八年级数学全等三角形单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学全等三角形单元测试卷附答案

一、八年级数学轴对称三角形填空题(难)

1.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.

【答案】4

【解析】

【分析】

以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.

【详解】

解:如图,使△AOP 是等腰三角形的点P 有4个.

故答案为4.

【点睛】

本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.

2.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.

【答案】80或100

【解析】

【分析】

根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种

情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,

,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.

【详解】

由题意可分如下两种情况:

(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,

1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠

(等边对等角),

两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,

又12DAE BAC ∠+∠+∠=∠

20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠+︒+∠=︒

80BAC ∴∠=︒

(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,

3,4B C ∴∠=∠∠=∠

(等边对等角),

两式相加得34B C ∠+∠=∠+∠,

又34DAE BAC ∠+∠+∠=∠,

3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒

20B C BAC ∴∠+∠=∠-︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠-︒+∠=︒

100BAC ∴∠=︒

.

故答案为80或100.

【点睛】

本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.

3.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.

【答案】10︒

【解析】

【分析】

延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.

【详解】

如图,延长AD 到F ,使DF AD =,连接BF :

∵D 是BC 的中点

∴BD CD =

又∵ADC FDB ∠=∠,AD DF =

∴ACD FDB ≅

∴AC BF =, CAD F ∠=∠,C DBF ∠=∠

∵AC BE =, 70C ︒∠=, 50CAD ︒∠=

∴BE BF =, 70DBF ︒∠=

∴50BEF F ︒∠=∠=

∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=

∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=

故答案为:10︒

【点睛】

本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.

4.如图,△ABC 中,AB =AC ,∠A =30°,点D 在边AB 上,∠ACD =15°,则AD BC

=____.

2. 【解析】

【分析】

根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.

【详解】

解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .

设AD=2x ,

∵AB=AC ,∠A=30°,

∴∠ABC=∠ACB=75°,DF 12=

AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,

∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,

∴DH=HC=2x ,FH 3=,

∴3x ,

在Rt △ACE 中,EC 12

=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,

在Rt △BCE 中,BC 22BE EC =

+=2x , ∴22

22AD BC x ==. 2. 【点睛】

本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

5.如图,A,B,C 三点在同一直线上,分别以AB,BC (AB>BC )为边,在直线AC 的同侧作等边ΔABD 和等边ΔBCE,连接AE 交BD 于点M,连接CD 交BE 于点N,连接MN. 以下结论:

①AE=DC ,②MN//AB ,③BD ⊥AE ,④∠DPM=60°,⑤ΔBMN 是等边三角形.其中正确的是__________(把所有正确的序号都填上).

相关文档
最新文档