初三数学模拟试卷5
人教版九年级数学第一学期期末检测模拟试卷(5)
人教版九年级数学第一学期期末检测模拟试卷(5)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣55.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=度.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是.三、解答题(本大题共11小题,共78分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为;(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为个.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.人教版九年级数学第一学期期末检测模拟试卷(5)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、不是中心对称图形;故选:A.2.(3分)点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.3.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选:B.4.(3分)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(3,﹣5),然后根据顶点式写出平移得到的抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为y=2(x﹣3)2﹣5.故选:A.5.(3分)下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选:B.6.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°【分析】根据平行线的性质可证∠D=∠AOD=50°,又根据三角形外角与内角的关系可证∠ACO=∠OAC=∠AOD=25°.【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选:D.7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°【分析】根据弧长公式l=,即可求解.【解答】解:设圆心角是n度,根据题意得=,解得:n=60.故选:C.8.(3分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A.B.C.D.【分析】本题可先由一次函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:∵函数y=ax+b的图象经过一、二、三象限∴a>0,b>0,∵a>0时,抛物线开口向上,排除D;∵a>0,b>0时,对称轴x=﹣<0,排除A、C.故选:B.9.(3分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.10.(3分)如图,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正方形的面积为()A.2B.4C.8D.16【分析】连接BO并延长交圆于点E,连接AE,根据三角函数可求得BE的长;再根据圆内接正方形的性质求得其边长,从而可得到其面积.【解答】解:如图,连接BO并延长交圆于点E,连接AE,则∠E=∠C=30°,∠EAB=90°;∴直径BE==2,∵直径是圆内接正方形的对角线长,∴圆内接正方形的边长等于∴⊙O的内接正方形的面积为2.故选:A.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.【分析】求出一次抛一枚硬币正面朝上的概率即可.【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.12.(3分)如图,P A、PB分别切⊙O于点A、B,点E是⊙O上一点,且∠AEB=60°,则∠P=60度.【分析】连接OA,BO,由圆周角定理知可知∠AOB=2∠E=120°,P A、PB分别切⊙O于点A、B,利用切线的性质可知∠OAP=∠OBP=90°,根据四边形内角和可求得∠P=180°﹣∠AOB=60°.【解答】解:连接OA,BO;∵∠AOB=2∠E=120°,∴∠OAP=∠OBP=90°,∴∠P=180°﹣∠AOB=60°.13.(3分)某商品原价289元,经过连续两次降价后,售价为256元.设平均每次降价的百分率为x,则x的值为.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意得:289×(1﹣x)2=256,解得:x=或x=(舍去),故答案为.14.(3分)如图,直线y=x+1与双曲线y=相交于点A(m,2),则不等式x+1>的解集是﹣4<x<0或x>2.【分析】写出直线y=x+1在双曲线y=上方部分的x的取值范围即可.【解答】解:∵点A(m,2)在直线y=x+1,∴2=m+1,解得m=2.则A(2,2),将其代入双曲线y=得到:k=2×2=4,∴双曲线的解析式为:y=,∴<解得或,∴直线y=x+1与双曲线y=的另一交点坐标是(﹣4,﹣1),∴不等式x+1>的解集是﹣4<x<0或x>2.故答案是:﹣4<x<0或x>2.三、解答题(本大题共11小题,共75分)15.(6分)解方程:(1)x2+4x﹣1=0;(2)(x﹣3)2+4(x﹣3)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=,∴x1=﹣2+,x2=﹣2﹣;(2)(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1.16.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.(1)以O为原点建立直角坐标系,点B的坐标为(﹣3,1),则点A的坐标为(﹣2,3);(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段AB扫过的面积.【分析】(1)先画出直角坐标系,然后根据第二象限点的坐标特征写出A点坐标;(2)先利用网格特点和旋转的性质画出点A和B的对应点A1、B1,即可得到△OA1B1,再利用勾股定理计算出OA和OB,然后根据扇形面积公式计算S扇形OAA1﹣S扇形BOB1的即可.【解答】解:(1)如图1,点A的坐标为(﹣2,3);(2)如图2,△OA1B1为所作;OA==,OB==线段AB扫过的面积=S扇形OAA1﹣S扇形BOB1=﹣=π.17.(6分)在直径是52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度CD为16cm,求油面宽度AB的长.【分析】因为圆柱形油槽装入油后形成弓形,可以考虑用垂径定理解答.【解答】解:由题意得出:OC⊥AB于点D,由垂径定理知,点D为AB的中点,AB=2AD,∵直径是52cm,∴OB=26cm,∴OD=OC﹣CD=26﹣16=10(cm),由勾股定理知,BD==24(cm),∴AB=48cm.18.(6分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.19.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.【分析】(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.【解答】解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∠BAC=30°,∵∠ACB=90°,∴AB=2BC=8,∴OA=4,∴劣弧AC的长为=.20.(6分)在直角坐标系中,直线y=x+m与双曲线y=在第一象限交于点A,在第三象限交于点D,与x轴交于点C,AB⊥x轴,垂足为B,且S△AOB=1.(1)求m的值;(2)求△ABD的面积.【分析】(1)由三角形AOB的面积,可得出m的值为2.(2)求出A、B的坐标,进而可根据S△ABD=AD•(x A﹣x B)求出△ABD的面积.【解答】解:(1)设A(x,y),∵直线y=x+m与双曲线y=在第一象限交于点A,S△AOB=1,∴xy=1,即xy=m=2,∴m=2,(2)联立两函数的方程,解得或,∴A点坐标为(﹣1,+1),D(﹣﹣1,﹣+1),∴S△ABD=(+1)(﹣1++1)=3+.21.(6分)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为4个.【分析】(1)根据反比例函数的性质得1﹣2m>0,然后解不等式得到m的取值范围;(2)①根据平行四边形的性质得AD∥OB,AD=OB=2,易得D点坐标为(2,3),然后根据反比例函数图象上点的坐标特征得1﹣2m=6,则反比例函数解析式为y=;②根据反比例函数的图象关于原点中心对称可得点D关于原点的对称点P满足OP=OD,则此时P点坐标为(﹣2,﹣3);再根据反比例函数y=的图象关于直线y=x对称,可得点D(2,3)关于直线y=x对称点P满足OP=OD,此时P点坐标为(3,2),易得点(3,2)关于原点的对称点P也满足OP=OD,此时P点坐标为(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,所以以D点为顶点可画出点P1,P2;以O点顶点可画出点P3,P4,如图.【解答】解:(1)根据题意得1﹣2m>0,解得m<;(2)①∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,又∵A点坐标为(0,3),∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴反比例函数解析式为y=;②∵反比例函数y=的图象关于原点中心对称,∴当点P与点D关于原点对称,则OD=OP,此时P点坐标为(﹣2,﹣3),∵反比例函数y=的图象关于直线y=x对称,∴点P与点D(2,3)关于直线y=x对称时满足OP=OD,此时P点坐标为(3,2),点(3,2)关于原点的对称点也满足OP=OD,此时P点坐标为(﹣3,﹣2),综上所述,P点的坐标为(﹣2,﹣3),(3,2),(﹣3,﹣2);由于以D、O、P为顶点的三角形是等腰三角形,则以D点为圆心,DO为半径画弧交反比例函数图象于点P1,P2,则点P1,P2满足条件;以O点为圆心,OD为半径画弧交反比例函数图象于点P3,P4,则点P3,P4也满足条件,如图,作线段OD的垂直平分线,与反比例函数的图象无交点.22.(8分)A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【分析】画树状图展示所有6种等可能的结果,找出两数之积为3的倍数的结果数,这样可计算出甲获胜的概率和乙获胜的概率,然后通过比较两概率的大小可判断这样的游戏规则对甲乙双方是否公平.【解答】解:这样的游戏规则对甲乙双方不公平.理由如下:画树状图为:共用6种等可能的结果,其中两数之积为3的倍数的结果数为4,所以甲获胜的概率==,乙获胜的概率==,因为>,所以这样的游戏规则对甲乙双方不公平.23.(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?【分析】(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【解答】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=400÷5=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.24.(8分)某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?【分析】(1)设涨x元,利用单件利润乘以销售量得到总利润得到(50﹣40+x)(500﹣10x)=8000,然后解方程即可;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x),然后利用二次函数的性质解决问题.【解答】解:(1)设涨x元,根据题意得(50﹣40+x)(500﹣10x)=8000,整理得x2﹣40x+300=0,解得x1=10,x2=30,当x=10时,50+10=60;当x=30时,50+30=80,此时售价应定为每件60元或80元,利润为8000元;(2)设每件涨x元,利润为y元,则y=(50﹣40+x)(500﹣10x)=﹣10x2+400x+5000=﹣10(x﹣20)2+9000,∵a=﹣10<0,∴当x=20时,y有最大值,最大值为9000,∴要想获得的利润最大,销售价应定为70元.25.(12分)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60度.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.(2)若点C的坐标为(﹣1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式.【分析】(1)∠ABO=60°则∠ADO=60°,在直角△AOD中,根据三角函数就可以求出OD的长,则可以求出D的坐标.(2)若点C的坐标为(﹣1,0),在直角△CDO中,根据三角函数就可以求出∠CDO的度数.进而得到∠CDA 的度数.从而判断过D,C的直线与△AOB的外接圆的位置关系.(3)函数经过O,A两点,因而对称轴是OA的垂直平分线与圆的交点,过交点作OA的垂线,利用三角函数,就可以求出OA的垂直平分线与圆的交点的坐标,再根据待定系数法就可以求出函数的解析式.【解答】解:(1)连接AD,则∠ADO=∠B=60°,在Rt△ADO中,∠ADO=60°,所以OD=OA÷=3÷=,所以D点的坐标是(0,);(2)猜想:CD与圆相切,∵∠AOD是直角,∴AD是圆的直径,又∵tan∠CDO ===,∠CDO=30°,∴∠CDA=∠CDO+∠ADO=90°,即CD⊥AD,∴CD切外接圆于点D;(3)依题意可设二次函数的解析式为:y=α(x﹣0)(x﹣3),由此得顶点坐标的横坐标为:x ==;即顶点在OA的垂直平分线上,作OA的垂直平分线EF,则得∠EF A =∠B=30°,即得到EF =EA =可得一个顶点坐标为(,),同理可得另一个顶点坐标为(,),分别将两顶点代入y=α(x﹣0)(x﹣3)可解得α的值分别为,,则得到二次函数的解析式是y =x(x﹣3)或y =x(x﹣3).第21页(共21页)。
重庆市中考数学模拟试卷(05)
重庆市中考数学模拟试卷(05)一.选择题(共12小题,满分48分,每小题4分)1.(4分)(2022•云梦县模拟)﹣2021的倒数为()A.B.C.﹣2021D.20212.(4分)图形一般是由()A.点和线构成B.线和面构成C.点和面构成D.点、线、面构成3.(4分)(2021秋•沙坪坝区期末)计算:a3•a2的结果()A.a6B.5a C.6a D.a54.(4分)(2021秋•肇源县期末)如图,P A,PB切⊙O于A,B两点,CD切⊙于点E,交P A、PB于C、D,若△PCD的周长等于4,则线段P A的长是()A.4B.8C.2D.15.(4分)(2021秋•济宁期末)当x=﹣1时,代数式2x2﹣5x的值为()A.5B.3C.﹣2D.76.(4分)(2021秋•宁德期末)如图,△ABC与△DEF位似,位似中心是点P,其位似比为1:2,则△ABC与△DEF的面积比是()A.1:2B.1:4C.1:D.1:87.(4分)(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户8.(4分)(2020秋•驿城区校级期中)如图,从左至右,第1个图由1个六边形、6个正方形和6个三角形组成;第二个图由2个六边形、11个正方形和10个三角形组成;第3个图由3个六边形、16个正方形和14个三角形组成;…按照此规律,第10个图中正方形的个数和三角形的个数之和为()A.90B.93C.96D.999.(4分)(2021•市中区二模)图1是济南动物园的一个大型娱乐设施﹣﹣摩天轮,它是一种大型转轮状的机械建筑设施,上面挂在轮边缘的是供乘客乘搭的座舱,乘客坐在摩天轮慢慢的往上转,可以从高处俯瞰泉城景色.图2是它的的简化示意图,点O是摩天轮的圆心,AB是摩天轮垂直地面的直径,小嘉从摩天轮最低处B下来先沿水平方向向右行走20m到达C,再经过一段坡度(或坡比)为i=0.75,坡长为10m的斜坡CD到达点D,然后再沿水平方向向右行走40m到达点E(A、B、C、D、E均在同一平面内),在E处测得摩天轮顶端A的仰角为24°,则AB的高度约为()米.(参考数据:sin24°≈0.4,cos24°≈0.91,tan24°≈0.45)A.24.6B.22.7C.27.5D.28.810.(4分)(2022春•九龙坡区校级月考)已知关于x的一元一次不等式组的解集为x>5,且关于y的分式方程﹣1=的解为正整数,则所有满足条件的整数a的值有()个.A.1B.2C.3D.411.(4分)(2022•东坡区校级模拟)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④12.(4分)(2021•永嘉县校级模拟)如图,在平面直角坐标系中,矩形OABC的顶点A,B 在双曲线y=(x>0)上,BC与x轴交于点D.若点A的坐标为(2,4),则点C的坐标为()A.(3,﹣6)B.C.(6,﹣3)D.二.填空题(共6小题,满分24分,每小题4分)13.(4分)(2022•新乡模拟)计算:()﹣1﹣=.14.(4分)(2021秋•富裕县期末)我国研制的某服务器,它的峰值计算速度达到403200000000次/秒,数据403200000000用科学记数法可表示为.15.(4分)(2021春•沙坪坝区校级期末)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是.16.(4分)(2021秋•九龙坡区校级期中)如图,已知菱形ABCD的边长为,∠DAB=60°.AC、BD交于点O,以O为圆心,以DO的长为半径画圆,与菱形相交,则图中阴影部分的面积为.17.(4分)(2022•南岸区校级模拟)经历了漫长体训,初三学子即将迎来中考体考.初三某班的家委会为孩子们准备了脉动饮料、士力架和葡萄糖口服液.已知脉动饮料、士力架和葡萄糖口服液的单价之和为22元,计划购买脉动饮料、士力架和葡萄糖口服液的数量总共不超过200.其中,葡萄糖口服液的单价为10元,计划购买50支;脉动饮料的数量不多于士力架数量的一半,但至少购买20瓶.在做预算时,家委会将脉动饮料和士力架的单价弄反了,结果在实际购买时总费用比预算多了160元.若脉动饮料、士力架和葡萄糖口服液的单价均为整数,则实际购买脉动饮料、士力架和葡萄糖口服液的总费用最多需要花费元.18.(4分)(2019秋•九龙坡区期末)在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了次.三.解答题(共8小题,满分78分)19.(10分)(2022春•天桥区校级月考)化简:(1)(a3)2▪a3;(2)(a+2b)(a﹣2b)﹣(2a+b)2;(3)(5x+y)(3x﹣y);(4)(2xy2﹣8x2)÷(2x);(5)a3▪a5+(﹣a2)4﹣3a8;(6)2y(x﹣2y)﹣2xy.20.(10分)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.21.(10分)某校开展了“学习新思想,做好接班人”主题阅读活动月.请根据统计图表中的信息,解答下列问题:(1)被抽查的学生人数是人,表中m=;(2)被抽查的学生阅读文章篇数的中位数是,众数是;(3)若该校共有1600名学生,请估计该校学生在主题阅读活动月内文章阅读的篇数为4篇的有多少人?阅读篇数34567及以上人数2025m151022.(10分)在密码学中,直接可看到内容为明文(真实文),对明文进行某种处理后得到的内容为密文.有一种密码把英文的明文单词按字母分解,其中英文26个字母(不论大小写)依次对应1,2,3,…,26这26个数,见下表:a b c d e f g h i j k l m12345678910111213n o p q r s t u v w x y z14151617181920212223242526现给出一个公式:.将明文字母对应的数字x按以上公式计算得到密文字母对应的数字x',例如明文字母为g,g,所以明文字母g对应密文字母为d.现以明文good举例分析:,所以,英语单词good译成的密文是dhho.问题:按照上述规定,将明文group译成密文是什么?请写出计算过程.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…a24b42…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,下列关于函数性质的结论正确的有;①函数y=的图象关于y轴对称;②当x=0时,函数y=有最大值,最大值为6;(3)观察函数图象,请你再写出一条该函数的性质;(4)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.24.(10分)“新冠“疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年8月份的进价如表:普通口罩N95口罩进价(元/包)820(1)计划N95口罩每包售价比普通口罩贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价.(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.(3)疫情期间,该药店进货2万包N95口罩,进价不变,店长向当地医院捐赠了a包(6000≤a≤7000)该款口罩,剩余的N95口罩向市民销售.若这2万包口罩的利润率等于10%,则N95口罩每包售价是元.(直接写出答案,售价为整数元)25.(10分)如图,抛物线y=﹣x2+x+4的图象交x轴于点A、B,交y轴于点C,作直线BC,连接AC,过点C作CD∥AB,交抛物线于点D.(1)求点A,B的坐标和CD的长;(2)把抛物线y=﹣x2+x+4的图象沿x轴向右平移,使点C移到点D的位置,得到新抛物线y′,y′交CD的延长线于点M,点E是抛物线y=﹣x2+x+4在第一象限部分上的一点,当△BCE的面积取得最大值时,点F是线段BC上一动点,求EF+MF的最小值;(3)抛物线y′的对称轴与直线BC的交点为M,点P是平面直角坐标系内一点,当点B、M、N、P四点组成的四边形为平行四边形时,直接写出点P的坐标.26.(8分)【阅读理解】如图①,射线OC在∠AOB内部,图中共有三个角∠AOC、∠AOB、∠BOC,若其中有两个角的度数之比为1:2,则称射线OC为∠AOB的“巧线”.(1)∠AOB的角平分线这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=120°,射线OC为∠AOB的“巧线”,则∠AOC=.【问题解决】如图②,已知∠AOB=150°,射线OP从OA出发,以20°/s的速度顺时针方向旋转,射线OQ从OB出发,以10°/s的速度逆时针方向旋转.两条射线同时旋转,当其中一条射线旋转到与∠AOB的边重合时,运动停止,设旋转的时间为t(s).当t为何值时,射线OA、OP、OQ中一条射线恰好是以另外两条射线为边构成的角的巧线?说明理由.。
2022年广东省深圳市中考数学全真模拟试卷(5)(学生版+解析版)
2022年广东省深圳市中考数学全真模拟试卷(5)一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×1064.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25 6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√710.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分)16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0;(2)(√2+1)(√2−1)+(√3−2)2.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数) 频率 A4 0.04 Bm 0.51 Cn D合计100 1(1)求m = ,n = ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.19.(8分)如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .(1)求证:OM =ON ;(2)若正方形ABCD 的边长为6,OE =EM ,求MN 的长.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.21.(9分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以CF为底的等腰三角形,若存在,求出此时CD的长;若不存在,试说明理由.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.2022年广东省深圳市中考数学全真模拟试卷(5)参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.(3分)下列说法中正确的是()A.﹣4<8B.如果a>b,那么|b﹣a|=b﹣aC.﹣|﹣(+0.8)|=0.8D.有最小的正有理数【解答】解:A.﹣4<8,故本选项符合题意;B.如果a>b,那么|b﹣a|=a﹣b,故本选项不合题意;C.﹣|﹣(+0.8)|=﹣0.8,故本选项不合题意;D.没有最小的有理数,故本选项不合题意.故选:A.2.(3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图改变B.主视图改变C.左视图改变D.三种视图都发生改变【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图的第二层由原来的两个小正方形变为一个小正方形,故选:B.3.(3分)北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为()A.0.72×104B.7.2×105C.72×105D.7.2×106【解答】解:将720000用科学记数法表示为7.2×105元.故选:B.4.(3分)将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.80°B.70°C.60°D.50°【解答】解:如图:根据题意:AB∥CD.∴∠1=∠CBA.∴∠CBA=40°.根据折叠有∠2=∠DBC.∴∠2=180°−∠CBA2=70°.故选:B.5.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=5,AC=13,分别以A,C为圆心,以大于线段AC长度的一半为半径作弧.两弧相交于点E,F.过点E,F作直线EF,交BC于点D,连接AD,则△ABD的周长为()A.13B.17C.18D.25【解答】解:由作图可知,EF垂直平分线段AC,∴DA=DC,∴△ABD的周长=AB+BC+AD=AB+BD+DC=AB+BC=5+13=18,故选:C.6.(3分)下列命题中,是真命题的个数有()①平分弦的直径垂直于弦;②√81的算术平方根是9;③方程1x−1−2x+1=3x−1的解为x=0;④一组数据6,7,8,9,10的众数和中位数都是8.A.1个B.2个C.3个D.4个【解答】解:①平分弦(不是直径)的直径垂直于弦,故错误,是假命题;②√81的算术平方根是3,故错误,是假命题;③方程1x2−1−2x+1=3x−1的解x=0,正确,是真命题;④这组数据6,7,8,9,10的中位数是8,故错误,是假命题;真命题有1个,故选:A.7.(3分)如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)120cm的C处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.120cm B.80cm C.60cm D.40cm【解答】解:过E作EF⊥CG于F,设投射在墙上的影子DE长度为xcm,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC﹣x),则240:120=160:(160﹣x),解得:x=80.即:投射在墙上的影子DE长度为80cm.故选:B.8.(3分)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.【解答】解:在函数y=kx和y=kx+2(k≠0)中,当k>0时,函数y=kx的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数y=kx的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选:B.9.(3分)如图,直线AB:y=﹣3x+9交y轴于A,交x轴于B,x轴上一点C(﹣1,0),D为y轴上一动点,把线段BD绕B点逆时针旋转90°得到线段BE,连接CE,CD,则当CE长度最小时,线段CD的长为()A.√10B.√17C.5D.2√7【解答】解:如图,设D(0,m).由题意:B(3,0),∴OD=m,OB=3,过E作EH⊥x于H,∴∠EHB=∠BOD=90°,∵把线段BD绕B点逆时针旋转90°得到线段BE∴∠DBE=90°,BD=BE,∴∠ODB+∠OBD=∠OBD+∠EBH=90°,∴∠BDO=∠EBH,∴△BOD≌△EHB(AAS),∴EH=OB=3,BH=OD=m,∵点C(﹣1,0),∴OC=1,∴CH=4﹣m,∴CE=√CH2+EH2=√(4−m)2+32=√(m−4)2+9,∴当m=4时,CE长度最小,∴D(0,4),∴OD=4,∴CD=2+OD2=√12+42=√17,故选:B.10.(3分)如图,在矩形ABCD中,AB=3,AD=6,CE⊥BD于E,AG⊥BD于G,AF 平分∠BAD交BC于点N,交EC延长线于点F,则下列说法中正确的有()个①BE=DG②BN=12AD③MN=√2④BD=CF⑤AG2=BG•DGA.2B.3C.4D.5【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴∠ABG=∠CDE,∵CE⊥BD于E,AG⊥BD于G,∴∠AGB=∠CED=90°,∴△AGB≌△CED(AAS),∴BG=DE,∴BE=DG,故①正确,∵∠BAD=90°,F A平分∠BAD,∴∠BAN =45°, ∵∠ABN =90°, ∴∠ANB =45°, ∴AB =BN ,∵AB =3,AD =BC =6, ∴BC =2AB ,∴BN =12AD ,故②正确, ∵AB =NB =3, ∴AN =3√2, ∵BN ∥AD , ∴NM AM=BN AD=12,∴MN =13AN =√2,故③正确, 连接AC ,易证∠ECB =∠BAC ,∵∠ECB =45°+∠F ,∠BAC =45°+∠CAF , ∴∠F =∠CAF , ∴CA =CF ,∵四边形ABCD 是矩形, ∴AC =BD ,∵BD =CF ,故④正确, ∵∠BAD =90°,AG ⊥BD ,∴△AGB ∽△DGA ,可得AG 2=BG •DG ,故⑤正确, 故选:D .二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x3﹣6x2y+3xy2=3x(x﹣y)2.【解答】解:3x3﹣6x2y+3xy2,=3x(x2﹣2xy+y2),=3x(x﹣y)2.12.(3分)用半径为18,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为6【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=×120π×18180,解得r=6.故答案为:6.13.(3分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC的长为9.【解答】解:∵DE∥FG∥BC,∴AD:DF:FB=AE:EG:GC,∵AD:DF:FB=3:2:1,∴AE:EG:GC=3:2:1,设AE=3x,EG=2x,GC=x,∵AG=15,∴3x+2x=15,解得:x=3,即AE=9,EG=6,GC=3,∴EC=EG+GC=6+3=9,故答案为:9.14.(3分)反比例函数y=kx(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有3个.【解答】解:观察反比例函数y=kx(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.15.(3分)如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于3√2或3.【解答】解:①当AF=AD=6时,△AEF是等腰直角三角形,∴AF =√2AE , ∴AE =3√2.②当AF =DF 时,△ADF 是等腰直角三角形, ∴AD =√2AF =6, ∴AF =3√2,在等腰直角三角形AEF 中,AF =√2AE , ∴AE =3.③当AD =DF 时,∠AFD =45°,此时点F 与点C 重合,点E 与点B 重合,不符合题意; 综上所述,当△ADF 是等腰三角形时,AE 的长度等于3√2或3; 故答案为:3√2或3.三.解答题(共7小题,其中第16题6分,第17小题7分,第18小题7分,第19小题8分,第20小题8分,第21小题9分,第22小题10分,共55分) 16.(6分)计算:(1)(12)−2−|√2−3|+2tan45°−(2020−π)0; (2)(√2+1)(√2−1)+(√3−2)2. 【解答】解:(1)原式=4+√2−3+2×1﹣1 =2+√2;(2)原式=2﹣1+3﹣4√3+4 =8﹣4√3.17.(7分)先化简,再求值:a−2a+3÷a 2−42a+6−5a+2,其中a =﹣5.【解答】解:原式=a−2a+3•2(a+3)(a+2)(a−2)−5a+2=2a+2−5a+2 =−3a+2, 当a =﹣5时, 原式=−3−5+2=1.18.(7分)某市将开展以“玩转数学”为主题的数学展示活动,我校对100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成不完整的统计表和扇形统计图:成绩等级频数(人数)频率 A 4 0.04 B m 0.51 C n D 合计1001(1)求m = 51 ,n = 30 ;(2)在扇形统计图中,求“C 等级”所对应扇形的圆心角的度数;(3)成绩等级为A 的4名同学中有2名男生和2名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用画树状图或列表的方法,求“选出的两名同学中至少有一名是女生”的概率.【解答】解:(1)参加本次比赛的学生有:4÷0.04=100(人); ∴m =0.51×100=51(人),D 组人数=100×15%=15(人), ∴n =100﹣4﹣51﹣15=30(人), 故答案为:51,30;(2)B 等级的学生共有:50﹣4﹣20﹣8﹣2=16(人), ∴所占的百分比为:16÷50=32%,∴C 等级所对应扇形的圆心角度数为:360°×30%=108°; (3)由题意可得,树状图如下图所示,选出的两名同学中至少有一名是女生的概率是1012=56.19.(8分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为6,∴OH=HA=3,∵E为OM的中点,∴HM=6,则OM=√32+62=3√5,∴MN=√2OM=3√10.20.(8分)春节期间,某商店第一次用600元购进苹果若干斤,第二次又用600元购进该种苹果,但这次每斤苹果的进价是第一次进价的1.25倍,且购进的数量比第一次少了30斤.(1)求两次购进苹果的进价分别是多少元;(2)若商店以第二次进价提高40%作为两次购进苹果的统一售价,按此统一售价销售部分苹果后,又以八折销售完剩余的苹果,要使全部销售完后获利等于592元,求销售多少斤苹果后开始打八折.【解答】解:(1)设第一次购进苹果的进价为x 元,则第二次购进苹果的进价为 1.25x 元, 由题意得:600x=6001.25x+30,解得:x =4,经检验x =4是原方程的解,则1.25x =5,答:第一次购进苹果的进价为4元,第二次购进苹果的进价为5元; (2)5(1+40%)=7(元),6004=150(斤),150﹣30=120(斤),设销售y 斤苹果后开始打八折,由题意得:7y +7×0.8(150+120﹣y )﹣2×600=592, 解得:y =200,答:销售200斤苹果后开始打八折.21.(9分)如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的一个动点,以CD 为直径的⊙O 交AD 于点E ,过点C 作CF ∥AB ,交⊙O 于点F ,连接CE 、EF .(1)当∠CFE =45°时,求CD 的长; (2)求证:∠BAC =∠CEF ;(3)是否存在点D ,使得△CFE 是以CF 为底的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.【解答】(1)解:∵∠CDE =∠CFE =45°,∵∠ACB=90°,∴∠DAC=∠CDA=45°,∴CD=AC=6;(2)证明:∵CF∥AB,∴∠B=∠FCB,∵∠FCB=∠DEF,∴∠B=∠DEF,又∠BAC+∠B=90°,∵CD是圆O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)解:存在点D,使得△CFE是CF为底的等腰三角形,则EF=CE.如图,连接FD,并延长和AB相交于G,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,AC=AG=6,∵∠ACB=90°,AB=10,AC=6,∴BC=2−AC2=8,在Rt△BDG中,设CD=x,则BD=BC﹣CD=8﹣x,BG=AB﹣AG=10﹣6=4,DG=CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3.22.(10分)如图,抛物线y=ax2+bx+3√3与x轴交于A(﹣3,0),B(9,0)两点,与y 轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD 与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+12BM的值最小?若存在,请求出PM+12BM的最小值;若不存在,请说明理由.【解答】解:(1)将A (﹣3,0),B (9,0)代入y =ax 2+bx +3√3,得:{9a −3b +3√3=081a +9b +3√3=0,解得:{a =−√39b =2√33, ∴抛物线的表达式为y =−√39x 2+2√33x +3√3⋯①;(2)由题意得:∠ACO =∠OBC =30°,∠ACB =90°,将点B 、C (0,3√3)的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−√33x +3√3⋯②;①点P 的坐标为(﹣3+12t ,√32t ), 点Q (9﹣2t ,0),将点Q 的坐标代入①式并整理得:点D (9﹣2t ,4√39(6t ﹣t 2)); ②当PQ =PD 时,则DQ 中点的纵坐标=点P 的纵坐标,即:12(4√39(6t ﹣t 2))=√32t ,解得:t =154; (3)点P 的坐标为(﹣3+12t ,√32t )、点D (9﹣2t ,4√39(6t ﹣t 2)), 点E 是PQ 的中点,则点E (3−34t ,√34t +2√39(6t ﹣t 2)), 将点E 的坐标代入②式并整理得:t 2﹣6t +9=0,解得:t =3,即点P (−32,3√32)即点P 是AC 的中点, 作点P 关于直线BC 的对称点P ′,过点P ′作P ′H ⊥x 轴、交BC 于点M ,过点P 作PN ⊥y 轴于点N ,则MH=12MB,则此时,PM+12BM=PM+MH=P′H为最小值,∵∠ACB=90°,PC=P′C,∠P′CM=∠NCP,∠P′MC=∠PNC=90°,∴△P′MC≌△PNC(AAS),∴MC=NC=12OC,OM=32OC=9√32=P′H,故PM+12BM的最小值为9√32.。
中考数学模拟试题5试题_1 (2)
西湖区2021年中考数学模拟试题5本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
考生需要知:1.本套试卷分试题卷和答题卷两局部,满分是120分,考试时间是是120分钟。
2.答题时,应该在答题卷规定的正确位置内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,请必须注意试题序号和答题序号相对应。
4.在在考试完毕之后以后,上交试题卷和答题卷试题卷一、仔细选一选〔此题有10个小题,每一小题3分,一共30分〕下面每一小题给出的四个选项里面,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 以下各数中,相反数最小的是〔 〕A.5-B. 3C. 0D. π- 2.以下运算正确的选项是( )A .222()2a a a ---=-B .2332()()m m -=- C .347()()a a a ---= D2m =- 3. 如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A.CD AB = B.BC AD = C.BC AB = D.BD AC =4. 如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,那么∠AED 的度数是〔 〕 A .110°B .108°C .105°D .100°第3题图6. 如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.假设OA∶O B = OC ∶OD,那么以下结论中一定正确的选项是 ( )A .①和②相似B .①和④相似C .①和③相似D .②和④相似7.ABCD 为长方形,AB =4,BC =2,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的间隔 大于2的概率为〔 〕 A .4π B .14π-C . 8π D . 18π-8. 假如α∠和β∠互补,且αβ∠>∠,那么以下表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.其中不正确的选项是 〔 〕 A .①B .②C .③D .④9. 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k k y x ++=的图象上。
初等数学模拟试卷5(题后含答案及解析)
初等数学模拟试卷5(题后含答案及解析)题型有:1.D.α1+2α2,α2+2α3,α3+2α1.正确答案:A解析:(α1-α2)+(α2-α3)+(α3-α1)=0,所以向量组α1-α2,α2-α3,α3-α1线性相关,故应选(A).至于(B)、(C)、(D)的线性无关性可以用(β1,β2,β3)=(α1,α2,α3)C的方法来处理.知识模块:初等数学8.设有向量组α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是A.α1,α2,α3.B.α1,α2,α4.C.α1,α2,α5.D.α1,α2,α4,α5.正确答案:B 涉及知识点:初等数学9.设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则A.αm不能由(I)线性表示,也不能由(Ⅱ)线性表示.B.αm不能由(I)线性表示,但可由(Ⅱ)线性表示.C.αm可由(I)线性表示,也可由(Ⅱ)线性表示.D.αm可由(I)线性表示,但小可由(Ⅱ)线性表示.正确答案:B解析:因为β可由α1,α2,...,αm线性表示,故可设β=k1α1+k2α2+...+km αm.由于β小能由α1,α2,...,αm-1线性表示,故上述表达式巾必有km≠0.因此αm=1/km(β-k1α1-k2α2-...-km-1αm-1).即αm可由(Ⅱ)线性表示,可排除(A)、(D).若αm可由(I)线性表示,设αm=l1α1+l2α2+...+lm-1αm-1则β=(k1+kml1)α1+(k2+kml2)α2+…+(km-1+km-1lm-1)αm-1.与题设矛盾,故应选(B).知识模块:初等数学10.设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A 的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:因为A是实对称矩阵,故(P-1AP)T=PTAT(P-1)T=PTA(PT)-1.那么,由Aα=λα知(P-1AP)T(PTα)=[PTA(PT)-1](PTα)=PTAα=A(PTα).所以应选(B).知识模块:初等数学11.设A、B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则A.λE-A=λE-B.B.A与B有相同的特征值和特征向量.C.A与B都相似于一个对角矩阵.D.对任意常数t,tE-A与tE-B相似.正确答案:D 涉及知识点:初等数学12.考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有A.②→③→①.B.③→②→①.C.③→④→①.D.③→①→④.正确答案:A 涉及知识点:初等数学13.设有三元方程xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐甬数z=z(x,y).B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=(x,y).C.可确定两个具有连续偏导数的隐函数x=z(y,z)和z=z(x,y).D.可确定两个具有连续偏导数的隐函数z=x(y,z)和y=y(x,z).正确答案:D 涉及知识点:初等数学14.设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是A.若fx’(x0,y0)=0,则fy’(x0,y0)=0.B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0.C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0.D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0.正确答案:D 涉及知识点:初等数学15.设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.f(0)>1,f”(0)>0.B.f(0)>1,f”(0)<0.C.f(0)<1,f”(0)>0.D.f(0)<1,f”(0)<0.正确答案:A 涉及知识点:初等数学填空题16.设n阶矩阵A的元素全为1,则A的n个特征值是___________.正确答案:λn-nλn-1 涉及知识点:初等数学17.设A为2阶矩阵,α1,α2为线性无关的2维列向量.Aα1=0,A α2=2α1+α2,则A的非零特征值为_________.正确答案:1解析:用定义.由Aα1=0=0α1,A(2α1+α2)=Aα2=2α1+α2,知A的特征值为1和0.因此A的非0特征值为1.或者,利用相似,有A(α1,α2)=(0,2α1+α2)=(α1,α2) 知识模块:初等数学18.若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为正确答案:2解析:矩阵A=βαT的秩为1. 知识模块:初等数学19.设A,B为同阶方阵,如果A,B相似,试证A,B的特征多项式相等;正确答案:若A,B相似,那么存在可逆矩阵P,使P-1AP=B,故丨λE-B 丨=丨λE-P-1AP丨=丨P-1AEP-P-1AP丨=丨P-1(λE-A)P丨=丨P-1丨丨λE-A 丨丨P 丨=丨λE-A丨.涉及知识点:初等数学20.已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=___________.正确答案:2解析:二次型xTAx经正交变换化为标准形时,标准形平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值.知识模块:初等数学21.如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是正确答案:B 涉及知识点:初等数学22.曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.正确答案:(x-1)/1=(y+2)/(-4)=(z-2)/6. 涉及知识点:初等数学23.设生产函数为Q=ALαKβ,其巾Q是产出量,L是劳动投入量,K 是资本投入量,而A、α、β均为大于零的参数,则Q=1时K关于L的弹性为________.正确答案:-α/β涉及知识点:初等数学24.曲面z=x2+y2与平面2z+4y-z=0平行的切平面方程是___________.正确答案:2x+4y-z=5.涉及知识点:初等数学25.设(a×b).c=2,[(a+b)×(b+c)].(c+a)=____________.正确答案:4. 涉及知识点:初等数学26.设一平面经过原点及(6,-3,2),且与平面4x-y+2z=8垂直,则此平面方程为___________.正确答案:2x+2y-3z=0. 涉及知识点:初等数学27.设z=z(x,y)是由x2-6xy+10y2-2yz-z2+18=0确定的函数,z=z(x,y)的极值点_____________和极值___________.正确答案:(9,3),-3 涉及知识点:初等数学28.二元函数f(x,y)=x2(2+y2)+ylny的极值__________.正确答案:-e-1 涉及知识点:初等数学29.函数f(x,Y)=xe-(x2+y2)/2的极值___________.正确答案:-e-1/2 涉及知识点:初等数学解答题30.设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.正确答案:证法一:(定义法) 若有一组数k,k1,k2,…,kt,使得kβ+k1(β+α1)+k2(β+α2)+…kt(β+αt)=0,则因α1,α2,...,αt是Ax=0的解,知Aαi=0(i=1,2,…,t),涉及知识点:初等数学。
2019-2020学年抚顺市新抚区中考数学模拟试卷试题(五)(有标准答案)
辽宁省抚顺市新抚区中考数学模拟试卷(五)一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.16.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>28.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,529.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.9610.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为.12.计算: = .13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= .16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有人;该市九年级学生体育平均成绩约为分.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.八、(本题14分)26.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式.辽宁省抚顺市新抚区中考数学模拟试卷(五)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣【分析】根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.【解答】解:﹣3的倒数是﹣.故选D.【点评】此题考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°【分析】直接利用随机事件的定义以及确定事件的定义分析得出答案.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故此选项错误;B、射击运动员射击一次,命中10环,是随机事件,故此选项错误;C、明天会下雨,是随机事件,故此选项错误;D、度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件的定义以及确定事件的定义,正确把握相关定义是解题关键.4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°【分析】先根据平行线的性质求出∠EFB,再根据三角形外角性质求出∠A=∠EFB﹣∠E,代入求出即可.【解答】解:∵AB∥CD,∠C=45°,∴∠EFB=∠C=45°,∵∠E=20°,∴∠A=∠EFB﹣∠E=25°,故选B.【点评】本题考查了三角形的外角性质,平行线的性质的应用,解此题的关键是求出∠EFB的度数,注意:两直线平行,同位角相等.5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.1【分析】先在图中找出∠ABC所在的直角三角形,再根据三角函数的定义即可求出tan∠ABC的值.【解答】解:如图,在直角△ABD中,AD=3,BD=4,则tan∠ABC==.故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.6.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根【分析】求出b2﹣4ac的值,再进行判断即可.【解答】解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.【点评】本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52【分析】找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.【解答】解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选:D.【点评】此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.9.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.96【分析】由S△BDE=4,S△CDE=16,得到S△BDE:S△CDE=1:4,根据等高的三角形的面积的比等于底边的比求出=,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【解答】解:∵S△BDE=4,S△CDE=16,∴S△BDE:S△CDE=1:4,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=80.故选C.【点评】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 3.4×10﹣10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算: = 4 .【分析】根据负整数指数幂等于正整数指数幂的倒数进行解答即可.【解答】解: ==4.故答案为:4.【点评】本题考查的是负整数指数幂的运算,熟知其运算性质是解答此题的关键,即负整数指数幂:a﹣p=(a≠0,p为正整数).13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的二位数能被3整除的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,组成的二位数能被3整除的有4种情况,∴组成的二位数能被3整除的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.【分析】利用列表的方法列举出所有等可能的结果,再找出小海所摸球上的数字比小明所摸球上的数字大的情况数目,两者的比值即为发生得概率.【解答】解:列举摸球的所有可能结果:小海小明4 5 63(3,4) (3,5) (3,6) 4(4,4) (4,5) (4,6) 5 (5,4) (5,5) (5,6) 从上表可知,一共有九种可能,其中小海所摸球上的数字比小明所摸球上数字大有6种,因此小海所摸球上的数字比小明所摸球上数字大的概率=,故答案为:.【点评】此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= 110°.【分析】设围成的小三角形为△ABC ,分别用∠1、∠2、∠3表示出△ABC 的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC 中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠1=40°,∴∠2+∠3=150°﹣40°=110°.故答案为:110°.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是2.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得,x=2,故答案为:2.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为 4 .【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,分别表示出点C、点D 的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:如图,过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,∵Rt△OCE为等腰直角三角形,∴∠COE=45°,∴OE=CE=OC=x,∴则点C坐标为(x, x),同理在等腰Rt△BDF中,BD=x,∴BF=DF=BD=x,∴OF=OB﹣BF=5﹣x则点D的坐标为(5﹣x, x),将点C的坐标代入反比例函数解析式可得:k=2x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,∴2x2=x﹣x2,解得:x1=,x2=0(舍去),∴k=2x2=4,故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .【分析】计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.【解答】解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.【点评】本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先把括号内通分,再把除法运算化为乘法运算后约分得到=,接着解不等式组得到整数解,然后根据分式有意义的条件得到x的值,最后把x的值代入计算即可.要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【解答】解:原式=•=•=,解不等式组得﹣2≤x≤1,它的整数解为﹣2,﹣1,0,1,要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是400 ;(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有900 人;该市九年级学生体育平均成绩约为75.5 分.【分析】(1)根据B级的人数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各等级人数之和等于总人数求出C等级人数,补全条形图;(3)根据样本中D等级所占比例乘以总人数9000可得,运用加权平均数的求法即可求出九年级学生体育平均成绩.【解答】解:(1)本次抽样测试的学生人数是:160÷40%=400,故答案为:400;(2)扇形图中∠α的度数是:×360°=108°,C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:故答案为:108°;(3)测试等级为D的约有×9000=900(人),学生体育平均成绩约为:90×+75×+65×+55×=75.5(分),故答案为:900,75.5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据利润4000元和3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【解答】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.【分析】(1)首先作OH⊥CD,垂足为H,由BC、AD是⊙O的切线,易证得△BOC≌△AOE(ASA),继而可得OD是CE的垂直平分线,则可判定DC=DE,即可得OD平分∠CDE,则可得OH=OA,证得CD是⊙O的切线;(2)首先证得△AOE∽△ADO,然后由相似三角形的对应边成比例,求得OA的长,然后利用三角函数的性质,求得∠DOA的度数,继而求得答案.【解答】(1)证明:作OH⊥CD,垂足为H,∵BC、AD是⊙O的切线,∴∠CBO=∠OAE=90°,在△BOC和△AOE中,,∴△BOC≌△AOE(ASA),∴OC=OE,又∵EC⊥OD,∴DE=DC,∴∠ODC=∠ODE,∴OH=OA,∴CD是⊙O的切线;(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,∴∠E=∠DOA,又∵∠OAE=∠ODA=90°,∴△AOE∽△ADO,∴=,∴OA2=EA•AD=1×3=3,∵OA>0,∴OA=,∴tanE==,∴∠DOA=∠E=60°,∵DA=DH,∠OAD=∠OHD=90°,∴∠DOH=∠DOA=60°,∴S阴影部分=×3×+×3×﹣=3﹣π.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质、线段垂直平分线的性质、角平分线的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B处测得着火点C 的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)【分析】在RT△ABD中求出AD,再在RT△ADC中求出AC即可解决问题.【解答】解:作AD⊥BC垂足为D,AB=40×25=1000,∵BE∥AC,∴∠C=∠EBC=30°,∠ABD=90°﹣30°﹣15°=45°,在Rt△ABD中,sin∠ABD=,AD=ABsin∠ABD=1000×sin45°=1000×=500,AC=2AD=1000,答:热气球升空点A与着火点C的距离是1000米.【点评】本题考查解直角三角形的应用、俯角俯角、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.【点评】此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.【分析】(1)先根据△ABC与△DEC均为等腰直角三角形,以及旋转的性质,得出AD=BF,AD∥BF,进而得到四边形ADBF为平行四边形;(2)先延长BE交AD于G,交AC于O,根据△ABC与△DEC均为等腰直角三角形,判定△ACD≌△BCE(SAS),得出AD=BE,∠CAD=∠CBE,再根据“8字形”得出∠AGE=90°,判定AD∥BF,即可得出四边形ADBF为平行四边形;(3)分两种情况讨论:当旋转角∠BCE=135°时,当旋转角为315°时,分别判定△ACD≌△BCD,得到AD=BD,再根据四边形ADBF为平行四边形,得出四边形ADBF为菱形.【解答】解:(1)如图1,∵△ABC与△DEC均为等腰直角三角形,∴AC﹣DC=BC﹣EC,∴AD=BE,∵将BE绕点B顺时针旋转90°得BF,∴BE=BF,∴AD=BF,又∵∠ACB=90°,∠CBF=90°,∴∠C+∠CBF=180°,。
2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析
∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.
【解析版】福建省莆田市中考数学模拟试卷(5月份)
福建省莆田市中考数学模拟试卷(5月份)一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.795.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.187.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A.c<a<b B.b<a<c C.a<b<c D.c<b<a9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.410.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C.3D.4二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是事件(选填“随机”,“必然”或“不可能”).13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为.14.(4分)若a x=2,a y=3,则a2x+y=.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.福建省莆田市中考数学模拟试卷(5月份)参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π考点:实数大小比较.专题:应用题.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有C符合.故选C.点评:本题考查实数大小的比较,是基础性的题目,比较简单.2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°考点:平行线的性质.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.79考点:中位数.分析:先把这些数据从小到大排列,再找出最中间的两个数的平均数,即可得出答案.解答:解:把这些数据从小到大排列为:66,67,78,78,79,79,79,80,最中间的数是78,79的平均数,即=78.5,则这8人体育成绩的中位数是78.5;故选C.点评:此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对考点:绝对值.分析:根据题意取a=2,b=﹣3,求出a+b=﹣1,再比较即可.解答:解:∵|b|>|a|,且a>0,b<0,∴取a=2,b=﹣3,∴a+b=﹣1,故选A.点评:本题有理数的大小比较的应用,采取了取特殊值法.6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.18考点:三角形中位线定理.分析:根据三角形中位线定理,可得ED=FG=BC=4,GD=EF=AO=3,进而求出四边形DEFG的周长.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四边形DEFG的周长为3+4+3+4=14.故选B.点评:本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形中位线的性质定理,为证明线段相等和平行提供了依据.7.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.考点:锐角三角函数的定义.分析:根据勾股定理,可得AB与BC的关系,根据余弦函数的定义,可得答案.解答:解:由勾股定理,得AB=BC.由余弦函数的定义,得cosA===,故选:D.点评:本题考查了锐角三角函数的定义,先利用勾股定理得出BA与BC的关系,再利用余弦函数的定义.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A. c<a<b B.b<a<c C.a<b<c D.c<b<a考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为y轴,然后比较三个点离对称轴的远近得到a、b、c的大小关系.解答:解:∵二次函数y=mx2(m<0)∴抛物线的对称轴为y轴,∵A(﹣2,a)、B(﹣1,b)、C(3,c)∴点C离y轴最远,点B离y轴最近,而抛物线开口向下,∴b>a>c;故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.4考点:垂径定理;勾股定理.分析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.解答:解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠D PB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.点评:本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.10.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C. 3 D. 4考点:有理数的混合运算.专题:新定义.分析:根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.解答:解:根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.点评:(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=5.考点:算术平方根.分析:根据开方运算,可得一个正数的算术平方根.解答:解:=5,故答案为:5.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”,“必然”或“不可能”).考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:任意打开一本200页的数学书,正好是第50页”,这是随机事件,故答案为:随机.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为2.5×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000用科学记数法表示为2.5×104.故答案为:2.5×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为120°.考点:圆锥的计算.分析:直接利用扇形的侧面积公式计算即可确定本题的答案.解答:解:设圆心角的度数为n°,根据题意得:=12π,解得:n=120,所以圆心角为120°,故答案为:120°.点评:本题考查了圆锥的计算.牢记圆锥的计算公式是解答本题的关键,难度不大.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先利用菱形的性质和勾股定理求出菱形对角线BD为6,再作点M关于AC 的对称点M′,连接M′N交BD于P,此时MP+NP有最小值.然后根据勾股定理即可求出MP+NP=M′N=2.解答:解:∵在菱形ABCD中,AB=6,∠ABC=60°,∴AC=6,BD=6,作点M关于AC的对称点M′,连接M′N交BD于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于BD对称,∴BM′=BM,又∵,∠ABC=60°,∴△BMM′是等边三角形,∴MM′=BM=AB﹣AM=6﹣2=4,∵AB=AD,AM=AN,∴MN∥BD,∴===,∴MN=×6=2,∵MM′⊥BD,MN∥BD,∴MM′⊥MN,∴M′N==2∴MP+NP=M′N=2,即MP+NP的最小值为2.故答案为2.点评:本题考查的是轴对称﹣最短路线问题及菱形的性质和勾股定理的运用,熟知两点之间线段最短的知识是解答此题的关键.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣4×﹣4+2=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:原式=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当,b=﹣2时,原式=.点评:本题考查了整式的混合运算和求值的应用,能运用整式的运算法则进行化简是解此题的关键,难度适中.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,去括号,移项,合并同类项,系数化成1即可.解答:解:去分母得:2(2x﹣1)﹣3(5x+1)≥6,4x﹣2﹣15x﹣3≥6,﹣11x≥11,x≤﹣1,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有50辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)根据展销总量乘以D类所占的百分比,可得答案;(2)根据各类的成交量比上各类展销量,可得成交率,根据有理数的大小比较,可得答案;(3)根据A类的成交量比上总成交量,可得答案.解答:解:(1)参加展销的D型号轿车有200×(1﹣35%﹣20%﹣20%)=50(辆)(2)A类的成交率,B类的成交率,D类的成交率,C类的成交率,∵>,∴A型号的轿车销售的成交率最高.(3)总成交量45+25+20+30=120,A类成交量的概率;D类所占的百分比:1﹣35%﹣20%﹣20%=35,C类的展销量200×20%=40(辆),C类的成交量40×50%=20,补充如图:.点评:本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.考点:全等三角形的判定与性质.专题:证明题.分析:由旋转可以得出∠AEM=∠ADM=90°,就可以得出∠M=∠N,∠MAB=∠NAB就可以得出△ABM≌△ABN,由全等三角形的旋转就可以得出结论.解答:证明:∵AB=AC,AD⊥BC于D点,∴∠ACD=∠ABD,∠CAD=∠BAD,∠ADC=ADB=90°.∵△AEB是由△A DC旋转得到的,∴△AEB≌△ADC,∴∠AEB=∠ADC=90°,∠MAB=∠CAD.∴∠AEB=∠ADB=90°.∠MAB=∠NAB∴∠M+∠MAD=90°,∠N+∠EAN=90°,∴∠M=∠N.在△ABM和△ABN中,∴△ABM≌△ABN(AAS),∴AM=AN.点评:本题考查了旋转的旋转的运用,直角三角形的旋转的运用,全等三角形的判定及旋转的运用,解答时证明三角形全等是关键.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?考点:一元二次方程的应用.专题:销售问题.分析:根据题意表示出购买这种学习用品的数量,进而利用单价×数量=总钱数,进而求出即可.解答:解:设小红购买x盒学习用品.根据题意得:x[3.8﹣0.2(x﹣10)]=40.8解得:x1=12,x2=17当x=12时,单价为:3.8﹣2×0.2=3.4,当x=17时,单价为:3.8﹣7×0.2=2.4<3(不合题意舍去),所以小红购买了12盒学习用品.点评:此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.考点:菱形的判定;反比例函数与一次函数的交点问题.分析:由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.解答:解:四边形CBED是菱形.∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).∵AD⊥x轴于D,∴D(3,0),设直线AB的解析式为y=mx+n,将 A(3,)、B(﹣5,﹣4)代入得:解得:.∴直线AB的解析式为:.∴点C的坐标是(﹣2,0).∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形.点评:本题考查了反比例函数综合题及菱形的判定的知识.解答此题时,利用了反比例函数图象上点的坐标特征.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:首先证得△COF∽△EOC,再由BF=OB,得出OE与OC的比,进一步求得CE,在直角三角形OEC中利用勾股定理求得答案即可.解答:解:∵CF是⊙O的切线∴∠OCF=90°,∴∠OCF=∠OEC,∵∠COF=∠EOC∴△COF∽△EOC,∴∵,∴,∴,∵AB⊥CD于E,∴,设OE=2x,则OC=3x.∵OC2=OE2+CE2,∴,∴⊙O的半径为3.点评:此题考查切线的性质,相似三角形的判定与性质,勾股定理的运用,垂径定理,注意结合图形,灵活利用数据解决问题.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.考点:全等三角形的判定与性质;正方形的性质.分析:(1)如图1,在CD上截取DE=MB,连接AE由正方形的性质就可以得出Rt△ABM≌Rt△ADE,就可以得出AM=AE,∠DAE=∠BAN,进而得出△ANM≌△ANE 就可以得出结论;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD,就可以得出△ABD≌△AQF,得出∠CAQ=45°,∠BAC=∠CAQ,就有△BAC≌△QAC,从而得出BC=CQ=13,设AD=x,则QE=x﹣3,CE=x﹣10.由勾股定理就可以求出x的值,得出AD的值,由三角形的面积公式就可以求出结论.解答:解:(1)如图1,在CD上截取DE=MB,连接AE.∵四边形ABCD是正方形∴AB=BC=AD,∠ABC=∠D=90°在△ABM和△ADE中,∴△ABM≌△ADE(SAS),∴∠BAM=∠DAE,AM=AE∵∠MAN=45°∴∠DAE+∠BAN=45°.即∠NAE=45°.在△ANM和△ANE中,∴△ANM≌△ANE(SAS),∴S△AMN=S△AEN.∵S△ADN=S△AEN+S△ADE,∴S△ADN=S△ANE+S△ADE=S△AMN+S△ABM;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD.在△ABD和△AQF中,∴△ABD≌△AQF(SAS),∴AB=AQ,∠BAD=∠FAQ∵∠BAC=45°∴∠BAD+∠DAC=45°∴∠DAC+∠FAQ=45°即∠CAQ=45°∴∠BAC=∠CAQ.在△BAC和△QAC中,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=13.设AD=x,则QE=x﹣3,CE=x﹣10.在Rt△CQE中,∠E=90°∵CE2+QE2=CQ2∴(x﹣10)2+(x﹣3)2=132解得:x1=15,x2=﹣2(不合舍去)∴AD=15∴.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的性质的运用,解答时证明三角形全等是关键.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.考点:抛物线与x轴的交点.分析:(1)由C1:y=(x﹣m)2+m+1(m>0),可求得顶点A(m,m+1),由于点B 在y轴上,根据对称即可解得m=2;(2)由(1)知A(2,3)、B(0,1)根据勾股定理可得AB2=(2﹣0)2+(3﹣1)2=8由抛物线C2的顶点B(0,1)在y轴上得到抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),根据勾股定理得到AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1由于△ABC是直角三角形,进行分类讨论即可求出结果.解答:解:(1)∵C1:y=(x﹣m)2+m+1(m>0)∴顶点A(m,m+1),∵点B在y轴上,∴设B(0,b),又A、B关于点P(1,2)对称,∴,解得:m=2;(2)由(1)知A(2,3)、B(0,1)∴AB2=(2﹣0)2+(3﹣1)2=8∵抛物线C2的顶点B(0,1)在y轴上∴抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),∴AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1∵△ABC是直角三角形,则:①当∠ABC=90°时,AC2=BC2+AB2,即c2﹣4c+13=(c2+1)+8,解得:c=1∴C1(1,0),将点C1坐标代入y=ax2+1得:a+1=0;解得:a=﹣1,∴抛物线C2的解析式为:y=﹣x2+1,②当∠BAC=90°时,BC2=AC2+AB2,即c2+1=(c2﹣4c+13)+8,解得:c=5,∴C2(5,0),将点C2坐标代入y=ax2+1得:25a+1=0,解得:a=﹣,∴抛物线C2的解析式为:y=﹣x2+1,综上,当△ABC为直角三角形时,抛物线C2的解析式为:y=﹣x2+1或y=﹣x2+1.点评:本题考查了抛物线与X轴的交点,关于点对称,正确理解关于点对称是解题的关键.21 / 21。
初三数学模拟题试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √-1B. πC. √4D. 无理数2. 如果 |a| = 5,那么 a 的值是()。
A. ±5B. 5C. -5D. 03. 下列各式中,正确的是()。
A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 下列各图中,相似图形是()。
A.B.C.D.5. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()。
A. 60cm²B. 120cm²C. 100cm²D. 80cm²6. 如果x² - 5x + 6 = 0,那么 x 的值是()。
A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -47. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。
A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x9. 下列各式中,正确的是()。
A. a² = aB. (a + b)² = a² + b² + 2abC. (a - b)² = a² - b²D. (a + b)² = a² + b² - 2ab10. 下列各数中,绝对值最大的是()。
A. -3B. -2C. 1D. 0二、填空题(每题5分,共25分)11. 3 + (-5) 的值是 _______。
常州市中考数学模拟试卷(5月份)含答案解析
江苏省常州市中考数学模拟试卷(5月份)一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×1033.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,1605.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.10.若式子有意义,则x的取值范围是.11.分解因式:3x2﹣6xy+3y2=.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于.13.方程=0的解是.14.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是cm2.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是.18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是;(2)求图1中∠α的度数是°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.江苏省常州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故选:D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:161000=.612×105.故选B.3.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解::A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、圆是轴对称图形,不是中心对称图形.故错误.故选C.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,160【考点】众数;中位数.【分析】将这5个数据按照从小到大或从大到小的顺序排列,数据个数是5为奇数个,则中间那个数据就是这组数据的中位数;这5个数据中出现次数最多的数是37,则37就是这组数据的众数.据此进行解答.【解答】解:将数据按照从小到大的顺序排列为:150,158,158,160,162,这5个数据中位于中间的数据是158,所以中位数为:158;数据中出现次数最多的数是158,158就是这组数据的众数;故选A.5.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意画出图形,再利用坡角的正弦值即可求解.【解答】解:如图,∠A=α,AE=500.则EF=500sinα.故选A.7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定【考点】一次函数图象上点的坐标特征.【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣<0,∴此函数是减函数.∵﹣3<2,∴m>n.故选A.8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2【考点】正方形的性质;勾股定理;圆的认识.【分析】连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,列出方程组即可解决问题.【解答】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=.故选B.二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,负数的绝对值是正数,可化简各数,根据有理数的减法,可得答案.【解答】解:原式=2﹣=,故答案为:.10.若式子有意义,则x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:式子有意义,得x﹣3≥0,解得x≥3,故答案为:x≥3.11.分解因式:3x2﹣6xy+3y2=3(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于 4.5.【考点】相似三角形的判定与性质.【分析】根据AB∥CD,于是得到△ABO∽△CDO,然后根据相似三角形面积的比等于相似比的平方即可得到结论.【解答】解:∵AB∥CD,∴△ABO∽△CDO,∴=()2=()2=,∵△ABO的面积是2,∴△CDO的面积等于4.5.故答案为:4.5.13.方程=0的解是x=3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣10+x+1=0,解得:x=3,经检验x=3是分式方程的解.故答案为:x=314.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是15πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:由勾股定理得:圆锥的母线长==5cm,∵圆锥的底面周长为2πr=2π×3=6πcm,∴圆锥的侧面展开扇形的弧长为6πcm,∴圆锥的侧面积为:×6π×5=15πcm2.故答案为:15π.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.【考点】抛物线与x轴的交点.【分析】二次函数的图象与x轴有且只有一个公共点,则对应的△=0,据此即可求解.【解答】解:依题意有△=m2﹣8=0,解得:m=±2.故答案是:±2.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=27°.【考点】切线的性质.【分析】连接OB,求出∠OBA,求出∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故答案为:27°.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是(,).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的解析式和点A在函数的图象上可求出点A与点A',由于△AOA′为直角三角形解答即可.【解答】解:因为点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,设点A坐标为(x,),点A'的坐标为(﹣x,),因为△AOA′为直角三角形,可得:x2=2,解得x=,所以点A的坐标为(,),故答案为:(,).18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为4+3.【考点】旋转的性质.【分析】连结CC′,A′C交BC于O点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C垂直平分B′C,则BO=BC′=3,然后利用勾股定理计算出A′O,利用三角函数计算出OC,最后计算A′O+OC即可.【解答】解:连结CC′,A′C交BC于O点,如图,∵△ABC绕点B逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC′为等边三角形,∴CB=CB′,而A′B=A′C′,∴A′C垂直平分B′C,∴BO=BC′=3,在Rt△A′OB中,A′O===4,在Rt△OBC中,∵tsin∠CBO=sin60°=,∴OC=6×=3,∴A′C=A′O+OC=4+3.故答案为4+3.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.【考点】整式的混合运算—化简求值.【分析】先算乘法,再算加减,把a=2,b=1.5代入进行计算即可.【解答】解:原式=a2﹣b2+b2﹣2b=a2﹣2b.当a=2,b=1.5时,原式=4﹣2×1.5=4﹣3=1.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).【考点】解一元一次不等式组;解一元二次方程-因式分解法.【分析】(1)移项后分解因式,即可得出两个方程,求出方程的解即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)x2﹣3x=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(2)∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴原不等式组的解集是﹣2≤x<1.21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是40;(2)求图1中∠α的度数是144°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为175.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数除以B级所占的百分比,可得抽测的人数;(2)根据A级的人数除以抽测的人数,可得A级人数所占抽测人数的百分比,根据圆周角乘以A级人数所占抽测人数的百分比,可得A级的扇形的圆心角,根据有理数的减法,可得C级抽测的人数,然后补出条形统计图;(3)根据D级抽测的人数除以抽测的总人数,可得D级所占抽测人数的百分比,根据八年级的人数乘以D级所占抽测人数的百分比,可得答案.【解答】解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=×360=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.;(3)估计不及格的人数是3500×=175(人),故答案是:175.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.【考点】列表法与树状图法.【分析】此题可以采用列举法求概率,要注意不重不漏;此题需要三步完成,可以采用树状图法,注意此题为不放回实验;此题也可认为两步完成,因为确定了甲乙,也就确定了丙,所以也可采用列表法求概率.【解答】解:(1)列表或画树状图表示三位同学抽到卡片的所有可能结果如下:甲 a a b b c c乙 b c a c a b丙 c b c a b a(2)如图可知,三位同学抽到卡片的所有可能的结果共有6种,所以三位同学中有一人抽到自己制作的卡片有3种,有三人抽到自己制作的卡片有1种.所以,三位同学中至少有一人抽到自己制作卡片有4种,8分所以,三位同学中至少有一人抽到自己制作的卡片的概率为:.10分23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.【考点】全等三角形的判定与性质.【分析】根据等边三角形的性质就可以得出∠DAB=60°,∠DAC=90°.就可以得出△ACB≌△DEB,进而可以得出结论.【解答】证明:∵△ABC是等边三角形,∴AB=BD,∠ABD=60°,∵AB=BD,点E是AB的中点,∴DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵∠BAC=30°,∴∠ABC=60°,∴∠ABD=∠ABC,在△ACB与△DEB中,,∴△ACB≌△DEB(AAS),∴AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)根据轴对称图形以及中心对称图形的性质得出符合题意的图形即可;(2)利用轴对称图形以及中心对称图形的性质,再利用锐角三角函数关系得出答案.【解答】解:(1)如图1所示:(2)如图2所示.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?【考点】一次函数的应用.【分析】(1)根据图象确定出甲步行路程与时间的解析式;确定出20≤t≤30时,乙乘观光车由景点A到B时的路程与时间的函数解析式,联立即可确定出相遇的时间;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意列出方程,求出方程的解得到x的值,即可确定出乙步行由B到C的速度.【解答】解:(1)当0≤t≤90时,甲步行路程与时间的函数解析式为S=60t;当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n,把(20,0)与(20,3000)代入得:,解得:,∴函数解析式为S=300t﹣6000(20≤t≤30);联立得:,解得:,∵25﹣20=5,∴乙出发5分钟后与甲相遇;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意,得5400﹣3000﹣(90﹣60)x=360,解得:x=68,∴乙步行由B到C的速度为68米/分钟.26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点A作AD⊥BC于D,利用锐角三角函数关系得出AC的长,进而得出AB的长即可得出答案;(2)利用(1)求出BD的长,再利用速度=,求出答案即可.【解答】解:(1)过点A作AD⊥BC于D,由题意得:∠B=30°,∠BAC=105°,则∠BCA=45°,AC=30千米,在Rt△ADC中,CD=AD=AC.cos45°=30(千米),在Rt△ABD中,AB=2AD=60千米,t==4(时).4﹣2=2(时),答:甲船从C处追赶上乙船用了2小时;(2)由(1)知:BD=AB•cos30°=30千米,∴BC=30+30(千米),v=(30+30)=(15+15)千米/时.答:甲船加快速度后,追赶乙船时的速度为:(15+15)千米/时.27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.【考点】圆的综合题.【分析】(1)由AE⊥AC,∠ACB=90°,可得AE∥BC,然后由平行线分线段成比例定理,求得y关于x的函数解析式;(2)由题意易得要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,然后由△ABC∽△EAC,求得答案;(3)易得点C必在⊙E外部,此时点C到⊙E上点的距离的最小值为CE﹣DE.然后分别从当点E在线段AD上时与当点E在线段AD延长线上时,去分析求解即可求得答案.【解答】解:(1)∵AE⊥AC,∠ACB=90°,∴AE∥BC,∴=,∵BC=6,AC=8,∴AB==10,∵AE=x,AP=y,∴=,∴y=(x>0);(2)∵∠ACB=90°,而∠PAE与∠PEA都是锐角,∴要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,此时△ABC∽△EAC,则=,∴AE=.故存在点E,使△ABC∽△EAP,此时AE=;(3)∵点C必在⊙E外部,∴此时点C到⊙E上点的距离的最小值为CE﹣DE.设AE=x.①当点E在线段AD上时,ED=6﹣x,EC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙E的半径为.②当点E在线段AD延长线上时,ED=x﹣6,EC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙E的半径为9.∴⊙E的半径为9或.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.【考点】二次函数综合题.【分析】(1)由直线可求得C点坐标,代入抛物线可求得a的值,结合条件可求得A点坐标,代入可求得b的值,可求得抛物线解析式;(2)可先求得B点坐标,过P作PF⊥x轴于点G,交BC于点F,作PE⊥BC,结合条件可找到PG与GF关系,再求得直线BC的解析式,设出F点的坐标,可表示出P点坐标,代入抛物线可求得P点的坐标;(3)分DP∥QR和DR∥QP,当DP∥QR时,过P作PN∥BQ,过D作DN⊥BQ交PN 于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,可求得RM=DN,MQ=PN,结合条件可求得D点坐标,设出R的坐标,可求得横坐标,代入抛物线可求得R的坐标,再根据平行四边形的性质可求得Q的坐标;同理可求得当DR∥QP时的R、Q的坐标.【解答】解:(1)∵直线y=kx﹣7与y轴的负半轴交于点C∴C(0,﹣7),∴OC=7,∵抛物线y=ax2+bx+14a经过点C,∴14a=﹣7,∴a=﹣,∴y=﹣x2+bx﹣7,∵OA:OC=2:7.∴OA=2,∴A(2,0)∵抛物线y=﹣x2+bx﹣7经过点A,∴b=∴抛物线的解析式为y=﹣x2+x﹣7,(2)如图1,∵抛物线y=﹣x2+x﹣7经过B点,令y=0解得x=7或x=2(舍去),∴B(7,0),∴OB=7,∴OC=OB,∴∠OCB=∠OBC=45°过点P作PF⊥x轴于点G,交CB延长线于点F,则PF∥y轴,∴∠CFG=∠OCB=45°,∴BF=GF,过P作PE⊥BC于点E,∵PD=PB,∴∠PBD=∠PDB,∴tan∠PBD=tan∠PDB=2,∴PE=2BE,∵EF=PE,∴BF=BE,∴PF=PE=2BE=2BF=4GF,∴PG=3GF,∵直线y=kx﹣7过B点,∴k=1,∴y=x﹣7,设F(m,m﹣7),则P(m,﹣3(m﹣7)),∵点P在抛物线y=﹣x2+x﹣7上,∴,解得m=7(舍去)或m=8,∴P(8,﹣3);(3)如图2,当DP∥QR时,即四边形DQRP是平行四边形,∵B(7,0),Q(7,m)∴BQ∥y轴过P作PN∥BQ,过D作DN⊥BQ交PN于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,∴∠DTB=∠DPN,∠PTQ=∠RQM,∵∠DTB=∠PTQ,∴∠DPN=∠RQM,∵四边形DPRQ是平行四边形,∴DP=RQ,在△RMQ和△DNP中,,∴△RMQ≌△DNP(AAS),∴RM=DN,MQ=PN,由(2)可求F(8,1),GF=1,BD=2BE=2BF=2GF=∵∠QBC=45°,∴BI=DI=2,∴D(5,﹣2),设R点的横坐标为t,∵RM=DN,∴t﹣7=8﹣5,解得t=10,∵点R在抛物线y=﹣x2+x﹣7 上,∴当t=10时,,∴R(10,﹣12),∵MQ=PN,∴3﹣2=﹣12﹣n,∴n=﹣11,∴R(10,﹣12),Q(7,﹣11),如图3,当DR∥QP时,即四边形DQPR是平行四边形同理可求得R(6,2),Q(7,﹣7).6月3日。
2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(五)
2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(五)的图象经过点(2,3),则k=()1.(单选题,3分)已知反比例函数y= kxA.2B.3C.-6D.62.(单选题,3分)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.3.(单选题,3分)不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为()A. 13B. 12C. 23D.14.(单选题,3分)如图,△ABC中,点D,E分别在边AB,AC的反向延长线上,且DE || BC.若AE=2,AC=4,AD=3,则AB为()A.9B.6C.3D. 325.(单选题,3分)在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A.x-1=0B.x2+x=0C.x2-1=0D.x2+1=06.(单选题,3分)如图,⊙O的内接正六边形ABCDEF的边长为1,则BĈ的长为()πA. 14πB. 13πC. 23D.π7.(单选题,3分)下表是小红填写的实践活动报告的部分内容:题目测量铁塔顶端到地面的高度测量目标示意图相关数据CD=10m,α=45°,β=50°A.x=(x-10)tan 50°B.x=(x-10)cos50°C.x-10=x tan 50°D.x=(x+10)sin 50°8.(单选题,3分)如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④ 中,则下面叙述中正确的是()A.点A的横坐标有可能大于3B.矩形1是正方形时,点A位于区域②C.当点A沿双曲线向下移动时,矩形1的面积减小D.当点A位于区域① 时,矩形1可能和矩形2全等9.(填空题,3分)写出一个二次函数,使得它有最小值,这个二次函数的解析式可以是___ .的图象上,则a,b的大10.(填空题,3分)若点(1,a),(2,b)都在反比例函数y= 4x小关系是:a___ b(填“>”、“=”或“<”).11.(填空题,3分)如图,△ABC为等腰三角形,O是底边BC的中点,若腰AB与⊙O相切,则AC与⊙O的位置关系为___ (填“相交”、“相切”或“相离”).12.(填空题,3分)若关于x的一元二次方程x2-3x+m=0的一个根为1,则m的值为___ .13.(填空题,3分)如图,矩形纸片ABCD中,AB>AD,E,F分别是AB,DC的中点,将矩形ABCD沿EF所在直线对折,若得到的两个小矩形都和矩形ABCD相似,则用等式表示AB与AD的数量关系为___ .14.(填空题,3分)如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB=1.5m,同时量得BC=2m,CD=12m,则旗杆高度DE=___ m.15.(填空题,3分)已知双曲线y=- 3与直线y=kx+b交于点A(x1,y1),B(x2,y2).x(1)若x1+x2=0,则y1+y2=___ ;(2)若x1+x2>0时,y1+y2>0,则k___ 0,b___ 0(填“>”,“=”或“<”).16.(填空题,3分)如图,⊙O的半径是5,点A在⊙O上.P是⊙O所在平面内一点,且AP=2,过点P作直线l,使l⊥PA.(1)点O到直线l距离的最大值为___ ;(2)若M,N是直线l与⊙O的公共点,则当线段MN的长度最大时,OP的长为___ .17.(问答题,5分)解方程:x2-4x+3=0.18.(问答题,5分)如图,在Rt△ABC和Rt△ACD中,∠B=∠ACD=90°,AC平分∠BAD.(1)证明:△ABC∽△ACD;(2)若AB=4,AC=5,求BC和CD的长.19.(问答题,5分)在矩形ABCD中,AB=3,BC=6,P为BC边上一点,△APD为等腰三角形.(1)小明画出了一个满足条件的△APD,其中PA=PD,如图1所示,则tan∠BAP的值为___ ;(2)请你在图2中再画出一个满足条件的△APD (与小明的不同),并求此时tan∠BAP 的值.20.(问答题,5分)文具店购进了20盒“2B”铅笔,但在销售过程中,发现其中混入了若干“HB”铅笔.店员进行统计后,发现每盒铅笔中最多混入了2支“HB”铅笔,具体数据见下表:混入“HB”铅笔数1 2 盒数6 mn(1)用等式写出m ,n 所满足的数量关系 ___ ; (2)从20盒铅笔中任意选取1盒:① “盒中没有混入‘HB’铅笔”是 ___ 事件(填“必然”、“不可能”或“随机”); ② 若“盒中混入1支‘HB’铅笔”的概率为 14 ,求m 和n 的值.21.(问答题,6分)一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y=- 112 x 2+ 23 x+c ,其图象如图所示.已知铅球落地时的水平距离为10m .(1)求铅球出手时离地面的高度;(2)在铅球行进过程中,当它离地面的高度为 1112 m 时,求此时铅球的水平距离.22.(问答题,6分)用长为6米的铝合金条制成如图所示的框,若窗框的高为x米,窗户的透光面积为y平方米(铝合金条的宽度不计).(1)y与x之间的函数关系式为___ (不要求写自变量的取值范围);(2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出最大面积.23.(问答题,6分)如图,在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B(4,2),以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段(x>0)的图象上.CD.已知点B在反比例函数y= kx(1)求反比例函数的解析式,并画出图象;(2)判断点C是否在此函数图象上;(3)点M为直线CD上一动点,过M作x轴的垂线,与反比例函数的图象交于点N.若MN≥AB,直接写出点M横坐标m的取值范围.24.(问答题,7分)如图,Rt△ABC中,∠ACB=90°,点D在BC边上,以CD为直径的⊙O与直线AB相切于点E,且E是AB中点,连接OA.(1)求证:OA=OB;(2)连接AD,若AD= √7,求⊙O的半径.25.(问答题,7分)在平面直角坐标系xOy中,点P(m,y1)在二次函数y=x2+bx+c的图象上,点Q(m,y2)在一次函数y=-x+4的图象上.(1)若二次函数图象经过点(0,4),(4,4).① 求二次函数的解析式与图象的顶点坐标;② 判断m<0时,y1与y2的大小关系;(2)若只有当m≥1时,满足y1•y2≤0,求此时二次函数的解析式.26.(问答题,0分)已知∠MON=α,A为射线OM上一定点,OA=5,B为射线ON上一动点,连接AB,满足∠OAB,∠OBA均为锐角.点C在线段OB上(与点O,B不重合),满足AC=AB,点C关于直线OM的对称点为D,连接AD,OD.(1)依题意补全图1;(2)求∠BAD的度数(用含α的代数式表示);,点P在OA的延长线上,满足AP=OC,连接BP,写出一个AB的值,使得(3)若tanα= 34BP || OD,并证明.27.(问答题,0分)(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为___ ;(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.① 在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);② 在图3中补全图形,求∠EOF的度数;③ 若AFCE =89,则OFOE的值为___ .28.(问答题,0分)在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于AB̂的点是___ ;(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标x p的取值范围;(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.。
泉州市南安市2019年中考数学模拟试卷(五)含答案解析
福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。
2023年江苏省九年级中考数学模拟试卷(五)含答案
江苏省九年级中考数学模拟试卷(五)(考试时间:120分钟总分:130分)一、选择题(本题共10小题;第1~8题每小题3分,第9~10题每小题4分,共32分)下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的.1.下列计算正确的是( )A.2-2=-4 B.2-2=4 C.2-2=14D.2-2=-142.把多项式x2-4x+4分解因式的结果是()A.(x+2)2 B.(x-2)2 C.x(x-4)+4 D.(x+2)(x-2)3.观察统计图(见图1),下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较4.函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图像可能是( )5.某城市计划经过两年的时间,将城市绿地面积从现在的144万m2提高到225万m2,则每年平均增长( )A.15% B.20% C.25% D.30%6.下面四个几何体中,俯视图为四边形的是( )7.100名学生进行20s跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足( )A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>708.不等式组213351xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是( )9.如图2所示,△ABC ≌△ADE 且∠ABC =∠ADE ,∠ACB =∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC =DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有 ( )A .1个B .2个C .3个D .4个10.如图3所示,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D(5,4),AD =2.若动点E 、F 同时从点O 出发,E 点沿折线OA →AD →DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是1个单位长度/s .设E运动x s 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图像大致为 ( )二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.用四舍五入法,精确到0.1,对5.649取近似值的结果是_______.12.当x =-2时,代数式2531x x --的值是_______.13.如图4所示,在△ABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B =120°,则∠ANM =_______.14.如图5所示,A 是硬币圆周上一点,硬币与数轴相切于原点(A 与原点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A'重合,则点A'对应的实数是_______.15.如图6所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_______.16.直线y =ax (a>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则4x 1y 2-3x 2y 1=_______. 17.如图所示,在梯形ABCD 中,AD ∥BC ,∠C =90°,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF ∥BC 交AB 于F ,EG ∥AB交BC 于G ,当AD =2,BC =12时,四边形BGEF 的周长为_______.18.对于二次函数y =x 2-2mx -3,有下列说法:①它的图像与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图像向左平移3个单位后过原点,则m =-1;④如果当x =4时的函数值与当x =时的函数值相等,则当x =时的函数值为-3. 其中正确的说法是_______.(把你认为正确说法的序号都填上)三、解答题(本题共11小题;共76分,解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:()03tan603π-︒--. 20.(本小题5分)解不等式组()213215x x +⎧<⎪⎨⎪-≤⎩,并把解集在数轴上表示出来.21.(本小题5分)已知a =2-1,b =2+1,求代数式a 3b +ab 3的值.22.(本小题6分)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?23.(本小题6分)如图所示,在△ABC 中,AB =AC =10,BC =8.用尺规法作出BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.24.(本小题8分)如图所示,曲线C 是函数y =6x在第一象限内的图像,抛物线是函数y =-x 2-2x +4的图像.点P n (x ,y)(n =1,2,…)在曲线C 上,且x 、y 都是整数.(1)求出所有的点P n (x ,y).(2)在P n 中任取两点作直线,求所有不同直线的条数.(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. (24题)(25题)25.(本小题6分)如图所示,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6 km 到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.26.(本小题8分)如图所示,一次函数y =kx +b 的图像与x 、y轴分别交于点A(2,0)、B(0,4).(1)求该函数的解析式.(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.27.(本小题8分)如图所示,已知等边△ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点D作DF_l AC,垂足为点F.(1)判断DF与⊙O的位置关系,并证明你的结论.(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求FH的长.(结果保留根号)28.(本小题9分)某市政府为落实保障性住房政策,已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到202X年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到202X年底,这两年中投入资金的平均年增长率(只需列出方程).(2)设(1)中方程的两根分别为x1、x2,且mx21-4m2x1x2+mx22的值为12,求m的值.29.(本小题10分)如图所示,在平面直角坐标系Oxy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=45.(1)求过A、C、D三点的抛物线的解析式.(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围.(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.参考答案一、选择题1.C 2.B 3.D 4.A 5.C 6.D 7.B 8.C 9.D 10.C 二、填空题11.5.6 12.5 13.60°14.π15.15416.-3 17.28 18.①④三、解答题19.-120.-32≤x<1解集在数轴上的表示如答图所示:21.622.甲、乙工程队单独完成任务分别需要4天、6天.23.22124.(1)P1(1,6)、P2(2,3)、P3(3,2)、P4(6,1).(2)6条.(3)1 325.山头C、D21.26.(1).y=-2x+4.(2)P的坐标为(0,1) 27.(1)相切(2)FH33 28.(1)10.5.(2)m=-6或m=129.(1)y=-23x2+23x+4(2)当y1 <y2时,-2<x<5.(3)34312教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)
2020年中考数学模拟试卷(五)一、选择题1.2-的绝对值是( ) A .12-B .2-C .12D .22.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += )A .4-B . 3C .43-D .439.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .410.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .3D .3212.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= .14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是 . 15.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为 .16.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .17.如图,一张三角形纸片ABC ,90C ∠=︒,8AC cm =,6BC cm =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B组人数所占的百分比为%a,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A . (1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由. (2)若1235a <<,求证:54n -<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒 (1)求抛物线的解析式; (2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.参考答案一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分) 1.2-的绝对值是( ) A .12-B .2-C .12D .2【分析】根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则2-的绝对值就是表示2-的点与原点的距离. 解:|2|2-=, 故选:D . 2.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母230x -≠,解得x 的范围.解:根据题意得:230x -≠, 解得:32x ≠. 故选:B .3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:数字338 600 000用科学记数法可简洁表示为83.38610⨯. 故选:A .4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意;D 、是轴对称图形,故此选项不合题意;故选:A .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒【分析】首先设此多边形为n 边形,根据题意得:180(2)540n -=,即可求得5n =,再由多边形的外角和等于360︒,即可求得答案. 解:设此多边形为n 边形, 根据题意得:180(2)540n -=, 解得:5n =,∴这个正多边形的每一个外角等于:360725︒=︒. 故选:C .6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案. 解:A 、87a a a -=,故此选项错误;B 、44()a a -=,正确;C 、325a a a =g ,故此选项错误;D 、222()2a b a ab b -=-+,故此选项错误;故选:B .7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【分析】根据各象限内点的坐标特征解答即可 . 解:Q 点(,)A a b -在第一象限内,0a ∴>,0b ->, 0b ∴<,∴点(,)B a b 所在的象限是第四象限 .故选:D .8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += ) A .4-B . 3C .43-D .43【分析】由方程的各系数结合根与系数的关系可得出“1243x x +=”, 由此即可得出结论 . 解:Q 方程23440x x --=的两个实数根分别为1x ,2x ,1243b x x a ∴+=-= 故选:D .9.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .4【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是必然事件,故正确,是真命题, 真命题有4个, 故选:D .10.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒【分析】先求出70ABC ∠=︒,进而判断出35ABD CBD ∠=∠=︒,最后用同弧所对的圆周角相等即可得出结论. 解:如图,连接BD ,AB Q 为O e 的直径, 90ACB ∴∠=︒, 20CAB ∠=︒Q , 70ABC ∴∠=︒,Q ¶¶AD CD=, 1352ABD CBD ABC ∴∠=∠=∠=︒, 35CAD CBD ∴∠=∠=︒.故选:D .11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .23D .32【分析】取BC 的中点G ,连接EG ,根据三角形的中位线定理得:4EG =,设CD x =,则2EF BC x ==,证明四边形EGDF 是平行四边形,可得4DF EG ==. 解:取BC 的中点G ,连接EG , E Q 是AC 的中点, EG ∴是ABC ∆的中位线,118422EG AB ∴==⨯=, 设CD x =,则2EF BC x ==, BG CG x ∴==, 2EF x DG ∴==, //EF CD Q ,∴四边形EGDF 是平行四边形,4DF EG ∴==,故选:B .12.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >【分析】根据点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…,可知该抛物线开口向上,对称轴是直线x m =,则322m -+<,从而可以求得m 的取值范围,本题得以解决.解:Q 点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…, ∴322m -+<, 解得12m >-,故选:C .二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= 1 .【分析】直接利用已知得出221x x +=,再代入原式求出答案. 解:2210x x +-=Q , 221x x ∴+=,223623(2)23121x x x x ∴+-=+-=⨯-=.故答案为:1.14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是14. 【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率. 解:画树状图如下:P ∴(两次摸到同一个小球)41164== 故答案为:1415.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为22.【分析】设(,2)D x则(2,1)E x+,由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.解:设(,2)D x则(2,1)E x+,Q反比例函数kyx=在第一象限的图象经过点D、点E,22x x∴=+,解得2x=,(2,2)D∴,2OA AD∴==,2222OD OA OD∴=+=.故答案为216.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题解:设这个圆锥的底面圆的半径为R,由题意:18042180Rππ=g,解得2R=.故答案为2.17.如图,一张三角形纸片ABC,90C∠=︒,8AC cm=,6BC cm=.现将纸片折叠:使点A与点B重合,那么折痕长等于4.【分析】根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证ACB AGH ∆∆∽,利用比例式可求GH 的长,即折痕的长. 解:如图,折痕为GH ,由勾股定理得:226810AB cm =+=, 由折叠得:1110522AG BG AB cm ===⨯=,GH AB ⊥, 90AGH ∴∠=︒,A A ∠=∠Q ,90AGH C ∠=∠=︒, ACB AGH ∴∆∆∽, ∴AC BCAG GH =, ∴865GH=, 154GH cm ∴=. 故答案为:154.18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是26+ .【分析】如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒,得到ACD ∆为等边三角形根据AC AD =,CE ED =,得出AE 垂直平分DC ,于是求出122EO DC ==,sin 606OA AC =︒=g ,最终得到答案26AE EO OA =+=+.解:如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒, ACD ∴∆为等边三角形,AD CA ∴=,60DAC DCA ADC ∠=∠=∠=︒; 90ABC ∠=︒Q ,2AB BC ==,22AC AD ∴==, AC AD =Q ,CE ED =,AE ∴垂直平分DC , 122EO DC ∴==,sin 606OA CA =︒=g, 26AE EO OA ∴=+=+,故答案为26+.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒【分析】直接利用绝对值的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1(31)33=----+ 3=-.20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出1A 、1B 、1C 的坐标,然后描点即可; (3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点2A 、2B 、2C ,然后描点得到△222A B C ,再利用弧长公式计算点C 旋转至2C 经过的路径长. 解:(1)A 点坐标为(4,1)-,C 点坐标为(1,3)-; (2)如图,△111A B C 为所作;(3)如图,△222A B C 为所作,221310OC =+=点C 旋转至2C 经过的路径长9010101802ππ==g g .21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B 组人数所占的百分比为%a ,则a 的值为 15 ,表示C 组扇形的圆心角θ的度数为 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【分析】(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.解:(1)D的人数是:2001030407050----=(人),补图如下:(2)B组人数所占的百分比是30100%15% 200⨯=,则a的值是15;C组扇形的圆心角θ的度数为4036072200⨯=︒;故答案为:15,72;(3)根据题意得:702000700200⨯=(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”AOD∆和DOC∆;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.【分析】(1)根据“互补三角形”可得结论;(2)作//EH FG ,且EH FG =,可得符合条件的EFH ∆,根据四边形EFGH 是平行四边形可知:这一组“互补三角形”的面积相等. 解:(1)ABCD Y 中,OA OC =, OD OD =Q ,180AOD COD ∠+∠=︒,AOD ∴∆和DOC ∆是“互补三角形”, 故答案为:AOD ∆和DOC ∆;(2)如图所示,//EH FG ,且EH FG =,则EFH ∆即为所求,证明:连接GH ,//EH FG Q ,且EH FG =, ∴四边形EFGH 是平行四边形,//GH EF ∴,EFG EFH S S ∆∆∴=.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产每提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出第五档的蛋糕的利润;(2)设烘焙店生产的是第x 档次的产品,根据单件利润⨯销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论. 解:(1)102(51)18+⨯-=(元). 答:该档次蛋糕每件利润为 18 元;(2)设烘焙店生产的是第x档次的产品,根据题意得:[102(1)][764(1)]1024x x+-⨯--=,整理得:216480x x-+=,解得:14x=,212x=(不合题意,舍去).答:该烘焙店生产的是四档次的产品.24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sin B的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin sinAEF B∠=,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,ADQ为BAC∠的角平分线,BAD CAD∴∠=∠,OA OD=Q,ODA OAD∴∠=∠,ODA CAD∴∠=∠,//OD AC∴,90C∠=︒Q,90ODC ∴∠=︒,OD BC ∴⊥,BC ∴为圆O 的切线;(2)解:连接DF ,由(1)知BC 为圆O 的切线,FDC DAF ∴∠=∠,CDA CFD ∴∠=∠,AFD ADB ∴∠=∠,BAD DAF ∠=∠Q ,ABD ADF ∴∆∆∽, ∴AB AD AD AF=,即2AD AB AF xy ==g ,则AD =;(3)解:连接EF ,在Rt BOD ∆中,5sin 13OD B OB ==, 设圆的半径为r ,可得5813r r =+, 解得:5r =,10AE ∴=,18AB =, AE Q 是直径,90AFE C ∴∠=∠=︒,//EF BC ∴,AEF B ∴∠=∠,5sin 13AF AEF AE ∴∠==, 550sin 101313AF AE AEF ∴=∠=⨯=g , //AF OD Q , ∴501013513AG AF DG OD ===,即1323DG AD =,AD ∴===,则1323DG ==25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A .(1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由.(2)若1235a <<,求证:54n -<<-. 【分析】(1)①将点A 坐标代入解析式可求2b =,2c a =-,即可求抛物线解析式,可求点C ,点B 坐标,由三角形的面积公式可求解;②由22313132(22)(22)(2)2222y x x m x x m x m =++-+=+-+-,由二次函数的性质可求1m „,即可求解;(3)212(2)y ax x a =++-的对称轴为212x a a =-=-,由1235a <<,可得1532a -<-<-,又(1,0)A -、(,0)B n 两点关于对称轴对称,则11|1()|||n a a---=--,即可求解. 解:(1)①21(0)y ax bx c a =++>Q 过点A ,0a b c ∴-+=,22y x b =+Q 的图象过点A ,2b ∴=,2c a ∴=-;12a =Q , 13222c ∴=-=, 2113222y x x ∴=++,Q 二次函数2113222y x x =++与y 轴交于点C ,与x 轴交于(1,0)A -,(,0)B n 两点, ∴点3(0,)2C ,点(3,0)B -, 2AB ∴=,ABC ∴∆的面积1332222=⨯⨯=; ②23132(22)22y x x m x =++-+ 213(22)(2)22x m x m =+-+-, Q 在0x …时,3y 随x 的增大而增大, ∴对称轴22220122m x m -=-=-⨯„, 1m ∴„,m Q 是正整数,1m ∴=;(2)212(2)y ax x a =++-Q 的对称轴为212x a a =-=-, 又Q 1235a <<, 1532a ∴-<-<-, 又(1,0)A -Q 、(,0)B n 两点关于对称轴对称,11|1()|||n a a∴---=--, 21n a∴=-+或1n =-(舍去), 54n ∴-<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒(1)求抛物线的解析式;(2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法确定函数关系式.(2)13BQ AP =,要考虑P 在OC 上及P 在OC 的延长线上两种情况,有此易得BQ ,AP 关于t 的表示,代入13BQ AP =可求t 值. (3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑MPQ ∆,发现PQ 为一有规律的线段,易得OPQ 为等腰直角三角形,但仅因此无法确定PQ 运动至何种情形时MPQ ∆为等边三角形.若退一步考虑等腰,发现,MO 应为PQ 的垂直平分线,即使MPQ ∆为等边三角形的M 点必属于PQ 的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足MPQ ∆为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t 的方程,考虑t 的存在性.解:(1)Q 抛物线经过(2,0)A -,(0,2)B 两点, ∴24032a c c ⎧++=⎪⎨⎪=⎩. 解得:23a =-,2c =. ∴抛物线的解析式为221233y x x =--+;(2)由题意可知,OQ OP t ==,2AP t =+.①如图1,当2t … 时,点Q 在点B 下方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 1t ∴=.②如图2,当2t > 时,点Q 在点B 上方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 4t ∴=.∴当13BQ AP = 时,1t = 或4t =.(3)存在.作MC x ⊥ 轴于点C ,连接OM .设点M 的横坐标为m ,则点M 的纵坐标为221233m m --+. 当MPQ ∆ 为等边三角形时,MQ MP =, 又OP OQ =Q ,∴点M 点必在PQ 的垂直平分线上, 1452POM POQ ∴∠=∠=︒, MCO ∴∆ 为等腰直角三角形,CM CO =,221233m m m ∴=--+, 解得11m =,23m =-.M ∴ 点可能为(1,1)或(3,3)--. ①如图3,当M 的坐标为(1,1)时,则有1PC t =-,221(1)MP t t =+-= 222t -+, 222PQ t =,MPQ ∆Q 为等边三角形,MP PQ ∴=,t ∴ 22222t t -+=,解得113t =-+213t =--(负值舍去).②如图4,当点M 的坐标为(3,3)--时,则有3PC t =+,3MC =, 22223(3)618MP t t t ∴=++=++,222PQ t =, MPQ ∆Q 为等边三角形, MP PQ ∴=, 解得1333t =+2333t =-(负值舍去).∴当13t =-抛物线上存在点(1,1)M ,或当333t =+时,抛物线上存在点(3,3)M --,使得MPQ ∆ 为等边三角形.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2024届江苏省苏州市初中毕业暨升学考试模拟试卷中考五模数学试题含解析
2024届江苏省苏州市初中毕业暨升学考试模拟试卷中考五模数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ).A .427B .-427C .-5827D .58272.下列各式计算正确的是( ) A .2223a a +=B .()236b b -=- C .235c c c ⋅=D .()222m n m n -=-3.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°4.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种5.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是 ( )A .点AB .点BC .点CD .点D6.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A .13B .14C .15D .167.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( ) A .15πcm 2 B .24πcm 2C .39πcm 2D .48πcm 28.若a+b=3,,则ab 等于( ) A .2B .1C .﹣2D .﹣19.一、单选题如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .210.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 二、填空题(共7小题,每小题3分,满分21分) 11.分解因式:mx 2﹣6mx+9m=_____.12.已知a 2+a=1,则代数式3﹣a ﹣a 2的值为_____. 13.分式方程213024x x x -=+-的解为x =__________. 14.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.15.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)16.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________17.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.三、解答题(共7小题,满分69分)18.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.19.(5分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B ,且OA=OB . (1)求函数y=kx+b 和y=ax的表达式; (2)已知点C (0,8),试在该一次函数图象上确定一点M ,使得MB=MC ,求此时点M 的坐标.20.(8分)在平面直角坐标系xOy 中,函数ay x=(x >0)的图象与直线l 1:y =x +b 交于点A (3,a -2). (1)求a ,b 的值;(2)直线l 2:y =-x +m 与x 轴交于点B ,与直线l 1交于点C ,若S △ABC ≥6,求m 的取值范围. 21.(10分)阅读下列材料:题目:如图,在△ABC 中,已知∠A (∠A <45°),∠C=90°,AB=1,请用sinA 、cosA 表示sin 2A .22.(10分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为 ;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A 佩奇弟弟抽到B 乔治的概率.23.(12分)如图1,B (2m ,0),C (3m ,0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD ,使AB=2BC ,画射线OA ,把△ADC 绕点C 逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c =++(0a ≠)过E ,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且13BPAP时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.24.(14分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】分析:根据根与系数的关系可得出α+β=-23、αβ=-3,将其代入+βααβ=()22αβαβαβ+-中即可求出结论.详解:∵α、β是一元二次方程3x 2+2x-9=0的两根, ∴α+β=-23,αβ=-3, ∴+βααβ=22βααβ+=()22αβαβαβ+-=()22()23583327--⨯-=--. 故选C .点睛:本题考查了根与系数的关系,牢记两根之和等于-b a 、两根之积等于ca是解题的关键. 2、C 【解题分析】解:A .2a 与2不是同类项,不能合并,故本选项错误; B .应为()236b b -=,故本选项错误;C .235·c c c =,正确;D .应为()2222m n m n mn -=+-,故本选项错误. 故选C . 【题目点拨】本题考查幂的乘方与积的乘方;同底数幂的乘法. 3、A 【解题分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE ∥AF ,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小. 【题目详解】由图可得,∠CDE=40° ,∠C=90°, ∴∠CED=50°, 又∵DE ∥AF ,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【题目点拨】本题考查了平行线的性质,熟练掌握这一点是解题的关键.4、B【解题分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.5、B【解题分析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.6、C【解题分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【题目详解】解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【题目点拨】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7、B【解题分析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.8、B【解题分析】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.9、B【解题分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【题目详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【题目点拨】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.10、A【解题分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【题目详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9, 解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125). 故选A . 【题目点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.二、填空题(共7小题,每小题3分,满分21分) 11、m (x ﹣3)1. 【解题分析】先把提出来,然后对括号里面的多项式用公式法分解即可。
河北省中考数学模拟试卷(5)
河北省中考数学模拟试卷(5)一.选择题(共16小题)1.下列关于的说法中,正确的是()A.是有理数B.是2的算术平方根C.不是实数D.不是无理数2.下列多边形中,既是轴对称图形又是中心对称图形的是()A.平行四边形B.正方形C.等腰梯形D.等边三角形3.下列运算:①a•a3=a3;②a6÷a3=a2;③(a﹣2)2=a2﹣4;④(a﹣3)(a+2)=a2﹣a﹣6,不正确的有()个.A.1B.2C.3D.44.若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是()A.①②B.①④C.②③D.③④5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为()A.83.4×105B.8.34×105C.8.34×106D.0.834×107 7.由一些大小相同的小正方体组成的几何体从上面看的图形如右图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么这个几何体从左面看的图形是()A.B.C.D.8.方程3+2x=﹣1的解为()A.x=1B.x=﹣2C.x=3D.x=49.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使P A+PB =BC,那么符合要求的作图痕迹是()A.B.C.D.10.从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车11.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,∠AEB的度数是()A.30°B.35°C.45°D.60°12.已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣613.如图,边长为1的正六边形螺帽在足够长的桌面上滚动(没有滑动)一周,则O点所经过的路径长为()A.6B.5C.2πD.14.将一个圆分成四个扇形,使它们的圆心角的度数比为1:2:3:4,则这四个扇形中最大的圆心角是()A.90°B.144°C.180°D.210°15.我市某中学为便于管理,决定给每个学生编号,设定末尾用1表示男生,2表示女生.如果编号202003231表示“2020年入学的3班23号学生,是位男生”,那么2022年入学的6班20号女生同学的编号为()A.202006202B.202006201C.202206202D.202206201 16.如图,在△ABC中,点D、E、F分别是AB、BC、AC的中点,则下列四个判断中,不正确的是()A.四边形ADEF是平行四边形B.若∠A=90°,则四边形ADEF是矩形C.若AB=AC,则四边形ADEF是菱形D.若四边形ADEF是正方形,则△ABC是等边三角形二.填空题(共3小题)17.如图,把一个蛋糕分成n等份,要使每份中的角是45°,则n的值为.18.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.19.平面直角坐标系xOy中,抛物线y=kx2﹣2k2x﹣3交y轴于A点,交直线x=﹣4于B 点.(1)若AB∥x轴,则抛物线的解析式是;(2)当﹣4<k<0时,记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),y P≥﹣3,则k的取值范围是.三.解答题(共7小题)20.两组数据m,6,n与1,m,2n,7的平均数都是6,求这两组数据合并成一组数据后,这组新数据的中位数.21.全运会吉祥物以陕西秦岭独有的四个国宝级动物“金丝猴、羚牛、大熊猫、朱鹮”为创意原型,设计了一组幸福快乐、充满活力、精神焕发、积极向上的运动吉祥物形象.现有四张纪念卡片分别绘有吉祥物的图案(如图),纪念卡片背面完全相同,背面朝上,洗匀放好.(1)小丽从四张纪念卡片任意抽取一张,则小丽抽取到的卡片绘有吉祥物“羚羚”的概率为.(2)小明从四张纪念卡片中随机抽取两张卡片,请你用列表法或画树状图法求出小明抽到两张卡片恰好是“羚羚”和“熊熊”的概率.22.观察下列等式,,,将以上三个等式两边分别相加得.(1)猜想并写出;(2)计算:;(3)探究并计算:=;(4)计算:=.23.在平面直角坐标系xOy中,一次函数y=kx+5(x>﹣5)的图象G经过点A(﹣2,3),直线l:y=﹣x+b与图象G交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=2时,直接写出区域W内的整点个数;②区域W内恰有3个整点,结合函数图象,求b的取值范围.24.问题提出:(1)如图1,已知Rt△ACB和Rt△ADB,∠ACB=90°,∠ADB=90°,其中CA=CB,∠DAB=30°,AB=4,求△ACB和△ADB的面积分别是多少?问题探究:滨河学校初二年级小张是一名特别爱好专研数学的学生,他在数学老师的帮助下发现:对于任意三角形,其中一个内角和其对边都为定值时,当另两边相等时,该三角形面积达到最大.例如,如图2,在△ABC中,已知三角形内角B和其对边AC都为定值,当BA=BC时,△ACB的面积达到最大.请利用小张同学的发现完成以下问题.(2)如图3,在△ACB中,∠BAC=120°,点D为BC的中点,AD=4,当△ABD面积最大时,求线段AB的值.问题解决:(3)如图4,已知等边△ACB,∠ADB=30°,CD=4,求四边形ADBC的面积的最小值.25.为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.26.如图,AB、CD均为⊙O的直径,AB⊥CD.点M是射线CD上异于点C、O、D的一个动点,AM所在直线交⊙O于点N.点P是射线CD上另一点,且PM=PN.猜想:如图①,点M在直径CD上,PN与⊙O的位置关系是.探究:如图②,点M在直径CD的延长线上,判断PN与⊙O的位置关系,并说明理由.应用:如图③,点M在直径CD的延长线上,∠NMO=15°,⊙O的半径为1,直接写出图中阴影部分图形的面积.。
湖北省武汉市2020年九年级四月调考数学模拟试卷(五)(含解析)
2020年湖北省武汉市九年级四月调考数学模拟试卷(五)一.选择题1.(3分)一个数的相反数是﹣2020,则这个数是()A.2020B.﹣2020C.D.2.(3分)二次根式,则a的取值范围是()A.a≤2B.a≤﹣2C.a>2D.a<03.(3分)事件A:射击运动员射击二次,刚好都射中靶心;事件B:掷硬币,正面朝上,则()A.事件A和事件B都是必然事件B.事件A是随机事件,事件B是不可能事件C.事件A和事件B都是随机事件D.事件A是必然事件,事件B是随机事件4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)如图,是由一个圆柱和一个圆锥体组成的立体图形,其俯视图是()A.B.C.D.6.(3分)《九章算术》是我国古代数学的经典著作,书中有一问题:“金有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.7.(3分)从﹣2,﹣1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是()A.B.C.D.8.(3分)对于反比例函数y=,下列说法正确的个数是()①函数图象位于第一、三象限;②函数值y随x的增大而减小③若A(﹣1,y1),B(2,y2),C(1,y3)是图象上三个点,则y1<y3<y2;④P为图象上任一点,过P作PQ⊥y轴于点Q,则△OPQ的面积是定值.A.1个B.2个C.3个D.4个9.(3分)如图,第(1)个多边形由正三角形“扩展而来边数记为a3=12,第(2)个多边形由正方形“扩展”而来,边数记为a4=20,第(3)个多边形由五边形“扩展”而来,边数记为a5=30…依此类推,由正n边形“扩展而来的多边形的边数记为a n(n≥3),则结果是()A.B.C.D.10.(3分)如图,在等边△ABC中,AB=4,D、E分别为射线CB、AC上的两动点,且BD=CE,直线AD和BE 相交于M点,则CM的最大值为()A.2B.C.3D.4二.填空题11.(3分)计算:|﹣3|﹣=.12.(3分)某体校篮球班21名学生的身高如表:身高(cm)180185187190193人数(名)46542则该篮球班21名学生身高的中位数是.13.(3分)计算:﹣的值为.14.(3分)如图,△ABC和△ADE中,∠BAC=∠DAE=54°,AB=AC,AD=AE,连接BD,CE交于F,连接AF,则∠AFE的度数是.15.(3分)平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH=15,CH=24,则tan∠BAC的值为.16.(3分)对于一个函数,如果它的自变量x与函数值y满足:当﹣1≤x≤1时,﹣1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=﹣x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,﹣1)和点B(﹣1,1),则a的取值范围是.三.解答题17.(6分)计算a2•a4+(a3)2﹣32a618.(8分)如图,直线CD、EF被直线l所截,∠DAB与∠ABF的角平分线相交于点G,且∠AGB=90°,求证:CD∥EF.19.(8分)随着互联网的高速发展,人们的支付方式发生了巨大改变.某数学兴趣小组抽样调查了春节期间某商场顾客的支付方式,主要有现金支付、银联卡支付和手机支付,调查得知使用这三种支付方式的人数比为2:3:5,手机支付已成为市民购物的一种便捷支付方式,手机支付主要有A﹣支付宝,B﹣微信和C﹣其他支付方式,现将使用各种手机支付方式人数的调查结果绘制成如下不完整的统计图.根据以上信息回答下列问题:(1)扇形统计图中圆心角α的度数为;请补全条形统计图.(2)已知该商场春节长假期间共有20000人购物,请估计该商场用支付宝进行支付的人数.(3)经调查,该商场某天顾客现金支付、银联卡支付和手机支付每笔交易发生的平均金额分别为120元、260元、80元,求该商场这一天顾客每笔交易发生的平均金额.20.(10分)请仅用无刻度的直尺,保留作图痕迹.(1)如图1中,OA=OB,BD=AC,作出图中∠AOB的平分线OP;(2)如图2中的每个小方格都是边长为1的正方形,A、O、B都在格点上,请在网格纸中完成.①作出图中∠AOB的平分线OP,②在格点上找到一点Q,使得tan∠POQ=.21.(10分)如图,AB为⊙O的直径,点C在⊙O上,连接AC、BC,D为AC的中点,过点C作⊙O的切线与射线OD交于点E.(1)求证:∠E=∠A;(2)若延长EC与AB交于点F,若⊙O的半径为3,sin F=,求DE的长.22.(10分)公司以10元/千克的价格收购一批产品进行销售,经过市场调查获悉,日销售量y(千克)是销售价格x(元/千克)的一次函数,部分数据如表:销售价格x(元/千克)1015202530日销售量y(千克)300225150750(1)直接写出y与之间的函数表达式;(2)求日销售利润为150元时的销售价格;(3)若公司每销售1千克产品需另行支出a元(0<a<10)的费用,当20≤x≤25时,公司的日获利润的最大值为1215元,求a的值.23.(10分)已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,点E在△ABC内,且∠CAE+∠CBE=90°(1)如图1,当△ABC和△EFC均为等腰直角三角形时,连接BF,①求证:△CAE∽△CBF;②若BE=2,AE=4,求EF的长;(2)如图2,当△ABC和△EFC均为一般直角三角形时,若=k,BE=1,AE=3,CE=4,求k的值.24.(10分)已知抛物线交x轴于A,B两点(A在B右边),A(3,0),B(1,0)交y轴于C点,C(0,3),连接AC;(1)求抛物线的解析式;(2)P为抛物线上的一点,作PE⊥CA于E点,且CE=3PE,求P点坐标;(3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MH,NH,当MH⊥NH时,求MN恒过的定点坐标.参考答案与试题解析一.选择题1.【解答】解:∵一个数的相反数是﹣2020,∴这个数是:2020.故选:A.2.【解答】解:二次根式有意义,可得2﹣a≥0,解得:a≤2,故选:A.3.【解答】解:∵事件A:射击运动员射击二次,刚好都射中靶心是可能事件;事件B:掷硬币,正面朝上是可能事件,∴事件A和事件B都是随机事件.故选:C.4.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.5.【解答】解:从上边看是一个有圆心的同心圆,故选:A.6.【解答】解:设每枚黄金重x两,每枚白银重y两,根据题意得:.故选:A.7.【解答】解:画树状图得:∵共有12种等可能的结果,一次函数y=kx+b的图象不经过第四象限的有:(1,2),(2,1),∴一次函数y=kx+b的图象不经过第四象限的概率为:=.故选:D.8.【解答】解:反比例函数y=,因为k2+1>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故①说法正确,②错误,若A(﹣1,y1),B(2,y2),C(1,y3)是图象上三个点,则y1<0<y2<y3;故说法③错误;P为图象上任一点,过P作PQ⊥y轴于点Q,则△OPQ的面积为(k2+1),故④说法正确;故选:B.9.【解答】解:∵根据图形可知:a3=12=3×4,a4=20=4×5,a5=5×6,…,a12=12×13,∴=++++…+=﹣+﹣+…+﹣=﹣=,故选:D.10.【解答】解:如图,∵△ABC是等边三角形,∴BA=CB,∠ABC=∠ACB=60°,∴∠ABD=∠BCE=120°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠D=∠E,∵∠DBM=∠EBC,∴∠DMB=∠BCE=120°,∴∠AMB=60°,∴点M的运动轨迹是图中红线(在△ABM的外接圆⊙J上),连接CJ,延长CJ交⊙J于N,当点M与N重合时,CM的值最大,在Rt△JCB中,BJ=BC•tan30•=,JC=2BJ=,∴CN=+=4,∴CM的最大值为4,故选:D.二.填空题11.【解答】解:原式=3﹣4=﹣1.故答案为:﹣1.12.【解答】解:按从小到大的顺序排列,第11个数是187cm,故中位数是187cm.故答案为:187cm.13.【解答】解:原式=﹣==﹣=,故答案为:.14.【解答】解:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ADF=∠AEF,∴A,E,D,F四点共圆,∴∠AFE=∠ADE,∵∠DAE=54°,AD=AE,∴∠ADE=(180°﹣54°)=63°,∴∠AFE=63°,故答案为:63°.15.【解答】解:设PB交⊙O于点N,连接P A,延长PB、AC交于点M,∵AB是直径,PH⊥CB∴∠ANP=90°=∠ACB=∠H,∴MC∥PH,由圆的对称性可得,P A=P A,∠BPO=∠APO=∠APB,∵∠BPH=2∠BPO,∴∠BPH=∠APB,∴△PHB≌△PNA(AAS),∴PN=PH=15,由MC∥PH得,∠HPB=∠M=∠APM,∴AM=AP=PB,∵AN⊥PM,∴PM=2PN=30,由△PHB∽△MCB,∴==,设MC=a,BC=b,MB=c,则HB=24﹣b,PB=30﹣C,∴==,∴==sin M=sin∠HPB,在Rt△PHB中,PH=15,∴PB==25,HB=sin∠HPB•PH=20,∴BC=24﹣20=4,MB=30﹣25=5,则MC==3,在Rt△ABC中,BC=4,AC=AM﹣MC=25﹣3=22,∴tan∠BAC===,故答案为:.16.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(1,﹣1)和点B(﹣1,1),∴a+b+c=﹣1 ①a﹣b+c=1 ②①+②得:a+c=0 即a与c互为相反数,①﹣②得:b=﹣1;所以抛物线表达式为y=ax2﹣x﹣a(a≠0),∴对称轴为x=,当a<0时,抛物线开口向下,且x=<0,∵抛物线y=ax2﹣x﹣a(a≠0)经过点A(1,﹣1)和点B(﹣1,1),画图可知,当≤﹣1时符合题意,此时﹣≤a<0,当﹣1<<0时,图象不符合﹣1≤y≤1的要求,舍去同理,当a>0时,抛物线开口向上,且x=>0,画图可知,当≥1时符合题意,此时0<a≤,当0<<1时,图象不符合﹣1≤y≤1的要求,舍去,综上所述:a的取值范围是﹣≤a<0或0<a≤,故答案为:﹣≤a<0或0<a≤.三.解答题17.【解答】解:原式=a6+a6﹣32a6=﹣30a6.18.【解答】证明:∵∠AGB=90°,∴∠BAG+∠ABG=90°,∵AG平分∠BAD,∴∠BAD=2∠BAG,∵BG平分∠ABF,∴∠ABF=2∠ABG,∴∠BAD+∠ABF=2∠BAG+2∠ABG=180°,∴CD∥EF.19.【解答】解:(1)扇形统计图中圆心角α的度数为:360°×(1﹣35%﹣25%)=144°,选择B的人数为:350÷35%﹣350﹣250=400,补全的条形统计图如右图所示,故答案为:144°;(2)20000××35%=3500(人),即该商场用支付宝进行支付的有3500人;(3)120×+260×+80×=142(元),即该商场这一天顾客每笔交易发生的平均金额是142元.20.【解答】解:(1)如图1,射线OP即为所求;(2)①如图2,射线OP即为所求.②如图2,点Q即为所求.21.【解答】(1)证明:连接OC,∵D为AC的中点,AO=CO,∴OD⊥AC,∠AOD=∠COD,∵根据圆周角定理得:∠CBA=∠AOC,∴∠CBA=∠COD,∵AB为⊙O的直径,EF切⊙O于C,∴∠ECO=∠OCF=∠ACB=90°,∵∠E+∠COD+∠ECO=180°,∠A+∠ACB+∠CBA=180°,∴∠E=∠A;(2)解:过C作CM⊥AB于M,∵⊙O的半径为3,sin F==,∴OF=5,在Rt△OCF中,由勾股定理得:CF==4,由三角形面积公式得:S△OCF=×,即3×4=5×CM,解得:CM=2.4,由勾股定理得:OM===1.8,∴BM=3﹣1.8=1.2,由勾股定理得:BC===1.2,AC===2.4,∵D为AC的中点,∴CD=AC=1.2,∵∠A=∠E,∴tan A=tan E,∴=,∴=,∴DE=2.4=.22.【解答】解:(1)设一次函数解析式为y=kx+b(≠0),把x=10,y=300和x=20,y=150代入得解得:,∴y=﹣15x+450;(2)设日销售利润w=y(x﹣10)=(﹣15x+450)(x﹣10)即w=﹣15x2+600x﹣4500,当w=150时,150=﹣15x2+600x﹣4500,解得,x=20答:日销管利润为150元时的销售价格为(20+3)元或(20﹣3)元;(3)日获利w=y(x﹣10﹣a)=(﹣15x+450)(x﹣10﹣a),即w=﹣15x2+(600+15a)x﹣(450a+4500),对称轴为x=﹣=20+a,∵0<a<10,∴20<20+a<25,∴当x=20+a时,w有最大值,为w=a2﹣150a+1500=1215,解得a1=2,a2=38>10(舍去),综上所述,a的值为2.23.【解答】解:(1)①∵△ABC和△CEF都是等腰直角三角形,∴∠ECF=∠ACB=45°,∴∠BCF=∠ACE,∵△ABC和△CEF都是等腰直角三角形,∴CE=CF,AC=CB,∴=,∴,∴△BCF∽△ACE;②由①知,△BCF∽△ACE,∴∠CBF=∠CAE,=,∴BF=AE=×4=2,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,根据勾股定理得,EF===2;(2)如图(2),连接BF,在Rt△ABC中,tan∠ACB==k,同理,tan∠ECF=k,∴tan∠ACB=tan∠ECF,∴∠ACB=∠ECF,∴∠BCF=∠ACE,在Rt△ABC中,设BC=m,则AB=km,根据勾股定理得,AC==m;在Rt△CEF中,设CF=n,则EF=nk,同理,CE=n∴,=,∴,∵∠BCF=∠ACE,∴△BCF∽△ACE,∴∠CBF=∠CAE,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,∵△BCF∽△ACE,∴,∴BF=AE=,∵CE=4,∴n=4,∴n=,∴EF=,在Rt△EBF中,根据勾股定理得,BE2+BF2=EF2,∴12+()2=()2,∴k=或k=﹣(舍),即:k的值为.24.【解答】解:(1)∵抛物线过A(3,0),B(1,0),∴可设抛物线的解析式为y=a(x﹣3)(x﹣1)(a≠0),把c(0,3)代入,得3a=3,∴a=1,∴抛物线的解析式是y=(x﹣3)(x﹣1)=x2﹣4x+3,即y=x2﹣4x+3;(2)当P点在AC上方时,过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,如图1,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FG∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,FG=4m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG+DG=3﹣2m,∴P(4m,3﹣2m),把P(4m,3﹣2m)代入y=x2﹣4x+3中得,3﹣2m=16m2﹣16m+3,∴m=,或m=0(舍去),∴P(,);当P点AC下方时,如图2,过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FE∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,EG=2m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG﹣DG=4m﹣3,∴P(2m,3﹣4m),把P(2m,3﹣4m)代入y=x2﹣4x+3中得,3﹣4m=4m2﹣8m+3,∴m=1,或m=0(舍去),∴P(2,﹣1);综上,P点的坐标为(2,﹣1)或(,);(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3的顶点为(2,﹣1),∵将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,∴H(2,0),由题意知,点H是新抛物线的顶点,∴新抛物线的解析式为y=(x﹣2)2,设M(m,(m﹣2)2),N(n,(n﹣2)2),过M作MK⊥x轴于点K,过点N作NL⊥x轴于点L,如图3,则MK=(m﹣2)2,KH=2﹣m,HL=n﹣2,NL=(n﹣2)2,∵MH⊥NH,∴∠MHK+∠HMK=∠MHK+∠NHL=90°,∴∠HMK=∠NHL,∵∠MKH=∠HLN=90°,∴△KHM∽△LNH,∴,,∴,∴,设直线MN的解析式为:y=kx+b(k≠0),则,∴,∴直线MN的解析式为:,当x=2时,y=﹣(m2﹣4m+3)=m2﹣4m+4﹣m2+4m﹣3=1,∴MN恒过的定点(2,1).。
广东省韶关市中考数学模拟试卷(5)含答案解析
广东省韶关市中考数学模拟试卷(5)一、选择题(每题3分,共30分)1.比0大的数是()A.﹣1 B.C.0 D.12.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a94.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差5.如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=06.用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B. C.D.7.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.8.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<9.函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二、填空题(每题4分,共24分)11.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.12.分解因式:x3﹣xy2=.13.如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=度.14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为.15.分式方程=1的解是x=.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为.三、解答题(一)(每题6分,共18分)17.计算:﹣|﹣3|﹣()﹣1+2cos45°.18.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P 处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)四、解答题(二)(每题7分,共21分)20.“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?21.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A 公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.22.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)五、解答题(三)(每题9分,共27分)23.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE 交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.25.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交⊙O于点E,联结BE、AE(1)当AE∥BC(如图(1))时,求⊙O的半径长;(2)设BO=x,AE=y,求y关于x的函数关系式,并写出定义域;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE 的长.广东省韶关市中考数学模拟试卷(5)参考答案与试题解析一、选择题(每题3分,共30分)1.比0大的数是()A.﹣1 B.C.0 D.1【考点】有理数大小比较.【分析】比0的大的数一定是正数,结合选项即可得出答案.【解答】解:4个选项中只有D选项大于0.故选D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、不是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,又是中心对称图形,故本选项错误.故选A.3.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a9【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用合并同类项法则以及结合幂的乘方与积的乘方法则,分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.4.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差【考点】方差.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选D.5.如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=0【考点】分式有意义的条件.【分析】分式有意义,分母x﹣1≠0,据此可以求得x的取值范围.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故选C.6.用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形右边一个正方形,故D正确;故选:D.7.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.【考点】概率公式.【分析】根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.【解答】解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.8.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<【考点】解一元一次不等式组;点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.9.函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案.【解答】解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第一、二、四象限,故选:A.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3【考点】圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【解答】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.二、填空题(每题4分,共24分)11.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为 5.25×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.12.分解因式:x3﹣xy2=x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).13.如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=42度.【考点】平行线的性质.【分析】先根据平行线的性质求出∠C的度数,再由直角三角形的性质即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=48°,∴∠C=∠1=48°,∵AD⊥AC,∴∠CAD=90°,∴∠2=90°﹣∠C=90°﹣48°=42°.故答案为;42.14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为8.【考点】旋转的性质.【分析】根据旋转的性质得到A′B′=AB=16,然后根据直角三角形斜边上的中线性质求解即可.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=8.故答案为:8.15.分式方程=1的解是x=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x+1,解得:x=,经检验x=是分式方程的解,故答案为:16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为()2n﹣2.【考点】三角形中位线定理;菱形的性质;矩形的性质.【分析】易得第二个矩形的面积为()2,第三个矩形的面积为()4,依此类推,第n个矩形的面积为()2n﹣2.【解答】解:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2×2﹣2=;第三个矩形的面积是()2×3﹣2=;…故第n个矩形的面积为:()2n﹣2.故答案为:;()2n﹣2.三、解答题(一)(每题6分,共18分)17.计算:﹣|﹣3|﹣()﹣1+2cos45°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用算术平方根的定义以及结合特殊角的三角函数值、绝对值的性质、负整数指数幂的性质分别化简求出答案.【解答】解:原式=2﹣3﹣2+2×=﹣﹣2+=﹣2.18.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)利用尺规作∠ABC的平分线BF交AC于D.(2)根据∠BDC=∠ABD+∠A,求出∠ABD以及∠A即可解决问题.【解答】解:(1)如图,∠ABC的平分线如图所示.(2)∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,∵BD平分∠ABC,∴∠ABD=∠ABC=35°,∴∠BDC=∠ABD+∠A=35°+40°=75°.19.五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P 处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)【考点】解直角三角形的应用﹣方向角问题.【分析】由已知作PC⊥AB于C,可得△ABP中∠A=60°∠B=45°且PA=100m,要求AB的长,可以先求出AC和BC的长.【解答】解:由题意可知:作PC⊥AB于C,∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=50+50≈50+50×1.732≈136.6(米).答:景点A与B之间的距离大约为136.6米.四、解答题(二)(每题7分,共21分)20.“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共200瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据乙的瓶数40,所占比为20%,即可求出这四个品牌的总瓶数;(2)根据丁品牌饮料的瓶数70,总瓶数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总瓶数,即可得出丙的瓶数,从而补全统计图;(3)根据甲所占的百分比,再乘以360°,即可得出答案;(4)用月销售量×(1﹣平均合格率)即可得到四个品牌的不合格饮料的瓶数.【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.21.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A 公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.【考点】分式方程的应用.【分析】设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,根据乙队比甲队多用时间一天为等量关系建立方程求出其解即可.【解答】解:设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,由题意,得,解得:x1=22,x2=﹣6.经检验,x1=22,x2=﹣6都是原方程的根,x=﹣6不符合题意,舍去.∴x=22,∴乙安装队每天安装22﹣2=20台.答:甲安装队每天安装22台空调,则乙安装队每天安装20台空调.22.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)【考点】切线的判定;弧长的计算.【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.【解答】(1)证明:如图1,连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴OD是△ABC的中位线,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)解:如图2所示,连接OG,OD∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.五、解答题(三)(每题9分,共27分)23.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)根据三角形的面积公式和直线解析式求出点C的坐标,即可求解.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)设点C的坐标为(m,n),经过点C的反比例函数的解析式为y=,∵点C在第一象限,=×2×m=2,∴S△BOC解得:m=2,∴n=2×2﹣2=2,∴点C的坐标为(2,2),则a=2×2=4,∴经过点C的反比例函数的解析式为y=.24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE 交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;(2)根据△EDC绕点C旋转到∠BCE=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形.【解答】(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.25.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交⊙O于点E,联结BE、AE(1)当AE∥BC(如图(1))时,求⊙O的半径长;(2)设BO=x,AE=y,求y关于x的函数关系式,并写出定义域;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE 的长.【考点】圆的综合题;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质;勾股定理;平行四边形的判定与性质;锐角三角函数的定义.【分析】(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),易证△AEF≌△BDF及四边形AEDC是平行四边形,从而可得BD=DC=5,根据垂径定理可得BG=DG=BD=,然后在Rt△BGO中运用三角函数和勾股定理即可求出⊙O的半径长;(2)过点A作AH⊥BC于H,如图(2),运用三角函数、勾股定理及面积法可求出AC、AB、AH、BH、CH,根据垂径定理可得DF=EF,再根据线段垂直平分线的性质可得AE=AD.然后在Rt△BGO中运用三角函数和勾股定理可求出BG(用x的代数式表示),进而可用x的代数式依次表示出BD、DH,AD、AE,问题得以解决;(3)①若点D在H的左边,如图(2),根据等腰三角形的性质可得DH=CH,从而依次求出BD、DF、DE的长;②若点D在H的右边,则点D与点C重合,从而可依次求出BD、DF、DE的长.【解答】解:(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),根据垂径定理可得BG=DG.∵AE∥BC,∴∠AEF=∠BDF.在△AEF和△BDF中,,∴△AEF≌△BDF,∴AE=BD.∵∠BFD=∠BAC=90°,∴DE∥AC.∵AE∥BC,∴四边形AEDC是平行四边形,∴AE=DC,∴BD=DC=BC=5,∴BG=DG=BD=.在Rt△BGO中,tan∠OBG==,∴OG=BG=×=,∴OB===,∴⊙O的半径长为;(2)过点A作AH⊥BC于H,如图(2),在Rt△BAC中,tan∠ABC==,设AC=3k,则AB=4k,∴BC=5k=10,∴k=2,∴AC=6,AB=8,∴AH===,∴BH===,∴HC=BC﹣BH=10﹣=.∵AB⊥DE,∴根据垂径定理可得DF=EF,∴AB垂直平分DE,∴AE=AD.在Rt△BGO中,tan∠OBG==,∴OG=BG,∴OB===BG=x,∴BG=x,∴BD=2BG=,∴DH=BH﹣BD=﹣x,∴y=AE=AD====(0<x≤);(3)①若点D在H的左边,如图(2),∵AD=AC,AH⊥DC,∴DH=CH=,∴BD=BH﹣DH=﹣=.在Rt△BFD中,tan∠FBD==,∴BF=DF,∴BD===DF=,∴DF=,∴DE=2DF=;②若点D在H的右边,则点D与点C重合,∴BD=BC=10,∴DF=10,∴DF=6,∴DE=2DF=12.综上所述:当⊙A恰好也过点C时,DE的长为或12.3月22日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16题 第17题
A
B
D
C
B
A 荣胜教育 初三数学2012考前模拟试题
2012.5
(考试时间120分钟 满分150分)
第一部分 选择题(共24分)
一.选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分) 1.-1的倒数是
A .-1 B. 1 C .±1 D. 0
2.面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴对称图形又是中心对称图形的是
3.下列计算中,正确的是 A.2
21
a a a a
÷⨯
= B.2323a a a -=- C.3
2
62
()a b a b = D.()
2
3
6a
a --=
4.在图1的几何体中,它的左视图是
5.2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是 A .2.89×107. B .2.89×106 . C .2.89×105. D .2.89×104.
6.如图,已知ABC △中,45ABC ∠=, F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为 A .22 B .42 C .32 D . 4 7.如图,AB 为⊙O 的直径,弦AC =8,∠ADC =α,sin α=
5
4
,则⊙O 的半径长为 A .5 B .6 C .8 D .10 8.如图所示,一只封闭的圆柱形水桶内盛了半桶..
水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S 1、S 2,则S 1与S 2的大小关系是
A .S 1≤S 2
B .S 1< S 2
C .S 1> S 2
D .S 1=S 2
第二部分 非选择题(共126分)
二、填空题(每小题3分,共30分) 9.分解因式=-92x ________. 10.在函数5
2-=
x x y 中,自变量x 的取值范围是_____________.
11.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,圆心距O 1O 2为8cm ,则这两圆的位置
关系是
12.五名同学在“爱心捐助”活动中,捐款数额分别为8,10,10,4,6(单位:元),这组数据的中位数是______________.
13.不等式组⎩
⎨⎧->+>+1420
1x x x 的解集为_____________.
14.对角线相等且互相平分的四边形是__________.
15.两个相似三角形的面积比为1:4,它们周长之差为6,则较小三角形的周长为_______. 16.如图,在梯形ABCD 中,AB ∥DC ,AD =DC =CB ,若∠
__________
17.函数1(0)y x x =≥ , x
y 9
2=
(0)x >的图象如图所示,则结论: ① 两函数图象的交点A 的坐标为(3 ,3 );② 当3x >时,21y y >;③ 当 1x =时, BC = 8;④x
y 9
2=(0)
x >的图象上到原点的距离等于4的点有2个.其中正确结论的序号是__________.
18.如图,平面直角坐标系中,直线l 经过A (0,4)和B (-3,0)两点,⊙O 的半径为2,点P
为直线l 上的一个动点,过P 作⊙O 的一条切线,切点为Q ,当切线长PQ 最小时,线段OP 的长为___________. 三、解答题(共96分)
19.(本题10分) (1)计算:01
)21(45tan 3)
21(-+--- (5分) (2)解方程:x
x x x -++
=--21
2253 (5分) 20.(本题8分)化简,求值: 11
1(1
1222+---÷-+-m m m m m m ),其中m =3
A B
C D 图1
第6题 第7题 第8题
图1图2
图①
1200m
21.(本题10分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部
分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个等级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中 提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;(3分) (2)将图①补充完整;(3分)
(3)根据抽样调查结果,请你估计我市近8000名 八年级学生中大约有多少名学生学习态度达标 (达标包括A 级和B 级)?(4分) 22.(本题8分)如图,某高速公路建设中需要确定隧道AB 的长度.
已知在离地面1200m 高度C 处的飞机上,测量人员测得正前方 A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. (结果保留根号)
23.(本题8分) 有三张卡片(形状、大小、质地都相同),正面分别写上整式x ,x+1,3.将这三
张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式作为分子,第二次
抽取的卡片上的整式作为分母.
(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(4分) (2)试求抽取的两张卡片结果能组成分式..
的概率.(4分) 24.(本题8分)如图,在Rt OAB △中,90OAB ∠=,且点B 的坐标为(4,2). (1)以O 为位似中心,将△OAB 缩小,使得缩小后的△OA 1B 1
与△OAB 的相似比为1∶2,画出△OA 1B 1.(所画△11B OA 与△OAB 在原点两侧).(3分) (2)画出..OAB △绕点O 逆时针旋转90后的22OA B △, 求旋转过程中点A 经过的路径的长(结果保留π)(5分)
25.(本题10分)如图,在Rt △ABC 中,C 90∠=,点D 在AB 上,以BD 为直径的⊙O 与AC
交于点E ,且BE 平分∠ABC , (1)求证:AC 是⊙O 的切线;(5分)
(2)若322==AE AD ,,求⊙O 的半径.(5分)
26.(本题10分)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装
第1周的售价为50元/件,并且每周涨价2元/件,从第6周开始,保持60元/件的稳定价格销售,直到第11周结束,该童装不再销售. (1)求销售价格y(元)与周次x 之间的函数关系式;(4分)
(2)若该品牌的童装每周进货一次,并于进货当周售完,且这种童装每件进价z(元)与周次x 之间
的关系为),111(12)8(8
1
2
为整数,
x x x z ≤≤+--=,那么该品牌童装在第几周售出后,每件获得的利润最大?并求每件的最大利润.(6分)
27.(本题12分)如图①,在矩形 ABCD 中,AB =30cm ,BC =60cm .点P 从点A 出发,沿
A→B→C→D 路线向点D 匀速运动,到达点D 后停止;点Q 从点D 出发,沿 D→C→B→A 路线向点A 匀速运动,到达点A 后停止.若点P 、Q 同时出发,在运动过程中,Q 点停留了1s ,图②是P 、Q 两点在折线AB-BC-CD 上相距的路程S(cm)与时间t(s)之间的函数关系图象. (1)请解释图中点H 的实际意义?(2分) (2)求P 、Q 两点的运动速度;(4分) (3)将图②补充完整;(2分)
(4)当时间t 为何值时,△PCQ 为等腰三角形?请直接写出t 的值.(4分)
28.(本题12分)直线y=-x -3经过点C(1,m),并与坐标轴交于A 、B 两点,过B 、C 两点的抛
物线y=x 2+bx+c 与x 轴的负半轴交于D 点, (1)求点C 的坐标及抛物线的解析式;(4分) (2)抛物线y=x 2+bx+c 的对称轴为直线MN ,直线MN 与x 轴相交于点F ,直线MN 上有一动点P ,过P 作直线PE ⊥AB ,垂足为E ,直线PE 与x 轴相交于点H ①当P 点在直线MN 上移动时,是否存在这样的P 点,使以A 、P 、H 为顶点的三角形与△FBC 相似,若存在,请求出P 点的坐标,若不存在,请说明理由;(4分)
②若⊙I 始终过A 、P 、E 三点,当P 点在MN 上运动时,圆心I 在( )上运动.(先作选择,
( 2012春)
初三数学第一次模拟试题参考答案
2012.5
1―5 ACCBB 6―8 DAB 9、(x+3)(x -3) 10、x>5 11、外离 12、8 13、-1<x<1
14、 矩形 15、6
16、 50° 17、 ① ③ 18、
512 19、 (1)-4 (2)x=0 20、
3
31 m 21、(1)200 (2)略 (3)6800 22、34001200- 23、(1)略 (2)
3
2
24、略
25、(1)略 (2)r =2 26、(1)y=⎩⎨
⎧≤<≤≤+)116(60)61(482x x x
(2) 第11周 81
49
27、(1) P 、Q 两点相遇 (2)P 30cm/s Q 15cm/s (3)略 (4)84
3
或=t 28、(1)C(1,-4) y=x 2-2x-3
(2) ①P(1,3
4
-
)或P,(1,8) ② C I 为AP 中点,D 为AF 中点,ID ∥MN ,所以,I 在过点(-1,0)且平行于y 轴的直线上 (方法不唯一)。