绍质疑引导分析了解思考启发学生思考 0 5 8.3 两条直线的位置关系(二) *创设情境兴趣导入【问题】平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢?图8-12 *动脑思考探索新知如图8-12所示,两条相交直线的交点P0,既在l1上,又在l2上.所以P因0的坐标(x0,y0)是两条直线的方程的公共解.讲解说明思考思考带领学生分析带领学生分析此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标.观察图8-13,直线l1、l2相交于点P,如果不研究终边相同的角,共形成四个正角,分别为?1、?2、?3、?4,其中 0?1与?3,?2与?4为对顶角,而且?1+?2?180.讲解说明教学过程教师学生教学时行为行为意图间引领分析理解思考理解记忆引导式启发学生得出结果 20 25 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作?.规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为[0,90].显然,在图8-13中,?1(或?3)是直线l1、l2的夹角,即???1.当直线l与直线l的夹角为直角时称直线l与直线l垂 1212仔细分析讲解关键词语直,记做l1?l2.观察图8-14,显然,平行于x轴的直线l1与平行于y轴的直线l2垂直,即斜率为零的直线与斜率不存在的直线垂直.图8-14 *创设情境兴趣导入【问题】如果两条直线的斜率都存在且不为零,如何判断这两条直线垂直呢? *动脑思考探索新知【新知识】质疑思考带领学生分析教学过程设直线l1与直线l2的斜率分别为k1和k2(如图8-15),若教师学生教学时行为行为意图间讲解说明思考理解记忆带领学生分析引导式启发学生得出结果观察思考主动求解通过例题进一步领会35 l1?l2,则 l2 l1 引领分析仔细分析 8-15 BC,k1?tan?1?ABk2?tan?2?tan(180??3)??tan?3??即 k1?k2??1. AB. BC上面的过程可以逆推,即若k1?k2??1,则l1?l2.由此得到结论(两条直线垂直的条件):讲解(1)如果直线l1与直线l2的斜率都存在且不等于0,那么关键l1?l2?k1?k2??1.词语(2)斜率不存在的直线与斜率为0的直线垂直. *巩固知识典型例题例3 求直线x?2y?1?0与直线y?x?2交点的坐标.说明 ?x?2y?1?0,解解方程组? x?y?2?0,?强调引领讲解说明得 ?x?1, ?y??1,?所以两条直线的交点坐标为(1,?1).【试一试】已知直线3x?4y?a与直线2x?5y?10的交点在x轴上,你是否能确定a的值,并求出交点的坐标?教学过程例4 判断直线y?解设直线y?教师学生教学时行为行为意图间说明强调引领讲解说明引领讲解说明观察思考主动求解思考主动求解通过例题进一步领会注意观察学生是否理解知识点 452x与直线6x?4y?1?0是否垂直. 32x的斜率为k1,则 32k1?. 3直线6x?4y?1?0的斜率为k2.由6x?4y?1?0有 31y??x?, 24故 3k2??. 2由于k1k2??1,所以l1与l2垂直.【试一试】请你判断,直线x?2y?1?0与直线x?y?1是否垂直?【知识巩固】例5 已知直线l经过点M(2,?1),且垂直于直线2x?y?1?0,求直线l方程.解设直线2x?y?1?0的斜率为k1,则k1??2.设直线l的斜率为k.由于l1?l2,故k1k??1,即 ?2k??1,由此得 1 k?. 2又直线l过点M(2,?1),故其方程为 1 y?1?(x?2),2即 x �C 2y �C 4 = 0. *运用知识强化练习 1.判断下列各对直线是否相交,若相交,求出交点坐标:(1)l1:x?2y?0,与 l2:2x?y?1?0;(2)l1:y??x?1,与l2:x?y?4?0;提问巡视指导思考求解及时了解学生知识掌握得情感谢您的阅读,祝您生活愉快。

高一数学目录

高一数学目录

高一数学目录一、函数与映射1.1 函数的概念1.1.1 函数的定义1.1.2 函数的表示方法1.1.3 函数的定义域与值域1.2 映射的概念1.2.1 映射的定义1.2.2 映射与函数的关系二、函数的性质2.1 函数的单调性2.1.1 单调增函数与单调减函数2.1.2 单调性的判断方法2.2 函数的奇偶性2.2.1 奇函数与偶函数的定义2.2.2 奇偶性的判断与应用2.3 函数的周期性2.3.1 周期函数的定义2.3.2 周期函数的性质三、指数与对数3.1 指数函数3.1.1 指数函数的定义3.1.2 指数函数的性质3.2 对数函数3.2.1 对数函数的定义3.2.2 对数函数的性质3.3 指数与对数的运算3.3.1 指数运算规则3.3.2 对数运算规则四、三角函数4.1 三角函数的定义4.1.1 正弦函数、余弦函数、正切函数的定义4.1.2 三角函数的周期性4.2 三角函数的图像与性质4.2.1 正弦函数、余弦函数、正切函数的图像4.2.2 三角函数的性质五、三角恒等变换5.1 三角函数的和差公式5.1.1 正弦和差公式5.1.2 余弦和差公式5.1.3 正切和差公式5.2 倍角公式与半角公式5.2.1 倍角公式5.2.2 半角公式六、平面向量6.1 向量的基本概念6.1.1 向量的定义6.1.2 向量的表示6.2 向量的运算6.2.1 向量的加法与减法6.2.2 向量的数乘6.3 向量的应用6.3.1 向量在几何中的应用6.3.2 向量在物理中的应用七、直线与方程7.1 直线的方程7.1.1 斜截式方程7.1.2 点斜式方程7.1.3 截距式方程7.1.4 一般式方程7.2 直线的性质7.2.1 直线的斜率7.2.2 直线的平行与垂直八、圆与方程8.1 圆的方程8.1.1 标准方程8.1.2 一般方程8.2 圆的性质8.2.1 圆心与半径8.2.2 圆的对称性8.3 圆与直线的位置关系8.3.1 相交8.3.2 相切8.3.3 相离。

第7套人教初中数学七下 8.3 实际问题与二元一次方程组课件3 【经典初中数学课件 】

第7套人教初中数学七下 8.3 实际问题与二元一次方程组课件3 【经典初中数学课件 】
A. 1个 B. 2个 C. 3个 D. 4个
7. 如图OA⊥OC,OB⊥OD,
且∠BOC=α,则
∠AOD=_1_8_0_0_-_α__
B
A
CD O
8.如图,已知AB∥CD,直线EF分别交AB、CD 于点E 、F, ∠BEF的平分线与∠DFE的平分线 相交于点P,你能说明∠P的度数吗?为什么?
A
E
34
21
B
65
D
C
78
F
同位角是:∠1和∠8; ∠2和∠7; ∠3和∠6; ∠4和∠5.
内错角是:∠1和∠6; ∠2和∠5.
同旁内角是:∠1和∠5;∠2和∠6.

一、知识回顾
平行线的判定: 1、同位角相等,两直线平行。 2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、平行于同一条直线的两条直线平行。
(平行线的传递性) 5、垂直于同一条直线的两条直 线平行。
一、知识回顾
平行线的性质:
1、两直线平行,同位角相等。 2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。
中考题我能行!
(1). 2006年东莞)能由△AOB平移而得的图
形是哪个?
A
F
A
B
B
E
O
E
C
D
C
D
(2)(2006年四川省广安市)如图,AB ∥CD,
解得
x4, y 2.5 .
所以
20(5x 2.5y) = 20 (5 4 2 2.5) = 500 .
答:菜农应付 500元.
巩固练习
2.某超市为“开业三周年”举行了店庆活
动,对 A,B 两种商品实行打折出售.打折前, 购买 5 件 A 商品和 1 件 B 商品需用 84 元;购买 6 件 A 商品和 3 件 B 商品需用 108 元.而店庆期间, 购买 50 件 A 商品和 50 件 B 商品仅需 960 元,这

中等职业教育规划教材数学1-3册目录(人民教育出版社)

中等职业教育规划教材数学1-3册目录(人民教育出版社)

目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章 直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章 立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章 概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征 11.5一元线性回归分析第十二章 三角计算及其应用 (第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(ϕω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。

8.3直线的点斜式方程解析

8.3直线的点斜式方程解析

点,因为直线 l 的斜率为k ,由斜率公式得:
即:
y y1 k , x x1
y y1 k x x1
y
P
P1 O
l
Hale Waihona Puke x直线的点斜式方程 经过点 P ,斜率为 k 直线的方程 1 x1 , y1 为:
y y1 k x x1
这个方程是由直线上一定点及其斜率确定,
O
x x0 0

x x0
x 点斜式的局限性:只适用于斜率存在 的情形。
学以运用
求满足下列条件的直线方程:
1 (1)过点(10, ),平行于 x轴; 2
1 y 2
(2)过点( 1 , 4),平行于y轴;
(3)x轴;
x 1
y0
x0
(4) y轴.
典型例题
例3 直线 经过点
线 的方程.
y
.
. Q
k2
1
3– P
y 3 2 x0
l

y 3 2(x 0)
-1
o
x
直线与方程有什么联系?
上一页
问题引入
y
方程的
y 3 2(x 0) 解(x,y)
l
.
. Q
k2
1
3– P –
直线 l上的点(x,y)
-1 o
x
结论:如果直线 l 上每个点的坐标都是某个方程 的解;反之,以这个方程的解为坐标的点都在直 线 l上。就称直线 l 是方程的直线,方程是直线 l 的方程。 上一页
, 求直
练习 直线 线 的方程.
经过点
, 求直
课堂练习
1.写出下列直线的点斜式方程 (1)经过点A(3,-1),斜率是

高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

高中数学高考45第八章 立体几何 8 3 空间点、直线、平面之间的位置关系

例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平 面β的交线,则下列命题正确的是 A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交
√D.l至少与l1,l2中的一条相交
解析 由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相 交.故选D.
的公共直线. 公理4:平行于同一条直线的两条直线互相 平行 .
2.直线与直线的位置关系 (1)位置关系的分类
平行 直线 共面直线
相交直线 异面直线:不同在 任何 一个平面内,没有公共点
(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b, 把a′与b′所成的 锐角(或直角) 叫做异面直线a与b所成的角(或夹角). ②范围: 0,π2. .
√D.点C和点M
解析 ∵AB⊂γ,M∈AB,∴M∈γ. 又α∩β=l,M∈l,∴M∈β. 根据公理3可知,M在γ与β的交线上. 同理可知,点C也在γ与β的交线上.
123456
6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH 在原正方体中互为异面的对数为_3_.
解析 平面图形的翻折应注意翻折前后相对位置的变化, 则AB,CD,EF和GH在原正方体中, 显然AB与CD,EF与GH,AB与GH都是异面直线, 而AB与EF相交,CD与GH相交,CD与EF平行. 故互为异面的直线有且只有3对.
解 ∵BE∥AF 且 BE=12AF,G 为 FA 的中点, ∴BE∥FG且BE=FG, ∴四边形BEFG为平行四边形,∴EF∥BG. 由(1)知BG∥CH. ∴EF∥CH,∴EF与CH共面. 又D∈FH,∴C,D,F,E四点共面.

2021版新高考数学一轮复习第八章8.3空间中的平行关系课件新人教B版

2021版新高考数学一轮复习第八章8.3空间中的平行关系课件新人教B版

第三节ꢀ空间中的平行关系内容索引【教材·知识梳理】1.直线与平面平行的判定定理和性质定理文字语言此平面内图形语言符号语言平面外一条直线与_________l∥a,因为______判定的一条直线平行,则该直线定理与此平面平行(简记为“线线平行⇒线面平行”)a⊂α,l⊄α___________,所以l∥α一条直线与一个平面平行,则过这条直线的任一平面与l∥α,因为_______ _______α∩β=b_________,l⊂β,性质定理交线此平面的_____与该直线平行(简记为“线面平行⇒线线平行”)所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言a∥β,因为________相交直线判一个平面内的两条_________b∥β,a∩b=P,________________a ⊂α,b ⊂α定与另一个平面平行,则定这两个平面平行(简记为理“线面平行⇒面面平行”)____________,所以α∥βα∥β,因为_________性如果两个平行平面同时和质α∩γ=a,___________β∩γ=b 相交第三个平面_____,那么它定理_________,交线们的_____平行所以a∥b【常用结论】1.两个平面平行,则其中任意一个平面内的直线与另一个平面平行.2.三种平行关系的转化:线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想,解题中既要注意一般的转化规律,又要看清题目的具体条件,选择正确的转化方向.【知识点辨析】ꢀ(正确的打“√”,错误的打“×”)(1)若直线a与平面α内无数条直线平行,则a∥α.(ꢀꢀ)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(ꢀꢀ)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(ꢀꢀ)(4)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(ꢀꢀ)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(ꢀꢀ)(6)平行于同一条直线的两个平面平行.(ꢀꢀ)提示:(1) ×.若直线a与平面α内无数条直线平行,则a∥α或a⊂α.(2)×. 一条直线与一个平面平行,那么它与平面内的直线可能平行,也可能是异面直线.(3)×.如果一个平面内的两条相交直线平行于另一个平面,那么这两个平面平行.(4)×.若平面外的一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(5)√.这两条直线没有公共点.(6)×.平行于同一条直线的两个平面平行或相交.【易错点索引】序号易错警示典题索引考点一、T3 1证明线面平行时忽略该直线不在平面内致误考点二、T2利用线面平行的性质定理时不会找过该直线的2考点二、T1平面3证明面面平行时忽略两直线相交致误考点三、角度1【教材·基础自测】1.(必修2 P44练习BT2改编)平面α∥平面β的一个充分条件是(ꢀꢀ)A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【解析】选D.若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.2.(必修2 P46练习AT1改编)下列命题中正确的是(ꢀꢀ)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【解析】选D.A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.3.(必修2 P44 练习BT4改编)如图,长方体ABCD-ABCD中,E为DD的中点,则BD与111111平面AEC的位置关系为________.ꢀ【解析】连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD∥EO,而BD⊄平面ACE,EO⊂平面ACE,所以BD∥平面ACE.111答案:平行考点一ꢀ直线、平面平行的基本问题ꢀ【题组练透】1.如图,P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是(ꢀꢀ)A.OQ∥平面PCD C.AQ∥平面PCDB.PC∥平面BDQ D.CD∥平面PAB2.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是(ꢀꢀ)A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b3.如图是正方体的平面展开图.关于这个正方体,有以下判断:①EC⊥平面AFN;②CN∥平面AFB;③BM∥DE;④平面BDE∥平面NCF.其中正确判断的序号是(ꢀꢀ)A.①③B.②③C.①②④D.②③④4.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.世纪金榜导学号ꢀꢀ【解析】1.选C.因为O为平行四边形ABCD对角线的交点,所以AO=OC,又Q为PA的中点,所以QO∥PC.由线面平行的判定定理,可知A、B正确,又四边形ABCD为平行四边形,所以AB∥CD,故CD∥平面PAB,故D正确.2.选D.选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言.3.选C.由已知中正方体的平面展开图,得到正方体的直观图如图所示:由⇒FN⊥平面EMC,故FN⊥EC;同理AF⊥EC,故EC⊥平面AFN,故①正确;由CN∥BE,则CN∥平面AFB,故②正确;由图可知BM∥DE显然错误,故③不正确;由BD∥NF得BD∥平面NCF,DE∥CF得DE∥平面NCF,由面面平行判定定理可知平面BDE∥平面NCF,故④正确.4.因为平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形【规律方法】ꢀ直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.【秒杀绝招】ꢀ直接法解T1,因为Q是AP的中点,故AQ∩平面PCD =P,所以AQ∥平面PCD是错误的.考点二ꢀ直线、平面平行的判定与性质ꢀ【典例】1.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.ꢀ2.在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.求证:A1C∥平面DEF.【解题导思】序号1联想解题由直线SB∥平面DEFH,联想到利用线面平行的性质,判定四边形DEFH的形状,进而得到其面积.求证A C∥平面DEF,只要设法在平面DEF上找到与A C 112平行的直线即可,因为CD=3BD,故联想到连接A1B,在△BA1C中由比例关系证明平行关系.【解析】1.取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥AC∥DE,且HF=AC=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=答案:2.如图,连接AB,A B,交于点H,A B交EF于点K,连接DK,111因为ABB A为矩形,所以H为线段A B的中点,因为点E,F分别为棱AB,BB的中点,所1111K=3BK,以点K为线段BH的中点,所以A1又因为CD=3BD,所以A C∥DK,又A C⊄平面DEF,DK⊂平面DEF,所以A C∥平面DEF.111【规律方法】1.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β;α∥β,a⊄β,a∥α⇒a∥β).【变式训练】1.如图所示,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.ꢀ【解析】在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2.又E为AD中点,EF∥平面AB C,EF⊂平面ADC,平面ADC∩平面AB C=AC,11所以EF∥AC,所以F为DC中点,所以EF=AC=.答案:2.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,∠BAD=60°,AB=2,CD=4,E 为PC的中点.求证:BE∥平面PAD.【证明】设F为PD的中点,连接EF,FA.因为EF为△PDC的中位线,所以EF∥CD,且EF=CD=2.又AB∥CD,AB=2,所以AB EF,故四边形ABEF为平行四边形,所以BE∥AF.又AF⊂平面PAD,BE⊄平面PAD,所以BE∥平面PAD.考点三面面平行的判定与性质及平行的综合问题命考什么:(1)考查面面平行的判定与性质定理的应用.(2)考查直线、平题面平行的综合问题.(3)考查直观想象、逻辑推理、数学运算的核心素精养.解怎么考:以柱、锥等几何体为载体,考查证明线线、线面、面面平行.读新趋势:考查作已知几何体的截面或求截面面积问题.1.证明面面平行的方法学(1)面面平行的定义.霸(2)面面平行的判定定理.好(3)垂直于同一条直线的两个平面平行.方(4)两个平面同时平行于第三个平面,那么这两个平面平行.法(5)利用“线线平行”“线面平行”“面面平行”的性质相互转化.2.交汇问题:常联系柱、锥等几何体命题,考查平行、垂直或空间角.命题角度1面面平行的判定与性质【典例】如图所示,在三棱柱ABC-A B C中,E,F,G,H分别是AB,AC,A B,A C的中1111111点,求证:(1)B,C,H,G四点共面.∥平面BCHG.(2)平面EFA1【证明】(1)因为G,H分别是A B,A C的中点,1111所以GH是△A B C的中位线,所以GH∥B C.11111又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又G,E分别为A B,AB的中点,A B∥AB且A B=AB,所以A G∥EB,A G=EB, 11111111所以四边形A EBG是平行四边形,所以A E∥GB.11E⊄平面BCHG,GB⊂平面BCHG,又因为A1所以AE∥平面BCHG.1又因为A E∩EF=E,A E,EF⊂平面EFA,111∥平面BCHG.所以平面EFA1命题角度2平行关系的综合应用【典例】如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=a,试在AB上找一点F,使EF∥平面PAD.世纪金榜导学号【解析】在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,因为EG∥CD∥AF,EG=AF,所以四边形FEGA为平行四边形,所以FE∥AG.又AG⊂平面PAD,FE⊄平面PAD,所以EF∥平面PAD.所以F即为所求的点.又PA⊥平面ABCD,所以PA⊥BC,又BC⊥AB,所以BC⊥平面PAB.所以PB⊥BC.所以PC2=BC2+PB2=BC2+AB2+PA2.设PA=x则PC=,由PB·BC=BE·PC得:a,所以x=a,即PA=a,所以PC= a.又CE=所以即GE=CD=a,所以AF= a.故点F是AB上靠近B点的一个三等分点.【题组通关】【变式巩固·练】1.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2 cm,DE=4 cm,EF=3 cm,则AC的长为______ cm.【解析】因为平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F,过D作直线平行于a交β于M,交γ于N.连接AD,BM,CN,ME, NF,所以AD∥BM∥CN,ME∥NF,所以因为AB=2 cm,DE=4 cm,EF=3 cm,所以解得BC=cm,所以AC=AB+BC=2+=(cm).答案:2.如图,在正方体ABCD-A B C D中,S是B D的中点,E,F,G分别是BC,DC,SC的中点,111111求证:(1)直线EG∥平面BDD1B 1 .(2)平面EFG∥平面BDD1B 1 .【证明】(1)如图,连接SB,因为E,G分别是BC,SC的中点,所以EG∥SB.又因为SB⊂平面BDD B,EG⊄平面BDD B,1111所以直线EG∥平面BDD1B 1 .(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD⊂平面BDD B,FG⊄平面BDD B,1111所以FG∥平面BDD1B 1 ,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B 1 .【综合创新·练】1.在四面体ABCD中,M,N分别是面△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________.【解析】如图,连接AM并延长交CD于E,连接BN并延长交CD于F,由重心性质可知, E,F重合为一点,且该点为CD的中点E,由,得MN∥AB,因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD。

《直线与方程》教案例题精析

《直线与方程》教案例题精析

《直线与方程》教案例题精析一、教学目标1. 让学生掌握直线方程的基本形式和斜截式、两点式等求直线方程的方法。

2. 培养学生运用直线方程解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 直线方程的基本形式:Ax + By + C = 02. 斜截式方程:y = kx + b3. 两点式方程:y y1 = (y2 y1) / (x2 x1) (x x1)4. 直线方程的解法:代入法、消元法、图解法5. 直线方程在实际问题中的应用。

三、教学重点与难点1. 重点:直线方程的求法及应用。

2. 难点:直线方程在不同情况下的求解方法和技巧。

四、教学方法1. 采用问题驱动法,引导学生主动探究直线方程的求法。

2. 利用多媒体辅助教学,直观展示直线方程的图解过程。

3. 实例分析,让学生体验直线方程在实际问题中的应用。

五、教学准备1. 课件:直线方程的求法及应用。

2. 练习题:涵盖各种类型的直线方程题目。

3. 实物模型:直线图形的模型,如直尺、三角板等。

教案目录:第一章:直线方程的基本形式1.1 斜率与截距1.2 直线方程的斜截式1.3 直线方程的一般式第二章:斜截式方程2.1 斜截式方程的定义2.2 斜截式方程的求法2.3 斜截式方程的应用第三章:两点式方程3.1 两点式方程的定义3.2 两点式方程的求法3.3 两点式方程的应用第四章:直线方程的解法4.1 代入法求直线方程4.2 消元法求直线方程4.3 图解法求直线方程第五章:直线方程在实际问题中的应用5.1 直线方程与几何问题5.2 直线方程与物理问题5.3 直线方程与生活问题六、直线方程的综合应用6.1 两条直线的交点6.2 直线与圆的位置关系6.3 直线方程在立体几何中的应用七、直线方程的变换7.1 直线的平移7.2 直线的旋转7.3 直线的缩放八、直线方程的优化问题8.1 直线方程的最值问题8.2 直线方程的线性规划问题8.3 直线方程的优化方法与应用九、线性方程组与直线方程9.1 线性方程组的定义9.2 线性方程组的求解方法9.3 线性方程组与直线方程的关系十、直线方程与其他数学学科的联系10.1 直线方程与函数的关系10.2 直线方程与三角函数的联系10.3 直线方程与其他数学学科的融合应用十一、直线方程的拓展与应用11.1 空间直线方程11.2 参数方程与直线方程11.3 直线方程在现代数学中的应用十二、直线方程与坐标系12.1 直角坐标系中的直线方程12.2 极坐标系中的直线方程12.3 柱坐标系与球坐标系中的直线方程十三、直线方程与日常生活13.1 地图上的直线方程13.2 导航与直线方程13.3 直线方程在日常生活中的其他应用十四、直线方程与科技发展14.1 计算机图形学与直线方程14.2 机器学习与直线方程14.3 直线方程在其他科技领域中的应用十五、综合练习与案例分析15.1 综合练习题集15.2 案例分析:直线方程在实际问题中的应用15.3 学生展示与讨论:个人或小组项目重点和难点解析本文档为您提供了《直线与方程》的教案,涵盖了直线方程的基本形式、斜截式、两点式、解法、实际应用、综合应用、变换、优化问题、线性方程组、学科联系、拓展应用、坐标系、日常生活、科技发展以及综合练习与案例分析等十五个章节。

完整版中职数学直线和圆的方程课件

完整版中职数学直线和圆的方程课件
(2)圆心为(1, 2),半径为 11的圆.
归纳小结
(1)圆的一般方程的表达式为
x2 y2 Dx Ey F 0
D2 E2 4F 0
(2)与圆的标准方程的联系
配方
一般方程 展开 标准方程(圆心,半径)
THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS THANKS
x2
y2
Dx
Ey
F
0表示以点(
D 2
,
E) 2
为圆心,1 D2 E2 4F为半径的圆。 2
以下方程是圆的方程吗? x2+y2+2 x+2 y+8=0; x2+y2+2 x+2 y+2=0; x2+y2+2 x+2 y=0.
圆的一般方程
x2 y2 Dx Ey F 0
D2 E2 4F 0
(1)以原点为圆心,半径为 3 的圆的方程是 .
(2)圆 (x-1)2+(y+2)2=25 的圆心坐标是

半径是

把圆的标准方程展开:
(xa)2 ( y b)2 r2
x2 y2 2ax 2by a2 b2 r2 0
令 2a D,2b E,a2 b2 r2 F得
x2 y2 Dx ED 2E F 20 0
解得:D=-8,E=6,F=0. 于是所求圆的方程为
x2+y2-8 x+6 y=0.
将这个方程配方,得 (x-4)2+(y+3)2=25.
因此所求圆的圆心坐标是(4,-3),半径为 5.
练习1下列方程各表示什么图形?
(1)x2 y2 0 _原__点_(_0,_0_) _ (2)x2 y2 2x 4y 6 0____

高一数学讲义 第八章 空间直线与平面

高一数学讲义 第八章  空间直线与平面

高一数学讲义 第八章 空间直线与平面8.1平面及其基本性质几何里的平面与直线一样,是无限延伸的,我们不能把一个无限延伸的平面在纸上表现出来,通常用平面的一部分表示平面.例如,我们常用平行四边形表示平面(图8-1).但我们要把它想象成无限延展的.通常我们用一个希腊字母如:αβγ、、…来表示平面,也可以用表示平面的平行四边形的对角顶点的字母来表示,如平面AC .DCBAβα图81平面的基本性质公理l 如果一条直线上有两个点在同一个平面上,那么这条直线上所有的点都在这个平面上(即直线在平面上).公理2 如果两个平面存在一个公共点,那么它们所有公共点的集合是一条直线.公理3 不在同一直线上的三点确定一个平面(即经过不在同一直线上三点有且仅有一个平面). 在上述公理的基础上,可以得到以下三个推论: 推论1 一条直线和直线外一点确定一个平面.证明:如图8-2,在直线l 上任取两个点A B 、,则A B C 、、是不在同一直线上的三点,由公理3可知,经过此三点的平面有且仅有1个,设为平面α,则A B ∈、平面α,又A B 、在直线l 上,由公理1可知直线l 在平面α上.即经过直线l 和直线外一点的平面有且仅有一个.图82推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.例1.如图8-3,在正方体1111ABCD A B C D -中,点E F 、分别是棱1AA 、1CC 的中点.试画出过点1D E F 、、三点的截面.B 1C 1D 1A 1EHF GDCB A 图83解:连1D F 并延长1D F 与DC 的延长线交于点H ,联结1D E 并延长与DA 的延长线交于点G ,联结GH 与AB BC 、两条棱交于点B ,联结BE BF 、,则1BED F 就是过点1D E F 、、三点的截面.例2.如图8-4,在正方体1111ABCD A B C D -中,E F 、分别为1CC 和1AA 上的中点,画出平面1BED F 与平面ABCD 的交线.PF C E A DB A 1B 1D 1C 1图84解:在平面11AA D D 内,延长1D F ,1D F 与DA 不平行,因此1D F 与DA 必相交于一点,设为P ,则1P FD P DA ∈∈,. 又1FD ⊂平面1BED F ,AD ⊂平面ABCD 内,P ∴∈平面1BED F P ∈,平面ABCD .又B 为平面ABCD 与平面1BED F 的公共点,∴联结PB PB ,即为平面1BFD F 与平面ABCD 的交线.例3.已知E F G H 、、、分别是空间四边形ABCD (四条线段首尾相接,且联结点不在同一平面内,所组成的空间图形叫空间四边形).各边AB AD CB CD 、、、上的点,且直线EF 和HG 交于点P ,如图8-5,求证:点B D P 、、在同一条直线上.G DPF ECBA图85证明:如图直线EF 直线HG P =.P ∴∈直线EF .而EF ⊂平面ABD , P ∴∈平面ABD .同理,P ∈平面CBD ,即点P 是平面ABD 和平面CBD 的公共点.显然,点B D 、也是平面ABD 和平面CBD 的公共点,由公理2知,点B D P 、、都在平面ABD 和平面CBD 的交线上,即点B D P 、、在同一条直线上. 基础练习1.用符号语言表示下列语句(1)点A 在平面α内,但在平面β外;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 2.已知a b c 、、空间三条直线,且a b ∥与a b 、都相交,求证直线a b c 、、在同一个平面上. 3.怎样用两根细绳检查一张桌子的四条腿的下端是否在一个平面内?4.如图8-6所示,ABC △与111A B C △不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线111AA BB CC 、、交于一点.PC 1B 1A 1C BA图865.已知ABC △在平面α外,它的三边所在的直线分别交平面α于P Q R ,,三点,证明P Q R ,,三点在同一条直线上.6.画水平放置的正五边形的直观图. 8.2空间直线与直线之间的位置关系公理4 平行于同一条直线的两条直线平行(即平行线的传递性). 例1.如图8-7所示,设E F G H ,,,分别是空间四边形ABCD 的边AB BC CD DA ,,,上的点,且AE AH CF CGAB AD CB CDλμ====,,求证:F GH EDCBA图87(1)当λμ=时,四边形EFGH 是平行四边形; (2)当λμ≠时,四边形EFGH 是梯形. 证明:联结BD , 在ABD △中,AE AHAB ADλ==,EH BD ∴,∥且EH BD λ=. 在CBD △中,CF CGCB CDμ==,FG BD ∴,∥且FG BD μ=. EH FG ∴∥,∴顶点E F G H ,,,在由EH 和FG 确定的平面内. (1)当λμ=时,EH FG =,故四边形EFGH 为平行四边形; (2)当λμ≠时,EH FG ≠,故四边形EFGH 是梯形.等角定理 如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.证明:当两组平行直线在同一平面内,即为初中几何中的等角定理. 当它们不在同一平面时,如图8-8所示.a 1O 1B 1A 1BA Oba 图88设直线a b 、相交于点O ,直线11a b 、相交于点1O ,且11a a b b ,∥∥,在直线a b 、上分别任取点A B 、(异于点O ),在直线11a b 、上分别任取点11A B 、(异于点1O ),使得11OA O A =,11OB O B =,111AOB AO B ∠∠,分别是a b 、,与11a b 、所成的角. 1111OA O A OA O A =,∥ ∴四边形11OO A A 为平行四边形. 1111OO AA OO AA ∴=,∥.同理1111OO BB OO BB =,∥.1111BB AA BB AA ∴=,∥.四边形11BB A A 为平行四边形. 11AB A B ∴=,因此111AOB AO B △△≌. 111AOB AO B ∴∠=∠.在平面中两条直线的位置关系可以根据交点个数来判断:当两条直线仅有1个交点时.它们是相交的;当没有交点时它们是平行的.但在空间中两条直线没有交点却未必是平行的,如图8-9直线a 在平面α上,直线b 与平面α交于点P ,且P 不在直线b 上,那么直线a 与直线b 即不平行也不相交.此时直线a 与直线b 不能在同一平面内,我们称直线a 、b 是异面直线.baP图89在空间任取一点Q 过Q 分别作a b 、的平行线11a b 、,我们把11a b 、所成的锐角或直角称为异面直线a b 、所成的角.当所成的角为90︒时称异面直线a b 、相互垂直.此外,我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段长度,叫做两条异面直线的距离.例2.如图8-10,在正方体1111ABCD A B C D -中,判断下列直线之间的位置父系,并求出它们所成角的大小.A 2D 2B 2C 2D 1C 1B 1A 1D CBA图810(1)AC 与1BC ;(2)1B D 与1BC . 解:(1)AC 与1BC 是异面直线. 11AA CC ∥且11AA CC =,∴四边形11AA C C 为平行四边形,即11AC AC ∥.11AC B ∴∠为所求AC 与1BC 所成的角.易知11A C B △为等边三角形,即11π3AC B ∠=(2)1B C 与1BC 是异面直线如图8-10:在原正方体下方补一个相同大小的正方体11112222A B C D A B C D -中121B C BC ∥,12DB C ∴∠为所求1B D 与1BC 所成的角.设正方体的棱长为a ,在12DB C △中,112212π2DB B C DC DB C ==∴∠=,,,. 例3.空间四边形ABCD中,2AB BD AD BC CD =====,32AC =,延长BC 到E ,使BC CE =,取BD 中点F ,求异面直线AF 与DE 的距离和他们所成的角.F ED BA图811解:(1)2AB AD BD === ∴三角形ABD 为等边三角形 F 为BD 中点,AF BD ∴⊥,即AF FD ⊥90BC CD CE BDE DF DE ===∴∠=︒∴⊥, DF 长即为异面直线AF DE ,的距离,又112DF BD ==,AF ∴与DE 的距离为1.(2)联结CF F C ,,分别是BD ,BF 的中点, FC ∴平行且等于12DE ,AFC ∴∠即为异面直线AF 与DE 所成的角. 在等边三角形ABD中,AF == 在直角三角形BDE中,12CF DE ==. 三角形AFC 中,由余弦定理得2221cos 22AF FC AC AFC AF FC +-∠==⨯⨯.60AFC ∴∠=︒,即异面直线AF 与DF 成60︒角. 基础练习 1.从止方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为__________.2.如图8-12,已知三棱锥S ABC -中,90ABC ∠=︒,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E F 、,求证:EF SC ⊥.SGF E CBA 图8123.已知a b 、是两条异面直线,直线a 上的两点A B 、的距离为6.直线b 上的两点C D 、的距离为8,AC BD 、的中点分别为M N 、且5MN =,见图8-13.求异面直线a b 、所成的角.图813bMNO aDCBA4.已知四面体S ABC -的所有棱长均为a .求: (1)异面直线SC 、AB 的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.5.如图8-14,等腰直角三角形ABC中,90A BC DA AC DA AB ∠=︒=⊥⊥,,,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.图814FE D CBA6.如图8-15,在正三角形ABC 中,D E F ,,分别为各边的中点,G H I J ,,,分别为AF AD BE DE ,,,的中点.将ABC △沿DE EF DF ,,折成三棱锥以后,求GH 与IJ 所成角的度数.I JH GFEDCB A 图8157.长方体1111ABCD A B C D -中,143AB AA AD ===,,则异面直线1A D 与11B D 间的距离为__________.8.空间两条异面直线a b 、所成角α,过空间一定点O 与a b ,所成角都是θ的直线l 有多少条? 8.3空间直线与平面空间中直线l 与平面α的位置关系,按照它们交点的个数分成以下三种情况:若直线l 与平面α没有公共点,那么称直线l 与平面α平行,记作l α∥;若直线l 与平面α仅有一个公共点,那么直线l 与平面α是相交的;若直线l 与平面α有1个以上的公共点,由公理1可知直线l 在平面α上.我们将直线与平面平行和相交统称为直线在平面外.直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 例1.已知:ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上任取一点G ,过G 和AP 作平面交平面BDM 于GH .求征:AP GH ∥. 证明:如图8-16.联结AC 交BD 于O ,联结MO ,G HPOMD CBA图816ABCD 是平行四边形O ∴是AC 中点,又M 是PC 中点, AP OM ∴∥,又OM ⊂面BM DPA ∴∥平面BM D (线面平行判定定理)又PA ⊂平面PAHG ,且面PAHG 平面BMD GH =, PA GH ∴∥(线面平行的性质定理)例2.正方体1111ABCD A B C D -中,E G 、分别是BC 、11C D 的中点如图8-17.求证:EG ∥平面11BB D D .D C 1A 1C图817证明:取BD 的中点F ,联结FF 、1D F .E 为BC 的中点,EF ∴为BCD △的中位线,则EF DC ∥,且12EF CD =.G 为11C D 的中点,1D G CD ∴∥且112D G CD =,1EF D G ∴∥且1EF D G =, ∴四边形1EFD G 为平行四边形,∴1D F EG ∥,而1D F ⊂平面11BDD B ,EG ⊄平面11BDD B , ∴EG ∥平面11BDD B .直线l 与平面α相交,且与平面内所有直线都垂直,称直线l 垂直于平面α,记作l α⊥.直线l 称为平面α的垂线,l 与平向α的交点称为垂足.直线和平面垂直判定定理 如果直线l 与平面α内两条相交直线a b 、都垂直,那么直线与平面垂直. 证明:设直线a b O =,直线c 为平面α上任意一条直线 (1)当直线l 与直线c 都经过点O 时在直线l 上点O 的两侧分别取点P Q 、使得OP OQ =,在平面α上作一条直线,使它与a b c 、、分别交于点A B C 、、联结PA PB PC QA QB QC 、、、、、(见图8-18). acb αO QB A P图818OA 垂直平分PQ ,PQ QA ∴=. 同理PB QB =. PA QA PB QB AB AB ===,,, PAB QAB PC QC ∴∴=,△△≌.PQ c ∴⊥,即l c ⊥.(2)若直线l 与直线c 不都经过点O ,则过O 引l 与直线c 的平行线1l 与直线1c ,由(1)可知11l c ⊥.由等角定理可知l c ⊥.综上所述,l α⊥.直线和平面垂直性质定理 如果两条直线同垂直于一个平面,那么这两条直线平行.过空间一点P 有且仅有一条直线l 和一个平面α垂直,反之过一点P 有且仅有一个平面α与直线l 垂直,垂足Q 称为点P 在平面α上的射影,线段PQ 的大小称为点P 到平面α的距离.若一条直线与一个平面平行,则这条直线上任意一点到平面的距离,叫做这条直线到平面的距离. 若一条直线与一个平面α相交且不垂直,称直线l 与平面α斜交,直线l 为平面α的斜线,交点称为斜足.平面的斜线与其在平面上的射影所成的角称为直线与平面所成的角.最小角定理 斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角. 例3.已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 证明:过直线l 上任意两点A B ,分别引平面α的垂线AA ,′BB ′,垂足分别为A B ,′′(见图8-19).βαB'A'B A图819AA BB αα⊥⊥,′′ AA BB ∴∥′′设经过直线AA ′和BB ′的平面为A B ββα=,′′l l A B α∴∴,∥∥′′AA BB ∴′′是平行四边形 AA BB ∴=′′即直线l 上各点到平面的距离相等例4.如图8-20,已知正方形ABCD 的边长为4,E F ,分别是边AB AD ,的中点,GC 垂直于ABCD 所在的平面,且2GC =,求点B 到平面EFG 的距离.OSGH F E DCBA图820证明:联结DB AC ,,设DB AC O = E F ,分别为AB AD ,中点DB EF ∴∥;又DB ⊄平面EFG , BD ∴∥平面EFG .∴点B 到平面EFG 的距离就是DB 到平面EFG 的距离. ∴即点O 到平面X O 的距离.设EF AC H =,在平面CHG 中,作OS GH ⊥ DB AC ⊥,又EF BD ∥ EF AC ∴⊥又GC ⊥面ABCD ,GC EF ∴⊥ EF ∴⊥面CHG EF OS ∴⊥,又OS GH ⊥ OS ∴⊥面EFG ∴OS 即为O 点到平面EFG 的距离,即为所求 直角三角形HSO 与直角三角形HGC 相似 SO HOGC GH∴=,又124GC HO AC GH =====,2SO ∴= ∴B 到平面EFG的距离为11. 例5.相交成60︒的两条直线AB AC ,和平面α所成的角分别为30︒和45︒,求这两条斜线在平面α内的射影所成的角.解:如图8-21,作平面AO ⊥平面A ,垂足为O ,O CBA图821则30ABO ∠=︒,45ACO ∠=︒,设AO h =,则2AB h =,AC =,BO =,CO h =, 在三角形ABC 中,根据余弦定理有22222(2))cos606BC h h h =+-⨯⨯︒=-.同理,在三角形BOC 中,令BOC θ∠=,则有22222)cos 4cos BC h h h θθ=+-⨯⨯=-.222264cos h h θ∴-=-.cos θ∴=,θ∴=. 三垂线定理 在平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图8-22,直线PM 为平面α的斜线,M 为斜足,Q 为P 在平面α内的射影,a 为平面α内一条直线,且a MQ ⊥.求证:a PM ⊥.图822ab a PQM证明:过点M 作的a 平行线b ,则b MQ b PQ ⊥⊥, 即b ⊥平面PMQ ,MQ ⊆平面PMQ 所以b PM a b ⊥,∥,即a PM ⊥.类似地,我们也可以证明:三垂线的逆定理 在平面内的一条直线,如果和平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 基础练习1.如果三个平面αβγ、、两两相交于三条交线a b c 、、,讨论三条交线的位置关系,并证明你的结论. 2.在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11ABC D 均成30︒角,求这样的直线条数3.已知空间四边形ABCD P Q ,、分别是ABC △和BCD △的重心,求证:PQ ∥平面ACD .4.在棱长为a 正方体1111ABCD A B C D -中, (1)求证:11B D CD ⊥; (2)求证:1B D ⊥平面1ACD ; (3)求点D 到平面1ACD 的距离.5.正方体1111ABCD A B C D -中,求1B D 与平面11ABC D 所成角的大小.6.正方体ABCD A B C D -′′′′的棱长为a ,则异面直线CD ′与BD 间的距离等于__________. 7.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE BD 、上各取一点P Q 、.且AP DQ =.求证:PQ ∥面BCE .8.如图8-23,已知AOB ∠在平面M 上,P 为平面外一点,满足POA ∠POB =∠θ=(θ为锐角),点P 在平面上的射影为Q .P OQFE AM 图823(1)求证点Q 在AOB ∠的平分线OT 上;(2)讨论POA ∠、POQ ∠、QOA ∠之间的关系.9.若直线l 与平面α成角π3,直线a 在平面α内,且和直线l 异面,则l 与a 所成角的取值范围是多少? 10.如图8-24,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,,,ABH HBC ABC θαβ∠=∠=∠=,求证:cos cos cos βαθ=⋅. αθβH D CB Aα图82411.如图8-25,平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M .连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.N MBA HSα图825(1)求证:NH SB ⊥;(2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线?12.如图8-26,在正方体1111ABCD A B C D -中,EF 为异面直线1A D 与AC 的公垂线,求证:1EF BD ∥.FE D CBAD 1C 1B 1A 1图82613.如图8-27所示,90BAC ∠=︒.在平面α内,PA 是α的斜线,60PAB PAC ∠=∠=︒.求PA 与平面α所成的角.B αA CMO NP图8278.4空间平面与平面的位置关系空间两个平面根据交点的个数可以分为:若两个平面没有交点则称两个平面互相平行;若两个平面有交点则称两个平面是相交的.平行于同一平面的两个平面互相平行,分别在两个平行平面上的直线是异面或平行的.两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推论 如果一个平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,那么这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 例1.平行四边形ABCD 和平行四边形ABEF 不在同一平面内,M ,N 分别为对角线AC ,BF 上的点,且AM ACFN FB=.求证:MN ∥平面BEC .证明:如图8-28,在平行四边形ABCD 中,过M 作MP BC ∥交BC 于P ,联结PN .FP MNEDCBA图828AM AP AC AB =,又AM AC FN BF =,即AM FNAC BF=. ,AP FN PN AF BE AB BF∴=∴∥∥. 又MP BC ∥,∴平面MPN ∥平面CBE . 又MN ⊂平面MPN , MN ∴∥平面BEC .例2.如图8-29所示,平面α平面β,点A C α∈、,点B D β∈、,AB a =是α、β的公垂线,CD 是斜线.若AC BD b ==,CD c =,M 、N 分别是AB 和CD 的中点.图829(1)求证:MN β∥;(2)求MN 的长. 证明:(1)联结AD ,设P 是AD的中点,分别联结PM 、PN . M 是AB 的中点,PM BD ∴∥.又,PM ββ⊂∴∥. 同理N 是CD 的中点,PN AC ∴∥. AC α⊂,PN α∴∥.,,PN PM P αβ=∥PMN β∴∥. MN ⊂平面PMN ,MN β∴∥. (2)分别联结MC MD 、.1,,2AC BD b AM BM a ====又AB 是αβ、的公垂线,90CAM DBM ∴∠=∠=︒,Rt Rt ACM BDM ∴≌△△,CM DM ∴=,DMC ∴△是等腰三角形. 又N 是CD 的中点,MN CD ∴⊥.在Rt CMN △中,MN =一般地,当两个平面相交时,它们的交线l 将各平面分割为两个半平面,由两个半平面αβ、及其交线l 组成的空间图形叫做二面角(dihedral angle ),记作l αβ--.交线l 称之为二面角的棱,两个半平面αβ、叫做二面角的面.如果αβ、上分别有点P Q 、,那么二面角l αβ--也可以记作P l Q --.为了刻画二面角的大小,我们在棱l 上任取一点O ,在面αβ、上分别作棱l 的垂线OM 、ON ,则[](0,π)MON θ∠=∈称为二面角l αβ--的平面角.若π2α=,则称平面αβ⊥. 两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.例3.如图8-30,在空间四边形SABC 中,SA ⊥平面ABC ,AB BC ⊥,DE 在平面SAC 内,DE 垂直平分SC ,且分别交AC ,SC 于D ,E ,又SA AB =,SB BC =,求以BD 为棱,以BDE 和BDC 为面的二面角的大小.E DCBAS图830解:SB SC =,且E 为SC 的中点,BE SC ∴⊥. 又DE 垂直平分SC ,SC ∴⊥面,BDE SC BD ∴⊥. 又BD ⊥平面SAC ,,,BD DE BD DC ∴⊥⊥EDC ∴∠即为E BD C --的平面角.设SA a =,则,,AB a SB ==SA ⊥面ABC ,BC AB ⊥.,SB BC SC ∴⊥∴为等腰直角三角形SBC的斜边,又BC =,2,,cos ,30SC a AC SCA SCA ∴==∠=∴∠=︒. DE SC ⊥,∴在直角三角形EDC 中,60EDC ∠=︒,即为所求.例4.已知:如图8-31所示,平行四边形ABCD中,AB =AD BD ==,沿BD 将其折成一个二面角A BD C --,若折后AB CD ⊥.63223DCBA图831(1)求二面角A BD C --的大小;(2)求折后点C C 到平面ABD 的距离.解:(1)在平行四边形ABCD中AB =AD BD ==.222AB AD BD ∴=+ ,AD BD BC BD ∴⊥⊥. 作AH ⊥平面BDC ,联结DH (见图8-32).HEDCB A图832AD BD ⊥,由三垂线定理逆定理得DH BD ⊥, ∴ADH ∠是二面角A BD C --的平面角.联结BH,AB DC ⊥,由三垂线定理逆定理, 得BH DC ⊥,设垂足为E ,在直角三角形ABC中,2BD BC BE DC ⋅===,DE ∴ 三角形DHB 与三角形DBE 相似,DH DEDB BE∴=,即DE BD DH BE ⋅=在直角三角形ADH中,1cos 2DH ADH AD ∠===,π3ADH ∴∠=. 即二面角--A BD C 的大小为π3. (2)由对称性,C 到平面ABD 的距离等于A 到平面ABD 的距离. AH ⊥平面BCD ,∴点A 到平面BCD 的距离即是线段AH 的长, 直角三角形ADH中,sin 3AH AD ADH =⋅∠==, ∴点C 到平面ABD 的距离为3. 例5.如图8-33,已知A B 、在平面α上,点C 是平面外一点,且在平面α上的射影为D ,且A B D、、三点不共线,二面角C AB D --的大小为θ,求证:cos DABCABS S θ=.αM DCBA图833证明:过点D 作DM 垂直AB ,垂足为M ,联结CM . 因为,CD AB αα⊥⊆,所以CD AB ⊥,又AB DM ⊥,因此AB ⊥平面CDM ,即AB CM ⊥. 所以CMD ∠为二面角--C AB D 的平面角. 在直角三角形CDM △中有cos cos ABDCBDS DM CMD CM S θ=∠==. 例6.如图8-34,已知两异面直线,a b 所成的角为θ,它们的公垂线段AA ′的长度为d .在直线,a b 上分别取点,E F ,设,A E m AF n ==′,求EF .A'βnb a m F G A图834解:设经过b 且与AA ′垂直的平面为α,经过a 和AA ′的平面为β,c αβ=;则c a ∥,因而b ,c 所成角为θ,且AA c ⊥′;又,AA b AA a ⊥∴⊥′′, 根据两个平面垂直的判定定理,βα⊥. 在平面β内作EG c ⊥,则EG AA =′. 并且根据两个平面垂直的性质定理,EG α⊥ 联结FG ,则EG FG ⊥.在直角三角形EFG 中,222EF EG FG =+AG m =,三角形AFG 中,2222cos FG m n mn θ=+-;又22ED d =,22222cos EF d m n mn θ∴=++-,因此EF =1.已知平面αβ∥,AB ,CD 为夹在,αβ间的异面线段,E 、F 分别为AB CD 、的中点. 求证:,EF EF αβ∥∥.2.如果αβ∥,AB 和AC 是夹在平面α与β之间的两条线段,AB AC ⊥,且2AB =,直线AB 与平面α所成的角为30︒,求线段AC 长的取值范围.3.如图8-35,已知正方体1111ABCD A B C D -中,E F 、分别为1AB AA 、的中点.求平面1CEB 与平面11D FB 所成二面角的平面角的正弦值.CB E AF D 1C 1B 1A 1图8354.如图8-36,点A 在锐二面角MN αβ--的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为45︒,与面β所成的角大小为30︒,求二面角MN αβ--的大小.NM APβα图8365.正方形ABCD 边长为4,点E 是边CD 上的一点,将AED △沿AE 折起到1AED 的位置时,有平面1ACD ⊥平面ABCE ,并且11BD CD ⊥.(1)判断并证明E 点的具体位置; (2)求点D ′到平面ABCE 的距离.6.在正三角形ABC 中,E F P 、、分别是AB AC BC 、、边上的点,满足12AE EB CF FA CP PB ===∶∶∶∶,如图8-37.将AEF △沿EF 折起到1A EF △的位置,使二面角1A EF B --成直二面角,联结1A B 、1A P ,如图8-38.A BP FEC图837CEF P BA 图838(1)求证:1A E ⊥平面BEP ;(2)求直线1A E 与平面1A BP 所成角的大小;(3)求二面角1B A P F --的大小(用反三角函数表示).7.如图8-39,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --′.C'DCB A图839(1)指出这个二面角的面、棱、平面角; (2)若二面角C AD C --′是直二面角,求C C ′的长; (3)求AC ′与平面C CD ′所成的角; (4)若二面角C AD C --′的平面角为120︒,求二面角A C C D --′的平面角的正切值. 8.在棱长为a 的正方体中.求异面直线BD 和1B C 之间的距离.9.设由一点S 发出三条射线,,,,SA SB SC ASB BSC ASC αβθαβθ∠=∠=∠=、、、、均为锐角,且cos cos cos θβθ⋅=.求证:平面ASB ⊥平面BSC .10.如图8-40,矩形ABCD ,PD ⊥平面ABCD ,若2PB =,PB 与平面PCD 所成的角为45︒,PB 与平面ABD 成30︒角,求:PF EDCBA图840(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角C PB D --的余弦值. 11.如图8-41,线段PQ 分别交两个平行平面αβ、于A B 、两点,线段PD 分别交αβ、于C D 、两点,线段QF 分别交αβ、于F E 、两点,若9PA =,12AB =,12BQ =,ACF △的面积为72.求BDE △的面积.βαAB Q ED CPF图84112.如图8-42,已知正方形ABCD .E F 、分别是AB CD 、的中点.将ADE △沿DE 折起,如图8-43所示,记二面角A DE C --的大小为θ(0πθ<<).FEDCBA图842F EDCBA 图843(1)证明BF ∥平面ADE ;(2)若ACD △为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.13.在矩形ABCD 中,已知1,AB BC a ==,PA ⊥平面ABCD ,且1PA =. (1)在BC 边上是否存在点Q ,使得PQ QD ⊥,说明理由;(2)若BC 边上有且仅有一个点Q ,使PQ QD ⊥,求AD 与平面PDQ 所成角的弦值; (3)在(2)的条件下,求出平面PQD 与平面PAB 所成角的大小.14.两个平行平面α和β将四面体ABCD 截成三部分.已知中间一部分的体积小于两端中任一部分的体积,点A 和B 到平面α的距离分别为30和20.而点A 和C 到平面β的距离分别为20和16,两个截面中有一个是梯形,点D 到平面α的距离小于24.求平面α和β截四面体所得的截面面积之比. 8.5空间向量及其坐标表示我们把具有大小和方向的量叫做向量.同向且大小相等的两个向量是同一个向量或相等的向量,大小相等方向相反的两个向量是互为负向量,大小为0的向量称为零向量.对空间任意两个向量a b 、.作OA a OC AB b ===,,则O A B 、、三点共面,见图8-44.因此,空间任意两个向量都可以用在同一平面内的两条有向线段表示.与平面向量运算一样,我们可以定义空间向量的加法、减法与数乘运算如下:a图844OB OA AB a b =+=+; CA OA OC a b =-=-;0000a a a λλλλλλ⎧>⎪⎪>⎨⎪<⎪⎩方向相同,大小,,方向相同,大小,为为- 与平面向量类似,在空间两个向量的方向相同或相反,则称他们为共线向量或平行向量,共线向量所在直线平行或重合.类似我们可以验证空间向量的加法与数乘运算满足如下规律: (1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++ (3)数乘分配律:()a b a b λλλ+=+类似地,可以定义两个向量的夹角和向量的数量积:cos a b a b θ⋅=,其中θ为两个向量的夹角,[]0πa b θ∈,,、表示向量a b 、的大小 当π2θ=时称两个向量垂直记作a b ⊥. 与平向向量类似有下列性质成立: (1)0a b a b ⊥⇔⋅=. (2)2a a a =⋅. (3)()()ab a b λλ⋅=⋅.(4)a b b a ⋅=⋅. (5)()()()a b c a b a c ⋅+=⋅+⋅.例1.A B C D 、、、为空间不共面的四点,以A B C D 、、、四点为顶点的线段围成一个空间四面体,若AC BD BC BD ==,,求证AB CD ⊥.图845DBA解:BC AC AB BD AD AB =-=-,, BC BD =, 22BC BD ∴=.2()()BC BC BC AC AB AC AB =⋅=-⋅- 222AC AC AB AB =-⋅+.同理2222BD AD AD AB AB AD AC =-⋅+=,, AD AB AC AB ∴⋅=⋅即()AD AC AB -⋅=0.即CD AB ⋅=0,AB CD ∴⊥.通常我们将可以平移到同一个平面的向量,叫做共面向量.对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定是共面向量.如上例中a b c 、、中任意两个共面,但a b c 、、却不共面.下面讨论三个向量共面的条件.已知a b 、为不共线的向量,而a b c 、、三个向量共面,则表示可以将它们平移到同一个平面上.由平面向量唯一分解定理.存在实数()λμ,满足c a b λμ=+.反之,若存在实数对()λμ,满足c a b λμ=+,对空间任意一点O 作111OA a OB b OA a A B b λμ====,,,,则1111OB OA A B a b c λμ=+=+=即c 可以平移到O A B 、、三点所在平面上,因此a b c 、、共面.由此可得a b c 、、共面的充要条件是:存在实数对()λμ,满足c a b λμ=+.例2.求证:任意三点不共线的四点A B C D 、、、共面的充要条件是:对空间任意点O 有:OD xOA yOB zOC =++(其中1x y z ++=).证明:A B C D 、、、共面的充要条件是存在实数对()λμ,满足AD AB AC λμ=+(见图8-46).图846()()OD OA AD OB OA OC OA μμ∴-==-+-, (1)OD OA OB OC λμλμ∴=--++.令1x λμ=--,y z λμ==,,则OD xOA yOB zOC =++(其中1x y z ++=).定理 如果三个向量a b c 、、不共面,那么对于空间任意向量P ,存在唯一的实数对()x y z ,,满足:P xa yb zc =++证明:如图8-47,过空间任意点O 作OA a OB b OC c OP P ====,,,, 图847P过点P 作1PP OC ,∥交平面OAB 于点1P ;则11P OP OP PP ==+. 11PP OC PP zc z ∴=∈R ,,∥. 在平面AOB 中存在z ,y ∈R ,满足1OP xOA yOB =+, 因此有11P OP OP PP xOA yOB zOC ==+=++. 若存在111()()x y z x y z ≠,,,,也满足:111P x a y b z c =++, 则有111P xa yb zc x a y b z c =++=++. 111()()x y z x y z ≠,,,,,不妨设1x x ≠,1111y y z za b c x x x x --∴=+--.a b c ∴、、共面,矛盾.由此定理可知,如果三个向量a b c 、、,那么所有空间向量均可以由a b c 、、唯一表示,此时我们称(a b c 、、)为空间向量的一个基底,a b c 、、都叫做基本向量.如果空间的一个基底的三个基向量互相垂直,且大小为1,则称这个基底为单位正交基底,常用(i j k 、、)表示.在空间选定一点O 和一个单位正交基底(i j k 、、),以O 点为坐标原点,分别以i j k 、、的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系O xyz -,那么对于任意向量P ,存在唯一的实数对(x y z ,,)满足:P OP xi y j zk ==++,简记为()P x y z =,,,此时称点P 的坐标为()x y z ,,,见图8-48.图848若111()OA a x y z ==,,,222()OB b x y z ==,,,则 121212()a b x x y y z z +=+++,,,121212()BA OA OB a b x x y y z z =-=-=---,,,111()a x y z λλλλ=,,.例3.在直三棱柱111A B C ABC -中,π2BAC ∠=,11AB AC AA ===.已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD EF ⊥,求线段DF 的长度的取值范围解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,则112211(00)(01)0101(00)(01)22F t t E G D t t ⎛⎫⎛⎫<<<< ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,.所以12111122EF t GD t ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,,.因为GD EF ⊥,所以1221t t +=,由此推出2102t <<.又12(0)DF t t =-,,,21DF t =1DF <.例4.已知四边形ABCD 和ABEF 是两个正方形,它们所在的平面互相垂直,M AC ∈,N BF ∈,且AM FN =,见图8-49.求证:不论M 在AC 上何处,直线MN 不可能同时垂直AC 和BF .MNFEDCBA图849证明:设BA a BE b BC c BN t BF ====⋅,,,, 则()(1)()BN t a b AM t c a =⋅+=--, 于是()(1)()(1)MN BN BM t a b t c a a tb t c ⎡⎤⎡⎤=-=+---+=--⎣⎦⎣⎦, 假设MN 同时垂直AC 和BF ,则00.MN AC MN BF ⎧⋅=⎪⎨⋅=⎪⎩,由题设,知00a b b c ⋅=⋅=,, 由2(1)()(1)MN AC tb t c c a t c ⎡⎤⋅=--⋅-=-⋅⎣⎦,得10t -=即1t =.由2(1)()0MN BF tb t c a b t b ⎡⎤⋅=--⋅+=⋅=⎣⎦得0t =,矛盾!所以,MN 不可能同时垂直AC 和BF .基础练习1.如图8-50,OA a OB b OC c ===,,,M N P 、、分别为AB 、BC 、CA 的中点,试用a b c 、、表示下列向量:OM MN AN ,,.图8502.已知空间三点(202)A -,,,(212)B -,,,(303)C -,,.设a AB b AC ==,,是否存在实数k ,使向量ka b +与2ka b -互相垂直,若存在,求k 的值;若不存在,说明理由.。

中等职业教育规划教材数学(山东省基础类)目录

中等职业教育规划教材数学(山东省基础类)目录

中等职业教育规划教材数学目录数学—101第一章集合1.1集合及其表示1.1.1集合1.1.2集合地表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件阅读与实践02第二章2.1一元二次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含绝对值的不等式2.2.4一元二次不等式阅读与实践03第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用阅读与实践04第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用阅读与实践05第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用阅读与实践06第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2空间几何体的体积阅读与实践数学—207三角函数7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像、性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角阅读与实践08第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法2.2向量的减法8.2.3数乘向量8.3平面向量的直角坐标运算8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量的内积的直角坐标运算阅读与实践09第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量和向式方程9.1.2直线的斜率和点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行99.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程阅读与实践10第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置关系阅读与实践11第十一章概率与统计初步11.1技术的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3简单的随机抽样11.3系统抽样11.3分层抽样11.4用样本估计总体11.4.1用样本的概率分布估计总体发布11.4.2用样本的数字特征估计数字特征11.5一元线性回归分析。

高教版中职数学下册8.3《两条直线的位置关系》word教案1

高教版中职数学下册8.3《两条直线的位置关系》word教案1

【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩ooαα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间8.3 两条直线的位置关系(一)*创设情境 兴趣导入 【知识回顾】我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】两条直线平行,它们的斜率之间存在什么联系呢质疑 引导 分析思考启发 学生思考10 *动脑思考 探索新知 【新知识】当两条直线1l 、2l 的斜率都存在且都不为0时(如图8-11(1)),如果直线1l 平行于直线2l ,那么这两条直线与x 轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x 轴相交的同位角相等,故两直线平行.当直线1l 、2l 的斜率都是0时(如图8-11(2)),两条直线都与x 轴平行,所以1l //2l .当两条直线1l 、2l 的斜率都不存在时(如图8-11(3)),直线1l 与直线2l 都与x 轴垂直,所以直线1l // 直线2l .讲解 说明引领分析思考 理解带领 学生 分析图8-11(1)【教师教学后记】。

医用直线加速器参数

医用直线加速器参数
1套
10
免洗胶片验证系统(进口)
1套
11
等中心校验仪器
1套
12
移动式激光定位系统(用于定位CT-SlM)(国产)
1套
13
环境监测用的X (r)射线报警仪
I台
14
个人剂量报警仪
6个
15
辐射环境巡检仪
1台
16
电子线热丝切割机
1台
17
恒温水箱(热塑膜)
1台
18
头部固定架
2套
19
三框型头肩固定架
2套
20
三框体部固定架
12. 4. 1. 1. 1.
基于测量数据的自动处理
12. 4. 1. 1.2.
图形化数据的浏览和编辑
12. 4. 1. 1.3.
电子化数据确认
12. 4. 1. 1.4.
具有物理学数据表的支持和打印功能
12.4. 2.
轮廓勾画工具
12. 4. 2. 1.
自动勾画
12. 4. 2. 1. 1.
具有轮廓的逻辑运算工具
12. 1.
基本功能要求
12. 1. 1.
所投设备要求:本次招标为一套放射治疗计划系统,包含治疗计划工作站2台和医生 工作站2台,以及支持运行所必需的软、硬件
12. 1.2.
物理数据管理:具有射线数据输入、分析和配置功能
12. 1. 3.
虚拟模拟:具有虚拟模拟功能
12. 1.4.
轮廓勾画:具有轮廓勾画功能
10. 1. 7.
平板探测器在束流方向的移动范围:80cm至Ocm
10. 1. 8.
平板探测器在束流方侧向的移动范闱:-18Cm至15cm
10. 1. 9.

8.1两点间的距离公式1解析

8.1两点间的距离公式1解析

8.1两点间距离公式及中点公式(1)——1课时教学内容:江苏省职业学校教材《数学》基础模块下册第8章 §8.1 第1课时教学目标:一、知识与技能掌握两点间距离公式,并能应用公式解决与之有关的问题; 二、过程与方法通过实际问题情境构造数学模型,借助数形结合探究两点间的距离公式,培养学生解决问题的能力并提高其计算能力; 三、情感态度与价值观培养学生勇于探究,敢于挑战的精神,感受数学的严谨,提高学生的数学素养。

教学重点:两点间距离公式教学难点:利用向量知识探究两点间距离公式教学理念:学生是学习和发展的主体,教师是教学活动的组织者和引导者. 教学过程:(一) 创设情景:大海中有两个小岛,一个在灯塔东60海里偏北80海里的1P 点处,另一个在灯塔西10海里偏北55海里2P 点处,那么如何确定两小岛之间的距离呢?分析:根据两岛的位置,联想到点的坐标,放到直角坐标系中,借助向量知识来解决。

一般地,设点111222(,),(,)P x y P x y 为平面直角坐标平面上的任意两点,则111222(,),(,)OP x y OP x y →→==。

以1P 为起点,2P 为终点,作向量12,PP →1221=,PP OP OP →→→-则由 12=PP →2121得(x -x ,y -y ),那么1P ,2P 两点间的距离|12PP|就是向量12PP →的模12||PP →。

由向量数量积的性质,有212||=PP 222121(x -x )+(y -y ),从而12||PP (二)探求新知:平面上任意两点1P ,2P 间的距离公式:一般地,设点111222(,),(,)P x y P x y 为平面直角坐标平面上的任意两点,12||PP 。

(三)巩固应用:例1、 求A (-4,4),B (8,10)间的距离|AB |.变式:已知点A (-1,-1), B (b ,5),且|AB |=10,求b . 解: x 1=-4, y 1=4;x 2=8, y 2=10,应用公式(7-1-1),|AB |=)()(21221y y x x -+-=2210484)()(-+--=180=65.变式:据两点间距离公式,|AB |=36)1()]1(5[)]1([222++=--+--b b =10,解得 b =7或b =-9.例2、已知∆ABC 的三个顶点分别为A(2,6),B(-4,3),C(1,0),求∆ABC 的三条边长。

2023年春季人教版七年级下册数学课本目录

2023年春季人教版七年级下册数学课本目录

2023年春季人教版七年级下册数学课本目录第一单元有理数与整式1.1 有理数的概念与表示- 1.1.1 有理数的定义- 1.1.2 有理数的表示方法- 1.1.3 有理数的大小比较1.2 整式的概念与运算- 1.2.1 整式的定义- 1.2.2 整式的加法和减法- 1.2.3 整式的乘法1.3 整式与有理数之间的关系- 1.3.1 整式与有理数的相等关系- 1.3.2 整式与有理数的大小比较第二单元方程与不等式2.1 一元一次方程- 2.1.1 一元一次方程的概念- 2.1.2 一元一次方程的解法- 2.1.3 一元一次方程的应用2.2 不等式- 2.2.1 不等式的概念与性质- 2.2.2 不等式的解法- 2.2.3 不等式的应用2.3 一元一次方程组与不等式组- 2.3.1 一元一次方程组的概念与解法- 2.3.2 不等式组的概念与解法第三单元几何图形的认识3.1 点、线、面及其关系- 3.1.1 点的定义与性质- 3.1.2 线的定义与性质- 3.1.3 面的定义与性质3.2 直线与角的基本关系- 3.2.1 直线的分类- 3.2.2 角的定义与性质3.3 四边形的认识- 3.3.1 四边形的定义与性质- 3.3.2 平行四边形与矩形- 3.3.3 菱形与正方形第四单元比例与类比4.1 比例与比例的性质- 4.1.1 比例的定义与性质- 4.1.2 比例的简化与扩大4.2 相似与类比- 4.2.1 相似的概念与性质- 4.2.2 类比的概念与应用4.3 实际问题中的比例与类比- 4.3.1 比例与图像的应用- 4.3.2 勾股定理与尺规作图第五单元数据的收集与整理5.1 数据的收集与整理- 5.1.1 数据的收集方法- 5.1.2 数据的整理方法5.2 统计图与频数分布表- 5.2.1 统计图的绘制- 5.2.2 频数分布表的制作与应用5.3 数据的分析与判断- 5.3.1 均值与中位数- 5.3.2 异常值的判断与处理第六单元平面与空间图形的认识6.1 三角形的认识- 6.1.1 三角形的定义与分类- 6.1.2 三角形的性质6.2 圆的认识- 6.2.1 圆的定义与性质- 6.2.2 圆的划分与中心点6.3 直线和点的位置关系- 6.3.1 垂直线与平行线的概念- 6.3.2 直线和点的位置关系的判定第七单元绘图及其应用7.1 平行四边形的绘制- 7.1.1 绘制平行四边形的基本原理- 7.1.2 利用平行四边形解决实际问题7.2 利用图形解决实际问题- 7.2.1 图形的估算与测算- 7.2.2 图形的运算与运动7.3 坐标系- 7.3.1 点的坐标- 7.3.2 坐标系的应用第八单元综合与实践8.1 综合题- 8.1.1 综合题的解题方法与策略- 8.1.2 综合题的应用8.2 数学实践- 8.2.1 数学实践活动的设计与组织- 8.2.2 数学实践活动的分析与总结8.3 数学文化- 8.3.1 数学思想与数学文化的培养- 8.3.2 数学思维与数学方法的应用注:以上目录仅供参考,实际版本可能有所调整。

中职高二数学教学进度(2015—2016)学年度_课题研究

中职高二数学教学进度(2015—2016)学年度_课题研究

中职高二数学教学进度(2015—2016)学年度_课题研究数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。

以下是查字典数学网为大家整理的中职高二数学教学进度,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

周次时间单元教学内容课时数19.2----9.88.1.1数轴上的距离公式与中点公式8.1.2平面直角坐标系中的距离和中点公式8.2.1直线与方程12129.9----9.158.2.2直线的倾斜角和斜率8.2.3直线方程的几种形式练习课8.2.4直线与直线的位置关系121139.16-----9.228.2.4直线与直线的位置关系8.2.5点到直线的距离单元复习及测试11249.23-----9.298.3.1圆的标准方程8.3.2圆的一般方程8.4直线与圆的位置关系8.5直线与圆的方程的应用112159.30-----10.6国庆例假610.7-----10.13单元复习9.1.1立体图形及其表示方法9.1.2平面的基本性质211710.14-----10.209.2.1空间中的平行直线9.2.2异面直线9.2.3直线与平面平行9.2.4平面与平面的平行关系单元复习11111810.21----10.279.3.1直线与平面垂直9.3.2直线与平面所成的角9.3.3平面与平面所成的角9.3.4平面与平面垂直单元复习11111910.28-----11.39.4.1棱柱9.4.2棱锥9.4.3直棱柱和正棱锥的侧面积9.4.4圆柱、圆锥11121011.4-----11.109.4.5球9.4.6多面体瑟旋转体的体积复习1221111.11-----11.17期中考试1211.18-----11.24期中试卷分析10.1计数原理10.2概率初步2211311.25-----12.110.2概率初步10.3.1总体、样本和抽样方法10.3.2频率分布直方图2211412.2-----12.810.3.3用样本估计总体10.3.4一元线性回归小结与复习2211512.9------12.15单元测试21612.16-----12.22复习1712.23------12.29复习1812.30-------1.5复习191.6-------1.12复习201.13------1.19复习211.20-----1.26期末考试最后,希望小编整理的中职高二数学教学进度对您有所帮助,祝同学们学习进步。

高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教案1

高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教案1

【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩αα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程师行为生 行为学 意图间 *揭示课题 8.3 两条直线的位置关系(一)*创设情境 兴趣导入 【知识回顾】我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件.【问题】两条直线平行,它们的斜率之间存在什么联系呢介绍 质疑 引导分析了解思考启发学生思考1*动脑思考 探索新知【新知识】 当两条直线1l 、2l 的斜率都存在且都不为0时(如图8-11(1)),如果直线1l 平行于直线2l ,那么这两条直线与x 轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x 轴相交的同位角相等,故两直线平行.当直线1l 、2l 的斜率都是0时(如图8-11(2)),两条直线都与x 轴平行,所以1l //2l .讲解说明引领 分析思考 理解 带领 学生 分析图(【教师教学后记】是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


方程组 ① 有一组解 两直线有一个公共点 直线 l1 与 l2 相交;
方程组 ① 有无数组解 两直线有无数公共点直线 l1 与 l2 重合; 方程组 ① 无解两直线没有公共点直线 l1 与 l2 平行.
例2 判断下列各对直线的位置关系(相交、平行或 重合),如果相交,求出交点:
P 15 练习 第 1、2 题 。 P 16练习 第 2、3 题 。
l1 与 l2 平行 k1=k2 且 b1≠b2 ;
l1 与 l2 重合 k1=k2 且 b1=b2.
例1 判断下列各对直线的位置关系(相交、平行或
重合),如果相交,求出交点.
(1)l1:y=3x+4,l2:y=3x-4; (2)l1:y=-3,l2:y=1; (3)l1:y=-3x+4,l2:y= x-8.
O
x
例3
判断下列各对直线是否垂直:
2
(1)l1:y=-2x+1,l2:y= 1 x-1; (2)l1:y=3x+1,l2:y= x-4.
3 1
解: (1)因为 -2 (2)因为 3
1 3
1 2
=-1,所以 l1 l2 .
≠-1,所以 l1 与 l2 不垂直.
练习一 判断下列各对直线是否垂直: (1)l1:y=-x+3,l2:y=x-1; (2)l1:y=3x,l2:y= x-1.
因此, l1 与 l2 相交,且交点为(1,-4). 相交,且交点为(1,-2).
例2
判断下列各对直线的位置关系(相交、平行或重
合),如果相交,求出交点:
(1)l1:x-1=0,l2:y+4=0;
(2)l1:x-y-3=0,l2:x+y+1=0; (3)l1:x-2y+3=0,l2:2x-4y+6=0.
பைடு நூலகம்

将方程组 ① 中两式相减,整理得 (k1-k2)x=-(b1-b2). ②
(1)当 k1≠k2 时,则方程组 ① 有多少解? l1 与 l2 有几个交点? l1 与 l2 是什么位置关系?
用斜率判断直线的位置关系
y k 1 x b1 y k 2 x b2

将方程组 ① 中两式相减,整理得

直线
直线 圆
8.3.4直线与直线的位置关系
1.回答下列问题
(1)直线 y=2 x+1 的斜率是
(2)直线 y=2 的斜率是 (3)直线 x=2 的斜率是 2.问题
,在 y 轴上的截距是
; .
;
,在 y 轴上的截距是 ,在 y 轴上的截距
在平面内,两条直线要么平行,要么相交,要么 重合.那么,给定平面直角坐标系中的两条直线,能
否借助于方程来判断它们的位置关系?
两条直线的交点
(1)给定平面直角坐标系中的两条直线 l1:y=k1x+b1; l2:y=k2x+b2. 如果一个点是 l1 与 l2 的交点,那么它的坐标必满足
y k 1 x b1 y k 2 x b2

两条直线的交点
(2)
y k 1 x b1 y k 2 x b2
3 1
1.方程组
y k 1 x b1 y k 2 x b2
的解与两条直线的位置的
对应关系.
2 .如果 l1:y=k1x+b1 ,l2:y=k2x+b2 ,则
l1 与 l2 相交 k1≠k2 l1 与 l2 平行 k1=k2 且 b1≠b2 l1 与 l2 重合 k1=k2 且 b1=b2 l1 l2 k1 k2=-1. 3.斜率不存在时,很容易判断!
(k1-k2)x=-(b1-b2) .

(2)当 k1=k2 且 b1≠b2 时,则方程组 ① 有多少解?
l1 与 l2 有几个交点?l1 与 l2 是什么位置关系? (3)当 k1=k2 且 b1=b2 时,则方程组 ① 有多少解? l1 与 l2 有几个交点? l1 与 l2 是什么位置关系?
如果 l1:y=k1x+b1,l2:y=k2x+b2,则 l1 与 l2 相交 k1≠k2;
(1)l1:x-1=0,l2:y+4=0;
(2)l1:x-y-3=0,l2:x+y+1=0; (3)l1:x-2y+3=0,l2:2x-4y+6=0.
解: x xy1 30 0 (2)联立得方程组 (1)联立得方程组
解得:
xy y4 1 0 0 x 1 2 y 4
解: (1)因为两直线斜率都为 3 ,而截距不相等, 所以 l1 与 l2 平行.
(2)因为两直线的斜率都为 0 ,而截距不相等, 所以 l1 与 l2 平行.
例1 判断下列各对直线的位置关系(相交、平行或
重合),如果相交,求出交点.
(1)l1:y=3x+4,l2:y=3x-4; (2)l1:y=-3,l2:y=1; (3)l1:y=-3x+4,l2:y= x-8. 解: (3)因为两直线斜率不相等,所以l1与l2相交.
已知直线 l1 :y=k1x+b1,l2:y=k2x+b2.
(1)直线 l1 的斜率是多少?直线 l2 的呢? (2)当直线 l1 与 l2 垂直时,则 l 1 与 l2 的斜率 有什么关系?
已知直线
y
l1:y=k1 x+b1;
l2:y=k2 x+b2.
l1 l2 k1 k2=-1.
l2
l1
解: (3)联立得方程组
x 2y 3 0 2 x 4 y 6 0
第二式减第一式的 2 倍得 0=0,所以上述方程 组有无穷多组解,即 l1 与 l2 有无穷多个交点. 因此,l1 与 l2 重合.
用斜率判断直线的位置关系
y k 1 x b1 y k 2 x b2
联立得方程组
y 3x 4 y x8
解得: x 3
y 5
因此, l1 与 l2 的交点为(3,-5).
判断下列各对直线的位置关系(相交、平行或重 合),如果相交,求出交点: (1)y=2x+3,y=-2x+1;
(2)3x-4=0,x=2;
(3)2x-y+1=0,x-2y+1=0.
相关文档
最新文档