八年级数学全等三角形全章检测题

合集下载

八年级数学上册第十二章《全等三角形》单元试卷含答案

八年级数学上册第十二章《全等三角形》单元试卷含答案

八年级数学上册第十二章《全等三角形》单元试卷一、选择题(每小题只有一个正确答案)1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃()A.B.C.D.选择哪块都行2.如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是()A.AB△CDB. △ABC=△CDAC. △A=△CD.AD△BC3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:54.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC△△DEF,还需的条件是()A. △A=△DB. △B=△EC. △C=△FD.以上三个均可以5.如图,△BAD=△BCD=90°,AB=CB,可以证明△BAD△△BCD的理由是()A. HLB. ASAC. SASD. AAS6.如图,在△ABC中,△ABC=50°,△ACB=60°,点E在BC的延长线上,△ABC的平分线BD与△ACE 的平分线CD相交于点D,连接AD,则下列结论中,正确的是()A. △BAC=60°B. △DOC=85°C.BC=CDD.AC=AB7.如图,△ABC△△DEF,则下列判断错误的是()A.AB=DEB.BE=CFC.AC△DFD. △ACB=△DEF8.如图,△ABC中,AB△BC,BE△AC,△1=△2,AD=AB,则下列结论不正确的是()A.BF=DFB. △1=△EFDC.BF>EFD.FD△BC9.如图,△ABC△△DCB,若△A=80°,△ACB=40°,则△BCD等于()A. 80°B. 60°C. 40°D. 20°10.如图,小牛利用全等三角形的知识测量池塘两端A、B的距离,如图△CDO△△BAO,则只需测出其长度的线段是()A.AOB.CBC.BOD.CD11.如图,已知AD是△ABC的BC边上的高,下列能使△ABD△△ACD的条件是()A.AB=ACB. △BAC=90°C.BD=ACD. △B=45°12.已知如图,△GBC,△BAC的平分线相交于点F,BE△CF于H,若△AFB=40°,△BCF的度数为()A. 40°B. 50°C. 55°D. 60°二、填空题13.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有__________对.14.已知:如图,AE△BC,DF△BC,垂足分别为E,F,AE=DF,AB=DC,则△_________△△_________.15.如图,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证△B=△D,可先用等式的性质证明AF=________,再用“SSS”证明______△_______得到结论.16.如图,在平面直角坐标系中,△AOB△△COD,则点D的坐标是____________.17.如图,已知AB=AD,△BAE=△DAC,要用SAS判定△ABC△△ADE,可补充的条件是.三、解答题18.如图,CA=CD,CE=CB,求证:AB=DE.19.如图,已知BD为△ABC的平分线,AB=BC,点P在BD上,PM△AD于M,PN△CD于N,求证:PM=PN.20.如图,AD△BC于D,AD=BD,AC=BE.(1)请说明△1=△C;(2)猜想并说明DE和DC有何特殊关系.21.如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE△BC,DF△BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的是Rt△ABE△Rt△DCF,△AEC△△DFB.说明理由.答案解析1.【答案】C【解析】A块和B块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;C块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.则应带C去.故选C.2.【答案】D【解析】题中已有条件AD=BC,隐含公共边相等,那么就缺少这两边所夹的角相等,即△ADC=△BDC,选项中没有此条件,要想得到这个条件,需添加AD△BC.3.【答案】C【解析】利用同高不同底的三角形的面积之比就是底之比可知选C.4.【答案】B【解析】要使两三角形全等,且根据SAS已知AB=DE,BC=EF,还差夹角,即△B=△E;A、C都不满足要求,D也就不能选取.故选B.5.【答案】A【解析】△△BAD=△BCD=90°,AB=CB,DB=DB,△△BAD△△BCD(HL).故选A.6.【答案】B【解析】△△ABC=50°,△ACB=60°,△△BAC=180°-△ABC-△ACB=180°-50°-60°=70°,故A选项错误,△BD平分△ABC,△△ABO=△ABC=×50°=25°,在△ABO中,△AOB=180°-△BAC-△ABO=180°-70°-25°=85°,△△DOC=△AOB=85°,故B选项正确;△CD平分△ACE,△△CBD=△ABC=×50°=25°,△CD平分△ACE,△△ACD=(180°-60°)=60°,△△BDC=180°-85°-60°=35°,△BC≠CD,故C选项错误;△△ABC=50°,△ACB=60°,△AC≠AB,故D选项错误.故选B.7.【答案】D【解析】△△ABC△△DEF,△AB=DE,A正确;BE=CF,B正确;AC△DF,C正确,△ACB=△DFE,D 判断错误,故选D.8.【答案】B【解析】△AB△BC,BE△AC,△△C+△BAC=△ABE+△BAC=90°,△△C=△ABE,在△ABF与△ADF中,,△△ABF△△ADF,△BF=DF,故A正确,△△ABE=△ADF,△△ADF=△C,△DF△BC,故D正确;△△FED=90°,△DF>EF,△BF>EF;故C正确;△△EFD=△DBC=△BAC=2△1,故B错误.故选B.9.【答案】B【解析】△△ABC△△DCB,△△ACB=△DBC,△ABC=△DCB,△ABC中,△A=80°,△ACB=40°,△△ABC=180°-80°-40°=60°,△△BCD=△ABC=60°,故选B.10.【答案】D【解析】要想利用△CDO△△BAO求得AB的长,只需求得线段DC的长,故选D.11.【答案】A【解析】添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加△B=△C,符合判定定理AAS;添加△BAD=△CAD,符合判定定理ASA;选其中任何一个均可.故选A.12.【答案】B【解析】作FZ△AE于Z,FY△CB于Y,FW△AB于W,△AF平分△BAC,FZ△AE,FW△AB,△FZ=FW,同理FW=FY,△FZ=FY,FZ△AE,FY△CB,△△FCZ=△FCY,△△AFB=40°,△△ACB=80°,△△ZCY=100°,△△BCF=50°.故选B.13.【答案】(1)和(6),(2)(3)(5).【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案14.【答案】ABE;DCF【解析】证明:△在△ABE和△DCF中,AE△BC,DF△BC,AE=DF,AB=DC,符合直角三角形全等条件HL,所以△ABE△△DCF,故填ABE;DCF.15.【答案】CE;△ABF;△CDE【解析】先运用等式的性质证明AF=CE,再用“SSS”证明△ABF△△CDE得到结论.故答案为CE,△ABF,△CDE.16.【答案】(-2,0)【解析】△△AOB△△COD,△OD=OB,△点D的坐标是(-2,0).故答案为(-2,0).17.【答案】AC=AE【解析】可补充的条件是:当AC=AE,△ABC△△ADE(SAS).18.【答案】证明:在△ACB和△DCE中,,△△ACB△△DCE(SAS),△AB=DE.【解析】直接利用SAS判定△ACB△△DCE,再根据全等三角形的性质可得AB=DE.19.【答案】证明:△BD为△ABC的平分线,△△ABD=△CBD,在△ABD和△CBD中,,△△ABD△△CBD(SAS),△△ADB=△CDB,△点P在BD上,PM△AD,PN△CD,△PM=PN.【解析】根据角平分线的定义可得△ABD=△CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得△ADB=△CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.20.【答案】解:(1)△AD△BC于D,△△BDE=△ADC=90°.△AD=BD,AC=BE,△△BDE△△ADC (HL).△△1=△C.(2)由(1)知△BDE△△ADC.△DE=DC.【解析】欲证△1=△C;DE和DC的关系,只需证明△DBE△△DAC即可.21.【答案】证明:△AE△BC,DF△BC,垂足分别为E、F,△△AEB=△DFC=90°,而AB=DC,AE=DF,△Rt△ABE△Rt△DCF,△BE=CF,△EC=BF,而AE=DF,△△AEC△△DFB.【解析】需先根据HL判定Rt△ABE△Rt△DCF,从而得出BE=CF,则推出EC=BF,再根据SAS判定△AEC△△DFB,求出AC=BD.。

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题

2021年新人教版数学八年级上人教新课标第十一章全等三角形全章检测题

数学:第11章全等三角形全章检测题(人教新课标八年级上)一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5.所对的角的关系是( )A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所示,BE ⊥AC 于点D ,且AD =CD ,A.25° B.27° C.30°A D A CB O DC B AA B C E F A BC D F EO 8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则( )A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题(每小题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).12.如图,在△ABC 中,AB =AC ,BE 、CF 是中线,则由 可得△AFC ≌△AEB .13.如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .DOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.17.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.21.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′ D C E量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?A D E CB F G G D F AC B E GD FA CB E F E DC B AG参考答案:一、选择题1.A2.D3.C 提示:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和面积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E .∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C二、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟一三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt △BEC 中,A EBC ACD E CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩公共角∴△OAD ≌△OBE(ASA),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE . A G F C B D E 图1 图2。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

八年级数学上册《全等三角形》单元测试题(有答案解析)

八年级数学上册《全等三角形》单元测试题(有答案解析)

八年级数学上册《全等三角形》单元测试题(有答案解析)一.选择题1.已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为()A.80°B.40°C.60°D.120°2.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等3.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°5.下列说法中,错误的是()A.全等三角形对应角相等 B.全等三角形对应边相等C.全等三角形的面积相等 D.面积相等的两个三角形一定全等6.如图,在△ABC和△DEF中,∠C=∠F=90°,添加下列条件,不能判定这两个三角形全等的是()A.∠A=∠D,∠B=∠E B.AC=DF,AB=DEC.∠A=∠D,AB=DE D.AC=DF,CB=FE7.如图所示,∠C=∠D=90°,添加下列条件①AC=AD;②∠ABC=∠ABD;③∠BAC=∠BAD;④BC=BD,能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.1 B.2 C.3 D.48.如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BE=CD9.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.710.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF的长度为()A.2 B.1 C.4 D.3二.填空题11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件.13.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=.14.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.16.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm.19.如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.20.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)三.解答题21.求证:全等三角形的对应边中线相等.22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q 运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.24.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.25.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.26.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)27.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.参考答案与解析一.选择题1.解:在△ABC中,∠A=80°,∠B=40°,∴∠C=180°﹣80°﹣40°=60°,∵△ABC≌△A′B′C′,∴∠C′=∠C=60°,2.解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.3.解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣∠ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:A、全等三角形对应角相等,说法正确;B、全等三角形对应边相等,说法正确;C、全等三角形的面积相等,说法正确;D、面积相等的两个三角形一定全等,说法错误,例如一边长为6,这边上的高为3和一边长为3,这边上的高为6的两个三角形,面积相等,却不全等;6.解:A.添加条件∠A=∠D,∠B=∠E时,没有边的条件,故不能判定△ABC≌△DEF,B.添加条件AC=DF,AB=DE,根据HL可证明△ABC≌△DEF,C.添加条件∠A=∠D,AB=DE,根据AAS可证明△ABC≌△DEF,D.添加条件AC=DF,CB=FE,根据SAS可证明△ABC≌△DEF,故选:A.7.解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当∠BAC=∠BAD时,由∠C=∠D=90°,∠BAC=∠BAD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);④当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.8.解:A、根据ASA即可证明三角形全等,本选项不符合题意.B、根据SAS即可证明三角形全等,本选项不符合题意.C、根据AAS或ASA即可证明三角形全等,本选项不符合题意.D、SSA不能判定三角形全等,本选项符合题意.故选:D.9.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.10.证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.二.填空题11.解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.12.解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.13.解:如图,∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE⊥AB,DF⊥BC,∴∠BED=∠CDF=90°,在Rt△BDE与△Rt△CFD中,,∴Rt△BDE≌△Rt△CFD(HL),∴∠BDE=∠CFD=35°,∴∠EDF+∠BDE=∠EDF+∠CFD=90°,∴∠EDF=55°.故答案是:55°.14.解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,∴点D的坐标是(﹣4,3),当△ABD′≌△BAC时,△ABD′的高D′G=△BAC的高CH=4,AG=BH=1,∴OG=2,∴点D′的坐标是(﹣4,2),故答案为:(﹣4,3)或(﹣4,2).15.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.16.解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.17.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.18.解:∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°∴∠BAD+∠EAC=90°,∠BAD+∠B=90°∴∠EAC=∠B∵AB=AC∴△ABD≌△ACE(AAS)∴AD=CE,BD=AE∴DE=AD+AE=CE+BD=7cm.故填7.19.解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.20.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC,∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正确;综上所述,正确的结论是①②④.故答案是:①②④.三.解答题21.已知:如图,△ABC≌△A1B1C1,AD、A1D1分别是对应边BC、B1C1的中线,求证:AD=A1D1,证明:∵△ABC≌△A1B1C1,∴AB=A1B1,BC=B1C1,∠B=∠B1,∵AD、A1D1分别是对应边BC、B1C1的中线,∴BD=BC,B1D1=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,,∴△ABD≌△A1B1D1(SAS),∴AD=A1D1.22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).24.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.25.解:(1)如图1,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)DE=BD+CE.如图2,证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠C AE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中..∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.26.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.27.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.。

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)

人教版八年级数学第十二章《全等三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,△ABD和△ACD中,AB=AC,BD=CD,若∠B=20°,则∠C等于()A.10°B.20°C.30°D.40°2.(3分)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②3.(3分)如图,已知△ABD≌△ACE,AD=3,AB=7,BD=9,则AC的长为()A.3B.7C.9D.无法确定4.(3分)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO ≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL5.(3分)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 6.(3分)如图,点E、F、C、B在同一直线上,AB=DE,∠A=∠D,添加下列一个条件,不能判定△ABC≌△DEF的条件是()A.∠ACB=∠DFE B.AC=DF C.∠B=∠E D.BC=EF7.(3分)如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PE⊥OA于点E,PC ∥OB交OA于点C,若PD=3,则OC的长为()A.6B.5C.4D.38.(3分)如图,AB,CD相交于O,△OCA≌△OBD,AO=6,BO=4,则CD的长为()A.9B.10C.11D.129.(3分)下列结论正确的是()A.两个等边三角形全等B.有一个锐角相等的两个直角三角形全等C.有两边及一个角对应相等的两个三角形全等D.斜边和一个锐角对应相等的两个直角三角形全等10.(3分)根据语句“直线a与直线b相交,点P在直线a上,直线b不经过点P.”画出的图形是()A.B.C.D.二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.(3分)已知△ABC的三边长为x,3,6,△DEF的三边长为5,6,y.若△ABC与△DEF全等,则x+y的值为.13.(3分)如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC 上的点,且DE=DG,则∠AED+∠AGD=度.14.(3分)如图,OP平分∠MON,P A⊥ON于点A,若P A=3,则点P到射线OM的距离是.15.(3分)如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=5,则OE的最小值为.三、解答题(共8小题,满分75分)16.(9分)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.17.(9分)如图,已知△ABC和△ADC有公共边AC,且AB=AD,请你添加一个条件(不再添加其他线段,不再标注或使用其他字母),使∠B=∠D,并说明理由.18.(9分)如图,AB=AD,∠C=∠E,∠BAE=∠DAC.求证:AC=AE.19.(9分)如图,已知AB=AD,AE=AC,∠DAB=∠EAC.求证:△ACD≌△AEB.20.(9分)已知:如图,点E、F在BC上,AF与DE交于点G,AB=DC,GE=GF,∠B =∠C.求证:AG=DG.21.(10分)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.22.(10分)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.23.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB 且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.B;5.B;6.D;7.A;8.B;9.D;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.813.18014.315.5三、解答题(共8小题,满分75分)16.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).17.解:添加条件:CB=CD,理由:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.(答案不唯一)18.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(AAS),∴AC=AE.19.证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS).20.证明:∵GE=GF,∴△GEF为等腰三角形,∴∠GEF=∠GFE,∵在△ABF和△DCE中,∠B=∠C,∴∠A=∠D,在△ABF和△DCE中,,∴△ABF≌△DCE(ASA),∴AF=DE,又∵GF=GE,∴AF﹣GF=DE﹣GE,即AG=DG.21.证明(1)在ABC和△BAD中,,∴△ABC≌△BAD(SSS);(2)∵△ABC≌△BAD,∴∠CBA=∠DAB,∴OA=OB,∵OE⊥AB,∴AE=BE.22.(1)证明:∵AD∥BC,∴∠A=∠C,∵AE=FC,∴AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠D=∠B;(2)解:∵∠A=20°,∠D=110°,∴∠AFD=50°,∵△ADF≌△CBE,∴∠BEC=∠AFD=50°.23.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°。

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析一、单选题(共10题;共30分)1.(3分)如图,△ABC△△ADE,△C=40°,则△E的度数为()A.80°B.75°C.40°D.70°2.(3分)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,若BC=6cm,BD=4cm.则DE的长是()A.5cm B.4cm C.3cm D.2cm3.(3分)用直尺和圆规作一个角等于已知角,如图,能得出△A′O′B′=△AOB的依据是().A.SAS B.AAS C.ASA D.SSS4.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则△1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以5.(3分)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),若h1=5,h2=2,则正方形ABCD的面积S等于()A.34B.89C.74D.1096.(3分)下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.(3分)如图,直线l1,l2,l3表示三条公路。

现要建造一个洗手台P,使P到三条公路的距离都相等,则洗手台P可选择的点有()A.一处B.二处C.三处D.四处8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)如图,若要用“HL”证明Rt△ABC△Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.△BAC=△BAD D.以上都不对10.(3分)如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.12B.34C.1D.54二、填空题(共5题;共15分)11.(3分)如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=.12.(3分)如图,△ABC的三边AB、BC、CA的长分别为30、40、15,点P是三条角平分线的交点,将△ABC分成三个三角形,则SΔAPB︰SΔBPC︰SΔCPA等于13.(3分)如图,AB⊥BC,AD⊥DC,请你添加一个条件,利用“HL”,证明Rt△ABC≌Rt△ADC.14.(3分)如图,△AOB=30°,OP平分△AOB,PD△OB于D,PC△OB交OA于C,若PC=10,则PD=.15.(3分)如图,C 为线段AE 上一动点(不与A、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ△AE;③AP=BQ;④DE=DP;⑤△AOB=60°,其中正确的结论是(把你认为正确的结论的序号都填上).三、解答题(共11题;共75分)16.(5分)如图,点E,F在BC上,BE=CF,△A=△D ,△B=△C.求证:△ABF△△DCE。

第12章 全等三角形 单元同步检测试题 2022—2023学年人教版数学八年级上册

第12章 全等三角形 单元同步检测试题 2022—2023学年人教版数学八年级上册

第十二章《全等三角形》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.如图是两个全等三角形,则∠1的度数为()A.48°B.60°C.62°D.72°2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.根据下列已知条件,能唯一画出△ABC的是()A.∠C=90°,AB=6 B.AB=4,BC=3,∠A=30°C.AB=5,BC=3 D.∠A=60°,∠B=45°,BC=4 4.如图,点A、D在线段BC的同侧,连接AB、AC、DB、DC,已知∠ABC=∠DCB,老师要求同学们补充一个条件使△ABC≌△DCB.以下是四个同学补充的条件,其中错误的是()A.∠A=∠D B.AC=DB C.AB=DC D.∠ABD=∠DCA 5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( ) A.5对B.4对C.3对D.2对6.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90° B.150° C.180° D.210°第6题图第7题图第8题图7.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°8.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于()A.120°B.125°C.130°D.135°9.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC 交AB于点E,交AC于点F,过点O作OD⊥AC于点D,某班学生在一次数学活动课中,探索出如下结论,其中错误的是()A.EF=BE+CFB.点O到△ABC各边的距离相等C.∠BOC=90°+∠AD.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每题3分,共24分)11.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段____.12.如图,已知EA=CE,∠B=∠D=∠AEC=90°,AB=3 cm,CD=2 cm,则△CDE和△EBA 的面积之和是____.13.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.14.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)15.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是_________________________时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是_____________时,它们一定不全等.16.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=_____度.17.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③DA=DC;④△ABC≌△ADC,其中正确结论的序号是_____.18.如图,已知△ABC中,AB=AC=20 cm,BC=16 cm,∠B=∠C,点D是AB的中点,点P 在线段BC上以2 cm/s的速度由B点向C点运动,同时点Q在线段CA上由A点向C点运动,当△BPD与△CQP全等时,点Q的运动速度为______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,AD是△ADC中∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,联结EF.求证:AD⊥EF.20.如图,AB=12米,CA⊥AB于点A,DB⊥AB于点B,且AC=4米,点P从B 向A运动,每分钟走1米,点Q从B点向D运动,每分钟走2米,P、Q两点同时出发,运动几分钟后,△CPA与△PQB全等?21.如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.22.如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.23. 如图12-21,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.24.探究等边三角形“手拉手”问题.(1)如图1,已知△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,则∠ADB+∠ADE=度;(3)如图3,已知点E在等边三角形△ABC外,点E、点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜想线段BE、AE、CE三者之间的数量关系,并说明理由.答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 D C D B C B D C B C二、填空题11.AC=BD(答案不唯一)12.62cm13.314.AC=DF(答案不唯一)15.钝角三角形或直角三角形,钝角三角形.16.4517.①②④18.52cm/s或143cm/s三、解答题19.证明:如图所示:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,又∵AD是△ADC中∠BAC的平分线,∴DE=DF,在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴Rt △AED 与Rt △AFD 关于直线AD 成轴对称, ∴EF ⊥AD .20.解:1)当△CPA ≌△PQB 时,BP =AC =4(米), 则BQ =AP =AB ﹣BP =12﹣4=8(米),A 的运动时间是:4÷1=4(分钟), Q 的运动时间是:8÷2=4(分钟), 则当t =4分钟时,两个三角形全等; 2)当△CPA ≌△PQB 时,BQ =AC =4(米),AP =BP =AB =6(米),则P 运动的时间是:6÷1=6(分钟),Q 运动的时间是:4÷2=2(分钟), 故不能成立.总之,运动4分钟后,△CPA 与△PQB 全等.21.证明:∵AD⊥AE,AB⊥AC,∴∠CAB =∠DAE=90°.∴∠CAB+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE. 在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△ABD≌△ACE.22.证明:∵AC∥BE,∴∠DBE=∠C.∵∠CDE=∠DBE+∠E,∠ABE=∠ABC+∠DBE,∠ABE=∠CDE,∴∠E=∠ABC.在△ABC 与△DEB中,⎩⎨⎧∠C=∠DBE ,∠ABC=∠E,AB =DE ,∴△ABC≌△DEB(AAS ).∴BC=BE ,AC =BD.∴DC=BC -BD =BE -AC. 23.(1)证明:在△AOB 和△DOC 中,∴△AOB≌△DOC(AAS).(2)解:∵△AOB≌△DOC,∴OA=OD.又∵E是AD的中点,∴AE=DE.在△AOE与△DOE中,∴△AOE≌△DOE(SSS).∴∠AEO=∠DEO=90°.24.解:(1)CE∥AB,理由如下:∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE;(2)∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ADE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠AED=60°,∠DEC=60°,∴∠AEC=120°,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=180°,故答案为:180;(3)结论:BE=AE+EC,理由如下:如图3,在线段BE上取一点H,使得BH=CE,设AC交BE于点O,∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,在△ABH和△ACE中,,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。

2021年人教版八年级上第12章全等三角形单元检测题及答案

2021年人教版八年级上第12章全等三角形单元检测题及答案

A. △ ACEBCD C.△ DCGECF2021年人教版八年级上第12章全等三角形单元 检测题及答案〔本检测题总分值:100分,时刻:90分钟〕 一、选择题〔每题3分,共30分〕 1•以下讲法正确的选项是〔〕 A.形状相同的两个三角形全等B.面积相等的两个三角形全等F 列不正确的等式是〔 D.AD=DE4.在厶ABC 和厶ABC 中,AB= AB , / B= / B ,补充条件后仍不一定能保 证 △ ABC ABC ,那么补充的那个条件是〔 〕A . BC= BCB ./ A= / AC . AC= A CD ./ C=/ C5•如下图,点B 、C 、E 在同一条直线上,△ ABC 与厶CDE 差不多上 等边三角形,那么以下结论不一定成立的是〔 〕C.完全重合的两个三角形全等A.AB=ACB. / BAE= / CADC.BE=DCD.所有的等边三角形全等 3•如下图,△ ABEACD ,/仁/2, / B=第3题图6. 要测量河两岸相对的两点 的距离,先在的垂线上取两点 , 使 ,再作出 的垂线,使在一条直线上〔如下图〕,能够讲明△[,疇幻△ •,得 ,因此测得 的长确实是 的长,判定△ =△ 最恰当的理由是〔〕 A.边角边 B.角边角边边角7. :如下图,AC 二CD , D ,那么不正确的结论是〔〕A ./ A 与/ D 互为余角C .A ABC CED D . Z 1 = Z 28. 在厶 和厶FED 中,Z C= Z D , Z B= Z E ,要判定这两个三角 形全等,还需要条件〔〕 A.AB=ED D. Z A= Z F9•如下图,在△ ABC 中,AB=AC , Z ABC 、Z ACB 的平分线BD , CE 相交于O 点,且BD 交AC 于点D , CE 交AB 于点E .某同学分析图形 后得B.AB=FDC.AC=FD第5题图D.AC 丄C出以下结论:①△ BCDCBE :②厶BAD幻3△ BCD :③厶 BDA CEA :④厶 BOECOD :⑤厶 ACE BCE ,上述结论一定正确的选项是〔 〕10. 如下图,在△誠中,諒>&, % //叫 阴?J 点/•在"边上,连接血;处;皿,那么添加以下哪一个条件后,仍无法判定△ b 皿与△皿H 全等〔 〕D.①③④A k //B.C. / 二/D. / = /二、填空题〔每题3分,共24 分〕11. 如果△ ABC 和厶DEF 这两个三角形全等,点 C 和点E , 点B 和点D 分不是对应点,那么另一组对 是,对应边是 , 对应角是,表示这两个三角形全等的式子是应点12. 如图,在△ ABC 中,AB=8 , AC=6,贝卩BC 边上的中线 AD 的取值 范畴是13. 如图为6个边长相等的正方形的组合图形,那么/ 1 + Z 2+Z 3= 第15题图14. 如下图,等边△ ABC 中,BD=CE , AD 与BE 相交于点P , 那么/APE 是度.15.如下图,AB=AC , AD=AE ,/ BAC= / DAE ,/ 仁25°,/ 2=317. 如下图,△ ABC 的周长是21, OB , OC 分不平分/ ABC 和 / ACB , OD 丄BC 于D ,且0D=3,那么△ ABC 的面积是18. 如下图,在厶ABC 中,/ A=90° , AB=AC , CD 平分/ AC B , DE 丄BC 于 E ,假设 BC=15。

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。

人教版八年级上册第12章《全等三角形》章末检测卷

人教版八年级上册第12章《全等三角形》章末检测卷

人教版八年级上册第12章《全等三角形》章末检测卷姓名 学号(含答案).选择题1 .下面命题错误的是()A.边长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形全等D.形状和大小完全相同的两个三角形全等2 .在△ ABC 中,AB= AC D 为BC 的中点,点E 、F 分别在4 .工人师傅经常利用角尺平分一个任意角.如图所示,/上分别取OMk ON 移动角尺,使角尺两边相同的刻度分别与 M N 重合,这时过角尺顶点P 的射线OP 就是/ EOF 的平分线.要说明射线 OP 是/EOF 的平分线,应先说明△ OPMW △ OPN:等,△ OPMI△OPN:等的依据是()BC 上,且DE= DF,则图中全等的C. 4D. 5的度数是(C. 58°D. 50°EO 既一个任意角,在边 OE OFA.SSSB.ASAC.SASD. AAS5 .如图,在^ ABC 中,D, E 两点分别在 BC AC 边上,若^ BD 庠△ ED 庠△ EDC 那么/ CA. 20°B. 25C. 30°D. 156 .在下列条件中,不能说明^ AB 笠B' C 的是()A. / A= / A' , / C= /C ; AC= A' CB. / A= /A' , AB= A' B' , BC= B' CC. / B= / B' , / C= /C' , AB= A' B'D. AB= A' B' , BC= B' C,AC= A' C7 .如图,已知△ AB 白△ ACD /1 = /2, /B= / C,不正确的等式是()若/ 1 = / 2,则图中全等三角形共有(9 .如图,点 E 是BC 的中点,ABL BC DCL BC AE 平分/ BAD 下列结论:①/ AED= 90° ②/ ADE= / CDEDDE= BEDAD= A9CD四个结论中成立的是()B. / BAE= / CADC. BE= DCD. AD= DEE 、D,使AE= AD 连接BD CE 相交于点 Q 再连接AO BCA. 5对B. 6对C. 7对D. 8对度数是()A. AB= AC8.如图,在AB AC 上各取一点 二A.①②④B.①②③C.②③④D.①③10 .如图,在^ ABC^, P 、Q 分别是BC AC 上的点,作PRLAR PS ,AC 垂足分别为若AQ= PQ PR= PG 则这四个结论中正确的有()① PA 平分/ BAC ② AS= AR ③ QR/ AR ④△ BR 国△ CSPA. 4个B. 3个C. 2个D. 1个.填空题11 .如图,在^ ABC43, D E 分别是 AC AB 上的点,若^ AD 降△ BD 白△ BDC 则/12 .如图所示,AB= AC AD= AE / BAO /DAE / 1= 20 , / 2=25 ,则 / 3 =13 .如图,Rt^ABC 中,CD 是斜边AB 上的高,角平分线 AE 交CD 于H, EF ,AB 于列结论中正确的是.(填序号)①AO AFD CHh CED/ ACD= / B ®CE= EBR S,DBC 勺则下度数为 ________14 .如图,点 C 在线段 AB 上,D- AB EBI AB Fd AR 且 DA= BQ EB= AC FC= AR /16 .如图,已知等腰4 ABQ AB= AQ Z BAC= 120° , ADL BC 于点D,点P 是BA 延长线上一点,点O 是线段AD 上一点,O2 OC 下面结论:①/ APO= / ACO ②/ APO/PCB= 90° ;(只填一个条件即可)③PC= PO ④AOAP= AC 其中正确的有.(填上所有正确结论的序号)BD DE /C+/AED= 180° ,请你添加一个条件, 使△ BD 降△ BDC 你所添加的条件是C5三.解答题17.如图,点C, D均在线段AB上,且AD= BC 分另U过C D作FC± AB EDLAB连接AEBF,连接EF交AB于点G若AE= BF,求证:DG= CG18.如图,在^ ABC3, ABLBC BE1 AC于E, AF平分/ BAC^ BE于点F, DF// BC(1)试说明:BF= DF;(2)延长AF交BC于点G,试说明:BG= DF19.已知OP平分/ AOB / DCE勺顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G(1)如图1,若CD! OA CEL OB请直接写出线段CF与CG的数量关系;(2)如图2,若/ AOB= 120° , / DCE= / AOC试判断线段CF与CG的数量关系,并说明理由.20.如图,△ ABC43, AB= AC Z EAF-- / BAC BF,AE于E交AF于点F,连结CF(1)如图1所示,当/ EAF在/ BACft部时,求证:EF= BE+CFCF= BF+2BE参考答案・选择题1.解:A、可以用SSS^J定两三角形全等;B可以用SAS^J定两三角形全等;C腰虽然相等,但是夹角不一定相等,所以是错误的;口基本就是全等的定义.故选:C.2.解:.AB= AC BD= DC. ADL BC / B= / C,・ ./ ADB= / ADC= 90 ,在△ ABDW △ AC加'曲ACqZB=ZC,BD=CDL. .△AB¥△ ACD(SAS ,. DE= DF,. BE= CF,在△ ABEW △ AC叶M ACZB=ZC, gCF . .△AB凄△ ACF(SAS ,在△ ADEf △ ADF中i r AD=AD』ZADE=ZADF, ,DE=DF. .△AD摩△ ADF(SAS ,同理可得4 ABg△ ACE 故选:C.3.解:二.两个三角形全等,.•.Z 2=/ 1 = 180° —58° —72° = 50° ,M N 重合, ・••P 阵 PN•.在△ PMG 口 △ PNO^跳」ONOPOP,I.PM 二 FN. .△PM@△PNO(SSS , ・ •/ POM : / PON即O% / EOF 勺平分线, 故选:A.5 .解:△ BD 库^ED 库△ EDC/ B= / AE 氏 / DEC / BA 氏 / EA 氏 / C, / AED/ CED= 180 , / ./ AED= / CED= 90° =/ B, / • / B+/BAB/DAG/C= 180° ,C= 30° ,故选:C.6 .解:A 、/A= /A' , Z C= / C' , AC= A C',可用 ASA 判定△ AB8 A A B' C,故选 项正确;Ek /A= /A' , AB-A B' , BC= B' C' , SSA^能判定两个三角形全等,故选项错误; G/ B- / B' ,/ C= /C' , AB- A B',可用 AAS^J 定△ AB 挈△ A'B' C,故选项正确;口 AB= A' B' , BC= B' C, AC= A' C ,可用 SS$U 定△ AB 笠△ A' B' C,故选项正确. 故选:B.7,解:△ ABEE^△ ACD / 1 = / 2, / B= / C, • .AB= AC / BAE= / CAD BE= DC AD= AE,故A 、B C 正确;AD 的对应边是 AE 而非DE 所以D 错误.故选: D.故选:D. 4.解:二•移动角尺,使角尺两边相同的刻度分别与8.解:①在△ AEOf △AD3\i r AE=AD,Z1=Z2 ,QA=OA(公共边)△ AE孽△ADO(SAS ;②AE实△ ADO. OE= OD / AEO= / ADO・ ./ BEO= / CDO在△ BE0t l △ CD*,[/BEONCDQ* OE=OD、/BOE:/COD(对■顶角相等) . .△BE拿△ CDO(ASA ;③.△ BE实△ CDOBE= CD B0= CO OE= OD. CE= BD在△ BECW △ CDBK[EE =CD$ ZBEC=ZCDB,. .△BE挈△ CDB(SAS ;④在△ AEd △ ADB43,fAE=ADlcE=BD则4AE室△ ADB(SAS ;⑤AE笠△ ADB.•.AB= AC在△ AO的△ AO计,fAB=AC|QB=OC,[oA=OA. △ AOB3 △ AOC综上所述,图中全等三角形共5对.故选:A.9.解:过E作EF,AD于F,如图,ABL BC AE平分/ BAD••• RtAAEF^ RtAAEBBE= EF, AB= AF, / AEF= / AEB而点E是BC的中点,. EC= EF= BE,所以③错误;RtA EFtD^ RtA ECD. DC= DF, / FDE= / CDE 所以②正确;・•.AD= AF+FD= A8DC 所以④正确;,/AED= / AEF+/FED=^/BEC= 90° ,所以①正确. 故选:A.10.解:(1) PA平分/ BAC. PR!AR PS,AC PR= PS, AP= AP,. AP蹊△ APS/ PAR= / PAS•・PA平分/ BAC(2)由(1)中的全等也可得AS= AR(3). AQ= PR・./ 1 = / APQ・./ PQS= / 1+/APQ= 2/1,又.. PA平分/ BAC・./ BAG= 2 / 1,/ PQS= / BACPQ// AR(4). PRLAB PS±AC・ ./ BRP= / CSP. PR= PS,・•.△ BRPT一定全等与△ CSP(只具备一角一边的两三角形不一定全等)11.解:.「△ AD降△ BDEE^△ BDC/ A= / DBE= / CBD / C= / AED= / BED/ AED/ BED= 180 ,・./ AED= / BED= 90° = / C,/ C+Z A+/CBA 180° ,,3/A= 90° ,・./ A= 30° ,・•.Z DBC= / A= 30° ,故答案为:30° .12.解:•. / BAG= / DAE・•• / BAG- / DA仔 / DAE- / DAC即/ BAD= / CAE在△ BADW △ CA计,产AC[AD=AE. .△BA坐△ CAE (SAS ,・./ ABD= / 2 = 25 ,・・/ 3=/ 1 + /ABD= 25° +20 = 45 .故答案为:45° .13.解:①.一AE平分/ CAB••• / CAE= / BAE•. / C= 90° , ED AB. CE= FE,RtA ACE^ Rt AAFE (HD ,. AC= AF,,①正确;③•・•。

八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版

八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版

八年级数学上册《第十二章全等三角形》单元检测卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如图,AC 与BD 相交于点O ,AB CD =和A D ∠∠=,不添加辅助线,判定ABO ≌DCO 的依据是( )A .SSSB .SASC .HLD .AAS2.边长都为整数的△ABC 和△DEF 全等,AB 与DE 是对应边,AB =2,BC =4,若△DEF 的周长为奇数,则DF 的值为( )A .3B .4C .3或5D .3或4或53.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8BOC 90m ∠︒=,.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A .1mB .1.6mC .1.8mD .1.4m4.如图所示,在 ABC 中 90C ∠=︒ ,点D 在 AB 上 BC BD = , DE AB ⊥ 交 AC 于点E , ABC 的周长为12, ADE 的周长为6,则 BC 长为( )A .3B .4C .5D .65.如图,在ACD 中9068CAD AC AD ∠=︒==,,,AB CD 且E 是CD 上一点,BE 与AD 相交于点F ,当AB CE CD +=时,图中阴影部分的面积为( )A .24B .36C .48D .606.如图,ABC ≌ADE ,BC 的延长线交DE 于点F3011010B AED DAC ∠=︒∠=︒∠=︒,, 则DFB ∠=( )A .55︒B .50︒C .65︒D .60︒7.如图,已知 ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则 ABC 的面积是( )A .64B .48C .32D .428.如图,已知线段40AB =米,MA AB ⊥于点A ,20MA =米射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发x 秒后,在线段MA 上有一点C ,使CAP 与PBQ 全等,则x 的值为( )A .20B .20或10C .10D .6或10二、填空题:(本题共5小题,每小题3分,共15分.) 9.在平面直角坐标系中,已知点A ,B 的坐标分别是 (2,0) , (4,2) 若在x 轴下方有一点P ,使以O ,A ,P 为顶点的三角形与 OAB 全等,则满足条件的P 点的坐标是 .10.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF=40°,PB=PF ,则∠APF= °.11.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD 于点E ,DE =2,BC =5,则△BCE 的面积为 .12.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥垂足为D ,交AC 与点E ,A ABE ∠=∠若7AC =,4BC =则BD 的长为 .13.如图,点A ,E ,F ,C 在一条直线上,若将△DEC 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE =CF ,DE ⊥AC 于点E ,BF ⊥AC 于点F ,且AB =CD .则当点E ,F 不重合时,BD 与EF 的关系是 .三、解答题:(本题共5题,共45分)14.如图,已知AC 平分BAF ∠,CE AB ⊥于点E ,CF AF ⊥于点F ,且BC DC =.求证:CFD CEB ≌.15.如图AB AC = , AB AC ⊥ 和AD AE ⊥ ,且 D AEC ∠=∠ ,求证: AD AE = .16.如图,AD 为△ABC 的中线,分别过点C 、B 作AD 的垂线,垂足分别为E 、F .求证:BF=CE .17.如图所示,在△ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 交BD 的延长线于点E ,CE =1,延长CE 、BA 交于点F .(1)求证:△ADB ≌△AFC ;(2)求BD 的长度.18.如图 AB AC = , AE AD = 和 CAB EAD α∠=∠= .(1)求证: AEC ADB ≅ ;(2)若 90α=︒ ,试判断 BD 与 CE 的数量及位置关系并证明;(3)若 CAB EAD α∠=∠= ,求 CFA ∠ 的度数.参考答案:1.D 2.D 3.D 4.A 5.A 6.B 7.C 8.C9.(2,2)-- 或 (4,2)-10.8011.512.3213.互相平分14.证明:∵AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ∴CE CF =在Rt CEB 和Rt CFD 中{CE =CF CB =CD∴()Rt Rt HL CFD CEB ≌.15.证明:∵AB ⊥AC ,AD ⊥AE∴∠BAE+∠CAE =90°,∠BAE+∠BAD =90°∴∠CAE =∠BAD又AB =AC , D AEC ∠=∠∴△ABD ≌△ACE(AAS)∴AD AE = .16.证明:∵CE ⊥AF ,BF ⊥AF∴∠CED=∠BFD=90°又∵AD 是边BC 上的中线∴BD=DC ;在Rt △BDF 和Rt △CDE 中∴△BDF ≌△CDE (AAS )∴BF=CE (全等三角形的对应边相等).17.(1)证明:如图∵∠BAC =90°∴∠2+∠F =90°,∠ACF+∠F =90°∴∠ACF =∠2在△ACF 和△ABD 中{∠CAF =∠BAD =90∘AC =AB∠ACF =∠2∴△ACF ≌△ABD(2)解:∵△ACF≌△ABD∴BD=CF∵BE⊥CF∴∠BEC=∠BEF=90°∵∠1+∠BCE=90°,∠2+∠F=90°∴∠BCF=∠F∴BC=BF,CE=EF=1∴BD=CF=2.18.(1)证明:∵∠CAB=∠EAD ∴∠CAB+∠BAE=∠EAD+∠BAE∴∠CAE=∠BAD∵AB=AC,AE=AD在△AEC和△ADB中{AB=AC∠CAE=∠BADAE=AD∴△AEC≌△ADB(SAS)(2)解:CE=BD且CE⊥BD,证明如下:将直线CE与AB的交点记为点O由(1)可知△AEC≌△ADB∴ CE=BD,∠ACE=∠ABD∵∠BOF=∠AOC,∠α =90°∴∠BFO=∠CAB=∠α =90°∴ CE⊥BD.(3)解:过A分别做AM⊥CE,AN⊥BD由(1)知△AEC≌△ADB∴两个三角形面积相等故AM·CE=AN·BD∴AM=AN∴AF平分∠DFC由(2)可知∠BFC=∠BAC= α∴∠DFC=180°- α∴∠CFA= 12∠DFC= 902α︒-。

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

第十二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=( C )A.3 B.4 C.7 D.8,第1题图),第2题图),第3题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( B ) A.120°B.125°C.130°D.135°3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( B )A.SAS B.ASA C.AAS D.SSS4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是( D )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图),第5题图),第6题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( C )A.AB=ED B.AC=EF C.AC∥EF D.BF=DC6.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为( D )A.60°B.62°C.64°D.66°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( A )A.4个B.3个C.2个D.1个,第7题图),第8题图),第9题图) ,第10题图)8.如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( C )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =110.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB.其中正确的有( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知△ABC ≌△DEF ,且△ABC 的周长为12 cm ,面积为6 cm 2,则△DEF 的周长为__12__cm ,面积为__6__cm 2.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:__AE =AF 或∠EDA =∠FDA 或∠AED =∠AFD __.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__13__.14.如图,Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5 cm ,则AE =__3__cm .15.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于O ,则图中全等的直角三角形有__4__对.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__135__度.,第16题图) ,第17题图),第18题图)17.如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD 距离相等的点,则这样的点至少有__1__个,最多有__2__个.18.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC =BC,若∠BAC=80°,则∠BOD的度数为__100°__.三、解答题(共66分)19.(7分)(2015·昆明)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.解:由AAS证△ABC≌△DEF可得20.(8分)如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD =CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?解:合理.理由:由SSS可证△BED≌△CGF,∴∠B=∠C21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.解:先由角平分线的性质得CD=DE,再由SAS证△CDF≌△EDB,得BD=DF22.(10分)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.解:(1)由ASA 证△AEB ≌△AFC ,∴∠BAE =∠CAF ,∴∠1+∠3=∠2+∠3,∴∠1=∠2(2)∵△AEB ≌△AFC ,∴AE =AF ,AB =AC.由ASA 可证△AEM ≌△AFN ,∴AM =AN ,∴AC -AM =AB -AN ,即CM =BN23.(10分)如图①,点A ,E ,F ,C 在一条直线上,AE =CF ,过点E ,F 分别作ED ⊥AC ,FB ⊥AC ,AB =CD.(1)若BD 与EF 交于点G ,试证明BD 平分EF ; (2)若将△DEC 沿AC 方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.解:(1)先由HL 证Rt △ABF ≌Rt △CDE ,∴BF =DE ,再由AAS 证△GFB ≌△GED ,∴EG =FG ,即BD 平分EF(2)仍然成立,证法同(1)24.(11分)如图,在△ABC 中,∠B =∠C ,AB =10 cm ,BC =8 cm ,D 为AB 的中点,点P 在线段上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以相同速度由点C 向点A 运动,一个点到达终点后另一个点也停止运动.当△BPD 与△CQP 全等时,求点P 运动的时间.解:∵D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm.设点P 运动的时间是x s ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x ,解得x =53,此时BP =3×53=5 (cm ),CP =8-5=3 (cm ),BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x ,解得x =1,符合题意.综上,点P 运动的时间是1 s25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACB+∠ACE=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,证法同(1)。

数学八年级上学期《全等三角形》单元测试卷(含答案)

数学八年级上学期《全等三角形》单元测试卷(含答案)
A.A B=ED.B.A B=FD.C.A C=FD.D.∠A=∠F.
9.如图,在△A B C中,A B=A C,∠A B C、∠A C B的平分线B D,CE相交于O点,且B D交A C于点D,CE交A B于点E.某同学分析图形后得出以下结论:① B C D≌ C BE;② B A D≌ B C D;③ B D A≌ CEA;④ BOE≌ COD;⑤ A CE≌ B CE;上述结论一定正确的是
A.①②③B.②解析]
根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法A AS或ASA判定全等的三角形.
解:∵A B=A C,∴∠A B C=∠A C B.
∵B D平分∠A B C,CE平分∠A C B,
∴∠A B D=∠C B D=∠A CE=∠B CE.
A B的对应边应是FD,
根据三角形全等的判定,当A C=FD时,有△A B C≌△FED.
故选C.
考点:本题考查的是全等三角形的判定
点评:判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:A A A、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
人教版八年级上册《全等三角形》单元测试卷
时间:90分钟 总分: 100
一、选择题(每小题3分,共30分)
1.下列说法正确 是( )
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等
2.如图2, 、 、 分别表示△A B C的三边长,则下面与△A B C一定全等的三角形是

在△B C D和△A CE中
△B C D≌△A CE

第一章全等三角形单元检测题

第一章全等三角形单元检测题

八年级上册数学第1章全等三角形考试范围:xxx;考试时间:100分钟;命题人:xxx 学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、要想了解10万名考生的数学成绩,从中抽取了2000名考生的数学成绩进行统计分析,以下说法正确的是()A.这2000名考生是总体的一个样本B.每位考生的数学成绩是个体C.10万名考生是个体D.2000名考生是样本的容量2、为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品,调查其中奖率,在这个调查中,总体是()A.某产品B.某人买的100件商品C.某产品促销广告中所称的中奖率D.100件商品的重价率3、下列调查的样本具有代表性的是()A.利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的产量估水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验4、下列调查方式中,采用了“普查”方式的是()A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查七年级一班的男女同学的比例D.调查某型号炮弹的射程5、如图是5×5的正方形网络,以点D、E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()个个个个6、如图,、、、在一条直线上,,且,,,,则()A.B.C.D.7、在△ABC和△A′B′C′中①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′A.具备①②④B.具备①②⑤C.具备①⑤⑥D.具备①②③8、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是A.两点之间线段最短B.长方形的对称性C.长方形的四个角都是直角D.三角形的稳定性9、△ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()A.1组B.2组C.3组D.4组10、已知△ABC≌△A´B´C´,且△ABC的周长为20,AB=8,BC=5,则A´C´等于()A.5 B.6 C.7 D.811、如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°12、下列说法:①全等三角形的形状相同,大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有()A.5个B.4个C.3个D.1个分卷II分卷II 注释评卷人得分二、填空题(注释)13、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有______________(把你认为正确的序号都填上).14、如图,已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,若要以“SAS”为依据,还缺条件_____;若要以“ASA”为依据,还缺条件__________;若要以“AAS”为依据,还缺条件__ ___.15、如图,AD=BC,请你添加一个条件:,使△DAB≌△CBA(只添一个即可).16、如图,线段AC与BD交于点O,且OA=OC,请你添加一个条件:,使△OAB ≌△OCD.17、如图,△ABC绕点A旋转后与△ADE完全重合,则△ABC≌△_______,那么两个三角形的对应边为__ ___,__ ___,___ __,对应角为____ __,___ ___,___ ____.18、如图,若△ACB≌△AED,且∠B=35°,∠C=48°,则∠EAD=___ __.19、如图,若△ABC≌△EFC,且CF=3cm,∠EFC=64°,则BC=___ __cm,∠B=_ __.评卷人得分三、解答题(注释)20、如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.21、下列调查中,哪些用的是普查?哪些用的是抽样调查?(1)为了了解你所在的班级的每个学生穿几号鞋,向全班学生做调查答:(2)了解人们的环保意识答:(3)了解电视机显象管的使用寿命答:(4)七年级学生的视力情况答:(5)了解实验田里水稻的穗长答:22、如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF•过点O•分别交BC,AD于E,F,据此你能得出什么结论?写出思考过程.23、如图,AB=AC,DB=DC,EB=EC.请写出图中所有的全等三角形,并选一个说明理由.24、如图,已知.吗?为什么?25、已知:如图,EC=DF,AB=CD,AE=BF,△AEC和△BFD全等吗?为什么?26、如图所示,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB 和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,试说明理由.27、如图,已知△ABC≌△ADE,BC的边长线交AD于F,交AE于G,∠ACB=105°,∠CAD=10°,∠ADE=25°,求∠DFB和∠AGB的度数.28、如图△ABC≌△EBD,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?29、阅读下列材料:如图(1)所示,把△ABC沿直线BC移动线段BC那样长的距离可以变到△ECD的位置;如图(2)所示,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图(3)所示,以点A为中心,把△ABC旋转180°,可以变到△AED的位置.像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换.问题:如图(4),△ABC≌△DEF,B和E、C和F是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.30、如图所示,已知△ABC≌△FED,且BC=ED,那么BC与DE平行吗?为什么?31、如图,△ABC≌△DEF,试说明:AD=BE.32、如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC 各内角的度数.33、如图所示,已知△ABD≌△ACE,∠B=∠C,试指出这两个三角形的对应边和对应角.试卷答案13.①,②,③,⑤,∠ACB=∠DFE,∠A=∠D答案不唯一)答案不唯一),AB和AD,AC和AE,BC和DE,∠B和∠D,∠C和∠E,∠BAC和∠DAE,64°20.解:(1)∠C=∠E。

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

第十二章 全等三角形一、单选题1.下列各选项中的两个图形属于全等形的是( )A .B .C .D . 2.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等3.△ABC≌≌ECD≌≌A≌48°≌≌D≌62°,点B≌C≌D 在同一条直线上,则图中∠B 的度数是( )A .38°B .48°C .62°D .70°4.如图,在ABC 中,D E 、分别是AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C 的度数是( )A .15B .20C .25D .305.如图,BE=CF ,AB∥DE ,添加下列哪个条件不能证明∥ABC∥∥DEF 的是( )A .AB=DEB .∥A=DC .AC=DFD .AC∥DF6.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则∠BED 的度数为( )A .100°B .120°C .135°D .150°7.如图,在△ABC 中,AC =5,BC =12,AB =13,AD 是角平分线,DE ⊥AB ,垂足为E ,则△BDE 的周长为( )A .17B .18C .20D .258.如图,在OA ,OB 上分别截取OD ,OE ,使OD OE =,再分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线OC ,OC 就是AOB ∠的角平分线.这是因为连CD ,CE ,可得到COD COE ∆∆≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ∆∆≌的条件是( )A .SASB .AASC .ASAD .SSS9.如图≌在≌ABC 中≌AB ≌AC ≌D 是BC 的中点≌AC 的垂直平分线交AC ≌AD ≌AB 于点E ≌O ≌F ≌则图中全等三角形的对数是≌ ≌A .1对B .2对C .3对D .4对10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题11.如图,图中由实线围成的图形与①是全等形的有______.(填番号)12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.14.如图,ABC ∆和DCE ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,42EBD ∠=︒,则AEB ∠=___________度.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知点B≌E≌C≌F在一条直线上,AB=DF≌AC=DE≌∠A=∠D≌1≌求证:AC∥DE≌≌2≌若BF=13≌EC=5,求BC的长.17.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.18.在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.答案1.A2.C3.D4.D5.C6.C7.C8.D9.D10.B11.②③12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.514.13215.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.解:(1)在≌ABC 和≌DFE 中 AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DFE (SAS ),≌≌ACE=≌DEF ,≌AC≌DE ;(2)≌≌ABC≌≌DFE ,≌BC=EF ,≌CB ﹣EC=EF ﹣EC ,≌EB=CF ,≌BF=13,EC=5,≌EB=4,≌CB=4+5=9.17.(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE +CE =BD +BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠EAB =∠DAE +∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE .18.(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE,在△ACD与△CBE中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)。

八年级数学全等三角形测试题

八年级数学全等三角形测试题

八年级数学全等三角形测试题一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 全等三角形是指形状相同的两个三角形B. 全等三角形的周长和面积分别相等C. 全等三角形是指面积相等的两个三角形D. 所有的等边三角形都是全等三角形解析:选项A:全等三角形不仅形状相同,而且大小也相同,所以A错误。

选项B:全等三角形能够完全重合,所以它们的周长和面积分别相等,B正确。

选项C:面积相等的三角形不一定全等,比如一个底为4,高为3的三角形和一个底为6,高为2的三角形面积相等,但不全等,C错误。

选项D:所有等边三角形形状相同,但大小不一定相同,所以不是所有的等边三角形都是全等三角形,D错误。

2. 如图,已知△ABC≌△DEF,∠A = 50°,∠B = 70°,则∠F的度数为()A. 50°B. 60°C. 70°D. 80°解析:在△ABC中,根据三角形内角和为180°,可得∠C=180°∠A ∠B = 180° 50°70° = 60°。

因为△ABC≌△DEF,全等三角形对应角相等,所以∠F = ∠C = 60°,答案为B。

3. 如图,在△ABC和△DEC中,已知AB = DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC = EC,∠B = ∠EB. BC = EC,AC = DCC. ∠B = ∠E,∠A = ∠DD. BC = DC,∠A = ∠D解析:选项A:AB = DE,BC = EC,∠B = ∠E,根据SAS(边角边)可判定△ABC≌△DEC。

选项B:AB = DE,BC = EC,AC = DC,根据SSS(边边边)可判定△ABC≌△DEC。

选项C:AB = DE,∠B = ∠E,∠A = ∠D,根据AAS(角角边)可判定△ABC≌△DEC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:全等三角形全章检测题(人教新课标八年级上)一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB的平分线的交点3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A.150° B.40° C.80° D.90°5.所对的角的关系是( )A.相等B.不相等C.互余或相等 6,如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD A.∠1=∠EFD B.BE =EC C.BF =DF =7.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD A.25° B.27° C.30°A D A CB O DC B A8.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB于F ,则( )A.AF =2BFB.AF =BFC.AF >BFD.AF <BF9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSSB.SASC.AASD.ASA10.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°二、填空题(每小题3分,共24分)11. (08牡丹江)如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD=(只添一个即可).12.如图,在△ABC 中,AB =AC ,BE13.如图,AB =CD ,AD =BC ,O 为F ,若∠ADB =60°,EO =10,则∠DBCDOC B AFED C B A A EC B A ′ E ′D14.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 边的距离为___.15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.16.如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有______对.17.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CED =35°,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.18.如图,AD ,A ′D ′分别是锐角三角形ABC 和锐角三角形A ′B ′C ′中BC ,B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′.若使△ABC ≌△A ′B ′C ′,请你补充条件________.(填写一个你认为适当的条件即可)三、解答题(第19-25每题8分,第26题10分,共60分)19.已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.20. 如图,∠DCE=90o ,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.21.如图,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE =CG ;②在BC 上取BD =CF ;③A B C D A ′ B ′ D ′ C ′B E量出DE 的长a 米,FG 的长b 米.如果a =b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?22.要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.23.如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.24.如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.25.(1)如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?A D E CB F G G D F AC B E GD FA CB E F E DC B AG参考答案:一、选择题1.A2.D3.C 提示:∵△ABD ≌△CDB ,∴AB =CD ,BD =DB ,AD =CB ,∠ADB =∠CBD ,∴△ABD 和△CDB 的周长和面积都分别相等.∵∠ADB =∠CBD ,∴AD ∥BC .4.D5.A6.D7.B 解析:在Rt △ADB 与Rt △EDC 中,AD =CD ,BD =ED ,∠ADB =∠EDC =90°,∴△ADB ≌△CDE ,∴∠ABD =∠E .在Rt △BDC 与Rt △EDC 中,BD =DE ,∠BDC =∠EDC =90°,CD =CD ,∴Rt △BDC ≌Rt △EDC ,∴∠DBC =∠E .∴∠ABD =∠DBC =12∠ABC ,∴∠E =∠DBC =12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD =∠DBC =∠E. 8.B 9.D 10. C二、填空题11. C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等.15.互补或相等 16.5 17.35° 18.答案不惟一三、解答题19.解:∵△DEF ≌△MNP ,∴DE =MN ,∠D =∠M ,∠E =∠N ,∠F =∠P ,∴∠M =48°,∠N =52°,∴∠P =180°-48°-52°=80°,DE =MN =12cm.20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o ,因为EB ⊥AC ,所以∠E+∠ECB=90o (直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD ⊥AC ,BE ⊥AC(已知),所以∠A=∠EBC=90o (垂直的定义).在Rt △ACD 和Rt △BEC 中,A EBC ACD E CD EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,所以Rt △ACD ≌Rt △BEC(AAS).所以AD=BC ,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE.21.解:DE =AE .由△ABC ≌△EDC 可知.22.证明∵DA ⊥OM ,EB ⊥ON ,∴∠OAD=∠OBE=90°.在△OAD 和△OBE 中,,,(),OAD OBE AOD BOE OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩公共角∴△OAD ≌△OBE (ASA ),∴OD=OE ,∠ODA=∠OEB ,∴OD-OB=OE-OA .即BD=AE .F B D 图1 图2在△BCD和△ACE中,,,(),ODA OEBBCD ACEBD AE∠=∠⎧⎪∠=∠⎨⎪=⎩对顶角∴△BCD≌△ACE(AAS),∴BC=AC.在Rt△BOC和Rt△AOC中,,,B C A CO B O A=⎧⎨=⎩∴△BOC≌△AOC(HL),∴∠BOC=∠AOC.23.∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEF=∠BFE=90°.∵AE=CF,∴AE+EF =CF+FE,即AF=CE.在Rt△ABF与Rt△CDE中,AB=CD,AF=CE,∴Rt△ABF≌Rt△CDE,∴BF=DE.在Rt△DEG≌Rt△BFG中,∠DGE=∠BGF,DE=BF,∴Rt△DEG≌Rt△BFG,∴EG=FG,即BD平分EF.若将△DEC的边EC沿AC方向移动到图2时,其余条件不变,上述结论仍旧成立,理由同上.提示:寻找AF与CE的关系是解决本题的关键.24.(1)∵AC∥BG,∴∠GBD=∠C,在△GBD与△FCD中,∠GBD=∠C,BD=CD,∠BDG=∠CDF,∴△GBD≌△FCD,∴BG=CF.(2)BE+CF>EF,又∵△GBD≌△FCD(已证) ,∴GD=FD,在△GDE与△FDE中,GD=FD,∠GDE=∠FDE=90°,DE=DE,∴△GDE≌△FDE(SAS) ,∴EG=EF,∵BE+BG>GE,∴BE+CF>EF.25.(1)解:△ABC与△AEG面积相等.理由:过点C作CM⊥AB于M,过点G作GN ⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE和四边形ACFG都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,∴△ACM≌△AGN,∴CM=GN.∵S△ABC=12AB×CM,S△AEG=12AE×GN,∴S△ABC=S△AEG.(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,∴这条小路的面积为(a+2b)平方米.BD。

相关文档
最新文档