初中几何空间与图形知识点
初中数学几何的总结知识点
初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。
空间立体几何知识点归纳
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
图形的所有知识点
图形的所有知识点图形是几何学中的一个重要概念,广泛应用于数学、理工科、计算机科学等领域。
本文将介绍图形的基本定义、分类以及与图形相关的重要概念和性质。
一、图形的基本定义在几何学中,图形是由点和线构成的集合。
点是图形中最基本的元素,用来表示位置;线是连接点的直线段,用来表示图形的边界或轮廓。
图形可以是二维的,也可以是三维的。
二、图形的分类根据图形的性质和特点,可以将图形分为以下几类:1. 点、线、面点是最基本的图形元素,没有长度、宽度和厚度。
线是由点组成的直线段,具有长度但没有宽度和厚度。
面是由线段围成的封闭区域,具有面积。
2. 平面图形平面图形是指在同一平面内的图形,包括直线、多边形、圆、椭圆等。
直线是由无限多个点组成的线段,没有宽度和厚度。
多边形是由直线段组成的封闭图形,包括三角形、四边形等。
圆是由等距离于圆心的点组成的封闭曲线,具有圆心、半径和直径等重要属性。
椭圆是由两个焦点到任意点距离之和不变的点组成的封闭曲线,具有焦距和长短轴等性质。
3. 空间图形空间图形是指存在于三维空间中的图形,包括立体、曲面、曲线等。
立体是由面围成的三维图形,包括立方体、棱柱、棱锥等。
曲面是由点和线组成的三维图形,可以是闭合曲面或开放曲面。
曲线是空间中的一条曲线,可以是闭合曲线或开放曲线。
4. 对称图形对称图形是指具有对称性质的图形,可以是平移、旋转、镜像对称等。
平移对称是指图形在平面内沿着一条直线移动后重合,保持形状和大小不变。
旋转对称是指图形围绕一个点旋转一定角度后重合,保持形状和大小不变。
镜像对称是指图形关于一条直线对称后重合,形状相同但方向相反。
三、图形的重要概念和性质除了基本定义和分类外,图形还具有以下重要概念和性质:1. 边长和周长边长是指多边形的边的长度,周长是指多边形所有边长的和。
边长和周长可以用来衡量多边形的大小和形状。
2. 面积和体积面积是指平面图形的大小,可以用来衡量图形所占据的区域大小。
体积是指立体图形的大小,可以用来衡量图形所占的空间大小。
图形与几何初中知识点总结
图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。
在初中阶段,学生将会接触到一系列的图形和几何知识。
本文将对这些初中图形与几何的知识点进行总结。
一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。
2. 四边形:平行四边形、矩形、正方形、菱形等。
3. 多边形:五边形、六边形、正多边形等。
4. 圆:圆的半径、直径、弧长、面积等。
二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。
2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。
三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。
学生需要了解相似三角形的判定条件,以及相似图形的比例关系。
2. 全等:两个图形既形状相同,又大小相同。
学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。
四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。
2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。
五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。
2. 角的运算:了解角的加法、减法、相等和互补关系等。
六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。
2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。
七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。
2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。
八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。
2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。
九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。
2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。
初中几何空间与图形知识点
初中几何空间与图形知识点A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成假设干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后〔关于画法,后面会讲〕一定要把线段穿出2点。
立体几何初步知识点全总结
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
初中数学几何知识点总结归纳
初中数学几何知识点总结归纳初中数学几何知识点总结归纳在初中数学中,几何是一个重要的部分,几何学习主要涉及到形状、图形、空间和位置的概念和变换。
本文将从以下几个方面总结归纳初中数学几何的知识点。
一、直线与角1. 直线:直线是没有弯曲的最短路径,它有无限多个点。
2. 角:角是由两条射线在一个共同顶点上的拓展形成的,可以分为钝角(大于90°),直角(90°)和锐角(小于90°)。
3. 平行线:平行线是在同一个平面上从不相交的直线。
4. 垂直线:垂直线是两条互相垂直的线段。
5. 余角:两个角的余角是它们的和等于90°的角。
二、多边形1. 正多边形:正多边形是有n个等边且等角的边构成的多边形。
2. 等腰三角形:等腰三角形是有两条边相等的三角形。
3. 等边三角形:等边三角形是三边都相等的三角形。
4. 直角三角形:直角三角形是有一个直角(90°)的三角形。
5. 锐角三角形:锐角三角形是三个内角都小于90°的三角形。
6. 钝角三角形:钝角三角形是三个内角中有一个大于90°的三角形。
三、梯形与平行四边形1. 梯形:梯形是一个有两条平行边的四边形。
2. 平行四边形:平行四边形是两对相对的边都平行的四边形。
3. 矩形:矩形是一个拥有四个直角的平行四边形。
4. 正方形:正方形是一个具有四个相等边且四个直角的矩形。
四、圆与圆周1. 圆:圆是一个平面上所有距离圆心相等的点的集合。
2. 圆周率:圆周率是圆的周长与直径的比值,约等于3.14159。
3. 弧:一个弧是圆上的一部分。
4. 弦:弦是连接圆上两点的线段。
五、相似与全等1. 相似图形:相似图形是具有相同形状但比例不同的图形。
2. 全等图形:全等图形是具有相同形状和尺寸的图形。
3. 比例:比例是两个量之间的相对大小关系。
4. 对应边:两个相似图形中位置相对应的边称为对应边。
六、立体几何1. 空间几何:空间几何涉及到三维图形的概念和变换。
几何全部知识点总结归纳
几何全部知识点总结归纳几何学的主要研究对象包括:1. 几何图形:平面几何和立体几何都是几何学的重要研究对象。
具体来说,平面几何主要研究平面上的点、直线、角、多边形等图形的性质和关系;立体几何主要研究空间中的点、直线、平面、多面体等图形的性质和关系。
2. 空间:几何学也研究空间的性质和运动规律,如平面空间、立体空间等。
在几何学中,空间包括了点、线、面和体等概念,一切几何图形都存在于空间中。
3. 运动:几何学研究物体在空间中的位置变化和变换规律,如平移、旋转、对称等。
这些运动规律不仅在几何学中具有重要意义,还对物理学、工程学等领域有着重要的应用价值。
以下是几何学中的一些重要知识点和概念:1. 平面几何1.1 点、线、面的性质和关系1.2 角的性质和分类1.3 特殊直线和角:垂直线、平行线、相交线、三角形内角和等于180度等1.4 多边形的性质与分类1.5 圆的性质与相关定理1.6 平面几何的解题方法与技巧2. 立体几何2.1 空间中的点、直线、面和体的性质2.2 多面体的性质和分类2.3 圆柱、圆锥、圆球的性质与计算2.4 立体几何的解题方法与技巧3. 向量和坐标几何3.1 向量的概念和运算3.2 向量的数量积和向量积3.3 直角坐标系和平面直角坐标系3.4 空间直角坐标系和坐标系中的直线、曲线方程4. 解析几何4.1 平面解析几何4.2 空间解析几何4.3 解析几何中的参数方程和极坐标方程5. 图形的变换5.1 平移、旋转、对称的概念和性质5.2 图形变换的运用和解题方法6. 空间几何6.1 空间中点、直线、面和体的性质6.2 空间几何的相关定理和应用7. 几何证明7.1 几何证明的基本规则和方法7.2 常见的几何定理和证明方法8. 几何学的应用8.1 几何学在建筑、绘画和工程等领域的应用8.2 几何学在科学研究和技术开发中的应用几何学的知识点繁多而且深奥,需要系统地学习和掌握。
通过学习几何学,我们可以提高逻辑思维能力、空间想象能力和解决问题的能力,有助于培养学生的数学素养和创新思维。
初二数学立体几何知识点概述
初二数学立体几何知识点概述立体几何是数学中的一个分支,研究的是三维空间中的形体、体积以及其相关性质。
在初中数学教学中,立体几何也是一个重要的内容,掌握好立体几何的基本知识,对于学生的数学素养和解决问题的能力都有着重要的影响。
本文将对初二学生需要掌握的立体几何知识点进行概述。
一、平面图形与空间图形的关系在学习立体几何之前,我们首先要了解平面图形与空间图形的关系。
平面图形是指在平面上的图形,包括了各种多边形、圆形等。
而空间图形是指在三维空间中的图形,如立方体、圆锥体等。
平面图形可以看做是一种特殊的空间图形,而空间图形可以通过展开来得到平面图形。
学生在学习立体几何时,需要善于将平面图形与空间图形相互转化,理解它们之间的联系。
二、立体图形的表面积和体积学习立体几何的重点是对立体图形的表面积和体积进行计算。
常见的立体图形包括了立方体、长方体、正方体、圆柱体、圆锥体、棱柱等。
对于每一种立体图形,我们都可以通过一定的公式计算其表面积和体积。
例如,对于立方体,其表面积等于六个面的面积之和,体积等于边长的立方;对于圆柱体,其表面积等于两个底面的面积和侧面的面积之和,体积等于底面积乘以高等等。
学生在学习时需要掌握这些计算方法,并能够灵活运用于解决各种问题。
三、空间图形的模型展开在解决某些立体几何问题时,我们常常需要将空间图形的展开模型进行分析。
展开模型是指将一个空间图形展开成一个平面图形,以便我们更好地进行计算和分析。
例如,对于一个正方体,我们可以将其展开成一个正方形,再通过计算正方形的面积来得到正方体的表面积;对于一个圆锥体,我们可以将其展开成一个扇形,再通过计算扇形的面积来得到圆锥体的表面积。
学生在学习时要掌握展开模型的方法,并能够将其运用于解决问题。
四、几何变换与立体几何几何变换也是立体几何的重要内容之一。
几何变换是指通过平移、旋转、镜像等方式对图形进行变化,而保持其形状和大小不变。
在立体几何中,几何变换也同样适用。
初一数学空间几何与立体图形题
初一数学空间几何与立体图形题在初一的数学学习中,空间几何与立体图形是一个重要的知识点,它不仅帮助我们理解和认知三维空间,还能提高我们的思维能力和创造力。
本文将为大家介绍初一数学空间几何与立体图形题,帮助大家更好地掌握这一知识点。
一、点、线、面的认识在数学中,点、线、面是空间几何的基本概念。
点是空间中没有大小、没有形状的基本单位;线是由无数相邻点组成的一条轨迹;面是由无数相邻线组成的一个平面。
通过对点、线、面的认识,我们可以更好地理解和描述三维空间中的事物。
二、立体图形的分类在空间几何中,立体图形是指具有三个维度的图形。
常见的立体图形包括圆柱体、球体、长方体等。
不同的立体图形拥有不同的性质和特点,我们需要通过对其分类和了解,来更好地解题和分析问题。
1. 圆柱体圆柱体是由两个平行于底面的圆面和连接两个底面的侧面组成的。
它有着体积、表面积等重要的特征。
在解题中,我们可以通过计算圆柱体的体积和表面积,来解决与其相关的问题。
2. 球体球体是由无数相等半径的点组成,位于共同的中心。
它具有体积、表面积等性质,也是我们在日常生活中接触到的常见立体图形之一。
在解题时,我们可以通过计算球体的体积和表面积,来求解与其相关的问题。
3. 长方体长方体是由6个矩形面组成的立体图形。
它有着体积、表面积等重要特性。
在日常生活中,我们经常接触到长方体,如教室的书桌、电视机等。
在解题时,我们可以通过计算长方体的体积和表面积,来解决相关问题。
三、立体图形的计算在解题过程中,我们需要掌握一些重要的计算方法,以便求解立体图形的体积和表面积。
1. 圆柱体的计算圆柱体的体积公式为:V = πr²h,其中V表示体积,π表示圆周率,r表示底面半径,h表示高。
圆柱体的表面积公式为:S = 2πr² + 2πrh,其中S表示表面积,π表示圆周率,r表示底面半径,h表示高。
2. 球体的计算球体的体积公式为:V = (4/3)πr³,其中V表示体积,π表示圆周率,r表示半径。
数学几何知识点
数学几何知识点
点、线、平面:几何学的基本元素是点、线和平面。
点是没有大小和形状的位置;线由一系列点组成,没有宽度和厚度;平面是由无限多条平行线组成的表面。
角度:角度是由两条射线共享一个端点形成的图形。
角度通常用度(°)或弧度(rad)来度量。
一个完整的圆周角度为360°或2π弧度。
直角、锐角和钝角:直角是一个角度为90°的角;锐角是一个角度小于90°的角;钝角是一个角度大于90°但小于180°的角。
三角形:三角形是由三条线段连接在一起的多边形。
常见的三角形类型包括等边三角形(三条边相等)、等腰三角形(两条边相等)、直角三角形(包含一个90°的角)等。
平行线和垂直线:平行线是在同一个平面上永不相交的线;垂直线是形成直角的线。
圆和圆周:圆是由与圆心距离相等的点组成的集合。
圆周是圆的边界,由一系列点组成。
多边形:多边形是由多条线段连接在一起的封闭图形。
常见的多边形类型包括正多边形(所有边和角都相等)、凸多边形(所有内角都小于180°)等。
空间几何:空间几何是研究三维空间中的图形和关系的几何学。
它包括立体图形(如立方体、圆柱体、锥体等)以及空间中的点、线和平面。
相似性:相似性是指具有相同形状但可能不同大小的图形。
相似的图形具有相等的形状比例。
圆锥曲线:圆锥曲线是由平面与一个圆锥相交而形成的曲线。
常见的圆锥曲线包括圆、椭圆、双曲线和抛物线。
数学中的几何图形与空间关系
数学中的几何图形与空间关系数学是一门抽象而又具体的学科,其中的几何学更是让人着迷。
几何学研究的是图形和空间的关系,通过对图形的形状、大小和位置的研究,我们可以揭示出许多有趣的数学定律和规律。
在这篇文章中,我将探讨几何图形与空间关系的一些重要概念和应用。
首先,我们来谈谈点、线和面这三个基本的几何概念。
点是几何学中最基本的图形,它没有长度、宽度和高度,只有位置。
线是由无数个点组成的,它有长度但没有宽度和高度。
面是由无数个线组成的,它有长度和宽度但没有高度。
这三个概念是几何学中最基础的元素,我们可以通过它们来构建更复杂的图形和空间关系。
接下来,让我们来研究一下几何图形的形状和性质。
最简单的图形是圆形,它由一个固定点到平面上所有距离相等的点组成。
圆形具有许多有趣的性质,比如它的周长和面积都可以用数学公式来计算。
正方形是另一个常见的图形,它的四条边和四个角都是相等的。
正方形也有许多有趣的性质,比如它的对角线长度等于边长的平方根。
这些图形的形状和性质是几何学中的基础知识,它们可以帮助我们理解更复杂的几何图形和空间关系。
除了形状和性质,几何图形还有许多重要的关系和定理。
例如,平行和垂直是几何学中常见的关系。
两条直线如果在同一平面内永远不相交,就称为平行线。
垂直线是指两条相交线段的夹角为90度。
平行和垂直关系在几何学中有广泛的应用,比如在建筑设计和地图制作中,我们经常需要利用这些关系来确定位置和方向。
此外,几何学中还有一些重要的定理,例如勾股定理和相似定理。
勾股定理是指在直角三角形中,直角边的平方等于其他两条边的平方和。
这个定理在解决三角形问题时非常有用,它可以帮助我们计算三角形的边长和角度。
相似定理是指两个图形的对应边成比例,对应角相等。
相似定理在解决图形相似性问题时起着重要的作用,它可以帮助我们判断两个图形是否相似,并计算它们的比例关系。
最后,让我们来看看几何图形与空间关系在实际生活中的应用。
几何学在建筑设计、城市规划和工程建设中起着重要的作用。
最新中考数学空间图形与几何初步知识点大全
最新中考数学空间图形与几何初步知识点大全几何图形立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.几种常见立体图形的展开图如下表:(1)不是所有的立体图形都可以展开,如球体就不能展开.(2)对于同一个立体图形,按不同的方式展开,可以得到不同的平面图形. 正方体的表面展开图共有11种,如图所示.⑩⑨⑧⑦⑥⑤④③②①点拨在正方体的展开图中,相邻的两个正方形是正方体中相邻的两个,当正方体相对的两个面在展开图中的同行或同列时,中间隔一个正方形.⑪中考试题研究中考命题规律本将内容在中考中主要考查立体图形的识别及其平面展开图,通常以选择题和填空题的形式出现,有利于考查空间想象能力和动手操作能力.直线、射线与线段知能解读(1)基本事实:经过两点有一条直线,并且知能有一条直线.简单说成:两点确定一条直线.(2)直线的表示方法:①可以用一个小写资本来表示,如图所示的直线可记作“直线l ”;②也可以用这条直线上的两个点来表示,如图所示的直线也可以记作“直线AB ”或“直线BA ”,其中,A B 为直线上的任意两个点.l(3)点与直线的关系:点A 在直线a 上,也可以说成直线a 经过点A (如图所示);点B 不在直线b 上,也可以说成直线b 不过经点B ,或点B 在直线b 外(如图所示).bOba(4)交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.如直线a 与直线b 相交于点O ,如图所示. 点拨(1)直线无粗细、没有端点、向两方无限延伸,不能度量.(2)直线基本事实中的“有且只有”有两层含义,“有”说明存在一条直线,即确定有一条;“只有”说明这条直线是“唯一”的.(3)两条不重合的直线最多有一个交点n 条直线相交最多有()12n n -个交点.(4)平面上的两条直线,有相交和不相交两种位置关系. 知能解读(二)射线与线段射线和线段都是直线的一部分.类似于直线的表示,我们可以用图所示的方式来表示线段AB (或线段BA ),其中A 、点B 是线段的端点.用图所示的方式来表示射线OA ,其中点O 是射线的端点.线段OA 或射线l线段AB 或线段alA O A Ba点拨(1)线段有长短(可以度量),但线段没有方向,表示线段的两个大写字母没有顺序.(2)表示射线时,一定要把表示端点的字母写在前面.(3)端点不同,所表示的射线不同;端点相同,延伸方向不同,所表示的射线也不同;只有端点相同,并且延伸方向也相同时,才是同一条射线.知能解读(三)直线、射线、线段的区别与联系两点的所有连线中,线段最短.简单说成:两点之间,线段最短.知能解读(五)两个重要概念(1)两点的距离:连接两点间的线段的长度,叫作这两点的距离.注意:距离线段的长度,不能仅说成线段,线段是一个几何图形.(2)线段的中点:如图所示,点M把线段AB分成相等的两条线段AM与BM,点M 叫作线段AB的中点.MA B点拨常用以下式子表示点M是线段AB的中点:①AM BM=;②1122AM AB BM AB⎛⎫==⎪⎝⎭或;③()22AB AM AB BM==或.知能解读(六)线段的画法及线段长短的比较(1)线段的画线:①用刻度尺测量后再画图;②借助直尺和圆规作图.例:如图所示,作一条线段,使其等于已知线段a.a作法:①先做一条射线AB;②用圆规量取已知线段a;③在射线AB上以A为圆心截取AC a=,则线段AC为所求线段,如图所示.这是第一个基本作图,应熟练掌握.(2)线段长短的比较.①叠合法:先把两条线段放在同一条直线上,让其一端重合,再看另一端的位置,从而确定两条线段的长短,这是从“形”的方面来进行比较.②度量法:利用刻度尺,量出,每条线段的长度,再根据度量的结果确定两条线段的长短,这是从“数”的方面来进行比较,线段的长短关系和它们的长度大小关系是一致的.方法技巧归纳方法技巧(一)直线、射线、线段的识别及表示方法识别时应根据它们各自的特征,“无始无终”的是直线,“有始有终”的是线段,“有始无终”的是射线.表示时注意射线端点必须在前.注意数射线的关键是找准端点,表示时端点要写在前面.方法技巧(二)关于直线和线段基本事实的应用关于直线的基本事实:两点确定的一条直线;关于直线的基本事实;两点之间,线段最短.这两条基本事实在实际生活中有广泛的应用,应注意识别.点拨本题是两个基本事实在生活中的应用,要注意学会将生活中的问题转化成数学问题,利用数学原理来解释.方法技巧(三)规律探究技巧在识别平面内直线分平面部分数,直线的交点个数,探究线段、射线或直线条数时,一般先从较简单的情形入手,通过发现其中的规律,然后加以总结.点拨(1)事实上,直线之间的交点个数越多,直线将平面分成部分就越多.(2)从简单情形入手,探索、发现、总结规律是常用的数学方法.方法技巧(四)线段的有关计算技巧求线段长度时,如果直接求解有困难,可采取设未知数建立方程的方法进行.点拨列方程进行机损是常用的方法,应注意掌握.点拨依据线段中点的定义和所分的两条线段相等,再根据线段和、差、倍、分关系求线段AD 的长.在解答此类问题时,既要结合图形分析已知线段和所求线段的位置关系,又要体会比较简捷的解题方法.易混易错辨析易混易错知识1.直线、射线、线段的表示法.区别:直线、射线和线段都可以用两个大写字母表示,但是它们的要求是不一样的,表示直线和线段的两个大写字母没有先后顺序,但表示射线的两个大写字母中端字母必须在前面.2.线段外一点和直线外一点易混淆.区别:线段外一点有两种情况,一是点在线段所在的直线上但在线段的两个端点的外部;二是点在线段所在直线的外部.而直线外一点只有一种情况,就是点在直线外.中考试题研究中考命题规律本讲内容在中考中主要考查两点确定一条直线及两点之间,线段最短的性质,线段的和、差级线段的中点等概念,对两点之间的距离也常涉及,常以填空题、选择题的形式出现,有时也计算题或探究题的形式出现.角知识解读(一)角的概念及表示方法1角的概念(1)有公共端点的两条射线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边.(2)角也可以看作是由一条射线绕着它的端点旋转而形成的图形.(3)射线旋转时经过的平面部分称为角的内部,平面其余部分称为角的外部.注意角的大小只与开口大小有关,而与角的边的长短无关,因为角的两边是射线.2角的表示方法角可用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有四种表示方法: (1)用数字表示单独的一个角,如图所示的1,2,34,5,6,7∠∠∠∠∠∠∠等;EDA B7123456(2)用小写的希腊字母表示单独的一个角,如图所示的,,,αβθγ∠∠∠∠等; (3)用一个大写英文字母表示一个独立的角(在一个顶点处只有一个角),如图1-30-1所示的,B C ∠∠等;γβαθO(4)用三个大写英文字母能表示出任一个角,如图所示的,,,,,BAD BAE BAC CAE CAD ABC ∠∠∠∠∠∠等,注意顶点字母必须写在中间.知能解读(二)角的比较(1)度量法:如图所示,用量角器量得40,30COD AOB ∠=︒∠=︒,所以COD AOB ∠<∠.D CO AB(2)叠合法:如图所示,把一个角放到另一个角上,使它们的顶点重合,器重的一边也重合,并使这两个角的另一边都在重合的同侧,其大小关系就明显了,由图可知,COD AOB ∠<∠.CB (D )OA注意(1)角可以度量,可以比较大小,也可以参与运算.(2)用叠合法比较角的大小注意三点;①角的顶点重合;②角的一边重合;③另一边落在重合边的同侧. :知能解读(三)角的画法方法1:画一个角等于已知角,可用量角器先测定已知角的度数,再用量角器画与已知角相等的角.方法2:用圆规和直尺画一个角等于已知角. 例如:如图所示,已知AOB ∠.求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)以O 为圆心,以任意长为半径作弧,交,OA OB 于点MN ; (2)作射线O A '',以O '为圆心,O M 长为半径作弧M C ',交O A ''于点M '; (3)以M '为圆心,MN 长为半径作弧,交弧M C ''于点N '; (4)过N '点作射线O B '',则A O B '''∠即为所求. 注意方法2用圆规、直尺画角是基本作图,也在中考命题范围之内. 知能解读(四)角的和、差、倍、分(1)角的和、差 如图①所示,如图将1∠与2∠的顶点重合,再将1∠的一边与2∠的一边重合,并使两个角的另一边分别在重合边的两侧,它们不重合的两边组成AOB ∠,这时就说AOB ∠是1∠与2∠的和,记作12AOB ∠=∠+∠.此时1∠是AOB ∠与2∠的差,记作12AOB ∠=∠-∠;2∠是AOB ∠与1∠的差,记作21AOB ∠=∠-∠.12ABO①(2)角的倍、分 如图②所示,用上述方法将两个1∠拼在一起得到AOB ∠,这时就说AOB ∠是1∠的2倍,记作21AO B ∠=∠或1∠是AOB ∠的12,记作112AOB ∠=∠.类似地,将三个1∠拼在一起得到AOB ∠时,131,13AOB AOB ∠=∠∠=∠.11②知能解读(五)角平分线一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫作这个角的平分线.常用以下三类数学式子表示角的平分线:如图所示,①12∠=∠;②111222AOB AOB ⎛⎫∠=∠∠=∠ ⎪⎝⎭或;③()2122AOB AOB ∠=∠∠=∠或.O21C B A注意角平分线是一条射线,而不是一条直线或线段.角平分线把一个角分成两个相等的角. 知能解读(六)角的度量单位及换算我们常用量角器度量角,度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是1度的角,把1度的角60等分,每一份就是1分的角,把1分的角60等分,每一份就是1秒的角.1度记作1︒,1分记作1',1秒记作1''.160,160''''︒==,1360,1180=︒=︒周角平角.即:1160,160⎛⎫''︒==︒ ⎪⎝⎭;1160,160'⎛⎫'''''== ⎪⎝⎭.1180,1360=︒=︒平角周角.124==周角平角直角. 点拨(1)度、分、秒之间是60进制,这和计量时间的单位时、分、秒是一样的.(2)使用量角器时,注意量角器的零刻度的读数的旋转方向,即选择内刻度、外刻度的读数.(3)以、度、分、秒为单位的角的度量制,叫作角度制.此外,还有其他度量角的单位制,如以弧度为基本度量单位的弧度制. 知能解读(七)互为余角和互为补角(1)如图两个角的和是90︒,那么这两个角互为余角,其中一个角是另一个角的余数.锐角α的余角为90α︒-.(2)如果两个角的和是180︒,那么这两个角互为补角,其中一个角是另一个角的补角.角α的补角是180α︒-.(3)互余、互补的性质;同角(等角)的余角相等;同角(等角)的补角相等. 注意(1)余角和补角是关于两个角的关系的概念,不能单独说哪一个角是余角或补角. (2)两个角互余或互补只是两个角的和为90︒或180︒,与位置无关.(3)两个角互余,则这两个角一定都是锐角.两个角互补,这两个角可能都是直角.也可能一个角是锐角,另一个角为钝角. 知能解读(八)用角度表示方向方位角是从正北或正南方向到目标方向所成的小于九十度的角.例:如图所示,OA 方向可表示为北偏西60︒南东方法技巧归纳方法技巧(一)角的识别和表示法角的识别关键是找角的顶点,再找角的两边,在表示角时,注意一个大写字母只能表示一个独立角,三个大写字母可以表示任意的角,而且要把表示顶点的字母写在中间. 点拨(3)中关键词是“只能”(即不能用另外的表示方法)二字,因此在找角时要按照要求去做.方法技巧(二)利用角平分线的定义求角的度数的方法角的平分线提供了角的相等或倍分关系,把这些关系与已知角联系起来,可以求出相关角的度数.在有关角的度数的计算题中,有些题目设有给出图形,当画出符合题意的图形不唯一时,要注意分情况进行讨论. 点拨根据解题的需要,角平分线的定义既可以写作两角相等的形式,也可以写作一个角是另一个角2倍的形式,还可以写作一个角是另外一个半的形式,应灵活选择.同时在计算中应注意“整体代入思想”的运用. 方法技巧(三)度、分、秒的换算把度换算成度、分、秒时要乘进率,而把度、分、秒转化为度时,要除以进率,换算时要逐级进行,不可越级转化.方法技巧(四)余角和补角的有关计算根据余角和补角的定义,锐角α的90,180αα=︒-=︒=余角补角.个别复杂些的问题,可列方程求解. 点拨本题求角度可以利用方程求解,可以直接设未知数,也可以间接设未知数. 点拨在计算有关余角、补角或与角度有关的问题时,多数用列方程的方法求解. 方法技巧(五)钟表上的角度问题我们知道,时钟(如图所示)是测量时间的工具,时间的长与短、多与少都可以通过指针的指向来判断.在几何中,机械时钟的指针还给了我们角的直观形象.在时钟的表盘上,分针每分钟转6︒,时针每小时转30︒,每分钟转0.5︒.知道这些关系,就可轻松解决时钟问题了. 点拨钟表中时针与分针的夹角问题可转化为行程与角的应用题,采用方程的思想来解决,使复杂的问题变得直观,易于解决.易混易错辨析易混易错只是 1.互余、互补概念混淆.互余、互补是指两个角之间的一种关系,若三个角的和等于90︒(或180︒),不能说这三个角互余(或互补).2.角的换算单位与数的换算单位混淆.区别:角的换算单位之间的进率是60,而数的换算单位之间的进率是10.中考试题研究中考命题规律本讲知识在中考中重点考查角的分类,角的大小比较及有关计算,互余、互补等知识,利用角平分线以及角的和差进行角的计算,常以填空题、选择题的形式出现,今年来又出现了对角的个数的规律探究方面的考查.相交线、平行线知能解读(一)邻补角、对顶角的概念1邻补角如图所示,1∠和2∠有一条公共边OB ,它们的另一边互为反向延长线(1∠与2∠互补),具有这种关系的两个角,互为邻补角.O1432DCBA2对顶角定义:如图所示,1∠和3∠有一个公共顶点O ,并且1∠的两边分别是3∠的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.性质:对顶角相等. 注意对顶角的特征:①对顶角由两条直线相交形成,同时形成两对对顶角;②成对顶角的两个角有公共的顶点;③一个角的两边分别是另一个角的两边的反向延长线. 知能解读(二)垂线的定义、性质1垂线的定义如图所示,直线AB 与CD 相交于点O ,当90BO C ∠=︒时,我们说直线AB 与直线CD 互相垂直,记作AB CD ⊥.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂直线.它们的交点叫作垂足.O DC BA2垂线的性质(1)基本事实:在同一平面内,过一点有且只有条直线与已知直线垂直. 注意(1)应用以上性质必须强调“在同一平面内”,否则,在空间里,经过直线上一点与已知直线垂直的直线有无数条;(2)“过一点”中的一点可以是直线外一点,也可以是直线上一点;(3)“有且只有”说明了垂线的存在性和唯一性.(2)连接直线外一点与直线上各点的所有线段中的垂线段最短.简单说成:垂线段最短. 注意垂线与垂线段都具有垂直已知直线的特征,但垂线是一条直线,不能度量,而垂线段是一条线段,可以度量,它是垂线的一部分. 知能解读(三)点到直线的距离直线外一点到这条直线的垂线段的长度,叫作到直线的距离. 注意距离是一个数量,而不是一个线段,所以点到直线的距离强调的是垂线段的长度. 区分两点间的距离与点到直线的距离,如下表:如图所示,直线AB CD 、被第三条直线EF 所截,构成八个角,简称“三线八角”.FEDCBA87654321(1)同位角:1∠与5∠,2∠与6∠,3∠与7∠,4∠与8∠,它们分别在直线,AB CD 的同一方,且在直线EF 的同侧,具有这种位置关系的一对角叫作同位角.(2)内错角:3∠与5∠,4∠与6∠,它们都在直线,AB CD 之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫作内错角.(3)同旁内角:4∠与5∠,3∠与6∠,它们都在直线,AB CD 之间,又在直线EF 的同一旁,具有这种位置关系的一对角叫作同旁内角. 注意(1)这三类角指的都是位置关系,而不是大小关系. (2)这三类角没有公共顶点,都是成对出现的. 知能解读(五)平行线的概念及平行公理1平行线的概念在同一平面内,直线a 与b 不相交时,我们说线a 与b 互相平行,记作a b .注意(1)平行线无论怎样延伸也不相交.(2)今后遇到线段、射线平行时,指线段、射线所在的直线平行. (3)在同一平面内两条直线的位置关系只有两种:相交和平行. 2平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 注意(1)以上结论所的是经过“直线外一点”,若经过直线上的一点作已知直线的平行线,就与已知直线重合了.(2)“有且只有”指出了过直线外一点作这条直线的平行线的“存在性”和“唯一性”.推论:如图两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果,ba ca ,那么bc (如图所示).ab c知能解读(六)平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.知能解读(七)平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.知能解读(八)平行线间的距离(1)如果两条直线平行,那么其中一条直线上每个点到另一条直线的距离都相等.这个距离,叫作这两条平行线之间的距离.注意(1)对于平面内角的两条直线,只有平行线才有距离,两条相交直线不存在距离.(2)求两条平行线之间距离的方法:在两条平行线中的任意一条上取任意一点作另一条直线的垂线段,垂线段的长度是这两条平行线之间的距离,实际上是把求两条平行线间的距离转化为求一点到一条直线的距离.(3)区分“垂线段”与“距离”,前者是形,后者是量,垂线段的长度是距离.方法技巧归纳方法技巧(一)对顶角的识别方法识别对顶角应把握两个条件:一是有公共顶点;二是角的两边互为反向延长线.一般来说,两条直线相交,一定有对顶角产生.点拨对顶角的定义应注意四点:(1)对顶角由两条直线相交而成;(2)同时形成的有两对对顶角;(3)成对顶角的两个角有公共顶点;(4)一个角的两边分别是另一个角的两边的反向延长线.方法技巧(二)垂直的定义及性质的应用进行有关角的计算时,一遇到垂直就应联想到相交所成的四个角都是90 .点拨解决与垂直有关的问题时,通常利用互余、互补关系,对顶角及同等角或等角的余角相等,同角或等角的补角相等等条件来求解.方法技巧(三)同位角、内错角、同旁内角的识别要准确地识别这三类角,首先应对照基本图形,根据定义把握其位置特点,在遇到实际问题时要找出哪两条直线被哪一条直线所截,对于一些复杂图形有时还需要把图形分开来识别.识别方法如下:每对同位角、内错角和同旁内角的顶点都不相同,且有一边在同一条直线(截线)上,另一条边分别在另两条直线(被截线)上.方法技巧(四)平行线的判定与性质的综合运用当题目中出现平行线时,应考虑有关角相等或互补这些性质.点拨本例是平行线性质及判定的综合运用,这是与平行线有关问题的常见形式.先应用性质,求得角相等(或互补),再对角与角之间进行转化,得到新的角相等(或互补),从而说明又一组直线平行;或是先由一对角相等(或互补),推得两直线平行,再证新的一对角相等(或互补),进而得平行线.方法技巧(五)辅助平行线的妙用主要体现为求一些角的度数有困难时,通过作辅助线转化为同位角、内错角或同旁内角进行求解.点拨此题不能直接接触,需要添加与AB平行的直线EF,它为辅助线,用虚线画出.添加辅助线的目的使问题得以顺利解决.点拨在这里作辅助线不能过E点作EF AB CD,只能作其中一条直线的平行线,再说明它与另一条直线也平行.易混易错辨析易混易错知识1.互为补角与互为邻补角.区别:互补只强调两个角之间的数量关系,而互为邻补角不但要求两角和180 ,而且还从位置上要求两个角必须有公共顶点和一条公共边.联系:互为邻补角是互为补角的特殊情况.2.垂线段与点到直线的距离混淆.区别:垂线段是图形,而距离是线段的长度.3.在应用平行线的判定和性质时忽视条件.在利用同位角相等、内错角相等或同旁内角互补关系时,易忽略“两直线平行”这个前提条件.中考试题研究中考命题规律本讲内容是中学数学几何部分的基础内容,多以填空题和选择题以及简单的解答题形式出现,主要考查的内容有:对顶角性质的应用,应用垂直的定义讲行相关计算,同位角、内错角、同旁内角概念的考查以及平行的条件;与平行四边形、梯形、相似形(以后要讲的知识)相结合的综合题以及平行线的性质和判定在其他学科中的应用.。
初中数学必背几何知识点总结归纳
初中数学必背几何知识点总结归纳初中数学几何的知识点三角形知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.高线、中线、角平分线的意义和做法7.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
8.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余推论2三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半9.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
10.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1.两组对边平行的四边形是平行四边形。
2.性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3.判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4.对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4.对称性:矩形是轴对称图形也是中心对称图形。
苏科版八年级下册数学知识点汇总
苏科版八年级下册数学知识点汇总
本文档汇总了苏科版八年级下册数学的主要知识点,以供学生复和备考使用。
一. 几何与图形
1. 平面图形:
- 三角形的分类及性质
- 四边形的分类及性质(矩形、正方形、菱形等)
- 圆的性质及相关公式
2. 空间几何:
- 空间图形的投影
- 空间几何体的表面积和体积
二. 代数与方程
1. 方程与不等式:
- 一次方程与一元一次方程组的解法
- 二元一次方程组的解法
- 一次不等式与一元一次不等式组的解法
2. 分式与比例:
- 分式的定义及运算
- 比例与比例的性质
3. 二次根式与二次方程:
- 二次根式的化简与运算
- 二次方程的解法(配方法、公式法)
三. 数据与概率
1. 统计图表:
- 条形图、折线图、饼图的制作与解读
2. 概率与事件:
- 基本概率概念及计算
- 样本空间与事件的关系
四. 函数与图像
1. 函数的概念与表示方法:
- 函数的定义及符号表示
- 函数关系的表示方法(表格、图像等)
2. 一次函数与二次函数:
- 一次函数的性质与图像
- 二次函数的性质与图像
以上是苏科版八年级下册数学知识点的简要汇总。
学生可以根
据自己的学习情况,有选择性地进行复习和巩固。
祝大家学习进步!。
初中几何知识点梳理总结
初中几何知识点梳理总结几何是数学的一个分支,研究空间、图形、形状、大小、相似和对称等内容。
初中阶段的几何知识主要包括图形的性质、尺度、几何作图、相似与全等三角形、角的知识、平行线和相交线、平行四边形、三角形的性质、圆的性质等。
下面对这些知识点进行梳理总结:1. 图形的性质:包括点、直线、线段和射线的概念,图形的位置关系、图形的性质以及一些特殊的图形的性质。
在初中几何中,学生需要掌握的图形包括三角形、四边形、圆等。
2. 尺度:学生需要了解长度、面积和体积的基本概念,掌握一些常见图形的计算公式和计算方法,如矩形、正方形、三角形、圆等的面积和周长的计算方法。
3. 几何作图:学生需要学会使用直尺和圆规进行一些简单的几何作图,包括画线段、垂直平分线、角平分线、垂直线、平行线、垂直平行线等。
4. 相似与全等三角形:学生需要掌握相似三角形和全等三角形的一些判定条件和性质,以及相似三角形和全等三角形的相关应用。
5. 角的知识:学生需要了解角的基本概念,包括角的度量、角的分类以及角的性质等内容。
另外,还需要学会使用量角器进行角度的测量。
6. 平行线和相交线:学生需要了解平行线和相交线的基本概念,掌握平行线和相交线的性质,如同位角、内错角、外错角等的性质和判定条件。
7. 平行四边形:学生需要了解平行四边形的性质,如对角线相等、对边相等、对角互补等性质,以及平行四边形的判定条件和相关应用。
8. 三角形的性质:学生需要掌握三角形的性质,包括三角形内角和为180°、三角形外角等于非邻角的和、三角形的分类、三角形的判定和相关应用。
9. 圆的性质:学生需要了解圆的基本概念,掌握圆的性质和相关定理,如圆心角、圆心角的度数、弧长、扇形以及圆的切线等内容。
以上就是初中几何知识点的梳理总结,希望对学生们的几何学习有所帮助。
初中数学几何知识点需要学生理解和掌握的内容较多,需要通过反复练习和实际操作来加深理解,并且应注重数学实际应用能力的培养,帮助学生将数学知识应用到日常生活中。
初中知识点归纳——立体几何篇
初中知识点归纳——立体几何篇立体几何是初中数学的重要内容之一,它主要研究空间中的各种几何体的性质和相互关系。
掌握立体几何的基本概念和性质,对于解题和解决实际问题非常有帮助。
本文将对初中立体几何的知识点进行归纳和总结,帮助读者更好地理解和运用这些知识。
一、立体几何的基本概念1. 点、线、面和体:点是没有长宽高的,用大写字母表示;线是由无数个连续点组成的,用两个点的大写字母表示;面是由无数个连续线组成的,用大写字母表示;体是由无数个连续面组成的,用大写字母表示。
2. 多面体和非多面体:多面体是由多个平面围成的立体,如正方体、长方体等;非多面体则不是由平面围成的,如圆柱体、圆锥体等。
二、立体图形的计算1. 面积的计算:不同立体图形的面积计算公式不同。
常见的计算公式有:- 正方体的表面积 = 6 × (边长)²- 长方体的表面积 = 2 × (长 ×宽 + 长 ×高 + 宽 ×高)- 圆柱体的侧面积= 2 × π × 半径 ×高- 球的表面积= 4 × π × 半径²2. 体积的计算:不同立体图形的体积计算公式也不同。
常见的计算公式有:- 正方体的体积 = 边长³- 长方体的体积 = 长 ×宽 ×高- 圆柱体的体积= π × 半径² ×高- 球的体积= (4/3) × π × 半径³三、常见的立体几何体1. 正方体:所有的边相等且平行于坐标轴,有六个面,每个面上有四个顶点。
2. 长方体:所有的边相等或相等且平行于坐标轴,有六个面,每个面上有四个顶点。
3. 三棱柱:两个底面是相等的全等三角形,有三个长方形的面,每个面上有两个顶点。
4. 圆柱体:两个底面是相等的圆形,有一个长方形的面,每个面上有两个顶点。
初中数学知识点总结之几何与图形
初中数学知识点总结之几何与图形几何与图形是初中数学中的一个重要知识点,它包括了相似、全等、射影、投影、平移、旋转、绕射等概念。
通过学习几何与图形,我们可以更好地理解空间中的形状、大小关系,培养几何思维和空间想象力。
接下来,我将对几何与图形的相关知识进行总结和详解。
首先,我们来介绍相似与全等。
相似是指两个图形的形状相似,但大小不同;全等则是指两个图形的形状和大小完全相同。
相似与全等是几何学中非常基础的概念,我们可以通过观察图形的边长和角度来判断它们之间的关系。
当两个图形的对应边的比例相等,对应角的度数相等时,我们可以得出这两个图形是相似的;而当两个图形的对应边和对应角均相等时,我们可以得出这两个图形是全等的。
接下来,我们来了解射影与投影。
射影是指从一个点到一个曲线或直线上的垂直连线。
在几何学中,我们常常需要求出一个点到一个直线或曲线上的射影,通过射影我们可以确定两个几何体之间的位置关系。
而投影则是指图形在某一方向上的影子。
当我们将一个点或一个物体在光线下放置,它在背景上形成的阴影就是投影。
投影在班级中我们都很熟悉,当老师用投影仪将课本上的内容放大到黑板上时,我们就可以清晰地看到课本上的图形。
平移是指图形在平面上沿着某一方向上移动一段距离,平移保持图形的大小、形状和方向不变,只是位置发生了改变。
平移是几何学中最基本的变换之一,我们可以通过平移来将图形进行重叠、拼图等操作。
平移常常需要辅助工具,比如直尺和量角器,通过这些工具可以更加准确地进行平移操作。
旋转是指图形沿着一个定点旋转一定的角度。
旋转可以保持图形的大小和形状不变,只是方向发生改变。
我们可以通过角度的正负来确定顺时针或逆时针旋转。
旋转常常涉及到角度的测量,我们可以通过量角器或者知道要求的旋转角度来进行旋转操作。
绕射是指一个图形或几个图形围绕一个中心点逆时针或顺时针扩展或收缩。
绕射允许我们改变图形的大小、形状和方向。
在绕射过程中,图形的每个点距离中心点的距离与原图形的相应点的距离比值相等。
七年级八年级几何知识点
七年级八年级几何知识点
几何是一门关于空间形状、大小、位置关系等方面的科学,其涵盖面广,在初中阶段也占有非常重要的地位。
在七年级和八年级,学生们需要掌握一些基本的几何知识点,如下述内容。
一、平面图形
1. 三角形
三角形是由三条边和三个角所组成的平面图形。
按照边长分,有等腰三角形和等边三角形;按照角度分,有锐角三角形、直角三角形和钝角三角形。
2. 矩形
矩形是一个拥有四个直角的四边形,其对边长度相等,对边平行。
面积公式为长乘以宽。
3. 正方形
正方形是四边相等、四个角均为直角的矩形,其面积公式为边长的平方。
4. 平行四边形
平行四边形是四边形中的一种,对边平行且长度相等,它的面积公式为底乘以高。
5. 梯形
梯形也是四边形的一种,其中两边平行且长度不等。
它的面积公式为上底加下底再乘以高,结果再除以二。
二、立体几何
1. 立方体
立方体是一种六个面都是正方形的立体图形,体积公式为边长的三次方。
2. 正方体
正方体也是六个面都是正方形的立体图形,它的各个棱都相等,体积公式同样为边长的三次方。
3. 圆柱
圆柱是一个底面为圆形,侧面由一个矩形围成的立体图形。
它
的侧面积公式为圆周长乘以高,底面积公式为圆的面积。
4. 圆锥
圆锥是一个底面是圆形的立体图形,通常还包括一个尖端。
其
侧面积公式为一半的底面周长乘以母线,体积公式为底面积乘以
高再除以三。
以上就是七年级和八年级中常见的几何知识点,这些知识点对
于理解数学的基础和发展就非常重要,希望同学们能够刻苦学习,深入了解几何知识。
初一几何知识点总结
初一几何知识点总结初一几何经典的知识点归纳篇一空间几何体的类型1、多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
高中数学知识点:几种空间几何体的结构特征棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱的。
面积和体积公式S直棱柱侧面=c·h(c为底面周长,h为棱柱的高)S直棱柱全=c·h+2S底V棱柱=S底·h空间几何体体积计算公式1、长方体体积V=abc=Sh2、柱体体积所有柱体V=Sh、即柱体的体积等于它的底面积S和高h的积圆柱V=πr2h3、棱锥V=1/3某Sh4、圆锥V=1/3某πr2h5、棱台V=1/3某h(S+(√SS')+S')6、圆台V=1/3某πh(r2+rr'+r'2)7、球V=4/3某πR3高中数学函数知识点1、指数式、对数式2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像3、单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”复合函数的奇偶性特点是:“内偶则偶,内奇同外”、复合函数要考虑定义域的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何空间与图形知识点A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
③将线段的两端无限延长就形成了直线。
直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。
②同角或等角的余角/补角相等。
③对顶角相等。
④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
②三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
③三角形三个内角的和等于180度。
④三角形分锐角三角形/直角三角形/钝角三角形。
⑤直角三角形的两个锐角互余。
⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。
⑧三角形的三条角平分线交于一点,三条中线交于一点。
⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。
两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。
②两条腰相等的梯形叫等腰梯形。
③一条腰和底垂直的梯形叫做直角梯形。
④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:1、图形的轴对称轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似比:①A/B=C/D,那么AD=BC,反之亦然。
②A/B=C/D,那么A土B/B=C土D/D。
③A/B=C/D=。
=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。
②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。
②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。
②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。
他们分4个象限。
XA,YB记作(A,B)。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
D、证明教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。
②对事情进行判断的句子叫做命题(分真命题与假命题)。
③每个命题是由条件和结论两部分组成。
④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。
②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。
③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。
④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。