大学物理习题
大学物理习题答案
大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。
2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。
大学普通物理复习题(10套)带答案
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
大学物理练习题
I
I
S 1 2S
2
A、Φ21 2Φ12
B、 Φ21 Φ12
C、 Φ21 Φ12
D、 Φ21
1 2
Φ12
7. 如图所示,两个“无限长”的、半径分别为 R1 和 R2 的共轴圆柱面均匀带电,沿轴线方向单位长度
上所带电荷分别为 1 和 2 ,则在两圆柱面之间、距离轴线为 r 处的 P 点的电场强度大小 E 为( )
B. 电动势只在 导线中产生
C. 电动势在 和 中都产生,且两者大小相等
D. 导线中的电动势小于 导线中的电动势
20.螺线管产生的磁场是一个非均匀磁场
B.一个通电的无限长的密绕的螺线管产生的磁场在螺线管内、外部都是一个均匀磁场
C.一个通电的无限长的密绕的螺线管产生的磁场在螺线管内部是一个均匀磁场,外部没有磁场
A、 1 qa qb 4 0 r
B、 1 qa qb 4 0 r
C、
1 4π 0
qa r
qb Rb
D、
1 4π 0
qa Ra
qb Rb
6. 面积为 S 和 2S 的两圆线圈 1、2 如图放置,通有相同的电流 I .线圈 1 的电流所产生的通过线圈
2 的磁通用Φ21 表示,线圈 2 的电流所产生的通过线圈 1 的磁通用Φ12 表示,则Φ21 和 Φ12 的大小
三、计算题
1. 一个内外半径分别为 R1 和 R2 的均匀带电球壳,总电荷为 Q1,球壳外同心罩一个半径为 R3 的均匀带 电球面,球面电荷为 Q2,求电场分布。
2. 有一同轴电缆,其尺寸如图所示,两导体中的电流均为 I,但电流的流向相反,导体的磁性可不考
虑,试计算以下各处的磁感应强度:(1)r<R1; (2)R1<r<R2; (3)R2<r<R3; (4)r>R3。
(完整版)《大学物理》练习题及参考答案
《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。
大学物理练习题
O
ω
6、一光滑的内表面半径为 10 cm 的半球形碗,以匀角速度 绕其对称 OC 旋转.已知放在 碗内表面上的一个小球 P 相对于碗静止,其位置高于碗底 4 cm,则由此可推知碗旋转的角 速度约为 (A) 10 rad/s. (C) 17 rad/s (B) 13 rad/s. (D) 18 rad/s.
大学物理强化练习
一、选择题 1、一运动质点在某瞬时位于矢径 r ( x, y) 的端点处,其速度的大小为:
dr A) dt
dr B) dt
C)
dr dt
D) (
dx 2 dy 2 ) ( ) dt dt
球1
2、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状 态,如图所示.将绳子剪断的瞬间,球 1 和球 2 的加速度分别为
14、站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处 于“平衡”状态.由此,他断定电梯作加速运动,其加速度为 (A) (C) 大小为 g,方向向上. 大小为 (B) (D) 大小为 g,方向向下. 大小为
1 g ,方向向上. 2
1 g ,方向向下. 2
15、空中有一气球,下连一绳梯,它们的质量共为 M.在梯上站一质量为 m 的人,起始 时气球与人均相对于地面静止.当人相对于绳梯以速度 v 向上爬时,气球的速度为(以向 上为正) (A) (C)
2 Rg .
Rg .
(B) (D)
2 Rg .
1 Rg . 2
(B) (D) (E)
1 2 Rg . 2
10、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) (C) (E) 角动量守恒,动能也守恒. 角动量不守恒,动能守恒. 角动量守恒,动量也守恒.
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
《大学物理》练习题库
大学物理练习题第一章 质点运动学一、选择题1. 一质点在某时刻位于位矢 (,)r x y 的端点处,其速度大小为( )A.dr dtB.d r dtC.d r dt 2. 一质点作曲线运动,任意时刻的位矢为r ,速度为v ,那么( )A v v ∆=∆B r r ∆=∆C t ∆时间间隔内的平均速度为r t ∆∆D t ∆时间间隔内的平均加速度为v t ∆∆3. 以下五种运动的形式中,a保持不变的运动是( )A 单摆的运动B 匀速率圆周运动C 行星的椭圆轨道运动D 抛物运动4. 下面选项中的物理定义中属于理想模型概念的是( )A 机械能B 质点C 位移D 转动惯量5. 质点以速度v =4+t 2m/s 作直线运动,沿质点运动直线作OX 轴,并已知t =3s 时,质点位于x =9m 处,则该质点的运动方程为( )A x =2tB x =4t +t 3/2C x =4t+t 3/3+12D x =4t +t 3/3-126. 质点做匀速率圆周运动时,其速度和加速度的变化情况为( )A 加速度不变,速度在变化B 速度不变,加速度在变化C 二者都不变D 二者都在变7. 某物体的运动规律为dv /dt =-kv 2t ,式中的k 为大于零的常数,当t =0时,初速度为v 0,则速度v 与时间t 的函数关系是( )A v =kt 2/2+v 0B v =-kt 2/2+v 0C 1/v = kt 2/2+1/v 0D 1/v = -kt 2/2+1/v 0二、填空题1.设质点的运动方程为r =R cos ωt i +R sin ωt j (式中R ,ω皆为常量),则质点的速度v= , v 的大小= ,加速度a = ,写出轨道方程 。
2.质点的运动方程为j t i t r 223+=,则质点的速度表示v = ,加速度a = ,t =1s 时,v 的大小= ,写出轨道方程 。
3.一质点沿X 轴作直线运动,它的运动方程为:x =3+6t +8t 2-12t 3 (SI),则(1)质点在t =0时刻的速度v 0= ,加速度a 0= 。
大学物理练习题
一、选择题1、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动.(D) 匀速直线运动.2、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 3、下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率)()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ ]4、已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (C) ⎰21d )(v v v v v f N . (D) ⎰21d )(v v v v v f /N . [ ]5、关于可逆过程和不可逆过程有以下几种说法:(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆过程.(3) 不可逆过程发生后一定找不到另一过程使系统和外界同时复原.(4) 非平衡过程一定是不可逆过程.以上说法,正确的是:(A) (1)、(2)、(3). (B) (2)、(3)、(4).(C) (1)、(3)、(4). (D) (1)、(2)、(3) 、(4). [ ]6、气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,则气体分子的平均速率变为原来的(A) 24/5倍. (B) 22/3倍.(C) 22/5倍. (D) 21/3倍. [ ]7、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C) 2)/(1c tc v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆ [ ]8、一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是:(c 表示真空中光速)(A) v = (1/2) c . (B) v = (3/5) c .(C) v = (4/5) c . (D) v = (9/10) c . [ ]9、设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小 为(以c 表示真空中的光速)(A)1-K c . (B) 21K Kc -. (C) 12-K K c . (D) )2(1++K K K c . [ ] 10、 一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i 157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v (C) j i 8.18 1.25--=v (D) k 4.31=v [ ]11、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为:(A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ). [ ]12、关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是(A) (1)、(2) 、(4).(B) (1)、(2) 、(3).(C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ]13、设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =4.(B) 图中a表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4. [ ]14、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程(A) 一定都是平衡过程.(B) 不一定是平衡过程.(C) 前者是平衡过程,后者不是平衡过程.(D) 后者是平衡过程,前者不是平衡过程. [ ]15、设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的(A) n 倍. (B) n -1倍.(C) n 1倍. (D) nn 1+倍. [ ] 16.如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17.距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A)[ ] 18.如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和f (v )(A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-=. (D) qBm y v -=. [ ] 19.两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) R r I I 22210πμ. (B) R r I I 22210μ. (C) r R I I 22210πμ (D) 0. [ ]20.两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向. (D) 线圈中感应电流方向不确定. [ ]21.用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] 22.如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H 的环流两者,必有: (A) >'⎰⋅1d L l H ⎰⋅'2d L l H .(B) ='⎰⋅1d L l H ⎰⋅'2d L l H . (C) <'⎰⋅1d L l H ⎰⋅'2d L l H .(D) 0d 1='⎰⋅L l H . [ ] [ ] 二填空题1、半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈.I2、 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________.3、质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l 2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5π rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω =______________________.4、A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4∶2∶1,而分子的平均平动动能之比为A w ∶B w ∶C w =1∶2∶4,则它们的压强之比A p ∶B p ∶C p =__________.5、已知大气压强随高度h 的变化规律为⎪⎭⎫ ⎝⎛-=RT gh M p p mol 0exp 设气温t =5 ℃,同时测得海平面的气压和山顶的气压分别为 750 mmHg 和 590mmHg ,则山顶的海拔h =__________m. (普适气体常量R =8.31 J ·mol -1·K -1,空气的摩尔质量M mol =29×10-3 kg / mol ,p 0为h =0处的压强.符号exp(a ),即e a )6、一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.7.(本题3分)半径为 0.5 cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I = 3 A 的电流.作一个半径r = 5 cm 、长l = 5 cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感强度B 沿曲面的积分=⋅⎰⎰S B d ________________________.8.(本题3分)两根无限长直导线互相垂直地放着,相距d=2.0×102 m ,其中一根导线与z 轴重合,另一根导线与x轴平行且在Oxy 平面内.设两导线中皆通过I =10 A 的电流,则在y 轴上离两根导线等距的点P 处的磁感强度的大小为B =________________.(μ0 =4π×10-7 N ·A -2)9.(本题4.5分)图示为三种不同的磁介质的B ~H关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表______________________________的B ~H 关系曲线.b 代表______________________________的B ~H 关系曲线.c 代表______________________________的B ~H 关系曲线.10.(本题4分)导线绕成一边长为15cm 的正方形线框,共100匝,当它通有I=5A 的电流时,线框的磁矩 m p =_______________________。
大学物理练习题
大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。
求物体的加速度。
2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。
3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。
4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。
5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。
二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。
2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。
3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。
4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。
5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。
三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。
2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。
3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。
4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。
5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。
四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。
2. 一束光从水中射入空气,折射角为45°,求入射角。
3. 一平面镜反射一束光,入射角为60°,求反射角。
4. 一凸透镜焦距为10cm,物距为20cm,求像距。
5. 一凹透镜焦距为15cm,物距为30cm,求像距。
大学物理习题
自测题八一、选择题:(共24分)1. 有三个直径相同的金属小球.小球1和2带等量同号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电,装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为( )(A)F /2 (B)F /4. (C)3F /4. (D)3F /8.题8-1-2图4. 如题8-1-2图所示,电流由长直导线1沿ab 边方向经a 点流入一电阻均匀分布的正方形框,再由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1,2和正方形框在框中心O 点产生的磁感应强度分别用B 1,B 2和B 3表示,则O 点的磁感应强度大小( )(A)B =0,因为B 1=B 2=B 3=0.(B)B =0,因为虽然B 1≠0,B 2≠0;但B 1+B 2=0,B 3=0.(C)B ≠0,因为虽然B 1+B 2=0,但B 3≠0.(D)B ≠0,因为虽然B 3=0,但B 1+B 2≠0题8-1-3图5. 如题8-1-3图所示,有两根载有相同电流的无限长直导线,分别通过*1=1,*2=3点,且平行于y 轴,则磁感应强度B 等于零的地方是( )(A)在*=2的直线上. (B)在*>2的区域.(C)在*<1的区域. (D)不在O*y 平面上.6. 如题8-1-4图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc的长度为l 当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a ,c 两点间的电势差U a -U c 为( )(A)ε=0,U a -U c =12B ωl 2 (B)ε=0,U a -U c =-12B ωl 2 (C)ε=B ωl 2,U a -U c =12B ωl 2 (D)ε=B ωl 2,U a -U c =-12B ωl 2 题8-1-4图 题8-1-5图7. 真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如题8-1-5图.已知导线中的电流强度为I ,则在两导线正中间*点P 处的磁能密度为( )(A)1μ0(μ0I 2πa )2 (B) 12μ0(μ0I 2πa )2 (C)12μ0(μ0I πa)2 (D)0. 8. *段时间内,圆形极板的平板电容器两板电势差随时间变化的规律是:U ab =U a -U b =Kt (K 是正常量,t 是时间).设两板间电场是均匀的,此时在极板间1,2两点(2比1更靠近极板边缘)处产生的磁感应强度B 1和B 2的大小有如下关系:( )(A)B 1>B 2. (B)B 1<B 2.(C)B 1=B 2=0. (D)B 1=B 2≠0.二、填空题:(共38分)1. 如题8-2-1图示BCD是以O点为圆心,以R为半径的半圆弧,在A点有一电量为+q的点电荷,O点有一电量为-q的点电荷.线段.现将一单位正电荷从B点沿半圆弧轨道BCD 移到D点,则电场力所作的功为_____.题8-2-1图题8-2-2图2. 如题8-2-2图所示,一半径为R的均匀带电细圆环,带电量为Q,水平放置.在圆环轴线的上方离圆心R处,有一质量为m,带电量为q的小球.当小球从静止下落到圆心位置时,它的速度为v=_____.4. 均匀磁场的磁感应强度B垂直于半径为r的圆面.今以该圆周为边线,作一半球面S,则通过S面的磁通量的大小为_____.5. 一长直载流导线,沿空间直角坐标的Oy轴放置,电流沿y正向.在原点O处取一电流元Id l,则该电流元在(a,0,0)点处的磁感应强度的大小为_____,方向为_____.6. 一质点带有电荷q=8. 0×10-19C,以速度v=3. 0×105 m·s-1在半径为R=6. 00×10-8m的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感应强度B=_____,该带电质点轨道运动的磁矩p m=_____.(μ0=4π×10-7H·m-1)7. 一电子以速率V=2. 20×106 m·s-1垂直磁力线射入磁感应强度为B=2. 36 T的均匀磁场,则该电子的轨道磁矩为_____.(电子质量为9. 11×10-31kg),其方向与磁场方向_____.8. 如题8-2-3图,等边三角形的金属框,边长为l,放在均匀磁场中,ab边平行于磁感应强度B,当金属框绕ab边以角速度ω转动时,则bc边的电动势为_____,ca边的电动势为_____,金属框内的总电动势为_____.(规定电动势沿abca绕为正值)题8-2-3图题8-2-4图9. 如题8-2-4图,有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO′上,则直导线与矩形线圈间的互感系数为_____.10. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将_____.三、计算题:(共40分)1. 两个相距甚远可看作孤立的导体球,半径均为10 cm,分别充电至200 V和400 V,然后用一根细导线连接两球,使之达到等电势.计算变为等势体的过程中,静电力所作的功.(ε0=8. 85×10-12C2·N-1·m-2)题8-3-1图2. 如6-3-1图,半径为a,带正电荷且线密度是λ(常数)的半圆.以角速度ω绕轴O′O″匀速旋转.求:(1)O点的B;(2)旋转的带电半圆的磁矩P m(积分公式∫π0sin2θdθ= 12π)3. 空间*一区域有均匀电场E和均匀磁场B,E和B同方向.一电子(质量m,电量-e)以初速v在场中开始运动,v与E夹角α,求电子的加速度的大小并指出电子的运动轨迹.题8-3-2图4. 如题8-3-2图,无限长直导线,通以电流I有一与之共面的直角三角形线圈ABC已知AC边长为b,且与长直导线平行,BC边长为a.若线圈以垂直于导线方向的速率v向右平移,当B点与长直导线的距离为d时,求线圈ABC内的感应电动势的大小和感应电动势的方向.5. 在一无限长载有电流I的直导线产生的磁场中,有一长度为b的平行于导线的短铁棒,它们相距为a .若铁棒以速度v 垂直于导线与铁棒初始位置组成的平面匀速运动,求t时刻铁棒两端的感应电动势ε的大小.自测题九一、选择题(共33分)1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿*路径传播到B ,若A ,B 两点位相差为3π,则此路径AB 的光程为( )(A)1.5λ. (B)1.5n λ.(C)3λ. (D)1.5λ/n .2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如题9-1-1图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为( )(A)2n 2e . (B)2n 2e -λ1/(2n 1).(C)2n 2e -12 n 1λ1. (D)2n 2e -12n 2λ1. 题9-1-1图 题9-1-2图3. 如题9-1-2图所示,在双缝干涉实验中,若单色光源S 到两缝S 1,S 2距离相等,而观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S ′位置,则( )(A)中央明条纹也向下移动,且条纹间距离不变.(B)中央明条纹向上移动,且条纹间距不变.(C)中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.4. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则( )(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.题9-1-3图5. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1,S 2连线的垂直平分面处放一反射镜M ,如题9-1-3图所示,则此时( )(A)P 点处仍为明条纹.(B)P 点处为暗条纹.(C)不能确定P 点处是明条纹还是暗条纹.(D)无干涉条纹.6. 两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的( )(A)间隔变小,并向棱边方向平移.(B)间隔变大,并向远离棱边方向平移.(C)间隔不变,向棱边方向平移.(D)间隔变小,并向远离棱边方向平移.题9-1-4图7. 如题9-1-4图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹( )(A)向右平移.(B)向中心收缩.(C)向外扩张.(D)静止不动.(E)向左平移.8. 一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为( )(A)λ/4.(B)λ/4n.(C)λ/2.(D)λ/2n.9. 在玻璃(折射率n3=1.60)表面镀一层MgF2(折射率n2=1.38)薄膜作为增透膜.为了使波长为5000 Å的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最小厚度应是( )(A)1250 Å.(B)1810 Å.(C)2500 Å.(D)781 Å.(E)906 Å.10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题9-1-5图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分( )(A)凸起,且高度为λ/4.(B)凸起,且高度为λ/2.(C)凹陷,且深度为λ/2.(D)凹陷,且深度为λ/4.题9-1-5图11. 在迈克尔逊干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了( )(A)2(n-1)d.(B)2nd.(C)2(n-1)d+12λ.(D)nd.(E)(n-1)d.二、填空题(共23分)1. 波长为λ的平行单色光垂直照射到如题9-2-1图所示的透明薄膜上,膜厚为e,折射率为n,透明薄膜放在折射率为n1的媒质中,n1<n,则上下两表面反射的两束反射光在相遇处的位相差Δφ=______.题9-2-1图题9-2-2图2. 如题9-2-2图所示,假设有两个同相的相干点光源S1和S2,发出波长为λ的光.A是它们连线的中垂线上的一点.若在S1与A之间插入厚度为e、折射率为n的薄玻璃片,则两光源发出的光在A点的位相差Δφ=______.若已知λ=5000Å,n=1. 5,A点恰为第四级明纹中心,则e=______ Å.3. 一双缝干涉装置,在空气中观察时干涉条纹间距为 1. 00 mm.若整个装置放在水中,干涉条纹的间距将为______mm.(设水的折射率为4/3)4. 在空气中有一劈尖形透明物,其劈尖角θ=1. 0×10-4 rad,在波长λ=7000的单色光垂直照射下,测得两相邻干涉明条纹间距l=0.25 cm,此透明材料的折射率n=______.5. 一个平凸透镜的顶点和一平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿环,测得第k级暗环半径为r1.现将透镜和玻璃板之间的空气换成*种液体(其折射率小于玻璃的折射率),第k级暗环的半径变为r2,由此可知该液体的折射率为______.6. 若在迈克尔逊干涉仪的可动反射镜M移动0.620 mm的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为_____Å.7. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是______.三、计算题(共40分)1. 在杨氏双缝实验中,设两缝之间的距离为0.2 mm .在距双缝1 m 远的屏上观察干涉条纹,若入射光是波长为400 nm 至760 nm 的白光,问屏上离零级明纹20 mm 处,哪些波长的光最大限度地加强"(1 nm=10-9 m)2. 薄钢片上有两条紧靠的平行细缝,用波长λ=5461Å的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为Δ*=12.0mm .(1)求两缝间的距离.(2)从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离"(3)如果使光波斜入射到钢片上,条纹间距将如何改变"3. 在折射率n =1.50的玻璃上,镀上n ′=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=6000Å的光波干涉相消,对λ2=7000Å的光波干涉相长.且在6000Å到7000Å之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.4. 用波长λ=500nm(1nm=10-9m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上.劈尖角θ=2×10-4rad .如果劈尖内充满折射率为n =1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离.题9-3-1图5. 在如题9-3-1图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n 1=1.50)之间的空气(n 2=1.00)改换成水(n 2′=1.33),求第k 个暗环半径的相对改变量(r k -r ′k )/r k .四、证明题(4分)如题9-4-1图所示的双缝干涉,假定两列光波在屏上P 点处的光场随时间t 而变化的表达式各为E 1=E 0sin ωtE 2=E 0sin(ωt +Φ)Φ表示这两列光波之间的位相差.试证P 点处的合振幅为E p =E m cos(πd λsin θ)式中λ是光波波长,E m 是E p 的最大值.题9-4-1图 自测题十一、选择题(共30分)1. 在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A)λ. (B)1.5λ.(C)2λ. (D)3λ.题10-1-1图2.在如题10-1-1图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a变为原来的32,同时使入射的单色光的波长λ变为原来的3/4,则屏幕C 上单缝衍射条纹中央明纹的宽度Δ*将为原来的( )(A)3/4倍.(B)2/3倍.(C)9/8倍.(D)1/2倍.(E)2倍.题10-1-2图3. 在如题10-1-2图所示的单缝夫琅禾费衍射装置中,将单缝宽度a稍稍变宽,同时使单缝沿y轴正方向作微小位移,则屏幕C上的中央衍射条纹将( )(A)变窄,同时向上移.(B)变窄,同时向下移.(C)变窄,不移动.(D)变宽,同时向上移.(E)变宽,不移动.4. 一衍射光栅对*一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该( )(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D)将光栅向远离屏幕的方向移动.5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,则此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为( )(A)a=b.(B)a=2b.(C)a=3b. (D)b=2a.6. 光强为I0的自然光依次通过两个偏振片P1和P2.若P1和P2的偏振化方向的夹角α=30°,则透射偏振光的强度I是( )(A)I0/4. (B)3I0/4(C)3I0/2 (D)I0/8.(E)3I0/8.7.一束光强为I0的自然光,相继通过三个偏振片P1,P2,P3后,出射光的光强为I=I0/8.已知P1和P3的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是( )(A)30°.(B)45°.(C)60°. (D)90°.8. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,则入射光束中自然光与线偏振光的光强比值为( )(A)1/2.(B)1/5.(C)1/3. (D)2/3.9.自然光以60°的入射角照射到不知其折射率的*一透明介质表面时,反射光为线偏振光.则知( )(A)折射光为线偏振光,折射角为30°.(B)折射光为部分偏振光,折射角为30°.(C)折射光为线偏振光,折射角不能确定.(D)折射光为部分偏振光,折射角不能确定.10. 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是( )(A)在入射面内振动的完全偏振光.(B)平行于入射面的振动占优势的部分偏振光.(C)垂直于入射面振动的完全偏振光.(D)垂直于入射面的振动占优势的部分偏振光.二、填空题(共30分)1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成为惠更斯—菲涅耳原理.2.平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带.若将单缝宽度缩小一半,P点将是级纹.3. 可见光的波长范围是400~760 nm.用平行的白光垂直入射在平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.4. 用波长为λ的单色平行光垂直入射在一块多缝光栅上,其光栅常数d=3 μm,缝宽a=1 μm,则在单缝衍射的中央明条纹中共有条谱线(主极大).5. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过块理想偏振片.在此情况下,透射光强最大是原来光强的倍.题10-2-1图6. 如果从一池静水(n=1.33)的表面反射出来的太阳光是完全偏振的,则太阳的仰角(见题10-2-1图)大致等于,在这反射光中的E矢量的方向应.7. 在题10-2-2图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n1,n2为两种介质的折射率,图中入射角i0=arctan(n2/n1),i≠i0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.题10-2-2图8. 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为晶体.三、计算题(共40分)1. (1)在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=4000Å,λ2=7600Å.已知单缝宽度a=1.0×10-2cm,透镜焦距f=50cm.求两种光第一级衍射明纹中心之间的距离.(2)若用光栅常数d=1.0×10-3cm的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.2. 波长为λ=6000Å的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1)光栅常数(a+b)等于多少"(2)透光缝可能的最小宽度a等于多少"(3)在选定了上述(a+b)和a之后,求在衍射角-12π<φ<12π范围内可能观察到的全部主极大的级次.3. 两个偏振片P1,P2叠在一起,由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,进行了两次测量.第一次和第二次P1和P2偏振化方向的夹角分别为30°和未知的θ,且入射光中线偏振光的光矢量振动方向与P1的偏振化方向夹角分别为45°和30°.不考虑偏振片对可透射分量的反射和吸收.已知第一次透射光强为第二次的3/4,求(1)θ角的数值;(2)每次穿过P1,P2的透射光强与入射光强之比;(3)每次连续穿过P1,P2的透射光强与入射光强之比.题10-3-1图4.如题10-3-1图安排的三种透光媒质Ⅰ,Ⅱ,Ⅲ,其折射率分别为n1=1.33,n2=1.50,n3=1.两个交界面相互平行.一束自然光自媒质Ⅰ中入射到Ⅱ与Ⅲ的交界面上,若反射光为线偏振光,(1)求入射角i.(2)媒质Ⅱ,Ⅲ界面上的反射光是不是线偏振光"为什么"自测题十一一、选择题(共30分)1. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红限波长是5400Å,则入射光的波长是 ( D )(A)5350 Å. (B)5000 Å.(C)4350 Å.(D)3550 Å.2. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将 ( )(A)减小0. 56 V. (B)增大0. 165 V.(C)减小0. 34 V. (D)增大1. 035 V.(普朗克常量h=6. 63×10-34J·s,基本电荷e=1. 602×10-19C)3. 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E0和飞到阳极的电子的最大动能EK的变化分别是 ( )(A) E0增大,E K增大. (B) E0不变,E K变小.(C) E0增大,E K不变.(D) E0不变,E K不变.4. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 ( )(A)2倍.(B)1. 5倍.(C)0. 5倍.(D)0. 25倍.5. 用*射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 ( )(A)只包含有入射光波长相同的成分.(B)既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.(C)既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.(D)只包含着波长变长的成分,其波长的变化只与散射物质有关,与散射方向无关.6. 已知氢原子从基态激发到*一定态所需的能量为10. 19 eV,若氢原子从能量为-0. 85 eV的状态跃迁到上述定态时,所发射的光子的能量 ( )(A)2. 56 eV.(B)3. 41 eV.(C)4. 25 eV. (D)9. 95 eV.7. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 ( )(A)动量相同. (B)能量相同.(C)速度相同. (D)动能相同.8. 设粒子运动的波函数图线分别如图(A),(B),(C),(D)所示,则其中确定粒子动量的精确度最高的波函数是哪个图" ( A )9. 下列各组量子数中,哪一组可以描述原子中电子的状态" ( B )(A)n =2,l =2,m l =0, ms =12. (B) n =3, l =1, m l =-1, ms =-12. (C) n =1, l =2, m l =1, ms =12. (B) n =1, l =0, m l =1, ms =-12. 10. 氩(Z =18)原子基态的电子组态是 ( C )(A)1s 22 s 83p 8.(B)1 s 22 s 22o 63d 8.(C)1 s 22 s 22p 63 s 23p 6.(D)1 s 22 s 22p 63 s 23p 43d 2.二、填空题(共20分)1. 设描述微观粒子运动的波函数为Ψ(r ,t ),则ΨΨ*表示;Ψ(r ,t )须满足的条件是;其归一化条件是.2. 根据量子论,氢原子核外电子的状态可由四个量子数来确定,其中主量子数n 可取的值为,它可决定.3.玻尔氢原子理论中,电子轨道角动量最小值为;而量子力学理论中,电子轨道角动量最小值为,实验证明理论的结果是正确的.4. 在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的状态:(1)n =2,l =,m l =-1,m s =-12. (2)n =2,l =0,m l =,m s =12. (3)n =2,l =1,m l =0,m s =.5. 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为L z =m l ħ,当角量子数l =2时,L z 的可能取值为.6. 多电子原子中,电子的分布遵循原理和原理. 三、计算题(共50分)1. 波长为3500 Å的光子照射*种材料的表面,实验发现,从该表面发出的能量最大的光电子在B =1.5×10-5T 的磁场中偏转而成的圆轨道半径R =18cm ,求该材料的逸出功是多少电子伏特"(电子电量-e =1.60×10-19C ,电子质量m =9.1×10-31kg ,普朗克常量h =6.63×10-34J ·s ,1eV=1.60×10-19J)2.处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,问此外来光的频率为多少"(里德伯恒量R =1.097×107 m -1)3. 氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:(1)与这一谱线相应的光子能量为多少电子伏特"(2)该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少"(3)最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线"请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.4. 假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少"(普朗克常量h =6.63×10-34J ·s ,电子静止质量m 0=9.11×10-31kg)5. 已知粒子在无限深势阱中运动,其波函数为:ψ(*)=2/asin(π*/a )(0<*<a ).求:发现粒子概率最大的位置.6. 同时测量能量为1 keV 的作一维运动的电子的位置与动量时,若位置的不确定值在0.1nm(1 nm=10-9m),则动量的不确定值的百分比ΔP /P 至少为何值"(电子质量m e =9.11×10-31kg,1 eV=1.60×10-19J ,普朗克常量h =6.63×10-34J ·s)7. 粒子在一维矩形无限深势阱中运动,其波函数为:ψ0(*)=2/a sin(n π*/a )(0<*<a ).若粒子处于n =1的状态,在0~(1/4)a 区间发现该粒子的概率是多少" [提示:]2sin 4121sin 2C x x xdx +-=⎰ 8. 设电子绕氢核旋转的玻尔轨道的圆周长刚好为电子物质波波长的整数倍,试从此点出发推证玻尔的角动量量子化条件.。
大学物理力学练习题及答案
大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。
如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。
可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。
A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。
A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。
A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。
大学物理_习题集(含答案)
《大学物理》课程习题集一、单选题11.下列哪一种说法是正确的()(A)运动物体加速度越大,速度越快(B)作直线运动的物体,加速度越来越小,速度也越来越小(C)切向加速度为正值时,质点运动加快(D)法向加速度越大,质点运动的法向速度变化越快2.下列说法中哪一个是正确的()(A)加速度恒定不变时,质点运动方向也不变(B)平均速率等于平均速度的大小(C)当物体的速度为零时,其加速度必为零(D)质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速3.关于向心力,以下说法中正确的是(A)是除物体所受重力、弹力以及摩擦力以外的一种新的力(B)向心力就是做圆周运动的物体所受的合力(C)向心力是线速度变化的原因(D)只要物体受到向心力的作用,物体就做匀速圆周运动4.如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率V0收绳,绳长不变,湖水静止,则小船的运动是()(A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动5.一质点作竖直上抛运动,下列的V-t图中哪一幅基本上反映了该质点的速度变化情况。
()6. 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A ) 与速度成正比 (B )与速度平方成正比(C )与速度成反比 (D )与速度平方成反比7. 抛物体运动中,下列各量中不随时间变化的是 ( )(A )v (B )v (C )t v d (D )dt v d8. 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作 ( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动9. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为( )(A )t d dr ; (B )dtr d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 10. 一质点在平面上作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V ,平均速率为V ,它们之间的关系必定有( )(A )V V V V == , (B )V V V V =≠ ,(C )V V V V ≠≠ , (D )V V V V ≠= ,11. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中,( )(A )物体的加速度是不断变化的。
大学物理学练习题
第1单元 质点运动学一. 选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作[ ]。
(A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向;(D) 变加速直线运动,加速度沿x 轴负方向。
2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。
(1) a t d /d v , (2) v t /r d d , (3) v t S d /d , (4) t a t d /d v。
(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的;(C) 只有(2)是对的; (D) 只有(3)是对的。
3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量), 则该质点作[ ]。
(A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。
4. 一小球沿斜面向上运动,其运动方程为s=5+4t t 2(SI), 则小球运动到最高点的时刻是[ ]。
(A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。
5. 一质点在xy 平面内运动,其位置矢量为j t i t r ˆ)210(ˆ42(SI ),则该质点的位置矢量与速度矢量恰好垂直的时刻为[ ]。
(A) s t 2 ; (B )s t 5; (C )s t 4 ; (D )s t 3 。
6. 某物体的运动规律为t k t 2d /d v v ,式中的k 为大于零的常量。
当0 t 时,初速为v 0,则速度v 与时间t 的函数关系是[ ]。
(A) 0221v vkt ; (B) 0221v v kt ; (C) 02121v v kt ; (D) 02121v vkt 。
大学物理复习题(包含小题答案)
一、 选择题1.已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t z ωβ=-, 则电场强度的方向____, 能流密度的方向为____。
( A )A. x ,zB. -x ,zC. x , -zD. -x , -z2.损耗媒质中的电磁波,其传播速度随媒质电导率σ的增大而 。
( B )A.不变B. 减小C. 增大D.和电导率无关3.如图所示两个载流线圈,所受的电流力使两线圈间的距离 。
( A )A.增大B.缩小C.不变D.和力无关4.在无损耗媒质中,电磁波的相速度与波的频率 。
( C )A .成正比B .成反比C .无关D .线性变化5.电位移表达式D E ε= ( C )A .在各种电介质中适用B .只在各向异性的电介质中适用C .只在各向同性的、线性的均匀的电介质中适用D .真空中适用6.恒定电流场基本方程的微分形式说明它是 ( B )A. 有散无旋场B.无散无旋场C.无散有旋场D.有散有旋场7.已知电场中一闭合面上的电移位 D 的通量不等于零,则意味着该面内 ( D )A .一定存在自由磁荷B .一定不存在自由电荷C .不能确定D .一定存在自由电荷8.下面表述正确的为 ( D )A .矢量场的散度结果为一矢量场B .标量场的梯度结果为一标量场C .矢量场的旋度结果为一标量场D .标量场的梯度结果为一矢量场9.电偶极子是_ __ ( A )A .两个相距很小的等量异号点电荷组成的系统B .两个相距很小的等量同号点电荷组成的系统C .两个相距很大的等量异号点电荷组成的系统D .两个相距很大的等量同号点电荷组成的系统10.亥姆霍兹定理表明,研究一个矢量场,必须研究它的 ,才能确定该矢量场的性质。
( A )A.散度和旋度B.散度和通量C.旋度和环量D.梯度和方向导数11.磁场强度表达式B H μ= ( C )A.在各种磁介质中适用B.只在各向异性的磁介质中适用C.只在各向同性的、线性的均匀的磁介质中适用D.真空中适用12.正弦电磁场 ( 角频率为ω ) 的磁场强度复矢量H 满足的亥姆霍兹方程为 ( A )A.22000H H ωεμ∇+=B.220r r H H ωεμ∇+=C.200r H H ωεμ∇+=D.200r H H ωεμ∇+=13.静电场中电位为零处的电场强度 ( C )A.一定为零B.最大C.不能确定D.最小14.标量场的梯度的方向为 ( B )A.等值面的切线方向B.等值面的法线方向C.标量增加的方向D.标量减小的方向15.下列关于电场(力)线表述正确的是 ( B )A.由正的自由电荷出发,终止于负的自由电荷B.由正电荷出发,终止于负电荷C.正电荷逆着电场线运动D.负电荷顺着电场线运动16.矢量场的散度在直角坐标下的表示形式为 ( A )A.y x z A A A x y z ∂∂∂++∂∂∂B.x y z Ax Ay Az e e e x y z∂∂∂++∂∂∂ C.x y z A A A e e e x y z ∂∂∂++∂∂∂ D.A A A x y z∂∂∂++∂∂∂ 17.已知自由空间一均匀平面波,其电场强度为0cos()x E e E t z ωβ=-, 则能流密度的方向____, 磁场强度的方向为____。
大学物理练习题及参考答案
一、填空题 1、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=ymt t 223+;加速度y a = 4m/s 2 。
2、一质点沿半径为R 的圆周运动,其运动方程为22t +=θ。
质点的速度大小为 2t R ,切向加速度大小为 2R 。
3、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 400N 。
4、在一带电量为Q 的导体空腔内部,有一带电量为-q 的带电导体,那么导体空腔的内表面所带电量为 +q ,导体空腔外表面所带电量为 Q -q 。
5、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为5J13mV 21W 2.=∆=。
6、带等量异号电荷的两个无限大平板之间的电场为0εσ,板外电场为 0 。
8、一长载流导线弯成如右图所示形状,则O 点处磁感应强度B的大小为RIR I 83400μπμ+,方向为⊗。
9、在均匀磁场B 中, 一个半径为R 的圆线圈,其匝数为N,通有电流I ,则其磁矩的大小为NIR m 2π=,它在磁场中受到的磁力矩的最大值为NIBR M 2π=。
10、一电子以v垂直射入磁感应强度B 的磁场中,则作用在该电子上的磁场力的大小为F = Bqv F 0=。
电子作圆周运动,回旋半径为qBmvR =。
11、判断填空题11图中,处于匀强磁场中载流导体所受的电磁力的方向;(a ) 向下 ;(b ) 向左 ;(c ) 向右 。
12、已知质点的运动学方程为j t i t r)1(2-+=。
试求:(1)当该质点速度的大小为15-⋅s m 时,位置矢量=r i 1;(2)任意时刻切向加速度的大小τa =1442+t t 。
16、有一球状导体A ,已知其带电量为Q 。
大学物理考试常见习题(精简).doc
第一章 质点运动学练习题:一、选择:1、一质点运动,在某瞬时位于矢径(,)r x y r的端点处,其速度大小为:( )(A)drdt(B)dr dt r(C) d r dt r2、质点的速度21(4)v t m s -=+⋅作直线运动,沿质点运动直线作OX 轴,并已知3t s =时,质点位于9x m =处,则该质点的运动学方程为:( )A 2x t =B 2142x t t =+C 314123x t t =+-D 314123x t t =++3、一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI), 则小球运动到最高点的时刻是:( )(A) t=4s . (B) t=2s . (C) t=8s . (D) t=5s .4、质点做匀速率圆周运动时,其速度和加速度的变化情况为 ( )(A )速度不变,加速度在变化 (B )加速度不变,速度在变化 (C )二者都在变化 (D )二者都不变 5、质点作半径为R 的变速圆周运动时,加速度大小为(v 表示任一时刻质点的速率)(A) d v/d t . (B) v 2/R .(C) d v/d t + v 2/R . (D) [(d v/d t )2+(v 4/R 2)]1/2二、填空题1、质点的运动方程是()cos sin r t R ti R tj ωω=+r rr,式中R 和ω是正的常量。
从t π=到2t πω=时间内,该质点的位移是 ;该质点所经过的路程是 。
2、一质点沿直线运动,其运动方程为:32302010t t x +-=,(x 和t的单位分别为m 和s ),初始时刻质点的加速度大小为 。
3、一质点从静止出发沿半径3r m =的圆周运动,切向加速23t a m s -=⋅,当总的加速度与半径成45o角时,所经过的时间t = ,在上述时间内质点经过的路程s = 。
4、一质点的运动方程为:j t i t r 2sin 32cos 4+=,该质点的轨迹方程为 。
《大学物理》练习题
《大学物理》练习题一.选择题:1-1 质点作曲线运动,r 是质点的位置矢量,r 是位置矢量的大小。
r ∆是某时间内质点的位移, r ∆位置矢量的大小增量, s ∆是同一时间内的路程。
那么……………………………………[ B ](A) r r ∆=∆ (B) r r ∆=∆ (C) s r ∆=∆ (D) s r ∆=∆ 1-2 某质点的运动学方程为3635x t t =+-(SI 单位),则该质点做 ………………………[ D ](A) 匀加速直线运动,加速度为正值 (B) 匀加速直线运动,加速度为负值(C) 变加速直线运动,加速度为正值 (D) 变加速直线运动,加速度为负值1-3 某小球沿斜面向上运动,其运动方程为28162x t t =+-(SI 单位),则小球运动到最高点的时刻为 …………………………………………………………………………………………………[ B ](A) 2s (B) 4s (C) 5s (D) 8s自1-1 质点在非常小的一段时间d t 内的位移为d r ,路程为d s ,则 ………………………[ A ](A) d d r s = (B) d d r s > (C) d d r s < (D) d d r s =自1-2 一质点沿Ox 轴运动,运动学方程为3356x t t =-+,该质点 ……………………[ D ](A) 做匀加速直线运动,加速度沿Ox 轴正方向(B) 做匀加速直线运动,加速度沿Ox 轴负方向(C) 做变速直线运动,加速度沿Ox 轴正向,其绝对值随时间减小(D) 做变速直线运动,加速度沿Ox 轴负向,其绝对值随时间增大自1-4 牛顿第二定律 …………………………………………………………………………… [ D ](A) 适用于任何参考系中的任何物体的运动 (B) 适用于任何参考系中的质点的运动 (C) 适用于惯性参考系中的任何物体的运动 (D) 适用于惯性参考系中的质点的运动 2-2 质量为m 的小球,以水平速度v 与固定的竖直壁做弹性碰撞。
大学物理习题测试答案
大学物理习题测试答案一、选择题1. 光速在真空中是恒定的,其值为 \( c = 3 \times 10^8 \) 米/秒。
(正确)2. 牛顿第三定律指出,作用力和反作用力大小相等,方向相反。
(正确)3. 根据能量守恒定律,一个封闭系统的总能量是恒定的。
(正确)4. 电场强度的定义是电场力与电荷量的比值。
(正确)5. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
(正确)二、填空题1. 一个物体的动能 \( K \) 可以用公式 \( K = \frac{1}{2}mv^2 \) 计算,其中 \( m \) 是质量,\( v \) 是速度。
2. 牛顿第二定律 \( F = ma \) 描述了力和加速度之间的关系。
3. 波长、频率和波速之间的关系可以用公式 \( \lambda =\frac{v}{f} \) 表示。
4. 欧姆定律 \( V = IR \) 描述了电压、电流和电阻之间的关系。
5. 理想气体状态方程 \( PV = nRT \) 描述了气体的压强、体积、温度和摩尔数之间的关系。
三、简答题1. 简述牛顿第一定律的内容。
答:牛顿第一定律,也称为惯性定律,指出一个物体会保持其静止状态或匀速直线运动状态,除非受到外力的作用。
2. 什么是电磁感应?答:电磁感应是指当导体在变化的磁场中移动时,会在导体中产生电动势的现象。
这是电磁学中的一个基本现象,也是发电机和变压器工作原理的基础。
3. 简述热力学第一定律。
答:热力学第一定律,也称为能量守恒定律,表明能量不能被创造或销毁,只能从一种形式转换为另一种形式。
在一个封闭系统中,能量的总量是恒定的。
四、计算题1. 一个质量为 \( 2 \) 千克的物体,以 \( 3 \) 米/秒的速度运动,求其动能。
答:根据动能公式 \( K = \frac{1}{2}mv^2 \),代入数值得到\( K = \frac{1}{2} \times 2 \times 3^2 = 9 \) 焦耳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学1. 一质点沿半径2=R m 的圆周运动,其速率是时间的函数 t t v 222+=(以“秒”计,以“米/秒”计),则它在1秒末时加速度t v a r的大小 为_______(m.s -2)。
2. 两条直路交叉成α角,两辆汽车以速率和沿两条路行驶,则一车相对于另一车的速度的大小为____________________。
1v 2v 3. 一质点的运动方程为=γrj t R i t R rr ωωsin cos +,式中R ,ω为正的常量。
在t 1=ωπ/到t =2ωπ/2时间内,质点的位移r rΔ为 [ ]A. -2R i rB. 2R i rC. -2R j rD. 04. 一质点作任意的曲线运动,在一般情况下,下列各组量中相等的是 [ ] (注:其中v 是速率,是路程)s A .r rΔ与rr Δ B . dt vd r与dtdvC.与v dt ds D. v r与221v v rr +5. 质点的速率对时间的一次导数dtdv等于 [ ]A .切向加速度的大小(即t a r ) B.法向加速度的大小(即n a r) C. 总加速度的大小 D.切向加速度在速度方向上的投影 6. 质点作匀加速圆周运动,则它的 [ ]A.切向加速度的大小和方向都在变化B.总加速度的方向变化,大小不变C.切向加速度的方向变化,大小不变D.法向加速度的方向变化,大小不变7. 已知质点的运动方程为j t y i t x r r r r)()(+= ,有人说其速度和加速度分别为dt dr v =,22dtr d a =其中22y x r +=,你说对吗?8.一质点沿半径R=2m 的圆周运动,其速率v 是时间的函数v =22t +2t (t 以“秒”计,v 以“米/秒”计),求在一秒末时; (1) 它的加速度的大小; (2)τa r 与a r的夹角的正切。
9. 一球以30m 1−⋅s 的速率水平抛射,试求在第5s 末时切向加速度和法向加速度的大小。
10. 一物体悬挂在弹簧上作竖直振动,其加速度为−=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y0处的速度为v0,试求速度v 与坐标y 的函数关系式.第 二 、三章(牛顿定律,运动定理和守恒定律)1. 一颗子弹在枪筒里前进时所受合力的大小为t F 31044005×−=(SI ),子弹从枪口射出时的速率为300m.s -1。
假设子弹离开枪口时合力刚好为零,则子弹走完枪筒全程的过程中所受合力的冲量的大小为_____N.S,子弹的质量m 为______kg 。
2. 一质点在二恒力作用下,位移为j i r rr r83+=Δj i (SI );在此过程中,动能的增量为24J ,已知其中一恒力F rr r 312−1=(SI ),则另一恒力的功为______J 。
3. 如图两个质量相等的小球由一轻弹簧连接,再用一细绳悬挂于天花板上,小球处于静止状态。
在剪断细绳的瞬间,球1和球2的加速度a 1和a 2分别为 [ ]A .a 1=g, a 2=gB .a 1=0, a 2=gC .a 1=g, a 2=012D .a 1=2g , a 2=04. 质量为m 的小球在向心力的作用下,在水平面内作半径为R ,速率为v 的匀速圆周运动,如图所示,小球自A 点逆时针运动到B 点的半周内动量的增 量为 [ ]A .2mv j rB -2mvj rC. 2mv iD. -2mv ir r X5. A 、B 两木块质量分别为m A 和m ,且m =2 m A ,两者用一弹簧连接后静止于光滑水平桌面上,如图所示,若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块的动能之比B B KA KB ΕΕ/为 [ ]A .1/2B. 2C. 2 Am Bm D.2/26. 一轻弹簧竖直固定于桌面上,如图所示,小球从离桌面高为h 处以初速度为0νr落下,撞击弹簧后跳回到高为h 处时速度仍为0ν,则在整个过程中小球的[ ]A .动能不守恒,动量不守恒B 。
动能守恒,动量不守恒hv r C .机械能不守恒,动能守恒 D 。
机械能守恒,动能守恒7. 质量为m 的子弹以速率为v o 水平射入沙土中,子弹所受的阻力与速度方向相反,其大小与速率成正比,比例系数为K (K>0)。
设子弹在沙土中保持水平方向的运动。
求子弹在射入沙土后,速率随时间变化的函数式。
8.(上册P55: 2—16)9. 一质量为10Kg 的质点,在力F=(120t+40)N 的作用下,沿x 轴正方向运动。
在t=0时,质点位于=5m 其速度为0x 60=v m.S -1,求质点在以后任意时刻的速度和位置。
10. 一停在空气中的质量为M 的气球上挂有一质量可以忽略不计的绳梯,在绳梯上有一质量为m 的人,整个系统在空中处于静止状态。
当人相对绳梯以速度u 向上运动时,求从地面上观察到的气球的速度v r的大小11. 有一倔强系数为k 的轻弹簧,原长,将它吊在天花板上,当它下端挂一托盘平衡时,其长度为。
然后在托盘中放一重物,使弹簧长度变为。
求弹簧长度从到的过程中,弹性力所做的功。
0l 1l 2l 1l 2l 12. 劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.13. 一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少?al −a14. 一质量为10 Kg 的物体沿x 轴无摩擦地运动,在t=0时,物体位于原点(即x=0m ),速度为零(即v o =0),问 i t F rr )43(+=(1)设物体在力(N )的作用下移动了3秒,求:在此过程中物体所受冲量的大小,并求在第3秒末物体的速度和加速度的大小。
i x F r r(2)设物体在力)43(+=(N )的作用下移动了3米,求:在此过程中力F 的的功,并求在x=3m 时物体的速度和加速度的大小。
第 四 章(刚体的转动)1. 质量为m 的质点以速率v 沿直线向右运动,则它对距离该直线为d 的z 轴(z 轴垂直于纸平面向内)的角动量为________。
2.r2. 一根均匀棒,长为l ,质量为,可绕通过其一端且与其垂直的固定轴在铅直面内自由转动。
开始时棒静止在水平位置,当它自由下摆时,它的初角加速度等于_________。
(已知均匀棒对于通过其一端垂直于棒的转动惯量为m 231ml )3.在刚体定轴转动的转动定理αJ M =中,M 是 [ ]A .永远为正的B .是不可能随时间变化的C .定轴刚体所受的合外力对转动轴的力矩D .定轴刚体所受各外力对转动轴力矩的代数和4. 如图所示 ,对完全相同的定滑轮(半径R ,转动惯量J 都相同),用施加力F 和加重物(该重物所受重力P=F )两种方法产生的角加速度分别为1β与2β,则 [ ]A. 1β >2βB. 1β < 2βC. 1β = 2βD. 无法确定Fr5. 系统(即质点系)对轴的角动量守恒的条件是 [ ]A. 系统所受的合外力为零B. 外力对系统不做功C. 合外力对轴的力矩为零D. 各外力对轴的力矩的代数和为零6. 如图,一均匀细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂。
先有一小球自左方水平打击细杆,设小球与细杆之间为完全非弹性碰撞,则在碰撞的过程中对细杆与小球这一系统 [ ] A .只有机械能守恒B. 只有动量守恒C. 只有对转轴O 的角动量守恒。
D .机械能,动量和角动量均守恒7. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 8.(上册P48: 4—36)9. 一轻绳跨过两个质量均为m ,半径均为r 的均匀圆盘状定滑轮,绳子的两端分别挂着质量为m 和2m 的重物,如图所示,绳与滑轮之间无相对的滑动, 滑轮轴光滑,两个定滑轮的转动惯量均为221mr 。
将由“两个定滑轮以及质量为m 和2m 的重物组成的系统”从静止释放,求两滑轮间绳内的张力。
rm ,m ,mm2r10. 如图所示的阿特伍德机装置中,滑轮和绳之间没有滑动,且绳不可伸长,但轴与轮间有阻力矩,求滑轮两边绳中的的张力。
已知m 1=20Kg, m 2=10Kg,滑轮质量m 3=5Kg 滑轮半径r=0.2m 滑轮可视为均匀圆盘,阻力矩的大小为6.6m N⋅,已知圆盘对过其中心且与圆盘垂直的轴的转动惯量为2321r m 。
11. 质量为m 1,半径为r 1的均质圆轮A,以角速度ω绕通过其中心的水平的光滑轴转动,若此时将其放在质量为m ,半径为r 的另一均质圆轮B 上。
B 轮原为静止,但可绕过其中心的水平光滑轴转动,放置后A 轮的重量由B 轮支持,如图所示。
设两轮间的摩擦系数为22μ,A 、B 两轮对各自转轴的转动惯量分别为21r 121m 和222r 21m 。
求: 从A 轮放在B 轮上到两轮间没有相对滑动为止所经过的时间?1122,r m ,r m12. 如图所示,一长为L 质量为M 的杆可绕支点O 自由转动,一质量为m ,速率为v 的子弹水平地射入杆内距支点为d 处,求: (1)杆的最大的偏射角 θ的余弦θcos ,vm ,(2)如子弹与轴的碰撞时间为t Δ,求轴承给轴的水方向上的平均冲力。
13. 有两个半径不同的滑轮固定为一体,两轮的半径分别为r 1=10厘米,r =20厘米,质量分别为M 1=1千克,M =2千克。
小滑轮上悬挂一重物,其质量为m=2千克,另有一外力F 作用在大轮上,使物体离开地面,轮轴的摩擦不计,设外力做功50焦耳,除去外力后,物体掉在泥地上,求地面受到的冲量(滑轮的转动惯量为22221Mr ,设物体与地面碰撞过程中重力可不计)。
第十三章(气体动理论、热力学基础)1.一定量的某种理想气体在等压过程中对外作功200J,若此种气体为单原子分子气体,则该过程中吸热________J。
2. 在一按卡诺循环运行的热机中,工作物质从温度为7270C的高温热源吸热,且在每一循环中吸热2000J;工作物质向温度为5270C的低温热源放热,则此热机在每一循环中作功_______J。