专题3 三角函数、解三角形与平面向量 第3讲 平面向

合集下载

三角函数解三角形平面向量ppt课件

三角函数解三角形平面向量ppt课件

[问题6] 下列四个命题:①若|a|=0,则a=0; ②若|a|=|b|,则a=b或a=-b;③若a∥b,则 |a|=|b|;④若a=0,则-a=0.其中正确命题是 ___④_____.
7.向量的数量积
|a|2=a2=a·a,
a·b=|a||b|cos θ=x1x2+y1y2,
cos θ=|aa|·|bb|=
正解 ∵0<α<π2且 cos α=17<cos π3=12, ∴π3<α<π2,又 0<β<π2, ∴π3<α+β<π,又 sin(α+β)=5143< 23, ∴23π<α+β<π.
∴cos(α+β)=- 1-sin2α+β=-1141,
sin α=
1-cos2α=47
3 .
∴cos β=cos[(α+β)-α]
又∵|c-a-b|2=c2-2c·(a+b)+2a·b+a2+b2=1,
∴2c·(a+b)=c2+1.
查缺补漏
1 2 3 =0,∴|a+b|= 2 , ∴c2+1=2 2 |c|cos θ(θ是c与a+b的夹角). 又-1≤cos θ≤1,∴0<c2+1≤2 2 |c|, ∴c2-2 2 |c|+1≤0, ∴ 2 -1≤|c|≤ 2+1. 答案 A
查缺补漏
1 2 3 4 5 6 7 8 9 10
5.函数 f(x)=Asin(2x+φ)(A,φ∈R)的部分
图象如图所示,那么 f(0)等于( )
[问题1] 已知角α的终边经过点P(3,-4),则sin α +cos α的值为___-__15___.
2.同角三角函数的基本关系式及诱导公式
(1)平方关系:sin2α+cos2α=1. (2)商数关系:tan α= sin α .

高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案

高考数学二轮复习 专题二 三角函数、平面向量与复数 第3讲 平面向量与复数教案-高三全册数学教案

第3讲 平面向量与复数平面向量的概念与线性运算[核心提炼]1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[典型例题](1)(2019·杭州模拟)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b(2)(2019·金华市十校联考)已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足OP →=14(OA →+OB →+2OC →),则S △PAB S △OAB为( )A .32 B .23C .2D .12(3)(2019·嘉兴七校联考)在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则(λ+1)2+μ2的取值范围为________.【解析】 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)如图,延长CO ,交AB 中点D ,O 是△ABC 的重心,则OP →=14(OA →+OB →+2OC →)=14(2OD →+2OC →)=14(-OC →+2OC →)=14OC →,所以OP =14OC =14×23CD =16CD ;所以DP =DO +OP =13CD +16CD =12CD ,DO =13CD ;所以S △PAB S △OAB =DP DO =12CD13CD =32.(3)因为点E 在射线AD (不含点A )上,设AE →=kAD →(k >0),又BD →=34BC →,所以AE →=k (AB →+BD →)=k ⎣⎢⎡⎦⎥⎤AB →+34(AC →-AB →)=k 4AB →+3k 4AC →, 所以⎩⎪⎨⎪⎧λ=k 4μ=3k4,(λ+1)2+μ2=⎝ ⎛⎭⎪⎫k 4+12+916k 2=58⎝ ⎛⎭⎪⎫k +252+910>1,故(λ+1)2+μ2的取值范围为(1,+∞).【答案】 (1)D (2)A (3)(1,+∞)平面向量的线性运算技巧(1)对于平面向量的线性运算,要先选择一组基底,同时注意共线向量定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.[对点训练]1.(2019·瑞安市四校联考)设M 是△ABC 边BC 上的点,N 为AM 的中点,若AN →=λAB →+μAC →,则λ+μ的值为( )A.14B.13C.12D.1 解析:选C.因为M 在BC 边上,所以存在实数t ∈[0,1]使得BM →=tBC →. AM →=AB →+BM →=AB →+tBC →=AB →+t (AC →-AB →)=(1-t )AB →+tAC →,因为N 为AM 的中点, 所以AN →=12AM →=1-t 2AB →+t 2AC →,所以λ=1-t 2,μ=t 2,所以λ+μ=1-t 2+t 2=12,故C 正确.2.(2019·宁波诺丁汉大学附中期中考试)在△ABC 中,BC =7,AC =6,cos C =267.若动点P 满足AP →=(1-λ)AB →+2λ3AC →,(λ∈R ),则点P 的轨迹与直线BC ,AC 所围成的封闭区域的面积为( )A .5B .10C .2 6D .4 6解析:选A.设AD →=23AC →,因为AP →=(1-λ)AB →+2λ3AC →=(1-λ)AB →+λAD →,所以B ,D ,P 三点共线. 所以P 点轨迹为直线BC .在△ABC 中,BC =7,AC =6,cos C =267,所以sin C =57,所以S △ABC =12×7×6×57=15,所以S △BCD =13S △ABC =5.3.(2019·高考浙江卷)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________.解析:以点A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当⎩⎪⎨⎪⎧λ1-λ3+λ5-λ6=0λ2-λ4+λ5+λ6=0时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最大值22+42=2 5.答案:0 2 5平面向量的数量积 [核心提炼]1.平面向量的数量积的两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角);(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. [典型例题](1)(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a与e 的夹角为π3,向量b 满足b 2-4e·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3(2)(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.【解析】 (1)设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A. (2)设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.【答案】 (1)A (2)⎣⎢⎡⎦⎥⎤-1,-12(1)平面向量数量积的计算①涉及数量积和模的计算问题,通常有两种求解思路(ⅰ)直接利用数量积的定义; (ⅱ)建立坐标系,通过坐标运算求解.②在利用数量积的定义计算时,要善于将相关向量分解为图形中模、夹角和已知的向量进行计算.(2)求解向量数量积最值问题的两种思路①直接利用数量积公式得出代数式,依据代数式求最值.②建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值.[对点训练]1.(2019·嘉兴市高考一模)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3解析:选C.如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.3.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45平面向量与其他知识的交汇[核心提炼]平面向量具有代数形式与几何形式的“双重身份”,常与三角函数、解三角形、平面解析几何、函数、数列、不等式等知识交汇命题,平面向量的“位置”为:一是作为解决问题的工具,二是通过运算作为命题条件.[典型例题](1)如图,已知点D 为△ABC 的边BC 上一点,BD →=3DC →,E n (n ∈N *)为边AC 上的列点,满足E n A →=14a n +1·E n B →-(3a n +2)E n D →,其中实数列{a n }中,a n >0,a 1=1,则数列{a n }的通项公式为a n =( )A .3·2n -1-2 B .2n-1 C .3n-1 D .2·3n -1-1(2)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sinB ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .①求B 的大小;②若b =2,△ABC 的面积为3,求a ,c .【解】 (1)选D.因为BD →=3DC →,所以E n C →=E n B →+BC →=E n B →+43BD →=E n B →+43(BE n →+E n D →)=-13E n B→+43E n D →.设mE n C →=E n A →,则由E n A →=14a n +1E n B →-(3a n +2)E n D →,得(14a n +1+13m )E n B →-(43m +3a n +2)E n D →=0,则-13m =14a n +1,43m =-(3a n +2),所以14a n +1=14(3a n +2),所以a n +1+1=3(a n +1).因为a 1+1=2,所以数列{a n +1}是以2为首项,3为公比的等比数列,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(2)①因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0,即3sin 2B -cos 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角,所以sin B =32,所以B =60°. ②由①得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B ,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B , 又b =2,所以a 2+c 2=8,② 联立①②,解得a =c =2.平面向量与其他知识的交汇点主要体现在与三角函数、立体几何、解析几何,求最值. (1)利用平面向量的知识给出三角函数之间的一些关系,解题的关键还是三角函数的知识.在解析几何中只是利用向量知识给出一些几何量的位置关系和数量关系,在解题中要善于根据向量知识分析解析几何中几何量之间的关系,最后的解题还要落实到解析几何知识上.(2)因为向量是沟通代数、几何的工具,有着极其丰富的实际背景,对于某些代数问题,可构造向量,使其转化为向量问题求解.[对点训练]1.(2019·杭州市高三二模)△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A.54 B.154 C.174D.174解析:选B.以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2. 设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.2.(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]解析:选B.|a |+|b |≥max{|a +b |,|a -b |}=4, (|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.3.(2019·江苏常州武进区高三上学期期中考试改编)已知数列{a n }中,a 1=2,点列P n (n =1,2,…)在△ABC 内部,且△P n AB 与△P n AC 的面积比为2∶1.若对n ∈N *都存在数列{b n }满足b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,求a 4.解:在线段BC 上取点D ,使得BD =2CD ,则P n 在线段AD 上, 因为b n P n A →+12a n +1P n B →+(3a n +2)P n C →=0,所以-12a n +1BP n →=b n AP n →+(3a n +2)CP n →=b n (BP n →-BA →)+(3a n +2)(BP n →-BC →),所以⎝ ⎛⎭⎪⎫-12a n +1-b n -3a n -2BP n →=-b n BA →-32×(3a n +2)BD →.因为A ,P n ,D 三点共线,所以-12a n +1-b n -3a n -2=-b n -32(3a n +2),即a n +1=3a n +2,所以a 2=3a 1+2=8,a 3=3a 2+2=26,a 4=3a 3+2=80.复 数 [核心提炼]1.复数的除法复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 2.复数运算中常见的结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i 1+i =-i.(2)-b +a i =i(a +b i). (3)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i.(4)i 4n+i4n +1+i 4n +2+i4n +3=0.[典型例题](1)(2019·杭州学军中学高考模拟)设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2C . 3D .2(2)设有下面四个命题p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( ) A .p 1,p 3 B .p 1,p 4C .p 2,p 3D .p 2,p 4(3)(2019·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 (1)因为复数z 满足1+z1-z=i ,所以1+z =i -z i ,所以z (1+i)=i -1,所以z =i -1i +1=i ,所以|z |=1,故选A.(2)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b ia 2+b 2∈R ,得b =0,则z ∈R成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc =0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(3)因为z =1+i , 所以1+z +z 2+…+z2 017=1×(1-z 2 018)1-z=z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i2=21 009+i. 所以复数1+z +z 2+…+z2 017的实部为21 009.故选C.【答案】 (1)A (2)B (3)C复数问题的解题思路(1)以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.(2)若与其他知识结合考查,则要借助其他的相关知识解决问题.[对点训练]1.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z =1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A.2.(2019·金丽衢十二校联考)设z 是复数,|z -i|≤2(i 是虚数单位),则|z |的最大值是( )A .1B .2C .3D .4解析:选C.因为|z -i|≤2,所以复数z 在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.所以|z |的最大值为3.故选C.3.(2019·高考浙江卷)复数z =11+i (i 为虚数单位),则|z |=________.解析:通解:z =11+i =1-i 2=12-i2,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22专题强化训练1.(2019·绍兴诸暨高考二模)已知复数z 满足z (1+i)=2i ,则z 的共轭复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.由z (1+i)=2i ,得z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,则z 的共轭复数z =1-i.故选B.2.在等腰梯形ABCD 中,AB →=-2CD →,M 为BC 的中点,则AM →=( ) A.12AB →+12AD → B.34AB →+12AD →C.34AB →+14AD → D.12AB →+34AD → 解析:选B.因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.3.(2019·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi|=( )A.253 B.2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i=|-1-2i|=|1+2i|=12+22= 5.故选D.4.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则DE →·BF →=( )A .-52B .32C .-4D .-2解析:选C.通过建系求点的坐标,然后求解向量的数量积.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,以A 为坐标原点,AB ,AD 为坐标轴,建立平面直角坐标系,则B (2,0),D (0,2),E (2,1),F (1,2).所以DE →=(2,-1),BF →=(-1,2),所以DE →·BF →=-4.5.(2019·台州市书生中学检测)已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x 、y ,使得AO →=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为( )A.23B.33C.23D.13解析:选A.设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO →=xAB →+yAC →,所以AO →=xAB →+2yAD →.又因为x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理得,cos ∠BAC =32+42-322×3×4=23.故选A.6.在△ABC 中,AB =3,BC =2,∠A =π2,如果不等式|BA →-tBC →|≥|AC →|恒成立,则实数t 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1C .⎝⎛⎦⎥⎤-∞,12∪[1,+∞) D .(-∞,0]∪[1,+∞)解析:选C.在直角三角形ABC 中,易知AC =1,cos ∠ABC =32,由|BA →-tBC →|≥|AC →|,得BA →2-2tBA →·BC →+t 2BC →2≥AC →2,即2t 2-3t +1≥0,解得t ≥1或t ≤12.7.称d (a ,b )=|a -b |为两个向量a ,b 间的“距离”.若向量a ,b 满足:①|b |=1;②a ≠b ;③对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),则( )A .a ⊥bB .b ⊥(a -b )C .a ⊥(a -b )D .(a +b )⊥(a -b )解析:选B.由于d (a ,b )=|a -b |,因此对任意的t ∈R ,恒有d (a ,t b )≥d (a ,b ),即|a -t b |≥|a -b |,即(a -t b )2≥(a -b )2,t 2-2t a ·b +(2a ·b -1)≥0对任意的t ∈R 都成立,因此有(-2a ·b )2-4(2a ·b -1)≤0,即(a ·b -1)2≤0,得a ·b -1=0,故a ·b -b 2=b ·(a -b )=0,故b ⊥(a -b ).8.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1,则当max{c ·a ,c ·b }取最小值时,|c |=( )A.255B.223 C.1D.52解析:选A.如图,设OA →=a ,OB =b ,则a =(1,0),b =(0,2), 因为λ,μ≥0,λ+μ=1,所以0≤λ≤1. 又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1. 所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.9.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,则(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为( )A .43+37B .47+3 3C .(43+37)2D .(47+33)2解析:选D.设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ, 则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC , 因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°, 设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332,设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332, 所以h =3217,因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上, 所以A 到BC 的距离最大值为4+h =4+3217.所以S △ABC 的最大值为 12×7×⎝ ⎛⎭⎪⎫4+3217 =27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.故选D.10.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π3,23πB.⎣⎢⎡⎦⎥⎤2π3,5π6C.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ,且0<θ<π2.而由题意可得,b 与a -b 的夹角,即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.11.(2019·杭州市高考二模)已知复数z =1+a ii (a ∈R )的实部为1,则a =________,|z |=________.解析:因为z =1+a i i =(1+a i )(-i )-i 2=a -i 的实部为1, 所以a =1,则z =1-i ,|z |= 2. 答案:1212.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3.a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π313.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:1214.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)15.(2019·嘉兴一中高考适应性考试)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析:在△ABC 中,∠ACB 为钝角,AC =BC =1,函数f (m )的最小值为32. 所以函数f (m )=|CA →-mCB →| =CA →2+m 2CB →2-2mCA →·CB →=1+m 2-2m cos ∠ACB ≥32, 化为4m 2-8m cos ∠ACB +1≥0恒成立.当且仅当m =8cos ∠ACB8=cos ∠ACB 时等号成立,代入得到cos ∠ACB =-12,所以∠ACB =2π3.所以|CO →|2=x 2CA →2+y 2CB →2+2xyCA →·CB →=x 2+y 2+2xy ×cos 2π3=x 2+(1-x )2-x (1-x )=3⎝ ⎛⎭⎪⎫x -122+14, 当且仅当x =12=y 时,|CO →|2取得最小值14,所以|CO →|的最小值为12.答案:1216.在△OAB 中,已知|OB →|=2,|AB →|=1,∠AOB =45°,若OP →=λOA →+μOB →,且λ+2μ=2,则OA →在OP →上的投影的取值范围是________.解析:由OP →=λOA →+μOB →,且λ+2μ=2, 则OA →·OP →=OA →·⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →=λOA →2+⎝⎛⎭⎪⎫1-λ2OA →·OB →,又|OB →|=2,|AB →|=1,∠AOB =45°, 所以由余弦定理求得|OA →|=1,所以OA →·OP →=λ+⎝ ⎛⎭⎪⎫1-λ2×1×2×22=1+λ2,|OP →|=⎣⎢⎡⎦⎥⎤λOA →+⎝ ⎛⎭⎪⎫1-λ2OB →2= λ2|OA →|2+2λ⎝ ⎛⎭⎪⎫1-λ2OA →·OB →+⎝⎛⎭⎪⎫1-λ22|OB →|2=λ22+2,故OA →在OP →上的投影OA →·OP →|OP →|=1+λ2λ22+2=22·λ+2λ2+4(*). 当λ<-2时,(*)式=-22·(λ+2)2λ2+4=-221+4λλ2+4=-221+4λ+4λ∈⎝ ⎛⎭⎪⎫-22,0; 当λ≥-2时,(*)式可化为22(λ+2)2λ2+4;①λ=0,上式=22;②-2≤λ<0,上式=221+4λ+4λ∈⎣⎢⎡⎭⎪⎫0,22; ③λ>0,上式=221+4λ+4λ∈⎝⎛⎦⎥⎤22,1. 综上,OA →在OP →上的投影的取值范围是⎝ ⎛⎦⎥⎤-22,1.答案:⎝ ⎛⎦⎥⎤-22,1 17.已知OA →,OB →是非零不共线的向量,设OC →=1r +1·OA →+r r +1OB →,定义点集P =⎩⎪⎨⎪⎧K ⎪⎪⎪⎪KB →·KC →|KB →|=KA →·KC→|KA →|,⎭⎪⎬⎪⎫KC →≠0,当K 1,K 2∈P 时,若对于任意的r ≥3,不等式|K 1K 2→|≤c |AB→|恒成立,则实数c 的最小值为________.解析:由OC →=1r +1·OA →+r r +1OB →,可得A ,B ,C 三点共线,由KB →·KC →|KB →|=KA →·KC→|KA →|,可得|KC →|cos ∠AKC =|KC →|cos ∠BKC ,即有∠AKC =∠BKC ,则KC 为∠AKB 的角平分线. 由角平分线的性质定理可知|KA ||KB |=|AC ||BC |=r , 以AB 所在的直线为x 轴,以线段AB 上某一点为原点建立直角坐标系,设点K (x ,y ),A (-a ,0),B (b ,0),所以(x +a )2+y 2(x -b )2+y2=r 2,化简得(1-r 2)x 2+(1-r 2)y 2+(2a +2br 2)x +(a 2-b 2r 2)=0.由方程知K 的轨迹是圆心在AB 上的圆,当|K 1K 2|为直径时最大,方便计算,令K 1K 2与AB 共线,如图,由|K 1A |=r |K 1B |,可得|K 1B |=|AB |r +1,由|K 2A |=r |K 2B |,可得|K 2B |=|AB |r -1,可得|K 1K 2|=|AB |r +1+|AB |r -1=2r r 2-1|AB |=2r -1r|AB |,而易知r -1r ≥3-13=83,即有|K 1K 2|≤34|AB |,即|K 1K 2||AB |≤34,即c ≥⎝⎛⎭⎪⎫|K 1K 2||AB |max =34, 故c 的最小值为34.答案:3418.在△ABC 中,已知C =π6,向量p =(sin A ,2),q =(2,cos B ),且p ⊥q .(1)求角A 的值;(2)若BC →=2BD →,AD =7,求△ABC 的面积.解:(1)因为p ⊥q ,所以p ·q =0⇒p ·q =2sin A +2cos B =0,又C =π6,所以sin A +cos B =sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0,化简得tan A =33,A ∈(0,π),所以A =π6. (2)因为BC →=2BD →,所以D 为BC 边的中点, 设|BD →|=x ,|BC →|=2x ,由(1)知A =C =π6,所以|BA →|=2x ,B =2π3,在△ABD 中,由余弦定理,得|AD →|2=|BA →|2+|BD →|2-2|BA →|·|BD →|·cos 2π3=(2x )2+x 2-2·2x ·x ·cos 2π3=7,所以x =1,所以AB =BC =2,所以S △ABC =12BA ·BC ·sin B =12×2×2×sin 2π3= 3.19.已知m =(2sin x ,sin x -cos x ),n =(3cos x ,sin x +cos x ),记函数f (x )=m ·n .(1)求函数f (x )的最大值以及取得最大值时x 的取值集合;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c =3,求△ABC 面积的最大值.解:(1)由题意,得f (x )=m ·n =23sin x cos x +sin 2x -cos 2x =3sin 2x -(cos 2x -sin 2x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6,所以f (x )max =2;当f (x )取最大值时,即sin ⎝⎛⎭⎪⎫2x -π6=1,此时2x -π6=2k π+π2(k ∈Z ),解得x =k π+π3(k ∈Z ),所以x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π3,k ∈Z .(2)由f (C )=2,得sin ⎝ ⎛⎭⎪⎫2C -π6=1,又0<C <π,即-π6<2C -π6<11π6,所以2C -π6=π2,解得C =π3,在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C ,得3=a 2+b 2-ab ≥ab ,即ab ≤3,当且仅当a =b =3时,取等号,所以S △ABC =12ab sinC =34ab ≤334, 所以△ABC 面积的最大值为334.。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题三第3讲平面向量(含答案解析)

第 3讲平面向量1. (2016 课·标全国丙改编→1,3→31,则∠ ABC= ________. )已知向量 BA=22, BC=,22答案30°分析→→∵ |BA|= 1, |BC|= 1,→ →3BA·BC=,∴∠ ABC = 30°.cos∠ ABC=→→2|BA|·|BC|12. (2016 ·东改编山 )已知非零向量m,n 知足 4|m|= 3|n|,cos〈 m, n〉=3.若 n⊥ (tm+ n),则实数 t 的值为 ______.答案- 4分析∵ n⊥ (tm+ n),∴ n·(tm+n)=0,即 t·m·n+ n2= 0,∴ t|m||n|cos〈 m, n〉+ |n|2=0,由3212已知得 t×|n| ×+ |n| = 0,解得 t=- 4.433. (2016 天·津改编 )已知△ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延伸到点F,使得 DE=→ →2EF ,则 AF ·BC的值为 ________.答案1 8分析→→→如下图, AF =AD +DF .又 D, E 分别为 AB, BC 的中点,→1→且 DE= 2EF,因此 AD=2AB,→=→+→=→+1→DF DE EF DE2DE3→ 3→=2DE =4AC,→1→ 3 →→→ →因此 AF=2AB+4AC.又 BC= AC-AB,→ →1→3→→ →则 AF·BC=AB+AC ·(AC- AB)241→ →1→ 2 3 →2 3 → →=AB·AC-AB+AC - AC·AB 2244→ 2 1→21→→= 4AC - 2AB -4AC ·AB.3→ →又 |AB|= |AC|= 1,∠ BAC = 60°,→ → 3 1 1 1 1故AF ·BC = - - ×1×1× = .4 2 4 2 84. (2016 ·江浙 )已知向量a ,b , |a|= 1,|b|= 2.若对随意单位向量 e ,均有 |a ·e|+ |b ·e| ≤6,则a ·b 的最大值是 ________.答案12分析 由已知可得:6≥|a ·e|+ |b ·e| ≥|a ·e + b ·e|= |(a + b) ·e|,因为上式对随意单位向量e 都成立.∴ 6≥|a + b|成立.∴ 6≥(a + b) 2= a 2+ b 2+ 2a ·b = 12+ 22+ 2a ·b.1即 6≥5+ 2a ·b ,∴ a ·b ≤2.1.考察平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考察, 多为填空题,难度中低档 .2.考察平面向量的数目积,以填空题为主,难度低;向量作为工具,还常与三角函数、解三角形、不等式、分析几何联合,以解答题形式出现.热门一平面向量的线性运算1.在平面向量的化简或运算中,要依据平面向量基本定理选好基底,变形要有方向不可以盲目转变.2.在用三角形加法法例时,要保证 “首尾相接 ”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法例时,要保证 “同起点 ”,结果向量的方向是指向被减向量.例 1π(1) 设 0<θ< ,向量 a = (sin 2θ, cos θ), b = (cos θ, 1),若 a ∥ b ,则 tan θ= ______.2→ → → →(2) 如图,在 △ ABC 中,已知 BD = 2DC ,以向量 AB ,向量 AC 作为基底,→则向量 AD 可表示为 ____________.答案 (1)1 (2)1 →+ 2 →2 3AB 3AC 分析(1)因为 a ∥ b ,因此 sin 2θ= cos 2θ,即 2sin θcos θ=cos 2θ.π 因为 0<θ< ,因此 cos θ>0,21得 2sin θ= cos θ,tan θ= 2.(2) 依据平面向量的运算法例及已知图形可知→2 →AB +3AC .→→→→ 2 → → 2 → → 1AD =AB + BD = AB + BC =AB + (BA + AC)=333思想升华(1) 关于平面向量的线性运算,要先选择一组基底;同时注意共线向量定理的灵活运用. (2)运算过程中重视数形联合,联合图形剖析向量间的关系. 追踪操练 1(1)如图,正方形 ABCD 中,点 E 是 DC 的中点,点 F 是 BC的一个三平分点,那么以向量 → → →AB 和向量 AD 为基底,向量 EF 可表示为__________ .→→ →(2) 如图,在正方形 ABCD 中, E 为 DC 的中点,若 AE = λAB + μAC ,则 λ + μ的值为 ________. 答案(1)1→ - 2 →(2)12AB 3AD2分析→ → → (1)在 △ CEF 中,有 EF = EC +CF .→ 1 →因为点 E 为 DC 的中点,因此 EC = DC .2因为点 F 为 BC 的一个三平分点,因此→ 2 →CF =CB.3→ 1→ 2→ 1→ 2→ 1→2→因此 EF = 2DC +3CB =2AB +3DA = 2AB - 3AD.(2)→ → → 1 →1 → → 1 → →→ 1 → 因为 E 为 DC 的中点,因此 AC = AB + AD = AB +AB + AD =AB + AE ,即 AE =-AB +2222→ AC ,1 1因此 λ=- , μ=1,因此 λ+ μ= .22热门二平面向量的数目积1.数目积的定义: a ·b = |a||b|cos θ.2.三个结论(1) 若 a = (x , y),则 |a|= a ·a = x 2+ y 2.(2) 若 A(x 1,y 1), B( x 2, y 2),则→ 2 2 .|AB|= (x 2- x 1 ) + (y 2- y 1 )(3)若 a= (x1,y1), b= ( x2,y2 ),θ为 a 与 b 的夹角,则 cos θ=a·b=x1x2+ y1y2|a||b|x12+ y12x22+ y22.例 2(1)如图,在矩形ABCD 中, AB=2, BC= 2,点 E 为 BC 的中点,点 F在边→ →=→ →CD 上,若 AB·AF2,则 AE ·BF的值是 ________.(2) 若 b=cos π, cos5π,|a|= 2|b|,且 (3a+b) ·b=- 2,则向量 a,b 的夹角1212为 ________.答案(1) 2 (2)5π6分析(1)以 A 为原点,成立如下图的坐标系,可得 A(0,0),B(2, 0), E(2, 1), F(x,2),→→∴ AB= ( 2,0) ,AF= (x,2),→ →2x=2,∴ AB·AF=解得 x= 1,∴ F(1,2).→→∴ AE= ( 2,1),BF= (1- 2, 2),→ →∴ AE·BF= 2×(1- 2)+ 1×2= 2.22π25π 2 π 2 π(2) b= cos+cos12=cos+ sin= 1,121212因此 |b|= 1,|a|= 2.由 (3a+b) ·b=- 2,可得3a·b+ b2=- 2,故 a·b=-3,故 cos〈 a, b〉=a·b=- 33=-|a||b|2×1 2.5π又〈 a, b〉∈ [0,π],因此〈 a, b〉=6 .思想升华(1) 数目积的计算往常有三种方法:数目积的定义,坐标运算,数目积的几何意义;(2) 能够利用数目积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.追踪操练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的地点如下图,→ →则向量 AD在AB方向上的投影为 ________.(2) 如图,在△ ABC 中,AB= AC= 3,cos∠ BAC=1→→→ →3,DC= 2BD,则 AD·BC的值为 ________.答案(1)-5(2)- 2 5分析(1)不如以点 A 为坐标原点,成立如下图的平面直角坐标系,易得→→AD = (- 2,3),AB→ →→ →- 25 AD ·AB= (4,2) ,因此向量 AD 在 AB方向上的投影为→=2 5=- 5.|AB |→→→→→→2→ →(2) AD·BC= (AC+ CD ) ·BC= (AC+CB) ·BC3→2→→→2→1→→→=[AC+3(AB -AC)] BC·= ( 3AB +3AC) ·(AC- AB)2 →2 1 → → 1 →2=-3|AB|+3AB·AC+3|AC|=-6+ 1+3=- 2.热门三平面向量与三角函数平面向量作为解决问题的工具,拥有代数形式和几何形式的“两重型”,高考常在平面向量与三角函数的交汇处命题,经过向量运算作为题目条件.例 3已知函数 f(x)= 2cos2x+ 23sin xcos x(x∈ R).π(1)当 x∈[0,2)时,求函数 f( x)的单一递加区间;(2)设△ABC 的内角 A,B, C 的对边分别为 a, b,c,且 c=3, f( C)= 2,若向量 m= (1, sin A)与向量 n= (2, sin B)共线,求 a, b 的值.解π (1)f(x)= 2cos 2x + 3sin 2x = cos 2x + 3sin 2x + 1=2sin(2 x + ) +1,6π π π 令- + 2k π≤2x +≤ + 2k π, k ∈ Z ,26 2π π解得 k π-≤x ≤k π+ , k ∈ Z ,36π因为 x ∈ [0, 2) ,π因此 f( x)的单一递加区间为 [0,6] .π(2) 由 f(C)= 2sin(2C +6)+ 1= 2,π 1得 sin(2C + 6)= 2,π π 13 π而 C ∈(0 ,π),因此 2C + 6∈( 6, 6 ), π 5 π因此 2C + =6π,解得 C = 3.6因为向量 m = (1,sin A)与向量 n =(2 ,sin B)共线,因此sin A 1sin B= .2由正弦定理得 a = 1,①b 2由余弦定理得π c 2= a 2+ b 2- 2abcos,3即 a 2+ b 2- ab =9.②联立①②,解得 a = 3,b = 2 3.思想升华 在平面向量与三角函数的综合问题中, 一方面用平面向量的语言表述三角函数中的问题, 如利用向量平行、 垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等; 另一方面能够利用三角函数的知识解决平面向量问题,在解决此类问题的 过程中, 只需依据题目的详细要求, 在向量和三角函数之间成立起联系, 就能够依据向量或者三角函数的知识解决问题.追踪操练 3已知 △ABC 是锐角三角形,向量m = cos A + π,3π, n = cos B , sin B ,且 m ⊥ n.sin A +3 ( )(1) 求 A -B 的值;3(2) 若 cos B = 5,AC =8,求 BC 的长.解(1)因为 m ⊥ n ,π π因此 m ·n = coscos B +sin A + 3 sin BA + 3 π= cos A +3- B =0,π又 A ,B ∈ 0,2 ,因此ππ 5πA + -B ∈ - , ,3 6 6 因此 π ππA + -B = ,即 A - B = .3 263π4(2) 因为 cos B =5, B ∈ 0,2 ,因此 sin B = 5,因此 sin A = sin π ππ = sin Bcos + cos Bsin 6B +664 3 3 1 4 3+ 3= · + ·= ,52 5 2104 3+3由正弦定理,得BC = sin A10 ×8= 4 3+ 3.4sin B·AC =5→ 1 →1.如图,在 △ ABC 中, AD = 3AB , DE ∥ BC 交AC 于E , BC边上的中线AM交DE于,设 → = , → = ,用ABaACb N, 表示向量ab→ →AN ,则 AN= ____________.押题依照平面向量基本定理是向量表示的基本依照,而向量表示 (用基底或坐标 )是向量应用的基础.1答案6(a + b)分析因为 DE ∥ BC ,因此 DN ∥ BM ,则 △ AND ∽△ AMB ,因此 AM AN = ADAB .→1 →→1 →因为 AD = 3AB ,因此 AN = 3AM . 因为 M 为 BC 的中点,→ 1 → → 1 因此 AM = (AB +AC)=(a + b),22→ 1 →1因此 AN =AM = (a + b).362.如图,BC 、DE 是半径为 →→ → →1 的圆 O 的两条直径, BF = 2FO ,则 FD ·FE= ________.押题依照数目积是平面向量最重要的观点,平面向量数目积的运算是高考的必考内容,和平面几何知识的联合是向量考察的常有形式.答案-89分析→→→1,∵BF =2FO ,圆 O 的半径为 1,∴ |FO |=3→→→→→→→2→→→→→1 2 8 ∴ FD ·FE = (FO + OD) ·(FO + OE)= FO + FO ·(OE + OD)+ OD ·OE = ( ) + 0- 1=- .39→ →120°sin 208 )°,则 △ABC3.在 △ABC 中,AB =(cos 32 °,cos 58 °),BC = (sin 60 sin ° 118 ,°sin 的面积为 ________.押题依照平面向量作为数学解题工具, 经过向量的运算给出条件解决三角函数问题已成为近几年高考的热门.答案38分析→ 2 2°|AB|= cos 32 °+ cos 58= cos 232°+ sin 232°=1,→33,BC =2 cos 28 ,°- 2 sin 28°→323 23 因此 |BC|=+ -2 sin 28 =2.2 cos 28 °°→ →33 °则 AB ·BC = cos 32 °×2cos 28-°sin 32 ×° sin 2823=2 (cos 32 cos ° 28 -°sin 32 sin ° 28 ) °=333,2 cos(32 +°28°)= 2cos 60 =° 4→ →3 → →4 1AB ·BC = . 故 cos 〈 AB , BC 〉= →→ = 3 2 |AB| ×|BC| 1×2→ → °, 180°],因此〈 → →又〈 AB , BC 〉∈ [0 AB , BC 〉= 60°,→ →故 B = 180°-〈 AB , BC 〉= 180°- 60°= 120°.故 △ ABC 的面积为1 →S = 2×|AB|→×|BC|sin B1 3 = ×1××sin221203 =° .84.如图,在半径为1 的扇形 AOB中,∠ AOB =60°,C为弧上的动点, AB 与OC交于点P ,→ →则 OP ·BP 的最小值是 _______________________________________ .押题依照 此题将向量与平面几何、 最值问题等有机联合,表现了高考在知识交汇点命题的方向,此题解法灵巧,难度适中.答案-116分析→ → →→→→→→→→→2 = 60 °,因为 OP = OB + BP ,因此 OP ·BP = (OB + BP) ·BP =OB ·BP + BP .又因为∠ AOB OA = OB ,因此∠ OBA = 60°, OB = → → →1 → →→1→→21.因此 OB ·BP = |BP |cos 120=°-|BP|,因此 OP ·BP =- |BP|+ |BP|22→1 2 11→1 → →1= (|BP|- )-≥-,当且仅当 |BP|= 时, OP ·BP 获得最小值-.4 16 16416A 组 专题通关1.在 △ ABC 中,已知 D 是 AB 边上一点,若→ →→ 1 →→AD = 2DB, CD = CA + λCB ,则 λ= ________.3答案23分析 在 △ABC 中,已知 D 是 AB 边上一点,→→ →1→→→→→→ 2 → → 2 → → 1 → 2 → ∵ AD = 2DB ,CD = CA + λCB ,∴ CD = CA + AD = CA + AB = CA +3 (CB - CA)= CA + CB ,3333∴ λ= 2.32. △ ABC 是边长为 2 的等边三角形,已知向量→ →a ,b 知足 AB = 2a , AC = 2a + b ,则以下结论正确的选项是 ________.① |b|= 1; ② a ⊥ b ;→③ a ·b = 1; ④ (4a + b)⊥BC.答案 ④分析→ → →在 △ABC 中,由 BC = AC - AB = 2a + b - 2a = b ,得 |b|= 2.又 |a|= 1,因此 a ·b = |a||b|cos 120 =°- 1,→ 2因此 (4a + b) ·BC = (4a + b) ·b = 4a ·b + |b|= 4×(- 1)+ 4= 0,→因此 (4a + b)⊥ BC.→ → → → → →3.在等腰 △ ABC 中,∠ BAC =90°,AB = AC = 2,BC = 2BD ,AC = 3AE ,则 AD ·BE = ________.答案-43分析由已知获得→ → 1→→→1 →1 →2 1 → → 1 → → 1 → 2,AD ·BE =(AB + AC) ·(BA + AC) =-2AB + AB ·AC +2 AC ·BA + AC2366→ → 1212△ ABC 是等腰直角三角形,∠ BAC = 90 °, AB = AC =2,因此 AD ·BE =- 2×2 + 0+0+ 6×24=- 3.4. (2016 ·津蓟县期中天 )已知向量 a , b 知足 (a + 2b) ·(a - b)=- 6,且 |a|= 1, |b|= 2,则 a与 b 的夹角为 ________.答案π 3分析 设 a 与 b 的夹角为θ,∵ (a + 2b) ·(a - b)=- 6,且 |a|= 1,|b|= 2,∴ 1+a ·b - 8=- 6,∴ a ·b = 1=|a||b |cos θ,∴ cos θ= 1,2π又∵ θ∈ [0,π],∴ θ=3.5. (2016 安·徽江淮十校第二次联考 )已知平面向量 a 、b(a ≠0, a ≠b)知足 |a|= 3,且 b 与 b - a 的夹角为 30°,则 |b|的最大值为 ________.答案 6分析→ → → → →令OA = a , OB = b ,则 b - a = OB -OA =AB ,如图,∵ b 与 b - a 的夹角为 30°,∴∠ OBA =30°,→→→→,∴由正弦定 理|OA| = |OB|得 , ∵ |a| = |OA |= 3 sin ∠ OBA sin ∠ OAB |b|= | OB | =6·sin ∠ OAB ≤ 6.6.已知向量 a = (2,1),b = (- 1, 2),若 a , b 在向量 c 方向上的投影相等,且 (c - a) ·(c - b) =- 5,则向量 c 的坐标为 ________.21 3答案 (2,2)分析设 c = (x , y),依据题意有x 2+ y 2- x - 3y =- 5,22x + y =- x + 2y ,1,x = 2解得3y = 2.→→ → 7.设向量 OA = (5+ cos θ,4+ sin θ), OB = (2,0) ,则 |AB|的取值范围是 ________. 答案[4,6]分析→ → →= (- 3- cos θ,- 4- sin θ),∵AB =OB -OA → 2 2 2 ∴ |AB| = (- 3-cos θ) +( -4- sin θ)= 6cos θ+ 8sin θ+26= 10sin(θ+ φ)+ 26,此中 tan φ= 3,4→ 2 →∴ 16≤|AB | ≤ 36,∴ 4≤|AB| ≤ 6.8.设向量 a = (a 1, a 2), b = (b 1, b 2),定义一种向量积 a?b = (a 1b 1, a 2b 2),已知向量 m =(2 , 1 π →2),n = (,0),点 P(x ,y)在 y = sin x 的图象上运动, Q 是函数 y = f(x)图象上的点, 且知足 OQ3→为坐标原点 ),则函数 y = f( x)的值域是 ________.= m?OP + n(此中 O1 1 答案 [- 2, 2]分析令 Q(c ,d),由新的运算可得→ →1 π π 1sin x), OQ = m?OP + n =(2x ,sin x)+ ( , 0)= (2x + ,233 2π, 11∴c =2x + 3π1消去 x 得 d =sin( c - ),22 6d = 2sin x ,1 1π1 1] .∴ y = f( x)= sin(x -),易知 y = f(x)的值域是 [- ,2262 2π9.设向量 a = ( 3sin x , sin x), b =(cos x ,sin x), x ∈ [0, 2].(1) 若 |a|= |b|,求 x 的值;(2) 设函数 f(x)= a ·b ,求 f(x)的最大值.解(1)由 |a|2= ( 3sin x)2+ (sin x)2= 4sin 2x ,222= 1,|b| =(cos x) + (sin x) 及 |a|= |b|,得 4sin 2x = 1.π1π又 x ∈ [0, ],进而 sin x = ,因此 x = .22 62(2) f(x)= a ·b = 3sin x ·cos x + sin x=3 1 1π 1,2sin 2x - cos 2x += sin(2x - )+ 2262π π π1,当 x = ∈ [0, ] 时, sin(2 x -)取最大值326因此 f( x)的最大值为32.10.已知向量 a = (cos α, sin α),b = (cos x , sin x), c = (sin x + 2sin α, cos x + 2cos α),此中 0<α<x<π.π(1) 若 α=4,求函数 f(x)= b ·c 的最小值及相应 x 的值;π (2) 若 a 与 b 的夹角为,且 a ⊥ c ,求 tan 2α的值.3解 (1)∵ b = (cos x , sin x),πc = (sin x + 2sin α, cos x + 2cos α), α= 4,∴ f(x)= b ·c= cos xsin x + 2cos xsin α+sin xcos x +2sin xcos α= 2sin xcos x + 2(sin x + cos x).π令 t = sin x +cos x 4<x<π ,则 2sin xcos x = t 2 -1,且- 1<t< 2.则 y = t 2+ 2t - 1= t +2 2-3,- 1<t< 2,2 2∴ t =- 2时, y min =-3,此时 sin x + cos x =- 2, 2 2 2 即 2sin x + π=- 2,42π π π 5π,∵ <x<π,∴ <x + <424 4 π 7 11π∴ x + = π,∴ x =12 .46∴函数 f(x)的最小值为- 3,相应 x 的值为 11π2 12.π(2) ∵ a 与 b 的夹角为 ,3π a ·b∴ cos= = cos αcos x + sin αsin x3 |a| ·|b|= cos(x - α).π∵ 0< α<x<π,∴ 0<x - α<π,∴ x - α=3.∵ a ⊥ c ,∴ cos α(sin x + 2sin α)+ sin α(cos x + 2cos α)= 0,π∴ sin(x + α)+ 2sin 2α= 0,即 sin 2α+3 + 2sin 2α= 0.5 sin 2α+ 3 3. ∴ 2cos 2α=0,∴ tan 2α=-52B 组 能力提升11.已知非零单位向量a 与非零向量b 知足 |a +b|= |a - b|,则向量 b - a 在向量 a 上的投影为 ________.答案 -1分析 因为 |a + b|= |a - b|,因此 (a + b)2= (a - b)2,2解得 a ·b = 0,因此向量 b - a 在向量 a 上的投影为 |b - a|cos 〈 a , b - a 〉=a ·(b -a)=0-|a||a||a|=- |a|=- 1.→ → →AB AC12.已知点 P 为 △ ABC 所在平面内一点, 且知足 AP = λ( → + →)(λ∈ R),则直线 |AB|cos B |AC|cos CAP 必经过 △ ABC 的 ________心. 答案垂→ → →AB AC分析 ∵BC ·( → + → )|AB|cos B |AC|cos C→ →=- |BC|+ |BC|= 0,→ → →AB AC∴ BC 与 λ( → + →)垂直,|AB|cos B |AC|cos C→ →AP 经过 △ABC 的垂心.∴ AP ⊥ BC ,∴点 P 在 BC 的高线上,即直线13.若 a = (2+ λ,1),b = (3,λ),若〈 a ,b 〉为钝角, 则实数 λ的取值范围是 ______________.答案3 (- ∞,- 3)∪( -3,- )2分析3 ∵ a = (2+ λ,1),b = (3,λ),∴ a ·b = 3(2+ λ)+ λ<0,得 λ<- .若 a ,b 共线,则 λ(2+ λ)2- 3= 0,解得λ=- 3 或λ=1.即当λ=- 3 时, a, b 方向相反,3又〈 a, b〉为钝角,则λ<-且λ≠- 3.14.在直角坐标系xOy 中,已知点A(1,1), B(2,3), C(3,2) ,点 P(x, y)在△ABC 三边围成的地区 (含界限 )上.→→→→(1) 若 PA+PB + PC= 0,求 |OP|;→→→(2) 设 OP=mAB+ nAC(m, n∈ R),用 x, y 表示 m-n,并求 m-n 的最大值.解 (1)方法一→ →→∵ PA+ PB+ PC= 0,→→→又 PA+ PB+ PC= (1- x,1- y)+ (2-x,3- y)+ (3- x,2- y)=(6 -3x,6- 3y),6- 3x= 0,x=2,∴解得6- 3y= 0,y=2,→→即 OP= (2,2),故 |OP|= 2 2.方法二→→→∵PA+ PB+ PC= 0,→→→→→→则 (OA- OP)+(OB -OP) +(OC-OP) =0,→1→→→→2.∴ OP=3(OA+ OB+ OC)=(2,2),∴ |OP|= 2→→→(2) ∵ OP=mAB+ nAC,x= m+2n,∴ (x, y)= (m+ 2n, 2m+ n),∴y= 2m+ n,两式相减得, m- n= y- x.令 y-x= t,由图知,当直线y= x+t 过点B(2,3) 时, t 获得最大值 1,故 m- n 的最大值为1.。

平面向量与解三角形基础知识

平面向量与解三角形基础知识
在得到解之后,需要进行检验 ,确保解的合理性,如角度的 范围应在$0^circ$到 $180^circ$之间。
04
平面向量与解三角形的结合应用
向量在解三角形中的应用
力的合成与分解
在物理和工程中,向量可以表示 力和速度,通过向量的合成与分 解可以解决与力相关的问题,如 力的平衡、加速度等。
速度和加速度分析
01 02
答案解析1
首先计算向量$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$的模长,然后利用向量的夹角公式计算 夹角。
答案解析2
利用向量的坐标运算求出边AB上的高所在的直线斜率,然后利用点斜 式求出直线方程。
03
答案解析3
利用向量的夹角公式计算夹角的余弦值。
平面向量与解三角形基础知识

CONTENCT

• 平面向量基本概念 • 平面向量的数量积和向量积 • 解三角形基础知识 • 平面向量与解三角形的结合应用 • 练习题与答案解析
01
平面向量基本概念
向量的表示与定义
总结词
平面向量通常用有向线段表示,包括 起点、方向和长度。
详细描述
平面向量是一种既有大小又有方向的 量,通常用有向线段表示,包括起点 、方向和长度。向量的大小称为模, 表示为向量的长度。
解三角形的步骤和注意事项
01
02
03
04
确定解的类型
根据题目条件和要求,确定解 的类型是角度、边长还是角度 和边长都需要求解。
选择合适的公式
根据解的类型,选择合适的公 式进行计算,如正弦定理、余 弦定理等。
计算过程需谨慎
在计算过程中,需要注意单位 的统一和计算的准确性,避免 出现误差。

平面向量的平面几何和三角形几何

平面向量的平面几何和三角形几何

平面向量的平面几何和三角形几何平面向量是解决平面几何和三角形几何问题的重要工具之一。

通过使用平面向量,我们可以方便地描述平面上的点、线段和图形,并且可以解决许多与它们相关的问题。

本文将探讨平面向量在平面几何和三角形几何中的应用。

一、平面向量的表示和运算平面向量可以用有序数对表示,例如向量AB可以表示为→AB=(x,y),其中x和y分别表示向量在x轴和y轴上的分量。

向量加法和数乘是两个常见的平面向量运算。

向量加法指的是将两个向量的对应分量相加,例如→AB+→CD=(x1+x2,y1+y2);数乘指的是将一个向量的分量与一个实数相乘,例如k→AB=(kx,ky)。

通过这些运算,我们可以进行向量的加减法、数乘运算,并且可以推导出向量的长度、夹角和方向等概念。

二、平面向量与平面几何1. 向量的模和方向:向量的模表示向量的长度,记作|→AB|,可以通过勾股定理计算得出。

向量的方向可以用夹角来表示,例如与x轴正向的夹角记作θ。

通过向量的模和方向,我们可以准确地描述平面上的直线、线段和图形的特征。

2. 平面向量的共线和平行:若两个向量的方向相同或相反,则它们共线;若两个向量的方向平行,则它们平行。

通过判断向量的共线和平行关系,我们可以确定平面上的直线和图形是否平行或共线。

3. 向量的投影:向量的投影是指一个向量在另一个向量上的正交投影。

投影的长度可以通过向量的点乘运算计算得出。

向量的投影在平面几何中有广泛的应用,例如求线段的垂直平分线和解决直角三角形中的问题等。

三、平面向量与三角形几何1. 向量的线性组合和向量共面:三角形的三个边可以用三个向量表示,若三个向量的线性组合等于零向量,则称这三个向量共面。

向量共面与三角形共面是等价的,通过向量的线性组合,我们可以判断三角形是否共面。

2. 向量的内积:向量的内积等于两个向量的模的乘积与夹角的余弦之积。

向量内积在三角形几何中有广泛的应用,例如可以用来计算三角形的面积、判断两条直线是否垂直或平行等。

2019高考数学(文)精讲二轮 专题三 三角函数、平面向量 第三讲平面向量

2019高考数学(文)精讲二轮 专题三 三角函数、平面向量 第三讲平面向量

第三讲 平面向量考点一 平面向量的概念及线性运算1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.2.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量的终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.[对点训练]1.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → [解析] ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD→+AB →,又∵D 为BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →,故选A.[答案] A2.(2018·河北三市联考)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则mn等于( )A .-12 B.12C .-2D .2[解析] ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2,故选C. [答案] C3.(2018·河南郑州质检)已知P 为△ABC 所在平面内一点,D 为AB 的中点,若2PD →+PC →=(λ+1)PA →+PB →,且△PBA 与△PBC 的面积相等,则实数λ的值为________. [解析] ∵D 为AB 的中点,∴2PD →=PA →+PB →, 又∵2PD →+PC →=(λ+1)PA →+PB →. ∴PA →+PB →+PC →=(λ+1)PA →+PB →∴PC →=λPA →,又△PBA 与△PBC 的面积相等, ∴P 为AC 的中点,∴λ=-1. [答案] -14.(2018·盐城一模)在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD →=14AC →+λAB →(λ∈R ),则AD 的长为________.[解析] 因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN →=14AC →,AM →=34AB →,经计算得AN =AM =3,AD =3 3.[答案] 3 3[快速审题] (1)看到向量的线性运算,想到三角形和平行四边形法则.(2)看到向量平行,想到向量平行的条件.平面向量线性运算的2种技巧(1)对于平面向量的线性运算问题,要尽可能转化到三角形或平行四边形中,灵活运用三角形法则、平行四边形法则,紧密结合图形的几何性质进行运算.(2)在证明两向量平行时,若已知两向量的坐标形式,常利用坐标运算来判断;若两向量不是以坐标形式呈现的,常利用共线向量定理(当b ≠0时,a ∥b ⇔存在唯一实数λ,使得a =λb )来判断.考点二 平面向量的数量积1.平面向量的数量积有两种运算形式(1)数量积的定义:a ·b =|a ||b |cos θ(其中θ为向量a ,b 的夹角).(2)坐标运算:a =(x 1,y 1),b =(x 2,y 2)时,a ·b =x 1x 2+y 1y 2. 2.投影向量a 在向量b 方向上的投影为a ·b|b |=|a |cos θ(θ为向量a ,b的夹角).[对点训练]1.已知|a |=1,b =(-1,1)且a ⊥(a +b ),则向量a 与向量b 的夹角为( )A.π3B.π2C.2π3D.3π4[解析] 设向量a 与向量b 的夹角为θ,因为a ⊥(a +b ),所以a ·(a +b )=0,即|a |2+a ·b =1+|a ||b |cos θ=1+2cos θ=0,cos θ=-22,θ=3π4,故选D. [答案] D2.(2018·陕西西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD →在BA →方向上的投影是( )A .-3 5B .-322C .3 5 D.322[解析] 依题意得,BA →=(-2,-1),CD →=(5,5),BA →·CD →=(-2,-1)·(5,5)=-15,|BA →|=5,因此向量CD →在BA →方向上的投影是BA →·CD →|BA →|=-155=-35,故选A.[答案] A3.已知向量a =(-1,2),b =(3,-6),若向量c 满足c 与b 的夹角为120°,c ·(4a +b )=5,则|c |=( )A .1 B. 5 C .2 D .2 5[解析] 依题意可得|a |=5,|b |=35,a ∥b .由c ·(4a +b )=5,可得4a ·c +b ·c =5.由c 与b 的夹角为120°,可得c 与a 的夹角为60°,则有b ·c =|b ||c |cos120°=|c |×35×⎝ ⎛⎭⎪⎫-12=-352|c |,a ·c =|a ||c |cos60°=|c |×5×12=52|c |,所以4×52|c |-352|c |=5,解得|c |=25,故选D. [答案] D4.如图所示,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.[解析] 因为AB →·AC →=2AB →·AD →,所以AB →·AC →-AB →·AD →=AB →·AD →,所以AB →·DC →=AB →·AD →.因为AB ∥CD ,CD =2,∠BAD =π4,所以2|AB →|=|AB →||AD →|cos π4,化简得|AD →|=2 2.故AD →·AC →=AD →·(AD →+DC →)=|AD →|2+AD →·DC →= (22)2+22×2cos π4=12.[答案] 12[快速审题] (1)看到向量垂直,想到其数量积为零. (2)看到向量的模与夹角,想到向量数量积的有关性质和公式.平面向量数量积的两种运算方法(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择易求夹角和模的基底进行转化.(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.考点三 平面向量在几何中的应用用向量法解决平面(解析)几何问题的两种方法(1)基向量法:选取适当的基底(基底中的向量尽量已知模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.一般地,存在坐标系或易建坐标系的题目适合用坐标法.[解析] (1)解法一:∵OA →⊥OB →,|OA →|=|OB →|=1, ∴|OA →+OB →|=OA →2 +2OA →·OB →+OB →2= 2.设(OA →+OB →)与OC →的夹角为θ,则(OC →-OA →)·(OC →-OB →)=OC →2-(OA →+OB →)·OC →+OA →·OB →=1-2cos θ,又∵θ∈[0,π],∴cos θ∈[-1,1],∴(OC →-OA →)·(OC →-OB →)=1-2cos θ∈[1-2,1+2],∴(OC →-OA →)·(OC →-OB →)的最大值为2+1,故选A.解法二:以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴建立平面直角坐标系(取OA →的方向为x 轴正方向,OB →的方向为y 轴正方向),则A (1,0),B (0,1).设C (cos θ,sin θ)(θ∈[0,2π)),∴OC →-OA →=(cos θ-1,sin θ),OC →-OB →=(cos θ,sin θ-1),∴(OC →-OA →)·(OC →-OB →)=cos θ(cos θ-1)+sin θ(sin θ-1)=cos 2θ+sin 2θ-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎪⎫θ+π4,∵θ∈[0,2π),∴sin ⎝ ⎛⎭⎪⎫θ+π4∈[-1,1],∴(OC →-OA →)·(OC →-OB →)的最大值为2+1,故选A.(2)解法一:因为2BE →=BC →,所以E 为BC 中点.设正方形的边长为2,则|AE →|=5, |BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.解法二:因为2BE →=BC →, 所以E 为BC 中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.[答案] (1)A (2)-1010解决以平面图形为载体的向量数量积问题的策略 (1)选择平面图形中的模与夹角确定的向量作为一组基底,用该基底表示构成数量积的两个向量,结合向量数量积运算律求解.(2)若已知图形中有明显的适合建立直角坐标系的条件,可建立直角坐标系将向量数量积运算转化为代数运算来解决.[对点训练]1.在△ABC 中,点M 是BC 边的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则AP →·(PB →+PC →)等于( )A.49B.43 C .-43 D .-49[解析] 由点M 为BC 边的中点,得PB →+PC →=2PM →=AP →. ∴AP →·(PB →+PC →)=AP →2.又∵AP →=2PM →,∴|AP →|=23|AM →|=23.∴AP →2=|AP →|2=49,故选A.[答案] A2.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1[解析] 解法一:设BC 的中点为D ,AD 的中点为E ,则有PB →+PC →=2PD →,则PA →·(PB →+PC →)=2PA →·PD →=2(PE →+EA →)·(PE →-EA →)=2(PE →2-EA →2).而AE →2=⎝ ⎛⎭⎪⎪⎫322=34,当P 与E 重合时,PE →2有最小值0,故此时PA →·(PB →+PC →)取最小值,最小值为-2EA →2=-2×34=-32.解法二:以AB 所在直线为x 轴,AB 的中点为原点建立平面直角坐标系,如图,则A (-1,0),B (1,0),C (0,3),设P (x ,y ),取BC 的中点D ,则D⎝ ⎛⎭⎪⎪⎫12,32.PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎪⎫12-x ,32-y =2⎣⎢⎢⎡⎦⎥⎥⎤(x +1)·⎝ ⎛⎭⎪⎫x -12+y ·⎝ ⎛⎭⎪⎪⎫y -32=2⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎪⎫y -342-34. 因此,当x =-14,y =34时,PA →·(PB →+PC →)取得最小值,为2×⎝ ⎛⎭⎪⎫-34=-32,故选B.[答案] B1.(2018·全国卷Ⅱ)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( )A .4B .3C .2D .0[解析] 因为|a |=1,a ·b =-1,所以a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3,故选B.[答案] B2.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2[解析] 分别以CB 、CD 所在的直线为x 轴、y 轴建立直角坐标系,则A (2,1),B (2,0),D (0,1).∵点P 在以C 为圆心且与BD 相切的圆上,∴可设P ⎝ ⎛⎭⎪⎪⎫25cos θ,25sin θ. 则AB →=(0,-1),AD →=(-2,0),AP →=⎝ ⎛⎭⎪⎪⎫25cos θ-2,25sin θ-1. 又AP →=λAB →+μAD →,∴λ=-25sin θ+1,μ=-15cos θ+1,∴λ+μ=2-25sin θ-15cos θ=2-sin(θ+φ),其中tan φ=12,∴(λ+μ)max =3,故选A.[答案] A3.(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.[解析] 由已知得2a +b =(4,2).又c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=12.[答案] 124.(2018·上海卷)在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为________.[解析] 设E (0,m ),F (0,n ), 又A (-1,0),B (2,0), ∴AE →=(1,m ),BF →=(-2,n ). ∴AE →·BF →=-2+mn ,又知|EF →|=2,∴|m -n |=2.①当m =n +2时,AE →·BF →=mn -2=(n +2)n -2=n 2+2n -2=(n +1)2-3.∴当n =-1,即E 的坐标为(0,1),F 的坐标为(0,-1)时,AE →·BF →取得最小值-3.②当m =n -2时,AE →·BF →=mn -2=(n -2)n -2=n 2-2n -2=(n -1)2-3.∴当n =1,即E 的坐标为(0,-1),F 的坐标为(0,1)时,AE →·BF →取得最小值-3.综上可知,AE →·BF →的最小值为-3. [答案] -35.(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.[解析] 解法一:如图,由BD →=2DC →得AD →=13AB →+23AC →,所以AD →·AE →=⎝ ⎛⎭⎪⎪⎫13AB →+23AC →·(λAC →-AB →)=13λAB →·AC →-13AB →2+23λAC →2-23AB →·AC →,又AB →·AC →=3×2×cos60°=3,AB →2=9,AC →2=4,所以AD →·AE →=λ-3+83λ-2=113λ-5=-4,解得λ=311.解法二:以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,如图,因为AB =3,AC =2,∠A =60°,所以B (3,0),C (1,3),又BD →=2DC →,所以D ⎝ ⎛⎭⎪⎪⎫53,233, 所以AD →=⎝ ⎛⎭⎪⎪⎫53,233,而AE →=λAC →-AB →=λ(1,3)-(3,0)=(λ-3,3λ),因此AD →·AE →=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.[答案] 3111.平面向量是高考必考内容,每年每卷均有一个小题(选择题或填空题),一般出现在第3~7或第13~15题的位置上,难度较低.主要考查平面向量的模、数量积的运算、线性运算等,数量积是其考查的热点.2.有时也会以平面向量为载体,与三角函数、解析几何等其他知识相交汇综合命题,难度中等.热点课题9 坐标法在平面向量中的运用[感悟体验]1.(2018·湖南长郡中学一模)若等边三角形ABC 的边长为3,平面内一点M 满足CM →=13CB →+12CA →,则AM →·MB →的值为( )A .2B .-152 C.152D .-2[解析] 以CA 的中点为原点,CA 所在直线为x 轴建立平面直角坐标系.如图所示,点A ⎝ ⎛⎭⎪⎫32,0,点B ⎝ ⎛⎭⎪⎪⎫0,332,点C ⎝ ⎛⎭⎪⎫-32,0,∴CB →=⎝ ⎛⎭⎪⎪⎫32,332,CA →=(3,0). ∴CM →=13CB →+12CA →=13⎝ ⎛⎭⎪⎪⎫32,332+12(3,0)=⎝ ⎛⎭⎪⎪⎫2,32, ∴OM →=OC →+CM →=⎝ ⎛⎭⎪⎪⎫12,32,∴AM →=OM →-OA →=⎝ ⎛⎭⎪⎪⎫-1,32,MB →=OB →-OM →=⎝ ⎛⎭⎪⎫-12,3,∴AM →·MB →=-1×⎝ ⎛⎭⎪⎫-12+32×3=2,故选A.[答案] A2.(2018·河南开封质检)已知△ABC 为等边三角形,AB = 2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-32,则λ的值为________.[解析] 如图,以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面直角坐标系.设A (0,0),B (2,0),C (1,3),则AB →=(2,0),AC →=(1,3),∴P (2λ,0),Q (1-λ,3(1-λ)).∵BQ →·CP →=-32,∴(-1-λ,3(1-λ))·(2λ-1,-3)=-32,化简得4λ2-4λ+1=0,∴λ=12.[答案] 12专题跟踪训练(十六)一、选择题1.(2018·昆明模拟)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512b D .-13a +1312b[解析] DE →=DC →+CE → =13BC →+34CA →=13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b ,故选C.[答案] C2.(2018·吉林白城模拟)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn=( )A.12 B .2 C .-12D .-2 [解析] 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12,故选C.[答案] C3.已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由a ·b >0,可得到θ∈⎣⎢⎡⎭⎪⎫0,π2,不能得到θ∈⎝ ⎛⎭⎪⎫0,π2;而由θ∈⎝⎛⎭⎪⎫0,π2,可以得到a ·b >0,故选B.[答案] B4.(2018·郑州一中高三测试)已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |等于( )A.7B.10C.13 D .4[解析] 依题意得a ·b =12,|a +3b |=a 2+9b 2+6a ·b =13,故选C.[答案] C5.已知△ABC 是边长为1的等边三角形,则(AB →-2BC →)·(3BC →+4CA →)=( )A .-132B .-112C .-6-32 D .-6+32[解析] (AB →-2BC →)·(3BC →+4CA →)=3AB →·BC →-6BC →2+4AB →·CA →-8BC →·CA →=3|AB →|·|BC →|·cos120°-6|BC →|2+4|AB →|·|CA →|cos120°-8|BC →|·|CA→|·cos120°=3×1×1×⎝ ⎛⎭⎪⎫-12-6×12+4×1×1×⎝ ⎛⎭⎪⎫-12-8×1×1×⎝ ⎛⎭⎪⎫-12=-32-6-2+4=-112,故选B.[答案] B6.(2018·河南中原名校联考)如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=( )A.58B.14 C .1 D.516[解析] DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A.[答案] A7.(2018·山西四校联考)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →[解析] 解法一:如图,取AB 的中点G ,连接DG 、CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,∴AE →=AB →+BE →=AB →+23BC →=AB →+23⎝ ⎛⎭⎪⎪⎫AD →-12AB →=23AB →+23AD →,于是BF →=AF →-AB →=12AE →-AB →=12⎝ ⎛⎭⎪⎪⎫23AB →+23AD →-AB →=-23AB →+13AD →,故选C. 解法二:BF →=BA →+AF →=BA →+12AE →=-AB →+12⎝ ⎛⎭⎪⎪⎫AD →+12AB →+CE → =-AB →+12⎝ ⎛⎭⎪⎪⎫AD →+12AB →+13CB → =-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →,故选C.[答案] C8.(2018·河南郑州二模)已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =12,则(a +b )·(2b -c )的最小值为( )A .-2B .3- 3C .-1D .0[解析] 由|a |=|b |=1,a ·b =12,可得〈a ,b 〉=π3,令OA →=a ,OB →=b ,以OA →的方向为x 轴的正方向建立如图所示的平面直角坐标系,则a =OA →=(1,0),b =OB →=⎝⎛⎭⎪⎪⎫12,32,设c =OC →=(cos θ,sin θ)(0≤θ<2π),则(a +b )·(2b -c )=2a ·b -a ·c +2b 2-b ·c=3-⎝⎛⎭⎪⎪⎫cos θ+12cos θ+32sin θ=3-3sin ⎝⎛⎭⎪⎫θ+π3,则(a +b )·(2b -c )的最小值为3-3,故选B.[答案] B9.(2018·安徽江南十校联考)已知△ABC 中,AB =6,AC =3,N 是边BC 上的点,且BN →=2NC →,O 为△ABC 的外心,则AN →·AO →的值为( )A .8B .10C .18D .9[解析] 由于BN →=2NC →,则AN →=13AB →+23AC →,取AB 的中点为E ,连接OE ,由于O 为△ABC 的外心,则EO →⊥AB →,∴AO →·AB →=⎝ ⎛⎭⎪⎪⎫12AB →+EO →·AB→=12AB →2=12×62=18,同理可得AC →·AO →=12AC →2=12×32=92,所以AN →·AO →=⎝ ⎛⎭⎪⎪⎫13AB →+23AC →·AO →=13AB →·AO →+23AC →·AO →=13×18+23×92=6+3=9,故选D.[答案] D10.(2018·山西太原模拟)已知△DEF 的外接圆的圆心为O ,半径R =4,如果OD →+DE →+DF →=0,且|OD →|=|DF →|,则向量EF →在FD →方向上的投影为( )A .6B .-6C .2 3D .-2 3 [解析] 由OD →+DE →+DF →=0得,DO →=DE →+DF →. ∴DO 经过EF 的中点,∴DO ⊥EF . 连接OF ,∵|OF →|=|OD →|=|DF →|=4,∴△DOF 为等边三角形,∴∠ODF =60°.∴∠DFE =30°,且EF =4×sin60°×2=4 3.∴向量EF →在FD →方向上的投影为|EF →|·cos 〈EF →,FD →〉=43cos150°=-6,故选B.[答案] B11.(2018·湖北黄冈二模)已知平面向量a ,b ,c 满足|a |=|b |=1,a ⊥(a -2b ),(c -2a )·(c -b )=0,则|c |的最大值与最小值的和为( )A .0 B. 3 C. 2 D.7[解析] ∵a ⊥(a -2b ),∴a ·(a -2b )=0,即a 2=2a ·b ,又|a |=|b |=1,∴a ·b =12,a 与b 的夹角为60°.设OA →=a ,OB →=b ,OC →=c ,以O 为坐标原点,OB →的方向为x 轴正方向建立如图所示的平面直角坐标系,则a =⎝⎛⎭⎪⎪⎫12,32,b =(1,0). 设c =(x ,y ),则c -2a =(x -1,y -3),c -b =(x -1,y ). 又∵(c -2a )·(c -b )=0,∴(x -1)2+y (y -3)=0.即(x -1)2+⎝⎛⎭⎪⎪⎫y -322=34,∴点C 的轨迹是以点M ⎝⎛⎭⎪⎪⎫1,32为圆心,32为半径的圆. 又|c |=x 2+y 2表示圆M 上的点与原点O (0,0)之间的距离,所以|c |max =|OM |+32,|c |min =|OM |-32,∴|c |max +|c |min =2|OM |=2× 12+⎝ ⎛⎭⎪⎪⎫322=7,故选D. [答案] D12.(2018·广东七校联考)在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤32,2B.⎝ ⎛⎭⎪⎫32,2 C.⎣⎢⎡⎭⎪⎫32,2 D.⎣⎢⎡⎭⎪⎫32,+∞[解析] 不妨设点M 靠近点A ,点N 靠近点C ,以等腰直角三角形ABC 的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,则B (0,0),A (0,2),C (2,0),线段AC 的方程为x +y -2=0(0≤x ≤2).设M (a,2-a ),N (a +1,1-a )(由题意可知0<a <1),∴BM →=(a,2-a ),BN →=(a +1,1-a ),∴BM →·BN →=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝⎛⎭⎪⎫a -122+32,∵0<a <1,∴由二次函数的知识可得BM →·BN →∈⎣⎢⎡⎭⎪⎫32,2,故选C.[答案] C 二、填空题13.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.[解析] 由题意知a ·b =|a |·|b |cos60°=2×1×12=1,则|a+2b |2=(a +2b )2=|a |2+4|b |2+4a ·b =4+4+4=12.所以|a +2b |=2 3.[答案] 2 314.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.[解析] ∵(3e 1-e 2)·(e 1+λe 2)=3e 21+3λe 1·e 2-e 1·e 2-λe 22=3-λ,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=2,|e 1+λe 2|=(e 1+λe 2)2=e 21+2λe 1·e 2+λ2e 22=1+λ2, ∴3-λ=2×1+λ2×cos60°=1+λ2,解得λ=33.[答案] 3315.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是________.[解析] 依题意,设BO →=λBC →,其中1<λ<43,则有 AO →=AB →+BO→=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →.又AO →=xAB →+(1-x )AC →,且AB →,AC →不共线,于是有x =1-λ,由λ∈⎝ ⎛⎭⎪⎫1,43,知x ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0.[答案] ⎝ ⎛⎭⎪⎫-13,016.(2018·河北衡水二中模拟)已知在直角梯形ABCD 中,AB =AD =2CD =2,AB ∥CD ,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的最小值为________.[解析] 建立如图所示的平面直角坐标系.则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ),故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ),则MB →+MD →=(2-2λ,2-4λ),|MB →+MD →|=(2-2λ)2+(2-4λ)2=20⎝ ⎛⎭⎪⎫λ-352+45,当λ=35时,|MB →+MD →|取得最小值为255.[答案] 255。

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。

高中数学专题讲义:高考中三角函数问题的热点题型

高中数学专题讲义:高考中三角函数问题的热点题型

高中数学专题讲义:高考中三角函数问题的热点题型高考导航 从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.热点一 三角函数的图象和性质(规范解答)注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解.【例1】 (满分13分)(2015·北京卷)已知函数f (x )=sin x -23sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 满分解答 (1)解 因为f (x )=sin x +3cos x - 3.2分 =2sin ⎝ ⎛⎭⎪⎫x +π3- 3.4分所以f (x )的最小正周期为2π.6分(2)解 因为0≤x ≤2π3,所以π3≤x +π3≤π.8分 当x +π3=π,即x =2π3时,f (x )取得最小值.11分所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13分❶将f (x )化为a sin x +b cos x +c 形式得2分; ❷将f (x )化为A sin(ωx +φ)+h 形式得2分; ❸求出最小正周期得2分.❹写出ωx +φ的取值范围得2分. ❺利用单调性分析最值得3分. ❻求出最值得2分.求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期; 第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值; 第五步:明确规范地表达结论.【训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3·1-cos 2ωx 2-12sin 2ωx=32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3. 因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤ 8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3 上的图象,由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1,故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.热点二 解三角形高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】 (2017·成都诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (x )=2sin(x -A )cos x +sin(B +C )(x ∈R ),函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.(1)当x ∈⎝ ⎛⎭⎪⎫0,π2时,求函数f (x )的值域;(2)若a =7,且sin B +sin C =13314,求△ABC 的面积. 解 (1)∵f (x )=2sin(x -A )cos x +sin(B +C ) =2(sin x cos A -cos x sin A )cos x +sin A =2sin x cos A cos x -2cos 2x sin A +sin A =sin 2x cos A -cos 2x sin A =sin(2x -A ), 又函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,则f ⎝ ⎛⎭⎪⎫π6=0,即sin ⎝ ⎛⎭⎪⎫π3-A =0,又A ∈(0,π),则A =π3,则f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 由于x ∈⎝ ⎛⎭⎪⎫0,π2,则2x -π3∈⎝ ⎛⎭⎪⎫-π3,2π3,即-32<sin ⎝ ⎛⎭⎪⎫2x -π3≤1,则函数f (x )的值域为⎝ ⎛⎦⎥⎤-32,1.(2)由正弦定理,得a sin A =b sin B =c sin C =143,则sin B =314b ,sin C =314c ,sin B +sin C =314(b +c )=13314,即b +c =13. 由余弦定理,得a 2=c 2+b 2-2bc cos A , 即49=c 2+b 2-bc =(b +c )2-3bc ,即bc =40. 则△ABC 的面积S =12bc sin A =12×40×32=10 3.探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.【训练2】 四边形ABCD 的内角A 与C 互补,且AB =1,BC =3,CD =DA =2. (1)求角C 的大小和线段BD 的长度; (2)求四边形ABCD 的面积. 解 (1)设BD =x ,在△ABD 中,由余弦定理,得cos A =1+4-x 22×2×1,在△BCD 中,由余弦定理,得cos C =9+4-x 22×2×3,∵A +C =π,∴cos A +cos C =0. 联立上式,解得x =7,cos C =12. 由于C ∈(0,π). ∴C =π3,BD =7.(2)∵A +C =π,C =π3,∴sin A =sin C =32. 又四边形ABCD 的面积S ABCD =S △ABD +S △BCD =12AB ·AD sin A +12CB ·CD sin C =32×(1+3)=23, ∴四边形ABCD 的面积为2 3. 热点三 三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】 (2016·贵州适应性考试)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n . (1)求角B 的大小; (2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n , ∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0, ∴2cos B sin A +cos B sin C +sin B cos C =0. 即2cos B sin A =-sin(B +C )=-sin A . ∵A ∈(0,π),∴sin A ≠0,∴cos B =-12. ∵0<B <π,∴B =2π3. (2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号. ∴(a +c )2≤4,故a +c ≤2. 又a +c >b =3,∴a +c ∈(3,2]. 即a +c 的取值范围是(3,2].探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【训练3】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x . 因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6.设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1,因为0<φ<π,所以φ=π6,因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .(建议用时:70分钟)1.(2017·昆明调研)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上最大值和最小值.解 (1)由题得,f (x )的最小正周期为π,y 0=3. 当y 0=3时,sin ⎝ ⎛⎭⎪⎫2x 0+π6=1,由题干图象可得2x 0+π6=2π+π2, 解得x 0=7π6.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是:当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.2.(2017·郑州模拟)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a sin 2B =3b sin A . (1)求B ;(2)若cos A =13,求sin C 的值. 解 (1)在△ABC 中, 由a sin A =b sin B , 可得a sin B =b sin A , 又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B , 又B ∈(0,π),所以sin B ≠0,所以cos B =32,得B =π6.(2)由cos A =13,A ∈(0,π),得sin A =223, 则sin C =sin[π-(A +B )]=sin(A +B ), 所以sin C =sin ⎝ ⎛⎭⎪⎫A +π6=32sin A +12cos A =26+16.3.(2017·西安调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+2sin 2ωx 2(ω>0),已知函数f (x )的图象的相邻两对称轴间的距离为π. (1)求函数f (x )的解析式;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c (其中b <c ),且f (A )=32,△ABC 的面积为S =63,a =27,求b ,c 的值. 解 (1)f (x )=32sin ωx +12cos ωx +1-cos ωx=32sin ωx -12cos ωx +1=sin ⎝ ⎛⎭⎪⎫ωx -π6+1.∵函数f (x )的图象的相邻两对称轴间的距离为π, ∴函数f (x )的周期为2π.∴ω=1.∴函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+1.(2)由f (A )=32,得sin ⎝ ⎛⎭⎪⎫A -π6=12.又∵A ∈(0,π),∴A =π3.∵S =12bc sin A =63,∴12bc sin π3=63,bc =24,由余弦定理,得a 2=(27)2=b 2+c 2-2bc cos π3=b 2+c 2-24. ∴b 2+c 2=52,又∵b <c ,解得b =4,c =6.4.(2016·济南名校联考)已知函数f (x )=sin ωx +23cos 2ωx2+1-3(ω>0)的周期为π.(1)求f (x )的解析式并求其单调递增区间;(2)将f (x )的图象先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h (x )的图象,若h (x )为奇函数,求φ的最小值. 解 (1)f (x )=sin ωx +23cos 2ωx2+1-3=sin ωx +23×1+cos ωx2+1-3=sin ωx +3cos ωx +1=2sin(ωx +π3)+1.又函数f (x )的周期为π,因此2πω =π,∴ω=2.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ), 得k π-5π12≤x ≤k π+π12(k ∈Z ),即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)由题意可知h (x )=2sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π3,又h (x )为奇函数,则2φ+π3=k π,∴φ=k π2-π6(k ∈Z ).∵φ>0,∴当k =1时,φ取最小值π3. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m = (2sin B ,-3),n =(cos 2B ,2cos 2B2-1),且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值. 解 (1)∵m ∥n ,∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos 2B ,∴sin 2B =-3cos 2B ,即tan 2B =- 3. 又∵B 为锐角,∴2B ∈(0,π), ∴2B =2π3,∴B =π3. (2)∵B =π3,b =2,由余弦定理b 2=a 2+c 2-2ac cos B , 得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4, 当且仅当a =c =2时等号成立. 故S △ABC =12ac sin B =34ac ≤3, 当且仅当a =c =2时等号成立, 即S △ABC 的最大值为 3.6.(2017·东北四市模拟)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b = (cos x ,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2 cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3,∴2A +π3=π,即A =π3.∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C ,由正弦定理得2b =3c ,② 由①②得b =3,c =2.。

专题二 三角函数、解三角形、平面向量第3讲平面向量

专题二 三角函数、解三角形、平面向量第3讲平面向量

第一部分 专题讲练
【解析】设A→O=λA→D=2λ(A→B+A→C),A→O=A→E+E→O=A→E+μE→C=A→E+μ(A→C-A→E)
=(1-μ)A→E+μA→C=1-3 μA→B+μA→C,解得λ=12,μ=14.所以A→O=12A→D=14(A→B+A→C),
→ EC

→ AC

→ AE
A.34A→B+14A→D
B.14A→B+34A→D
()
C.12A→B+A→D
D.34A→B+12A→D
【答案】D 【解析】由题意得A→F=12(A→C+A→E),又A→C=A→B+B→C=A→B+A→D,A→E=12A→B,所
以A→F=12A→B+A→D+12A→B=34A→B+12A→D.故选D.
高考二轮专题析与练 ·数学 ( 理科 )
返回导航
第一部分 专题讲练
1.两平面向量共线的充要条件有两种形式:
(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0. (2)若a∥b(a≠0),则b=λa.
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向 量的坐标均非零时,也可以利用坐标对应成比例来求解.
高考二轮专题析与练 ·数学 ( 理科 )
返回导航
第一部分 专题讲练
1.涉及数量积和模的计算问题,通常有两种求解思路: (1)直接利用数量积的定义. (2)建立坐标系,通过坐标运算求解. 2.在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知 的向量进行计算.
高考二轮专题析与练 ·数学 ( 理科 )
=B→C,则x-1=5,y-2=-1,解得x=6,y=1,即D(6,1).故选A.

[推荐学习]2016高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第三讲 平面向

[推荐学习]2016高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第三讲 平面向

专题二三角函数、三角变换、解三角形、平面向量第三讲平面向量1.向量的加法运算符合平行四边形法则和三角形法则;向量的减法运算符合三角形法则.1.如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中不共线向量e1,e2叫做基底.2.平面向量数量积的定义.已知两非零向量a,b,则a与b的数量积(或内积)为_|a||b|cos_θ,记作a·b=|a||b|cos_θ,其中θ=〈a,b〉,|b|cos_θ叫做向量b在向量a方向上的投影.3.两非零向量平行、垂直的充要条件.若a=(x1,y1),b=(x2,y2),则(1)a∥b⇔a=λb(λ≠0)⇔x1y2-x2y1=0.(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4.若a=(x1,y1),b=(x2,y2),a,b的夹角为θ,则cos θa·b |a||b|判断下面结论是否正确(请在括号中打“√”或“×”).(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.(×) (2)|a|与|b|是否相等与a ,b 的方向无关.(√)(3)已知两向量a ,b ,若|a |=1,|b |=1,则|a +b |=2.(×) (4)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).(√)(5)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×) (6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)1.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则(B ) A.PA →+PB →=0 B .PC →+PA →=0C .PB →+PC →=0D .PA →+PB →+PC →=0解析:因为BC →+BA →=2BP →,所以点P 为线段AC 的中点,所以应该选B .2.(2014·新课标Ⅱ卷)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =(A ) A .1 B .2 C .3 D .4解析:由已知得,a 2+2a ·b +b 2=10,a 2-2a·b +b 2=6,两式相减得,4a ·b =4,故a·b =1.3.(2015·北京卷)设a ,b 是非零向量,“a ·b =|a ||b |”是“a ∥b ”的(A ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:因为a ·b =|a ||b |cos 〈a ,b 〉,所以当a ·b =|a ||b |时,有cos 〈a ,b 〉=1,即〈a ,b 〉=0°,此时a ,b 同向,所以a ∥b .反过来,当a ∥b 时,若a ,b 反向,则〈a ,b 〉=180°,a ·b =-|a ||b |;若a ,b 同向,则〈a ,b 〉=0°,a ·b =|a ||b |,故“a ·b=|a ||b |”是“a ∥b ”的充分而不必要条件.4.(2015·广东卷)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=(D )A .2B .3C .4D .5解析:试题分析:因为四边形ABCD 是平行四边形,所以AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1)所以AD →·AC →=2×3+1×(-1)=5,故选D.一、选择题1.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是(B ) A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -b解析:解法一 由|a +b |=|a -b |,平方可得a·b =0, 所以a ⊥b .故选B. 解法二 根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b .故选B.2. (2014·北京卷)已知向量a =(2,4),b =(-1,1),则2a -b =(A ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)解析:因为2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.设向量a 、b 满足:|a |=1,|b |=2,a ·(a -b )=0,则a 与b 的夹角是(B ) A .30° B .60° C .90° D .120°4.(2015·福建卷)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于(A )A .-32B .-53C.53D.32解析:c =a +kb =(1+k ,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32. 5.已知:OA →=(-3,1),OB →=(0,5),且AC →∥OB →,BC →⊥AB →,则点C 的坐标为(B ) A.⎝ ⎛⎭⎪⎫-3,-294 B.⎝ ⎛⎭⎪⎫-3,294 C.⎝ ⎛⎭⎪⎫3,294 D.⎝ ⎛⎭⎪⎫3,-294 解析:设点C (x ,y ), AC →=OC →-OA →=(x +3,y -1),∵AC →∥OB →,∴x +3=0.∴x =-3. 又BC →=OC →-OB →=(x ,y -5),AB →=(3,4), 又∵BC →⊥AB →, ∴3x +4(y -5)=0. ∴y =294.∴C ⎝⎛⎭⎪⎫-3,294. 6.(2015·福建卷)已知AB →⊥AC →,|AB →|=1t,|AC →|=t ,若P 点是ΔABC 所在平面内一点,且AP →=AB→|AB →|+4AC →|AC →|,PB →·PC →的最大值等于(A )A .13B .15C .19D .21解析:以A 为坐标原点,建立平面直角坐标系,如图所示,则B ⎝ ⎛⎭⎪⎫1t ,0,C ()0,t ,AP →=(1,0)+4(0,1)=(1,4),即P (1,4),所以PB →=⎝ ⎛⎭⎪⎫1t-1,-4,PC →=(-1,t -4),因此PB →·PC →=1-1t -4t +16=17-⎝ ⎛⎭⎪⎫1t +4t ,因为1t +4t ≥21t·4t =4,所以PB →·PC →的最大值等于13,当1t =4t ,即t =12时取等号.二、填空题7.(2015·北京卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =12;y =-16. 解析:∵ AM →=2MC →,∴ AM →=23AC →.∵ BN →=NC →,∴ AN →=12(AB →+AC →),∴ MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →.又MN →=xAB →+yAC →,∴ x =12,y =-16.8.如图,两块斜边长相等的直角三角板拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.解析:如图,作DF ⊥AB 交AB 延长线于D ,设AB =AC =1⇒BC =DE =2,∵∠DEB =60°,∴BD =62.由∠DBF =45°, 得DF =BF =62×22=32,故x =1+32,y =32. 答案:1+32 329.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC ,已知点A (-2,0),B (6,8),C (8,6),则点D 的坐标为(0,-2).解析:平行四边形ABCD 中,AB →=DC →=OB →-OA →=OC →-OD →⇒OB →+OD →=OA →+OC →,∴OD →=OA →+OC →-OB →=(-2,0)+(8,6)-(6,8)=(0,-2),即点D 坐标为(0,-2). 三、解答题10.已知向量OP →=(cos x ,sin x ), OQ →=⎝ ⎛⎭⎪⎫-33sin x ,sin x ,定义函数f (x )=OP →·OQ →.(1)求函数f (x )的单调递增区间; (2)当OP →⊥OQ →时,求锐角x 的值. 解析:(1)f (x )=-33sin x cos x +sin 2x =12-33⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x =12-33sin ⎝⎛⎭⎪⎫2x +π3,∴2k π+π2≤2x +π3≤2k π+3π2,k ∈Z ,即k π+π12≤x ≤k π+7π12,k ∈Z.∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z).(2)当OP →⊥OQ →时,f (x )=0, 即12-33sin ⎝ ⎛⎭⎪⎫2x +π3=0,sin ⎝⎛⎭⎪⎫2x +π3=32,又π3<2x +π3<4π3,故2x +π3=2π3,故x =π6. 11.已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值; (2)若sin(θ-φ)=1010,0<φ<π2,求cos φ的值. 解析:(1)∵a 与b 互相垂直,则a·b =sin θ-2cos θ=0,即sin θ=2cos θ,代入sin 2 θ+cos 2θ=1得sin θ=±255,cos θ=±55,又θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin θ=255,cos θ=55.(2)∵0<φ<π2,0<θ<π2,∴-π2<θ-φ<π2.∴cos(θ-φ)=1-sin 2(θ-φ)=31010. ∴cos φ=cos[θ-(θ-φ)]=cos θcos(θ-φ)+sin θsin(θ-φ)=55×31010+255×1010=22.。

三角函数与平面向量知识总结

三角函数与平面向量知识总结

第二部分 三角函数与平面向量角的概念任意角的三角函数的定义 三角函数 弧度制弧长公式、扇形面积公式三角函数线同角三角函数的关系诱导公式 和角、差角公式 二倍角公式公式的变形、逆用、“1”的替换 化简、求值、证明(恒等变形)三角函数 的 图 象定义域奇偶性 单调性 周期性 最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线,对称中心是正余弦函数图象的零点,正切函数的对称中心为(k π2,0)(k ∈Z ).正弦函数y =sin x= 余弦函数y =cos x 正切函数y =tan x y =A sin(ωx +ϕ)+b①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号); ④最小正周期T =2π| ω |;⑤对称轴x =(2k +1)π-2ϕ2ω,对称中心为(k π-ϕω,b )(k ∈Z ). 平面向量 概念 线性运算 基本定理 加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直 值域图象a →∥b →⇔b →=λa → ⇔ x 1y 2-x 2y 1=0 a →⊥b →⇔b →·a →=0 ⇔ x 1x 2+y 1y 2=0解三角形余弦定理 面积 正弦定理 解的个数的讨论实际应用 S △=12ah =12ab sin C =p (p -a )(p -b )(p -c )(其中p =a +b +c 2)投影b →在a →方向上的投影为|b →|cos θ=a →·b→|a →|设a →与b →夹角θ,则cos θ=a →·b→|a →|·|b →|对称性 |a →|=(x 2-x 1)2+(y 2-y 1)2夹角公式sin sin αβtan tan 1tan tan αβα±凑”)、函数名的变换,其核心是角的拆变,公式变用,切割化弦,倍角降次,已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和、“差”、“倍α。

三角函数与平面向量的知识总结

三角函数与平面向量的知识总结
复习回顾
一.任意角三角函数 1.角:角可以看成由一条射线绕着端点从一个位置旋转 到另一个位置所形成的几何图形. 角可以任意大小,按 旋转的方向分类有正角、负角、零角.
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与 x 轴的非负半轴重 合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角 不属于任何象限。 3. 终边相同的角的表示: 终边与 终边相同( 的终边在 终边所在射线上) 2k (k Z) , 注意:相等的角的终边一定相同,终边相同的角不一定相等.
5.平行向量(也叫共线向量) :方向相同或相反的非零向量 a 、 b 叫做平行向量, 记作: a ∥ b ,规定零向量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两 条直线平行不包含两条直线重合;
6.三角函数线的特征是:正弦线 MP“站在 x 轴上(起点在 x 轴上)” 、余弦线 OM“躺在 x 轴上(起 点是原点)” 、正切线 AT“站在点 A(1,0) 处(起点是 A )”.三角函数线的重要应用是比较三角函数值 的大小和解三角不等式。
y B P α O M A x S T
7. 同角三角函数的基本关系式: (1)平方关系: sin2 cos2 1,1 tan2 sec2 ,1 cot 2 csc2 (2)倒数关系:sin csc =1,cos sec =1,tan cot =1, sin cos ,cot (3)商数关系: tan cos sin
102 sin x (其中 角所在的象限由 a, b 的符号确定,

三角函数及平面向量公式及图像性质总结

三角函数及平面向量公式及图像性质总结

公式总结及图像性质一、角的概念的推广:1、与α角终边相同的角的集合为{β|β=2()k k Z πα+∈}2、象限角:第一象限角{α|πk 2<α<πk 2+2π(z k ∈)} 第二象限角{α|πk 2+2π<α<πk 2+π(z k ∈)} 第三象限角{α|πk 2+π<α<πk 2+23π(z k ∈)}第四象限角{α|πk 2+23π<α<πk 2+π2(z k ∈)}3、轴线角:终边在x 轴上{α|α=k π (z k ∈)}终边在y 轴上{α|α=k π+ 2π(z k ∈)}终边在坐标轴上{α|α=2πk (z k ∈)}二、角的度量:角度制、弧度制换算关系:π=180°,1︒=rad rad 01745.0180≈π1弧度=57.30°,弧度弧长公式l r α=⋅、扇形面积公式21122S lr r α==⋅;三、任意角的三角函数:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y,它与原点的距离为(0)r r ==>,那么1、定义:(1)α的正弦:sin y r α=;(2)α的余弦:cos x r α=;(3)α的正切:tan yx α=;4)α的余切:cot x y α=;(5)α的正割:sec rx α=;(6)α的余割:csc r y α=.2(Ⅲ)我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

四、同角三角函数的基本关系式:1、平方关系:1cos sin 22=+αα2、商数关系:αααcos sin tan =(()Ζ∈+≠k k 2ππα) 3、倒数关系:1cot tan =⋅αα(παk ≠且()Ζ∈+≠k k 2ππα)五、诱导公式:1、符号口诀:全正、s 、t 、c 。

23六、两角和与差的三角函数:1、正弦、余弦、正切公式公式:()βαβαβαsin cos cos sin sin ⋅±=± ()βαβαβαsin sin cos cos cos ⋅=±μ()βαβαβαtan tan 1tan tan tan μ±=±2、二倍角公式:αααcos sin 22sin = ααα22sin cos 2cos -=ααα22sin 211cos 22cos -=-= ααα2tan 1tan 22tan -=3、半角公式:2cos 12sin αα-±= 2cos 12cos αα+±=αααcos 1cos 12tan +-±= αααααsin cos 1cos 1sin 2tan -=+=4、辅助角公式:asinx+bcosx=)cos sin (222222x ba b x ba ab a ++++令cos ϕ=baa22+,sin ϕ=bab22+,则原式=22b a +(sinxcos ϕ+cosxsin ϕ)=22b a +sin(x+ϕ),其中ϕ角所在象限由tan ϕ的符号决定,ϕ角的值由tan ϕ=ab决定.八、函数()ϕω+=x A y sin ,(其中0>A ,0>ω),,正弦换余弦类似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档