二次函数解析式求法和图像平移

合集下载

运用平移、对称、旋转求二次函数解析式-教师版

运用平移、对称、旋转求二次函数解析式-教师版

运用平移、对称、旋转求二次函数解析式一、运用平移求解析式1.将二次函数223y x x =-++的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式.【答案】因为()222314y x x x =-++=--+,所以平移后的解析式为22y x =-+2.将抛物线2y x bx c =++先向左平移2个单位,再向上平移3个单位,得到抛物线221y x x =-+,求b 、c 的值. 【答案】因为()22211y x x x =-+=-,所以平移前的解析式为:()233y x =-- 所以可得6b =-,6c =3.已知抛物线2y ax bx c =++与x 轴交于点()10A ,,()30B ,,且过点()03C -,,请你写出一种平移的方法,使平移后抛物线的顶点落在直线y x =-上,并写出平移后抛物线的解析式.【答案】可得()()13y a x x =--,代入()03C -,,可得1a =-, 所以()()()22134321y x x x x x =---=-+-=--+,所以顶点为()21,, 向左平移3个单位得到()211y x =-++二、运用对称求解析式4.将抛物线()214y x =--沿直线32x =翻折,得到一个新抛物线,求新抛物线的解析式.【答案】可得顶点()14-,,顶点翻折后得到()24-,,所以新抛物线解析式为()224y x =-- 5.如图,已知抛物线1C :2216833y x x =++与抛物线2C 关于y 轴对称,求抛物线2C 的解析式.【答案】因为()2221628843333y x x x =++=+-,顶点为843⎛⎫-- ⎪⎝⎭,,关于y 轴对称后顶点为 843⎛⎫- ⎪⎝⎭,,所以对称后的解析式为:()2228216483333y x x x =--=-+ 三、运用旋转求解析式6.将抛物线221y x x =-+的图象绕它的顶点A 旋转180°,求旋转后的抛物线的解析式.【答案】因为()22211y x x x =-+=-,顶点()10A ,,旋转180°即为沿x 轴翻折后对称 所以()21y x =--。

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

运用平移、对称、旋转求二次函数解析式-学生版

运用平移、对称、旋转求二次函数解析式-学生版

运用平移、对称、旋转求二次函数解析式
一、运用平移求解析式
1.将二次函数223y x x =-++的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式.
2.将抛物线2y x bx c =++先向左平移2个单位,再向上平移3个单位,得到抛物线221y x x =-+,求b 、c 的值.
3.已知抛物线2y ax bx c =++与x 轴交于点()10A ,
,()30B ,,且过点()03C -,,请你写出一种平移的方法,使平移后抛物线的顶点落在直线y x =-上,并写出平移后抛物线的解析式.
二、运用对称求解析式
4.将抛物线()214y x =--沿直线32x =
翻折,得到一个新抛物线,求新抛物线的解析式.
5.如图,已知抛物线1C :2216833
y x x =
++与抛物线2C 关于y 轴对称,求抛物线2C 的解析式.
三、运用旋转求解析式
6.将抛物线221
=-+的图象绕它的顶点A旋转180°,求旋转后的抛物线的解析式.
y x x。

二次函数图像变换

二次函数图像变换

二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。

一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。

例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。

二次函数图像的变换及解析式的确定(必考)

二次函数图像的变换及解析式的确定(必考)
(2,-2),设抛物线解析式为 = ሺ − ሻ −,将(1,0)代入,得0=a-
2,解得a=2,∴抛物线的解析式为 = ሺ − ሻ − = − + .
>
/m
<
解法2:∵抛物线 = + + 的对称轴为x=2,且与x轴交于点(1,0),
∴抛物线与x轴的另一个交点为(3,0),∴抛物线的解析式为 = ሺ −
+ ሻሺ − ሻ,把(0,3)代入,得a·3×(-1)=3,解得a=-1,
∴该二次函数的表达式为 = −ሺ + ሻሺ − ሻ,
即 = − − + .
>
m
<
>
/m
<
类型8 利用平移变换求抛物线解析式
(人教九上P35例3改编)将二次函数 = 22 + 4 + 1 的图象向右平移2个
<
>
/m
<
>
m
<
>
/m
<
续表
变换形式
图象关系
点坐标变化
横坐标 互
>
m
<
关于 轴
>
m
<
>
m
<
>
/m
<
>
/m
<
为相反数,
>
/m
<
系数关系
不变
______
本质
相同
开口方向______
相 − 值______,
变号
互为____

2

反数

第8讲 二次函数的解析式和图象变换(学生版)

第8讲 二次函数的解析式和图象变换(学生版)

知识导航经典例题1在平面直角坐标系中,抛物线2已知二次函数的图象以3已知抛物线4在平面直角坐标系中,二次函数5若二次函数知识导航经典例题1如果将抛物线2如果将某一抛物线向右平移3将抛物线4已知抛物线知识导航经典例题1将二次函数2抛物线3将二次函数4先作二次函数1在平面直角坐标系中,抛物线2如图,已知抛物线帝通过数来统治宇宙。

这是毕达哥拉斯学派和其他教派的主要区别。

他们很重视数学,企图用数来解释一切。

宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探索自然的奥秘。

他们从五个苹果、五个手指等事物中抽象出了五这个数。

这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。

但是,他们同时任意地把非物质的、抽象的数夸大为宇宙的本原,认为'万物皆数','数是万物的本质',是'存在由之构成的原则',而整个宇宙是数及其关系的和谐的体系。

毕达哥拉斯将数神秘化,说数是众神之母,是普遍的始原,是自然界中对立性和否定性的原则。

毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)著称于世。

这定理早已为巴比伦人所知,不过最早的证明大概可归功于毕达哥拉斯。

他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)。

任何一个学过代数或几何的人,都会听到毕达哥拉斯定理。

这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.【毕达哥拉斯定理】毕达哥拉斯对数论作了许多研究,将自然数区分为奇数、偶数、素数、完全数、平方数、三角数和五角数等。

在几何学方面,毕达哥拉斯学派证明了'三角形内角之和等于两个直角'的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体。

【黄金分割】然而,最让毕达哥拉斯学派出名的却是他们中的一个'叛逆者'--希帕索斯,正是他发现了第一个无理数根号2的存在,从而在当时的数学界掀起了一场巨大风暴。

二次函数的解析式与像的关系

二次函数的解析式与像的关系

二次函数的解析式与像的关系二次函数是数学中的重要概念,它的解析式描述了该函数的数学性质和图像特征。

本文将探讨二次函数的解析式与其像的关系。

一、二次函数的解析式二次函数的解析式一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

其中,a决定了二次函数的开口方向和图像的开口程度,正值表示开口向上,负值表示开口向下。

b决定了图像的位置在x轴的平移,正值向左平移,负值向右平移。

c则是二次函数的纵轴截距。

二、二次函数的图像特征二次函数的图像是平面直角坐标系中的一条曲线,也称为抛物线。

根据二次函数的解析式,我们可以获取一些关于图像的特征性质:1. 零点:二次函数在x轴上的零点即是方程f(x) = 0的解,可以通过解一元二次方程得到。

一般情况下,二次函数有两个零点,除非函数图像与x轴相切或者平行。

2. 顶点:二次函数的顶点是图像的最高点或最低点,也是函数的极值点。

二次函数的顶点坐标为(-b/2a, f(-b/2a))。

当a>0时,顶点为最低点;当a<0时,顶点为最高点。

3. 对称轴:二次函数的对称轴是通过顶点并垂直于x轴的一条线。

对称轴的方程可以通过x = -b/2a求得。

4. 开口方向:根据二次函数解析式中的系数a的正负值,可以判断二次函数的开口方向。

若a>0,开口向上;若a<0,开口向下。

三、二次函数解析式与图像的关系二次函数的解析式可以完整描述函数的性质,同时与函数的图像特征紧密相关。

通过调整a、b和c的值,我们可以改变函数的图像,进而影响函数的性质。

下面是一些例子:1. 调整a的值:当a的绝对值增大时,图像的开口程度增强,当a=0时,即变为一次函数。

2. 调整b的值:b的正负决定了图像相对于y轴的位置,而绝对值决定了图像相对于y轴的偏移程度。

3. 调整c的值:c决定了图像与y轴的截距,即函数的纵轴截距。

通过以上的分析,我们可以得出结论:二次函数的解析式确定了函数的性质,而图像的特征与解析式中的系数直接相关。

二次函数解析式及图形变换学而思培优

二次函数解析式及图形变换学而思培优

②顶点式: y = a (x - h )2 + k 或 y = a x +⎪ + ④对称点式:y =a(x -x 1)(x -x 2)+b (a ≠0) 其中 x 1,x 2 是两个对称点的横坐标,b 是对称第五讲二次函数解析式及图形变换一、二次函数解析式四种形式:①一般式: y = ax 2 + bx + c (a ≠ 0);⎛ ⎝b ⎫2 2a ⎭4ac - b 2 (a ≠ 0); 4a③交点式: y = a (x - x )(x - x ) (a ≠ 0) 其中 x ,x 是方程 ax 2 + b x + c = 0 的两个实根。

1 2 1 2, 点纵坐标。

二、抛物线的平移、对称与旋转①平移:“左加右减,上加下减”。

②对称:关于 x 轴对称: y = ax 2 + b x + c 的图象 x 轴对称后得到图象的解析式是y = -ax 2 - b x - c 。

关于 y 轴对称: y = ax 2 + b x + c 的图象 y 轴对称后得到图象的解析式是 y = ax 2 - b x + c 。

关于原点对称: y = ax 2 + b x + c 的图象原点对称后得到 图 象 的 解 析 式 是 y = -ax 2 + b x - c 。

1.求二次函数 y = ax 2 + b x + c 与直线 y = kx + m 的交点,联立方程组 ⎨ 求解。

2.求二次函数 y = a x 2+ b x + c 与 y = a x 2+ b x + c 的交点,联立方程组 ⎨ 求解。

⎧⎪ y = a x 2 + b x + c ⎪⎩ y = a x 2 + b x + c ⑶(2007 朝阳二模)已知抛物线 y = ax 2 + b x(a ≠ 0) 的顶点在直线 y = -x - 1 上,当且仅当 ⑵请探索:是否存在二次项系数的绝对值小于 的整点抛物线?若存在,请写出其中一条抛物线三、二次函数与一元二次方程⎧ y = ax 2 + bx + c ⎩ y = kx + m1 1 1 1 1 12 2 2 2 2 2板块一 二次函数解析式【例1】 ⑴ 下列说法不正确的是()A .抛物线 y = ax 2 + b x - 3 与 y 轴的交点为 (0 ,- 3)B .抛物线 y = ax 2 - 2ax + a 2 - 1 的对称轴为 x = 1C .抛物线 y = ax 2 - a (m + 1)x + ma 与 x 轴的交点为 (m ,0)和 (1,0)D .抛物线 y = a (x + π )2 - x 的顶点坐标为 (-π ,- x )⑵(2009 三帆单元测试)已知抛物线 y = ax 2 + bx + c 经过点 A (-1,0),且经过直线 y = x - 3 与x 轴的交点 B 及与 y 轴的交点 C ,则抛物线的解析式为。

二次函数专题—函数图像的平移

二次函数专题—函数图像的平移

二次函数专题(3)——函数图像的平移我们知道图像的平移,图像本身不会发生改变,只是图像的位置发生改变。

函数图像的平移也是遵循这样原理,只是我们在平移过程中函数的解析式也发生改变,这节专题主要就是探讨函数平移与解析式的计算。

1. 基础情境:点坐标平移①水平平移:纵坐标不变横坐标加减我们以A(1,2)为例,把A往右平移2个单位到A’,很明显A’的纵坐标不变,但是横坐标变为了1+2=3,即A’(3,2);同理把A往左平移2个单位到A’’(-1,2)②竖直平移:横坐标不变,纵坐标加减我们以A(1,2)为例,把A往上平移三个单位到A’,很明显A’的横坐标不变,但是纵坐标变为了2+3=5,即A’(1,5);同理把A往下平移三个单位到A’’(1,-1),如下图:2. 函数平移:一次函数图像平移①水平平移问题:我们以y=2x+2为例,把它向右平移2个单位,那么新的图像函数解析式为何?分析:由于平移过后仍然是条直线,两点决定一条直线,所以我们选取两个特殊点就可以算出新的函数表达式。

解答:选取原一次函数上两点(0,2)、(-1,0),经过平移后这两点坐标变为(2,2)和(1,0),计算得y=2x-2.观察:平移后,一次函数的系数k(2)不变,b减小了两倍(由2变为-2)推广:对于所有一次函数y=kx+b,向右平移2个单位的函数解析式怎么求?分析:可以按照上面的思路,取特殊点求取新的一次函数解析式解答:方法一:坐标法取两个特殊点(0,b)、(1,k+b),经过平移后这两点坐标变为(2,b)和(3,k+b),计算函数表达式得y=kx+b-2k。

这个式子我们还可以改写成这样y=(k-2)x+b。

反思:解析法特殊点法虽然可以帮助我们解决问题,但是需要计算,有没有更加快速的计算一次函数解析式方法?有!我们回到最初函数的定义,比如坐标系中有一个点A(x,y),其中y=kx+b 代表是x与y之间的等量关系。

如果把A(x,y)向右平移2单位变成A’(m,y),此时m=x+2。

二次函数解析式的8种求法

二次函数解析式的8种求法

二次函数解析式的求法一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m-1是二次函数,则m = . 二、开放型例2、(1)经过点A (0,3)的抛物线的解析式是 .三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于x 轴对称(也可以说沿x 轴翻折);y 轴对称及经过其顶点且平行于x 轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于x 轴对称的两个图象的顶点关于x 轴对称,两个图象的开口方向相反,即a 互为相反数.(2)关于y 轴对称的两个图象的顶点关于y 轴对称,两个图象的形状大小不变,即a 相同.(3)关于经过其顶点且平行于x 轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即a 互为相反数.例6 已知二次函数5632+-=x x y ,求满足下列条件的二次函数的解析式:(1)图象关于x 轴对称;(2)图象关于y 轴对称;(3)图象关于经过其顶点且平行于x 轴的直线对称.八、数形结合例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,BM7PM 3=.()1求P 点的坐标;()2求抛物线的解析式.。

二次函数题型解题思路

二次函数题型解题思路

二次函数题型解题思路1.求二次函数表达式(1)利用待定系数法求函数解析式例题1:二次函数y=-x2+b x+4中有只有一个未知数,实际上有一个完整点的数据,就可以求出b的值,给出两个不完整的点,也包含一个未知数n,因此需要列出两个方程就能就出n和b的值解方程得n=-4(2)利用函数平移法求函数解析式例题2其顶点从原点O移动到y=x直线上的A处,则移动后的抛物线表达式是?解:2.图像的性质与图像的平移,(1)例题3:1)知识点:因为关于y轴对称,所以这两个二次函数的对称轴也关于y轴对设第一个函数的对称轴为h1,另一个的对称轴为h2,则有:h1+h2=0因为关于y轴对称,他们的图像与y轴交于同一点解:由第一个知识点有:h1+h2=01-2m+3m+n=0m+n+1=0由第二个知识点有:2m-4=n解方程:m=1,n=-23.系数与函数的关系例题4:知识点和解题思路:二次函数和系数的关系,结合特殊点,进行运算解①:由图像开口向下可知a<0由图像可知,x=0时图像与y轴的交点在x轴上方,因此c>0所以①a b c>0正确解②:由函数与x轴交于(-3,0),因此有9a-3b+c=0由对称轴关系可知b=a9a-3a+c=0,6a+c=0所以3a+3a+c=03a+c=-3a又因为a<0所以3a+c=-3a>0,因此②正确解③因此③错误解④:因为:6a+c=0,有c=-6a又有b=a因此④正确解⑤解⑥二次函数a(x+3)(x-2)+3=0,写成a(x+3)(x-2)=-3,看做函数与直线y=-3的交点由a(x+3)(x-2)可知,其与x轴的交点分别为(-3,0)和(2,0),a<0所以抛物线开口向下,a(x+3)(x-2)与y=-3的交点在x轴下方,配合二次函数的增减性可知m<-3,n>2。

二次函数图像平移与求解析式

二次函数图像平移与求解析式

教师姓名 学生姓名 填写时间 学科年级教材版本课题名称二次函数平移与求解析式 本人课时统计第( 、 )课时 共( )课时上课时间教学目标同步教学知识内容掌握二次函数的平移法则 个性化学习问题解决解决二次函数解析式的三种求法 教学重点 平移口诀的记忆教学难点如何理解“左加右减”与如何选择合理的解析式教学 过 程 、 课 堂 设 计知识点一:二次函数的平移二次函数的平移大致分为两类,即为上下平移和左右平移。

(1) 上下平移 若原函数为c bx ax y ++=2⎩⎨⎧-++=+++=mc bx ax y m m c bx ax y m 22为个单位,则平移后函数向下平移为个单位,则平移后函数向上平移注:①其中m 均为正数,若m 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为上加下减,或者上正下负。

(2) 左右平移若原函数为c bx ax y ++=2,左右平移一般第一步先将函数的一般式化为顶点式kh x a y +-=2)(然后再进行相应的变形⎩⎨⎧+--=++-=kn h x a y n k n h x a y n 22)()(数为个单位,则平移后的函若向右平移了数为个单位,则平移后的函若向左平移了注:①其中n 均为正数,若n 为负数则将对应的加(减)号改为(减)加号即可。

②通常上述变换称为左加右减,或者左正右负。

例1 把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( ) A. 2(1)3y x =--+ B. 2(1)3y x =-++ C. 2(1)3y x =--- D. 2(1)3y x =-+-例2将函数2y x x =+的图像向右平移(0)a a >个单位,得到函数232y x x =-+的图像,则a 的值为( ) A. 1 B. 2 C. 3 D. 4【举一反三】抛物线2y x bx c =++的图像向右平移2个单位长度,再向下平移3个单位长度,所得图像的函数解析式为223y x x =-+,则b 、c 的值为( )A.b=2,c=3B.b=2,c=0C.b=-2.,c=-1D.b=-3,c=2例3 已知二次函数21(11)y x bx b =-+-≤≤,当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A. 先往左上方移动,再往右下方移动 B.先往左下方移动,再往左上方移动 B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动例4已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x=1对称,则下列平移方法在,正确的是( ) A. 将抛物线C 向右平移52个单位 B.将抛物线C 向右平移3个单位C.将抛物线C 向右平移5个单位D.将抛物线C 向右平移6个单位 练习1. 把抛物线2y x =-向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )A. 2(1)3y x =--+ B. 2(1)3y x =-++C. 2(1)3y x =---D. 2(1)3y x =-+-2.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b 、c 的值为 ( )A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=23.将函数2y x x =+的图像向右平移(0)a a >个单位,得到函数232y x x =-+的图像,则a 的值为( )A. 1 B. 2 C. 3 D. 44. 已知二次函数21(11)y x bx b =-+-≤≤,当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( )A. 先往左上方移动,再往右下方移动B.先往左下方移动,再往左上方移动 B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动5.已知抛物线C :2310y x x =+-,将抛物线C 平移得到抛物线C '.若两条抛物线C 、C '关于直线x=1对称,则下列平移方法正确的是( ) A. 将抛物线C 向右平移52个单位 B.将抛物线C 向右平移3个单位C.将抛物线C 向右平移5个单位D.将抛物线C 向右平移6个单位c bx x y ++=2322--=x x y6.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 。

二次函数几种解析式求法

二次函数几种解析式求法

四、尝试练习
3、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大 高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米, 它能否通过隧道?
解:由图知:AB=7.2米,OP=3.6米,,∴A(-3.6,0),
B(3.6,0),P(0,3.6)。
又∵P(0,3.6)在图像上,
当x=OC=0.8时,
二、求二次函数解析式的思想方法
1、 求二次函数解析式的常用方法: 待定系数法、配方法、数形结合等。 2、求二次函数解析式的 常用思想: 转化思想 : 解方程或方程组
3、二次函数解析式的最终形式:
无论采用哪一种解析式求解,最后 结果最好化为一般式。
ቤተ መጻሕፍቲ ባይዱ 三、应用举例
例1、已知二次函数 求其解析式。
解法一: 一般式 设解析式为 ∵顶点C(1,4), ∴对称轴 x=1. ∵A(-1,0)与 B关于 x=1对称, ∴B(3,0)。 ∵A(-1,0)、B(3,0)和 C(1,4)在抛物线上, ∴ 即:
解:设所求的解析式为
∵抛物线与x轴的交点坐标为(-1,0)、(1,0) ∴ ∴ 又∵点(0,1)在图像上, ∴ ∴ a = -1 ∴ 即:
四、尝试练习
3、如图;有一个抛物线形的隧道桥拱,这个桥拱的最大 高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米, 它能否通过隧道? 分析:卡车能否通过,只要看卡 车在隧道正中间时,其车高3米是否 超过其位置的拱高。 即当x= OC=1.6÷2=0.8米时, 过C点作CD⊥AB交抛物线于D点, 若y=CD≥3米,则卡车可以通过。
二次函数的几种解析及求法
一、二次函数常用的几种解析式的确定
1、一般式
已知抛物线上三点的坐标,通常选择一般式。 2、顶点式

二次函数的平移与求解析式

二次函数的平移与求解析式

二次函数平移平移是二次函数中的常考点,大多以选择题、填空题出现,在判断平移时,首先我们要判断平移类型,再结合口诀“上加下减,左加右减”来解题,拿不准的题目就画图,虽然花费时间较多,但是准确率较高。

1、 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2、平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”。

方法二:⑴ 2y ax bx c =++ 沿y 轴平移:向上(下)平移m 个单位,2y ax bx c =++ 变成2y ax bx c m =+++(或2y ax bx c m =++- )⑵2y ax bx c =++沿轴平移:向左(右)平移m 个单位,2y ax bx c =++变成2()()y a x m b x m c =++++(或2()()y a x m b x m c =-+-+)3、二次函数2()y a x h k =-+与2y ax bx c =++ 的比较从解析式上看,2()y a x h k =-+与2y ax bx c =++ 是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。

注:我们把2()y a x h k =-+直接就可以看出顶点是:(h ,k ),所以也称为顶点式。

这个函【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位数的关系式还能直接看出此二次函数的对称轴是2bh a=-: 例1:将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .y=-x 2-x+2B .y=-x 2+x-2 C. y=-x 2+x+2 D .y=x 2+x+2例4. 如图所示,已知抛物线C 0的解析式为x x y22-=,则抛物线C 0的顶点坐标 ;将抛物线C 0每次向右平移2个单位,平移n 次,依次得到抛物线C 1、C 2、C 3、…、C n (n 为正整数),则抛物线C n 的解析式为 .例5.如图,在平面直角坐标系xOy 中,抛物线1C 的顶点为⎪⎭⎫ ⎝⎛--29 3,P ,且过点()0 0,O .⑴ 写出抛物线1C 与x 轴的另一个交点A 的坐标;⑵ 将抛物线1C 向右平移3个单位、再向上平移54.个单位得抛物线2C ,求抛物线2C 的解析式;⑶ 直接写出阴影部分的面积S .练习一、选择题1.把抛物线y=-x 2向左平移一个单位,然后向上平移3个单位,则平移后抛物线的表达式为( )A. y=-(x-1)2+3B. y=-(x+1)2+3C. y=-(x-1)2-3D. y=-(x+1)2-32.抛物线y=x 2+bx+c 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为y=x 2-2x-3,则b 、c 的值为( )A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=23.将函数y=x 2+x 的图像向右平移a (a >0)个单位,得到函数y=x 2-3x+2的图像,则a 的值为( )A. 1B. 2C. 3D. 44.已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是( ) A. 先往左上方移动,再往右下方移动 B.先往左下方移动,再往左上方移动 B.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动5.已知抛物线C :y=x 2+3x-10,将抛物线C 平移得到抛物线C ′.若两条抛物线C 、C ′关于直线x=1对称,则下列平移方法正确的是( )A. 将抛物线C 向右平移 2.5个单位B.将抛物线C 向右平移3个单位C.将抛物线C 向右平移5个单位D.将抛物线C 向右平移6个单位 6.把二次函数y=-41x 2-x+3用配方法化成y=a(x-h)2+k 的形式A. y=-41(x-2)2+2B. y=41(x-2)2+4C. y=-41(x+2)2+4 D. y= (21x-21)2+37.在平面直角坐标系中,将二次函数y=2x 2的图象向上平移2个单位,所得图象的解析式为A .y=2x 2-2B .y=2x 2+2C .y=2(x-2)2D .y=2(x+2)28.将抛物线y=2x 2向下平移1个单位,得到的抛物线是( )A .y=2(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=2x 2-19.将函数y=x 2+x 的图象向右平移a(a >0)个单位,得到函数y=x 2-x+2的图象,则a 的值为( ) A .1 B .2 C .3 D .410.把抛物线y=-2x 2向右平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为( )A. y=-2(x-2)2+5B. y=-2(x+2)2+5C. y=-2(x-2)2-5D. y=-2(x+2)2-511.要得到二次函数y=-x 2+2x-2的图象,需将y=-x 2的图象( ).A .向左平移2个单位,再向下平移2个单位B .向右平移2个单位,再向上平移2个单位C .向左平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位12.若二次函数y=(x-m)2-1,当≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =1 B .m >1 C .m ≥1 D .m ≤1 二、填空题1.抛物线y=ax 2向左平移5个单位,再向下移动2个单位得到抛物线2.二次函数y=-2(x+3)2-1由y=-2(x-1)2+1向_____平移______个单位,再向_____平移______个单位得到3.抛物线y=3(x+2)2-3可由抛物线y=3(x+2)2+2向 平移 个单位得到 4.将抛物线y=53(x-3)2+5向右平移3个单位,再向上平移2个单位,得到的抛物线是 5.把抛物线y=-(x-1)2-2是由抛物线y=-(x+2)2-3向 平移 个单位,再向_____平移_____个单位得到6.把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________7.抛物线y =x 2-5x+4的图像向右平移三个单位,在向下平移三个单位的解析式 8.已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 三、解答题1.已知a+b+c=0,a ≠0,把抛物线y=ax 2+bx+c 向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式2.已知二次函数y =-x 2-4x-5.①指出这个二次函数图象的开口方向、对称轴和顶点坐标;②把这个二次函数的图象上、下平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式;③把这个二次函数的图象左、右平移,使其顶点恰好落在正比例函数y =-x 的图象上,求此时二次函数的解析式。

二次函数的解析式与图像

二次函数的解析式与图像

二次函数的解析式与图像二次函数是高中数学中的重要内容,它在数学建模、物理学、经济学等领域中有着广泛的应用。

本文将从二次函数的解析式和图像两个方面进行探讨,帮助读者更好地理解和掌握这一知识点。

一、二次函数的解析式二次函数的一般形式为:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

这个式子中的x²项决定了二次函数的特性,它使得函数的图像呈现出抛物线的形状。

首先,我们来看二次函数的顶点坐标。

二次函数的顶点坐标可以通过解析式中的平方完成平方项的配方来求得。

具体来说,对于一般形式的二次函数y = ax² +bx + c,它的顶点坐标可以通过以下公式求得:x₀ = -b / (2a)y₀ = c - b² / (4a)其中,x₀和y₀分别表示顶点的横坐标和纵坐标。

这个公式的推导过程可以通过完全平方式、配方法等多种方法得到,读者可以根据自己的理解选择合适的方法进行推导。

其次,我们来讨论二次函数的判别式。

判别式可以帮助我们判断二次函数的图像特性。

对于一般形式的二次函数y = ax² + bx + c,它的判别式可以通过以下公式求得:Δ = b² - 4ac其中,Δ表示判别式。

根据判别式的值,我们可以得到以下结论:1. 当Δ > 0时,二次函数的图像与x轴有两个交点,即函数有两个实根;2. 当Δ = 0时,二次函数的图像与x轴有一个交点,即函数有一个实根;3. 当Δ < 0时,二次函数的图像与x轴没有交点,即函数没有实根。

根据判别式的值,我们可以进一步推导二次函数的解析式。

当Δ > 0时,二次函数的解析式可以表示为:x₁ = (-b + √Δ) / (2a)x₂ = (-b - √Δ) / (2a)其中,x₁和x₂分别表示函数的两个实根。

当Δ = 0时,二次函数的解析式可以表示为:x = -b / (2a)其中,x表示函数的唯一实根。

7.第七节 二次函数解析式的确定(含平移)

7.第七节  二次函数解析式的确定(含平移)

+2=0,解得a=-1.
∴抛物线解析式为y=-x2+x+2.
练习2题图
形式二 a,b,c中三个未知 练习3 已知抛物线经过点(0,-6),点(2,-4)和点(3,0),求抛物线的解 析式.
解:设抛物线的解析式为y=ax2+bx+c,
将点(0,-6),点(2,-4)和点(3,0)代入y=ax2+bx+c中,得 a=1
∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线顶点G的坐标为(1,4);(5分)
题图
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个 单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点, 求点Q的纵坐标yQ的取值范围. (2)抛物线y=-x2+2x+3的对称轴为直线x=1. ∵点M,N到对称轴的距离分别为3个单位长度和5个单位长度, ∴点M的横坐标为-2或4,点N的横坐标为-4或6, ∴点M的纵坐标为-5,点N的纵坐标为-21.(8分) 又∵点M在点N的左侧, ∴当点M的坐标为(-2,-5)时,点N的坐标为(6,-21),∴-21≤yQ≤4; 当点M的坐标为(4,-5)时,点N的坐标为(6,-21),∴-21≤yQ≤-5.(10分)
1 “过”考点 2 河南6年真题 3 重难点精讲优练
方法 具体求法
步骤
二次函数解 析式的确定
二次函数解 析式的确定 (含平移)
二次函数 图象的平移
从图象上考虑 从解析式上考虑
“过”考点
【对接教材】人教:九上P28~P42; 北师:九下P42~P45; 华师:九下P21~P24.
考点 1 二次函数解析式的确定
重难点精讲优练
二次函数解析式的确定
一、待定系数法确定二次函数解析式 形式一 a,b,c中一个或两个未知 练习1 已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点,求抛 物线的解析式.

二次函数解析式与平移

二次函数解析式与平移

二次函数2 二次函数的解析式的求法和平移一、大纲要求:(1) 通过对实际问题情景的分析确定二次函数的表达式,并体会二次函数的意义。

(2) 能够根据题目要求求出二次函数的解析式. (3) 能够根据题目要求确定平移后的解析式.二、中考考点:求二次函数的解析式常常在解答题中出现,而平移常常在选择填空中出现.三、知识点分析:1、二次函数三种表达方式;(1) 一般式:y=ax 2+bx+c (a ≠0) (2) 顶点式:y=a(x-h)2+k (a ≠0) (3) 交点式:y=a(x-x 1)(x-x 2)(a ≠0)2、二次函数的解析式求法:用待定系数法可求出二次函数的解析式,确定二次函数的解析式一般需要三个独立的条件,根据不同的条件选用不同的设法:(1) 设一般式:y=ax 2+bx+c (a ≠0)若已知条件是图象上一般的三个点,则设所求的二次函数为y=ax 2+bx+c (a ≠0),将已知条件代入组成三元一次方程组,求出a 、b 、c 的值.(2) 设顶点式:y=a(x-h)2+k (a ≠0)若已知二次函数的顶点坐标(h,k),设所求二次函数为y=a(x+h)2+k (a ≠0),将第二个点的坐标代入,求出待定系数a ,最后化为一般式.(3) 设交点式:y=a(x-x 1)(x-x 2)(a ≠0)已知二次函数的图象与X轴的两个交点的坐标为(x 1,0),( x 2,0),设所求的二次函数为y=a(x-x 1)(x-x 2)(a ≠0),将第三点坐标代入,求出待定系数a ,最后化为一般式.3、二次函数的平移规律y=2ax ⇔⎪⎩⎪⎨⎧-=+=22)(h x a y k ax y ⎭⎬⎫⇔ y=()2h x a -+k 抛物线y=ax 2+bx+c (a ≠0)可由抛物线y=2ax 平移得到,由于平移时,抛物线上所有点的移动规律都相同,所以只需研究其顶点的移动情况,因此有关抛物线的平移问题需要利用二次函数的顶点式:y=a(x-h)2+k (a ≠0)来讨论,所以应先把二次函数化为顶点式然后再来平移;加减常数k(k >0),上下移动,即加上k 则向上移动,减去k 则向下移动;加减常数h(h >0),左右移动,即加上h 则向左移动,减去h 则向右移动;四.典型例题: 1.二次函数在23=x 时,有最小值41-,且函数的图象经过点(0,2),则此函数的解析式为________________________.2.已知抛物线c bx ax y ++=2的对称轴为2=x ,且经过点(1,4)和点(5,0),则该抛物线的解析式为 ;3.已知抛物线经过(2,0)、(3, 0)两,且经过(5,2),求抛物线的解析式.4.已知正方形的面积为)(2cm y ,周长为x (cm ). (1)请写出y 与x 的函数关系式;(2)判断y 是否为x 的二次函数.5.把函数22x y =的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ;6.若二次函数()32122--++=m m x m y 的图象经过原点,则m 的值必为 ( )A 1-或3B 1-C 、 3D 、 无法确定7.将二次函数32+=x y 的图象向左平移2个单位后,再向下平移2个单位,得到( )A y = x 2+ 5 B 1)2(2++=x y C 1)2(2+-=x y D 12+=x y8.已知(2,5)(4,5)是抛物线c bx ax y ++=2上的两点,则这个抛物线的对称轴为( )A bax -= B 2=x C 4=x D 3=x 9.已知二次函数y=-x 2+bx+c,当x=1时,y=0; 当x=4时,y=-21;求抛物线的解析式.10.二次函数y=x 2的图象向上平移2个单位,得到新的图象的二次函数表达式是( )A 、22y x =-; B 、2(2)y x =- C 、22y x =+; D 、2(2)y x =+11.抛物线c bx ax y ++=2与x 轴交于A 、B 两点,与y 轴交于正半轴C 点,且AC = 20,BC = 15,∠ACB = 90°,则此抛物线的解析式为 ;12.若二次函数y=2x 2+ax+b 的图象经过(2,3)点,并且起顶点在直线y=3x -2上,求a 、b .13.已知二次函数c bx ax y ++=2的图象与x 轴分别交于A (-3,0),B 两点,与y 轴交于(0,3)点,对称轴是1-=x ,顶点是P .求:(1)函数的解析式;(2)△APB 的面积.五、练习1.抛物线过(1-,10)、(1,4)、(2,7)三点,求抛物线的解析式;2.平移抛物线228y x x =+-,使它经过原点,写出平移后抛物线的一个解析式____________________3把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得的图象的解析式是y=x 2-3x+5,则有( )A b=3,c=7B b=-9,c=-15C b=3,c=3D b=-9,c=214.有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中,如图,该抛物线的解析式是____________. 5.已知抛物线y=x 2-6x +5的,则抛物线的对称轴为__________,将抛物线y=x 2-6x +5向____________平移_________个单位则得到抛物线y=x 2-6x +9. 6.已知二次函数y=2x 2-8x -3,求它关于X 轴对称的抛物线的关系式.7.二次函数c bx ax y ++=2有最小值为8-,且a :b :c =1:2:(3-),求此函数的解析式8.抛物线的对称轴是2=x ,且过(4,-4)、(-1,2),求此抛物线的解析式;9.二次函数c bx ax y ++=2,2-=x 时6-=y ;2=x 时10=y ;3=x 时,24=y ;求此函数的解析式;11.有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式13.在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO(1)求这个二次函数的解析式;(2)设这个二次函数的图象的顶点为M ,求AM 的长.x。

二次函数平移后解析式

二次函数平移后解析式

二次函数平移后解析式二次函数是高中数学中的一个重要内容,除了基本的二次函数解析式,我们还需要了解如何将二次函数进行平移。

二次函数平移后的解析式,是指将原本的二次函数在坐标系中向上、向下、向左或向右移动一定单位后得到的新的二次函数表达式。

在二次函数的平移中,我们需要理解几个基本概念:平移量、平移方向和平移的规律。

一、平移量平移量指的是将二次函数图像在坐标系上进行平移的长度或距离,可以是纵向或横向。

一般来说,平移量的大小由具体情况而定,它是一个具体的数字,可以是正数也可以是负数。

当平移量为正数时,二次函数向右(或向上)平移;当平移量为负数时,二次函数向左(或向下)平移。

例如,如果将二次函数y = x^2向右平移3个单位,则平移量为3,其新的解析式为y = (x - 3)^2。

二、平移方向平移方向指的是将二次函数图像在坐标系上平移的方向,可以是纵向或横向。

平移时必须保持二次函数的形态不变,因此平移方向只有向上、向下、向左、向右四个方向。

如果图像向上平移,那么解析式中的常数项也会相应地向上移动;如果图像向下平移,那么解析式中的常数项也会相应地向下移动;如果图像向左平移,那么解析式中的x项系数也会相应地向左移动;如果图像向右平移,那么解析式中的x项系数也会相应地向右移动。

因此,我们可以根据二次函数图像在坐标系中的运动方向来确定平移的方向,再根据具体情况选择正确的方法进行计算得出平移后的新解析式。

三、平移规律基本的二次函数解析式为:y = ax^2 + bx + c,其中a、b、c为常数,表示二次函数的三个系数。

在进行平移时,我们只需将x和y 分别加上平移量即可。

如果平移后的新坐标记为(x1,y1),则原坐标(x,y)和平移量为(d,e)时,新坐标可以表示为: x1=x+d,y1=y+e。

因此,平移后的二次函数解析式可以表示为:y=a(x+d)^2+b(x+d)+c+e或y=a(x-d)^2+b(x-d)+c-e其中,d和e分别表示横向和纵向的平移量。

11 专题 运用平移、对称、旋转求二次函数的解析式

11 专题 运用平移、对称、旋转求二次函数的解析式

专题 运用平移、对称、旋转求二次函数的解析式
【方法归纳】观察顶点的变化,注意顶点式的运用
一、运用平移求解析式
1.将二次函数y =-x 2+2x +3的图像向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式
2.将抛物线y =x 2+bx +c 先向左平移2个单位,再向上平移3个单位,得到抛物线y =x 2-2x +1,求b 、c 的值
3.已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),B (3,0),且过点C (0,-3),请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的解析式.
二、运用对称求解析式
4.将抛物线y =(x -1)2-4沿直线x =
23翻折,得到一个新抛物线,求新抛物线的解析式.
5.已知抛物线C 1:y =32x 2+3
16x +8与抛物线C 2关于y 轴对称,求抛物线C 2的解析式.
三、运用旋转求解析式
6.将抛物线y =x 2-2x +1的图像绕它的顶点A 旋转180°,求旋转后的抛物线的解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

✧ 二次函数解析式的表示方法
一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐
标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的
二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
✧ 根据条件确定二次函数表达式的几种基本思路。

三点式。

1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。

2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。

顶点式。

1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。

交点式。

1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。

2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=2
1
a(x-2a)(x-b)
的解析式。

例、用待定系数法求下列二次函数解析式
⑴图象经过点A(—1,10)、B (1,4)和C (2,7). ⑵顶点为(—1,—3),与y 轴交点为(0,—5). ⑶与x 轴交于A (—1,0)、B (1,0),并经过点M(0,1). ⑷顶点坐标为(1,3)且在x 轴上截得的线段长为4.
✧ 二次函数图象的平移
平移步骤:
⑴ 将抛物线解析式转化成顶点式()2
y a x h k =-+,确定其顶点坐标()h k ,
; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法
如下:
向右(h >0)【或左(h <0)】平移 |k|个单位
向上(k >0)【或下(k <0)】平移|k |个单位
向右(h >0)【或左(h <0)】平移|k|个单位
向右(h >0)【或左(h <0)】
平移|k|个单位
向上(k >0)【或下(k <0)】平移|k |个单位
向上(k >0)【或向下(k <0)】平移|k |个单位
y=a (x-h )2+k
y=a (x-h )2
y=ax 2+k
y=ax 2
平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
1、抛物线2)1(32-+-=x y 经过平移得到抛物线2
3x y -=,平移的方法是
A .向左平移1个单位,再向下平移2个单位
B .向右平移1个单位,再向下平移2个单位
C .向左平移1个单位,再向上平移2个单位
D .向右平移1个单位,再向上平移2个单位2.将抛物线2
y x =-向左平移2个单位后,得到的抛物线的解析式是
A .2
(2)y x =-+ B .2
2y x =-+ C .2
(2)y x =-- D .2
2y x =-- 3.将抛物线y =2x 2向上平移2个单位, 再向右平移3个单位,所得抛物线的解析式为 .
4.右图为抛物线c bx x y ++-=2的一部分,它经过A (1,0)-,
B (0,3)两点.
(1)求抛物线的解析式;
(2)将此抛物线向左平移3个单位,再向下平移1个单位, 求平移后的抛物线的解析式.
5.已知二次函数y = ax 2 +bx +c 中,函数y 与自变量x 的部分对应值如下表:
x … -1 0 1 2 3 4 … y

10
1
-2
1
10
25

(1)求这个二次函数的解析式; (2)写出这个二次函数的顶点坐标.
6.对于抛物线 243y x x =-+.
(1)它与x 轴交点的坐标为 ,与y 轴交点的坐标为 ,顶点坐标为 ; (2)在坐标系中利用描点法画出此抛物线;
(3)利用以上信息解答下列问题:若关于x 的一元二次方程
2430x x t -+-=(t 为实数)在1-<x <
7
2
的范围内有 解,则t 的取值范围是 .
x … … y


7.已知二次函数y = x 2 -4x +3.
(1)用配方法将y = x 2 -4x +3化成y = a(x -h) 2 + k 的形式; (2)在所给的平面直角坐标系中,画出这个二次函数的图象; (3)根据图象回答:当自变量x 的取值范围满足什么条件时,y <0?
8. 如图,在平面直角坐标系中,二次函数
)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C
点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,AO =3
1
OC 求这个二次函数的表达式.
答案:(1)方法一:由已知得:C (0,-3),A (-1,0)
将A 、B 、C 三点的坐标代入得⎪⎩

⎨⎧-==++=+-30390
c c b a c b a
解得:⎪⎩

⎨⎧-=-==321c b a
所以这个二次函数的表达式为:322
--=x x y 方法二:由已知得:C (0,-3),A (-1,0) 设该表达式为:)3)(1(-+=x x a y
将C 点的坐标代入得:1=a 所以这个二次函数的表达式为:322--=x x y (注:表达式的最终结果用三种形式中的任一种都不扣分)
(练习4)。

相关文档
最新文档