重庆市2017年初中毕业暨高中招生考试数学模拟试题(一)参考答案
2017年重庆市合川中学中考数学模拟试卷及答案
2017年重庆市合川中学中考数学模拟试卷一、选择题:1.(3分)2sin60°的值等于()A.1 B.C.D.2.(3分)方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2 B.m=2 C.m=﹣2 D.m≠23.(3分)近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=4.(3分)如图,下列图形全部属于柱体的是()A. B. C. D.5.(3分)如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.6.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球7.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.8.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④9.(3分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF 的长为()A.1.5 B.2.5 C.2.25 D.310.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8 D.411.(3分)如图,DE∥BC,在下列比例式中,不能成立的是()A.=B.=C.=D.=12.(3分)如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1二、填空题:13.(3分)若△ABC∽△DEF,且∠A=70°,∠B=60°则∠D=,∠F=.14.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.15.(3分)在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是米.16.(3分)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)17.(3分)从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.(3分)如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB 于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S=;△ECF④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是.三、计算综合题:19.x2﹣4x+1=0(用配方法)20.已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.21.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(1,2)和点B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax ﹣1与线段AB交于点P,直接写出a的取值范围.22.(6分)已知反比例函数的图象经过点A(1,3).(1)试确定此反比例函数的解析式;(2)当x=2时,求y的值;(3)当自变量x从5增大到8时,函数值y是怎样变化的?23.某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.(1)求每次降价的百分率;(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.四、综合题:24.(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S =S△BCD.△ABC证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,又因为S=×BC×AF,S△BCD=.△ABC=S△BCD所以S△ABC由此我们可以得到以下的结论:像图1这样.(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S▱ABCD=S △APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2.25.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x 刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.2017年重庆市合川中学中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)2sin60°的值等于()A.1 B.C.D.【解答】解:2sin60°=2×=.故选C.2.(3分)方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2 B.m=2 C.m=﹣2 D.m≠2【解答】解:由题意得:m﹣2≠0,解得:m≠2,故选:D.3.(3分)近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A.B.C.D.y=【解答】解:设y=,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=.故选C.4.(3分)如图,下列图形全部属于柱体的是()A. B. C. D.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.5.(3分)如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A.B.C.D.【解答】解:∵ABCD是平行四边形∴AD∥BC∴△BFE∽△DFA∴BE:AD=BF:FD=1:3∴BE:EC=BE:(BC﹣BE)=BE:(AD﹣BE)=1:(3﹣1)∴BE:EC=1:2故选A.6.(3分)一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球【解答】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选:B.7.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.8.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应边成比例,∴①③相似.故选C.9.(3分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF 的长为()A.1.5 B.2.5 C.2.25 D.3【解答】解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,∵在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,EF=1+1.5=2.5.故选B.10.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8 D.4【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.11.(3分)如图,DE∥BC,在下列比例式中,不能成立的是()A.=B.=C.=D.=【解答】解:根据题意,可得△ADE∽△ABC,根据相似三角形对应边成比例,可知B不正确,因为AE与EC不是对应边,所以B不成立.故选B.12.(3分)如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二、填空题:13.(3分)若△ABC∽△DEF,且∠A=70°,∠B=60°则∠D=70°,∠F=50°.【解答】解:∵∠A=70°,∠B=60°,∴∠C=50°,∵△ABC∽△DEF,∴∠D=∠A=70°,∠F=∠C=50°.故答案为70°,50°.14.(3分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是<a<﹣2.【解答】解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1,∴a,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴<a<﹣2,故答案为:<a<﹣2.15.(3分)在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是12米.【解答】解:设此高楼的实际高度为h米,∵在同一时刻,有人测得一高为1.8米得竹竿的影长为3米,某高楼的影长为20米,∴=,解得h=12.故答案是:12.16.(3分)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b<c(用“>”或“<”号填空)【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.17.(3分)从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.18.(3分)如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB 于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;=;③S△ECF④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是①③④.【解答】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,=S△EMN=S△CBE,∴S△BEM∵BE=CD,CF=CD,∴=,∴S=S△CBE=S△MNE,△EFC=,故③正确;∴S△ECF∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为:①③④.三、计算综合题:19.x2﹣4x+1=0(用配方法)【解答】解:∵x2﹣4x+1=0,∴x2﹣4x=﹣1,∴x2﹣4x+4=4﹣1,⇒(x﹣2)2=3,⇒,∴,解得,.20.已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.【解答】(1)证明:∵AB=AD=25,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵AE⊥BD,∴∠AEB=∠C=90°,∴△ABE∽△DBC;(2)解:∵AB=AD,又AE⊥BD,∴BE=DE,∴BD=2BE,由△ABE∽△DBC,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=.21.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(1,2)和点B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax ﹣1与线段AB交于点P,直接写出a的取值范围.【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,∴反比例函数解析式为y=.(2)∵点B(m,n)在反比例函数y=的图象上,∴mn=2.=BC•(y A﹣y B)=m(2﹣n)=m﹣mn=m﹣1=2,又∵S△ABC∴m=3,n=,∴点B的坐标为(3,).(3)将A(1,2)代入y=ax﹣1中,2=a﹣1,解得:a=3;将B(3,)代入y=ax﹣1中,=3a﹣1,解得:a=.∵直线y=ax﹣1与线段AB交于点P,P为线段AB上一动点(P不与A、B重合),∴<a<3.22.(6分)已知反比例函数的图象经过点A(1,3).(1)试确定此反比例函数的解析式;(2)当x=2时,求y的值;(3)当自变量x从5增大到8时,函数值y是怎样变化的?【解答】解:(1)∵反比例函数的图象过点A(1,3),∴.∴k=3.∴反比例函数的解析式为;(2)当x=2时,;(3)在第一象限内,由于k=3>0,所以y随x的增大而减小.当x=5时,;当x=8时,.所以当自变量x从5增大到8时,函数值y从减小到.23.某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.(1)求每次降价的百分率;(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.【解答】解:(1)设每次降价的百分率为x,由题意得:50×2(1﹣x)2﹣50=14,解得:x1=0.2=20%.x2=1.8(不合题意舍去),答:每次降价的百分率为20%;(2)10×50×2+40×50×2(1﹣20%)+(100﹣10﹣40)×50×2(1﹣20%)2﹣50×100=2400(元)答:在这次销售活动中商店获得2400元利润.四、综合题:24.(1)自主阅读:在三角形的学习过程,我们知道三角形一边上的中线将三角形分成了两个面积相等三角形,原因是两个三角形的底边和底边上的高都相等,在此基础上我们可以继续研究:如图1,AD∥BC,连接AB,AC,BD,CD,则S =S△BCD.△ABC证明:分别过点A和D,作AF⊥BC于F.DE⊥BC于E,由AD∥BC,可得AF=DE,=×BC×AF,S△BCD=.又因为S△ABC所以S=S△BCD△ABC由此我们可以得到以下的结论:像图1这样.同底等高的两三角形面积相等(2)问题解决:如图2,四边形ABCD中,AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,请你运用上面的结论证明:S ▱ABCD=S △APD(3)应用拓展:如图3,按此方式将大小不同的两个正方形放在一起,连接AF,CF,若大正方形的面积是80cm2,则图中阴影三角形的面积是40cm2.【解答】解;(1)利用图形直接得出:同底等高的两三角形面积相等;故答案为:同底等高的两三角形面积相等;(2)∵AB∥CE,BE∥AC,∴四边形ABEC为平行四边形,∴△ABC和△AEC的公共边AC上的高也相等,=S△AEC,∴S△ABC=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;∴S梯形ABCD(3)设正方形ABCD的边长为a,正方形DGFE的边长为b,∵S=S四边形ACEF﹣S△CEF=S△AFG+S正方形DEFG+S△ADC﹣S△CEF=×b×(a﹣b)+b×b+×△ACFa×a﹣×b×(b+a)=ab﹣b2+b2+a2﹣b2﹣ab=a2,∴S=S正方形ABCD=×80cm2=40cm2;△ACF故答案为:40.25.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x 刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【解答】解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).。
重庆市涪陵区2017年中考数学模拟试卷含答案
2017年九年级数学中考模拟试卷一、选择题:1.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°2.下列方程中是一元二次方程的有()①=;②y(y﹣1)=x(x+1);③=;④x2﹣2y+6=y2+x2.A.①② B.①③ C.①④ D.①③④3.对于函数y=4x-1,下列说法错误的是( )A.这个函数的图象位于第一、三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小4.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦5.下列各组图形中有可能不相似的是( )A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形6.从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A.B.C.D.7.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.148.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC边长为()A.3B.4C.5D.69.下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的菱形是正方形10.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)11.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.D.12.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.5二、填空题:13.若△ABC与△AB1C1的相似比为2:3,△A1B1C1与△A2B2C2的相似比为2:3,那么△ABC与△A2B2C2的相似比为114.方程x2﹣16=0的解为.15.如图,BD平分∠ABC,且AB=4,BC=6,则当BD=_________时,△A BC∽△DBC.16.若y=(a+2)x2-3x+2是二次函数,则a的取值范围是________.17.如图,在4³4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是18.如图,在Rt△ABC中.∠A=90°.AB=AC,BC=20,DE是△ABC的中位线.点M是边BC上一点.BM=3.点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.三、解答题:19.解方程:3x2-6x-2=0.20.如图,已知在△ABC中,点D、E、F分别在AC、AB、BC边上,且四边形CDEF是正方形,AC=3,BC=2,求△ADE、△EFB、△ACB的周长之比和面积之比.21.喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间22.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为 25 人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.23.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(A B垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)24.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件.为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求每次下调的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件,那么每天要想获得512元的利润,每件应降价多少元?25.如图,在矩形ABCD中,B (16, 12),E, F分别是OC, BC上的动点,EC+CF=8.(1)当∠AFB=600时,△ABF沿着直线AF折叠,折叠后,落在平面内G点处,求G点的坐标.(2)当F运动到什么位置时,△AEF的面积最小,最小为多少?(3)当△AEF的面积最小时,直线EF与y轴相交于点M, P点在x轴上,OP与直线EF相切于点M,求P点的坐标.26.如图,抛物线y=0.5x2﹣1.5x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为S,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)。
重庆市江津区2017年中考数学模拟试卷含答案
2017年九年级数学中考模拟试卷一、选择题:1.计算2sin30°﹣sin245°+tan30°的结果是()A.+3B.+C.+D.1﹣+2.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,④ +x=2,⑤x3﹣3x+8=0,⑥ x2﹣5x+7=0,⑦(x﹣2)(x+5)=x2﹣1.其中是一元二次方程的有()A.2 B.3 C.4 D.53.点(﹣1,y),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是( )1A.y3<y2<y1 B.y2<y3<y1 C.y1<y3<y2 D.y1<y2<y34.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.905.如图,DE∥BC,分别交△ABC的边AB,AC于点D,E,=,若AE=5,则EC长度为()A.10 B.15 C.20 D.256.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个7.如图,l∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知,则的值为()1A. B. C. D.8.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m9.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形10.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )A.2B.3C.D.11.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()12.如图,二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),则下列结论:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0.其中正确结论的个数是( )A.5B.4C.3D.2二、填空题:13.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
2017年重庆中考数学模拟试卷含全部答案
主视图左视图ABCD第4题图8题图OCBA6题图2017年重庆中考模拟试卷 数学试题含详细答案(全卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题共10个小题,每小题4分,共48分) 1. )7(4-- 等于( B )A . 3B . 11C . -3D .-11 2. 下列运算正确的是( D )A .3362x x x += B .824x x x ÷= C .mnn m x x x =• D .()4520xx -=3. 函数21+=x y 的自变量取值范围是( D ) A .2->x B .2-<x C .2-≥x D .2-≠x 4. 如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则E ∠=( C ) A.70° B.80° C.90° D.100°5.下列调查中,适宜采用抽样调查方式的是( C ) A .对我国首架大型民用直升机各零部件的检查; B .对某校初三(5)班第一小组的数学成绩的调查; C .对我市市民实施低碳生活情况的调查;D .对2010年重庆市中考前200名学生的中考数学成绩的调查。
6.如图,⊙O 是△ABC 的外接圆,∠OCB =350,则∠A 的度数等于( A ) A .55° B . 50° C .45° D .40°7. 如下右图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形 不可能是( C )8、如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是( A ) A .513B .1213C .512D .1359、小超上完体育课需从操场返回教室上文化课,已知她先从操场走到教学楼楼下的水龙头处洗了一会儿手,此时听到上课预备铃已经打响,于是她马上跑步回到教室上课.下面是小超下体育课后走的路程s (m )关于时间t (min )的函数图象,那么符合情况的大致图象是( A )x yx yxyxy10.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数为( B ) A .102 B .91 C .55 D .3111.如上图,正比例函数y=x 与反比例函数y=的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( A )A .1B .2C . D.12.如上图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( B )A .a +b =-1B . a -b =-1C . b <2aD . ac <0 二、填空题(本大题6个小题,每小题4分,共24分) 13.021(1)()2sin60|31|3π-++-+-=14.在2016年中招体育考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 186 . 15. 已知ABC ∆与DEF ∆相似且面积比为9:25,则ABC ∆与DEF ∆的相似比为___ 5:3 __. 16.⊙O 的半径为3cm ,点P 到圆心O 的距离为7cm ,则点P 与⊙O 的位置关系是 P 在⊙O 外.12题图17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-=有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+的图象不经过点(1,0)的概率是___3/7_____18.如下图,矩形ABCD 中,点B 与原点重合,点D (8,6),AE ⊥BD ,△AEB 沿着y 轴翻折得到△AFB ,将△AFB 绕着点B 顺时针旋转(090)αα<<得到△BF ’A ’,直线F ’A ’与线段AB 、AE 分别交于点M 、N ,当MN =MA 时,△BF ’A ’与△AEB 重叠部分的面积为8125. x y FABCDE三.解答题(本大题2小题,每小题7,共14分)19.如上图,在△ABC 中,AD 是△ABC 的中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F . 求证:BE=CF .20.经国家体育总局、重庆市民政局批准,国家级青少年体育俱乐部﹣重庆巴蜀青少年体育俱乐部﹣于2013年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题: (1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人), 喜欢乒乓球人数为60人, ∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1﹣20%﹣30%﹣40%=10% ∴喜欢排球的人数为:200×10%=20(人), ∴喜欢篮球的人数为200×40%=80(人), 由以上信息补全条形统计图得:(2)根据题意画图如下: 男1 男2 男3女1女2男1 男1男2 男1男3 女1男1 女2男1 男2 男1男2 男3男2 女1男1 女2男2 男3 男1男3 男2男3女1男3 女2男3女1 男1女1 男2女1 男3女1女2女1女2男1女2男2女2男3女2 女1女2由图可知总有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为 P (一男一女)==.四.解答题(共4个小题,每小题10分,共40分)21.先化简,再求值:a a a a a a 2239622÷⎪⎪⎭⎫ ⎝⎛+--+-,其中a 是方程0132=--x x 的一个根.(1)22(1)(1)1x x -+- (2)228161212224x x x x x x x -+⎛⎫÷-++ ⎪+++⎝⎭()()()()()()()()()()分分,分分分,过一次函数分过点反比例函数分分中,轴于作过点解:10 (3122)122218........................................................................................147................................................................................2,4024,082,121436 (12)15 (1)2102220,22,24 (4)42,223...............................................................................................2,22.. (2421)tan 2,2,21tan tan tan ,901........................................................2),0,2(),2,2(1212=⨯⨯+⨯⨯=+=∴--∴=-=∴=-+∴=-+∴+=+=∴⎪⎩⎪⎨⎧==∴⎩⎨⎧=+-=+∴-+==∴=∴=∴=⨯=⋅∠=∴===∠=∠=∠∴︒=∠∆==∴-⊥∆∆∆BOD AOD AOB S S S B x x x x x x x x x y b a b a b a D A b ax y xy k A xky A DE ADE AE OE OD ADE CDO DEAE ADE AED ADERt OE OD E D Ex AE A 22.如图,一次函数b ax y +=的图象与反比例函数xky =的图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为()0,2-,点A 的横坐标是2,1tan =∠CDO .(1)求点A 的坐标;(2)求一次函数和反比例函数的解析式; (3)求△AOB 的面积;22.23.商场某种商品平均每天可销售40件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请解答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2300元?(结果保留整数);(参考数据:4.12≈,7.13≈,2.25≈)(3)设商场每日获利为w 元,每件商品降价多少元时,商场可获得最大利润?最大利润是多少元?解(1)x 2,x -50。
2017年中考数学一模试题(重庆市外国语学校含答案)
2017年中考数学一模试题(重庆市外国语学校含答案)12.从-2、-1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程xx-2 -m-22-x =-1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1B.2C.3D.4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
13.2016年重庆新房成交共约305000套,将305000用科学计数法表示为。
14.计算:38 -|-2|+(-14 )-2=;15.如图,在矩形ABCD中,AB=3 ,AD=2,以D为圆心、AD为半径画弧交线段BC于点E,则阴影部分的面积为。
16.有四张形状材质相同的不透明卡片,下面分别写有1、2、-1、-3四个数字。
将这四张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数y=kx+b中的k的值;第二次从余下的三张卡片中再随机抽取一张,上面标有的数字作为b的值,则使该一次函数的图像经过第一、三、四象限的概率为。
17.快、慢两车分别从相距480km的甲、乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到过甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调养时间忽略不计),如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图像,则当两车第一次相遇时,快车距离甲地的路程是千米。
18.如图,正方形ABCD的连长为10 ,对角线AC、BD 相交于点O,以AB为斜边在正方形内部作Rt△ABE,∠AEB=90°,连接OE,点P为边AB上的一点,将△AEP 沿着EP翻折到△GEP,若PG⊥BE于点F,OE=2 ,则S △EPB=。
三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程惴惴不安在答题卡中对应的位置上。
2017年重庆市中考数学试卷-答案 (1)
【考点】规律型:图形的变化类
11.【答案】A
【解析】如图,延长 交 延长线于点 ,作 于点 , , 四边形CEPQ为矩形, , , 设 ,由 可得 ,解得: 或 (舍),则 ,
在 中, , ,故选:A.
【考点】解直角三角形的应用-仰角俯角问题,解直角三角形的应用——坡度坡角问题
【提示】根据轴对称图形的概念求解.
【考点】轴对称图形
3.【答案】C
【解析】 故选:C.
【提示】直接利用同底数幂的除法运算法则计算得出答案.
【考点】同底数幂的除法
4.【答案】D
【解析】A.对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B.对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C.对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D.对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.
12.【答案】A
【解析】分式方程 的解为 且 , 关于 的分式方程 的解为正数, 且 , . ,
解不等式①得: ;解不等式②得: . 关于 的不等式组 的解集为 。 。
为整数, .故选A.
【提示】根据分式方程的解为正数即可得出 ,根据不等式组的解集为 ,即可得出 ,找出 且 中所有的整数,将其相加即可得出结论.
【提示】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数。
【考点】折线统计图,中位数
17.【答案】180
【解析】由题意可得:甲的速度为: ,乙的速度为: ,则乙从 到 地用的时间为: 分钟,他们相遇的时间为: 分钟,∴甲从开始到停止用的时间为: 分钟,∴乙到达A地时,甲与A地相距的路程是: 米,故答案为:180.
2017年重庆市中考数学试卷(含答案解析)
绝密★启用前重庆市2017年初中毕业生学业水平暨普通高中招生考试(A 卷)数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-. 第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在实数3-,2,0,4-中,最大的数是( ) A .3- B .2C .0D .4- 2.下列图形中是轴对称图形的是( )AB CD3.计算62x x ÷正确的是( ) A .3 B .3x C .4x D .8x 4.下列调查中,最适合采用全面调查(普查)的方式的是( )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查 5.1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 6.若13x =-,4y =,则代数式33x y +-的值为()…①②③④-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------________________ _____________A .6-B .0C .2D .6 7.要使分式43x -有意义,x 应满足的条件是( )A .3x >B .3x =C .3x <D .3x ≠ 8.若ABC DEF △∽△,相似比为3:2,则对应高的比为( )A .3:2B .3:5C .9:4D .4:99.如图,矩形ABCD 的边1AB =,BE 平分ABC ∠,交AD 于点E .若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是 ( )A .π24-B .3π24- C .π28-D .3π28- 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( ) A .73B .81C .91D .10911. 如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40,若3DE =米,2CE =米,CE 平行于江面AB ,迎水坡BC 的坡度1:0.75i =,坡长10BC =米,则此时AB 的长约为 ( )(参考数据:sin 400.64≈,cos400.77≈,tan 400.84≈) A .5.1米 B .6.3米 C .7.1米 D .9.2米12.若数a 使关于x 的分式方程2411ax x+=--的解为正数,且使关于y 的不等式组21,322()0y yy a +⎧-⎪⎨⎪-⎩>≤的解集为2y -<,则符合条件的所有整数a 的和为( )A .10B .12C .14D .16第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)13.“渝新欧”国际铁路联运大通道全长超过11000千米,成为服务“一带一路”的大动脉之一.将数11000用科学记数法表示为 . 14.计算:2|3|(1)-+-= . 15.如图,BC 是O 的直径,点A 在圆上,连接AO ,AC ,64AOB ∠=,则ACB ∠=度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 小时.A ,B 两地出发,17.A ,B 两地之间的路程为2380米,甲、乙两人分别从相向而行.已知甲先出发5分钟后,乙才出发.他们两人在A ,B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人(米)与甲出发的均保持各自的速度匀速行走.甲、乙两人相距的路程y 时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是米.18.如图,正方形ABCD 中,4AD =,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将EFG△沿EF 翻折,得到EFM △,连接DM ,交EF 于点N .若点F 是AB 边的中点,则EMN △的周长是 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)如图,AB CD ∥,点E 是CD 上一点,42AEC ∠=,EF 平分AED ∠交AB 于点F .求AFE ∠的度数.20.(本小题满分8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.图1 图2(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(本小题满分10分,每题5分) 计算: (1)2(2)()x x y x y --+;(2)2321(2)22a a a a a -++-÷++.22.(本小题满分10分)如图,在平面直角坐标系中,一次函数(0)y mx n m =+≠的图象与反比例函数(0)ky k x=≠的图象交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM x ⊥轴,垂足为M ,BM OM =,OB =,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式; (2)连接MC ,求四边形MBOC 的面积.23.(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模.2017年受气候、雨水等因素的影响,樱桃较2016年有小幅度的减产,而枇杷有所增产.(1)该地某果农2017年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农2017年收获樱桃至少多少千克?(2)该果农把2017年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农2016年樱桃的市场销售量为100千克,销售均价为30元/千克,2017年樱桃的市场销售量比2016年减少了m %,销售均价与2016年相同;该果农2016年枇杷的市场销售量为200千克,销售均价为20元/千克,2017年枇杷的市场销售量比2016年增加了2m %,但销售均价比2016年减少了m %.该果农2017年运往市场销售的这部分樱桃和枇杷的销售总金额与他2016年樱桃和枇杷的市场销售总金额相同,求m 的值.24.(本小题满分10分)在ABM △中,45ABM ∠=,AM BM ⊥,垂足为M .点C 是BM 的延长线上一点,连接AC .图1图2(1)如图1,若AB =5BC =,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD MC =,点E 是ABC △外一点,EC AC =,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点.求证:BDF CEF ∠=∠.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------25.(本小题满分10分)对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(243)F ,(617)F ;(2)若s ,t 都是“相异数”,其中10032s x =+,150t y =+,(19x ≤≤,19y ≤≤,x ,y 都是正整数),规定:()()F s k F t =.当()()18F s F t +=时,求k 的最大值.26.(本小题满分12分)如图,在平面直角坐标系中,抛物线2y x =x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点(4,)E n 在抛物线上.图1图2备用图(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当PCE △的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上一点,点N 是CD 上的一点,求KM MN NK ++的最小值; (3)点G 是线段CE 的中点.将抛物线2=y x x 轴正方向平移得到新抛物线y ',y '经过点D ,y '的顶点为点F .在新抛物线y '的对称轴上,是否存在点Q ,使得FGQ △为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.重庆市2017年初中毕业生学业水平暨普通高中招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】4302<-<<∵-,∴四个实数中,最大的实数是2.故选:B. 【提示】根据正数大于0,0大于负数,正数大于负数,比较即可. 【考点】实数大小比较 2.【答案】A【解析】A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A. 【提示】根据轴对称图形的概念求解. 【考点】轴对称图形 3.【答案】C【解析】62624x x x x -÷==故选:C.∠A︒tan tan40⊥,交DC于P,交AB于Q,连接BE,【解析】解法一:如图1,过E作PQ DC解法二:如图3,过G作GK AD⊥于K,作GR AB⊥于R,AD KG ADAF GR AF=2DG hGF h=,DNF MNFS S=其它解法同解法一,可得:解法三:如图4,过E 作EP AP EQ AD ⊥⊥,,100203545--=,补全条形统计图如图所示:2222121(1)2(1)1a a a a a a a a +-++⎤==⎥-+--⎦. )先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分. 【考点】分式的混合运算,单项式乘多项式,完全平方公式22222OM OC OM MB ⨯+=+)根据题意可以求得点B 的坐标,从而可以求得反比例函数的解析式,进而求得点从而可以求得一次函数的解析式;中的函数解析式可以求得点C ,点M ,点过点P 作PF y ∥轴,交CE 于点F .如图2所示:作点K 关于CD 和CP 的对称点G H 、,连接G H 、交CD 和CP 与N M 、.(3)如图3所示:21/ 21。
重庆市2017年中考数学真题试题-含答案解析
重庆市2017年中考数学真题试题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是( )A .﹣5B .5C .D .【答案】A .【解析】试题分析:5的相反数是﹣5,故选A .考点:相反数.2.下列图形中是轴对称图形的是( )A .B .C .D . 【答案】D .考点:轴对称图形.3.计算结果正确的是( )A .B .C .D . 【答案】B .【解析】试题分析:=.故选B .15-1553a a ÷a 2a 3a 4a 53a a ÷2a考点:同底数幂的除法.4.下列调查中,最适合采用抽样调查的是( )A .对某地区现有的16名百岁以上老人睡眠时间的调查B .对“神舟十一号”运载火箭发射前零部件质量情况的调查C .对某校九年级三班学生视力情况的调查D .对某市场上某一品牌电脑使用寿命的调查【答案】D .考点:全面调查与抽样调查.5的值在( )A.2和3之间B .3和4之间 C .4和5之间 D .5和6之间【答案】C .【解析】试题分析:∵3<4,∴4<5在4和5之间,故选C .考点:估算无理数的大小.6.若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( )A .﹣10B .﹣8C .4D .10【答案】B .【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B .考点:代数式求值.7.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x ≠3 D .x =311113x -【答案】C .【解析】试题分析:∵分式有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.8.已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( )A .1:4B .4:1C .1:2D .2:1【答案】A .考点:相似三角形的性质;图形的相似.9.如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .B .C .D . 【答案】C .【解析】试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣π×22=8﹣2π,故选C . 考点:扇形面积的计算;矩形的性质.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( ) 13x-42π-82π-82π-84π-12A .116B .144C .145D .150【答案】B .考点:规律型:图形的变化类.11.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1:2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米【答案】A .【解析】试题分析:作DE ⊥AB 于E 点,作AF ⊥DE 于F 点,如图,设DE =xm ,CE =2.4xm ,由勾股定理,得 x 2+(2.4x )2=1952,解得x ≈75m ,DE =75m ,CE =2.4x =180m ,EB =BC ﹣CE =306﹣180=126m .∵AF ∥DG ,∴∠1=∠ADG =20°,tan ∠1=tan ∠ADG = =0.364. AF =EB =126m ,tan ∠1==0.364,DF =0.364AF =0.364×126=45.9,AB =FE =DE ﹣DF =75﹣45.9≈29.1m,故选sin 20cos 20DF AFA .【来源:21·世纪·教育·网】考点:解直角三角形的应用﹣坡度坡角问题.12.若数a 使关于x 的不等式组有且仅有四个整数解,且使关于y 的分式方程有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3【答案】A .考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.【答案】1.43×107.【解析】试题分析:14300000=1.43×107,故答案为:1.43×107.考点:科学记数法—表示较大的数.2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩2222a y y+=--14.计算:.【答案】4.【解析】试题分析:原式=3+1=4.故答案为:4.考点:实数的运算;零指数幂.15.如图,OA 、OC 是⊙O 的半径,点B 在⊙O 上,连接AB 、BC ,若∠ABC =40°,则∠AOC =度.【答案】80.考点:圆周角定理.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】183.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183. 故答案为:183.0|3|(4)-+-考点:折线统计图;中位数.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.【答案】18.考点:函数的图象.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】. 【解析】∴CG =,∴EG =,连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =,∴EH =EF ﹣FH ,∴∠NDE =∠AEF ,∴tan ∠NDE =tan ∠AEF = =,∴EN ,∴NH =EH ﹣EN =,Rt △GNH 中,GN ,由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长2223⨯8238223-5232532101010210EN GH DE EH =10310210=12102101010622GH NH +221010()()36+52=EN +MN +EM =+=; 故答案为:.考点:翻折变换(折叠问题);正方形的性质;综合题.三、解答题(共5小题)19.如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.21教育名师原创作品【答案】50°.考点:平行线的性质.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:2322(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【答案】(1)72;(2). 【解析】 (2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P (选中的两名同学恰好是甲、丁)==.2·1·c ·n ·j ·y1621216考点:列表法与树状图法;扇形统计图;条形统计图.21.计算:(1);(2). 【答案】(1);(2).考点:分式的混合运算;单项式乘多项式;完全平方公式.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =cos ∠ACH =,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式;(2)求△BCH 的面积. 2(2)()x x y x y --+2321(2)22a a a a a -++-÷++24xy y --11a a +-k y x=5【答案】(1),y =﹣2x +4;(2)8. 考点:反比例函数与一次函数的交点问题;解直角三角形.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m %,但销16y x=-售均价比去年减少了m %,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【答案】(1)50;(2)12.5.考点:一元二次方程的应用;一元一次不等式的应用.24.如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE .(1)如图1,若AB =,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .21教育网【答案】(1)1;(2)证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到AC =BC =AB =4,根据勾股定理得到CE,2于是得到结论;考点:全等三角形的判定与性质;勾股定理.25.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =,当F (s )+F (t )=18时,求k 的最大值. 【答案】(1)F (243)=9,F (617)=14;(2). 【解析】试题分析:(1)根据F (n )的定义式,分别将n =243和n =617代入F (n )中,即可求出结论;(2)由s =100x +32、t =150+y 结合F (s )+F (t )=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F (n )的定义式,即可求出F (s )、F (t )的值,将其代入k =中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9;()()F s F t 54()()F s F tF (617)=(167+716+671)÷111=14.考点:因式分解的应用;二元一次方程的应用;新定义;阅读型;最值问题;压轴题.26.如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.233y x x =-233y x x =-【答案】(1);(2)3;(3)Q 的坐标为(3,)或′(3,)或(3,3,). (3)由平移后的抛物线经过点D ,可得到点F的坐标,利用中点坐标公式可求得点G 的坐标,然后分为QG =FG 、QG=QF ,FQ =FQ三种情况求解即可.试题解析:(1)∵y =(x +1)(x ﹣3),∴A (﹣1,0),B (3,0). 当x =4时,y =,∴E (4,). 设直线AE 的解析式为y =kx +b ,将点A 和点E 的坐标代入得:,解得:k =,b =,∴直线AE 的解析式为. 33y x =+43-+43--5-233y x x =-33333y x =设点P 的坐标为(xF (x ),则FP =)﹣()=,∴△EPC 的面积=×()×4=,∴当x =2时,△EPC 的面积最大,∴P (2如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴k (). 23233x x 233x 233x 23233x x 2343x x +122343x 2238333x x -+332∵点H 与点K 关于CP 对称,∴点H 的坐标为(,﹣). ∵点G 与点K 关于CD 对称,∴点G (0,0),∴KM +MN +NK =MH +MN +GN . 当点O 、N 、M 、H 在条直线上时,KM +MN +NK 有最小值,最小值=GH ,∴GH=3,∴KM +MN +NK 的最小值为3.322考点:二次函数综合题;最值问题;分类讨论;存在型;压轴题.。
2017年重庆市江北区中考数学一模试卷(有答案)
2017年重庆市江北区中考数学一模试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.3的相反数是()A.3 B.﹣3 C.D.﹣2.在下列四个图形中,是中心对称图形的是()A.B.C.D.3.计算6x6÷3x2的结果是()A.2x3B.3x4C.2x4D.3x34.下列调查中,最适宜采用抽样调查方式的是()A.对全班同学体能测试达标情况的调查B.对嘉陵江水域水流污染情况的调查C.对乘坐飞机的旅客是否携带了违禁物品的检查D.对奥运会参赛者是否服用了兴奋剂的检查5.如图,直线a直线b被直线c所截,且a∥b,若∠1=40°,则∠2的度数是()A.30° B.60° C.120°D.140°6.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A.1:1 B.1:2 C.1:3 D.1:47.分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣28.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3 B.0 C.3 D.69.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.π B. +1 C.πD.π+110.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,…,则图7中有()个棋子.A.35 B.40 C.45 D.5011.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7 B.11 C.13 D.2012.在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程﹣1=的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是()A.﹣2 B.﹣1 C.0 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为.14.计算:(π﹣3)0﹣|﹣2|+(﹣)﹣2= .15.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB= °.16.从﹣1,﹣2,,四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b 的图象不经过第四象限的概率是.17.甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.18.如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE 沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是.三、解答题:(本大题个小题,每小题分,共分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.如图,在△ABC和△AEF中,AC∥EF,AB=FE,AC=AF,求证:∠B=∠E.20.为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2a﹣b)2﹣2b(b﹣2a)(2)(x﹣)÷﹣.22.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.23.我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.中点,连接DF.(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;(2)如图2,若A、C、F、E共线,连接CD,求证:DC=DF.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.26.如图1,抛物线y=﹣x2+x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.(1)求点D的坐标;(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+BM的值最小,求点M的坐标及PM+BM的最小值;(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标.2017年重庆市江北区中考数学一模试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.3的相反数是()A.3 B.﹣3 C.D.﹣【考点】14:相反数.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.在下列四个图形中,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,是中心对称图形,符合题意.故选:D.3.计算6x6÷3x2的结果是()A.2x3B.3x4C.2x4D.3x3【考点】4H:整式的除法.【分析】根据整式的除法即可求出答案.【解答】解:原式=2x4,故选(C)4.下列调查中,最适宜采用抽样调查方式的是()A.对全班同学体能测试达标情况的调查B.对嘉陵江水域水流污染情况的调查C.对乘坐飞机的旅客是否携带了违禁物品的检查D.对奥运会参赛者是否服用了兴奋剂的检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对全班同学体能测试达标情况的调查适合采用全面调查,不合题意;B、对嘉陵江水域水流污染情况的调查适合采用抽样调查,符合题意;C、对乘坐飞机的旅客是否携带了违禁物品的检查适合采用全面调查,不合题意;D、对奥运会参赛者是否服用了兴奋剂的检查适合全面调查,不合题意,故选:B.5.如图,直线a直线b被直线c所截,且a∥b,若∠1=40°,则∠2的度数是()A.30° B.60° C.120°D.140°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等,据此可得∠3,再根据∠3和∠2的是邻补角,直接解答.【解答】解:∵a∥b,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选:D.6.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A.1:1 B.1:2 C.1:3 D.1:4【考点】S7:相似三角形的性质.【分析】由△ABC∽△A′B′C′,且相似比为1:2,根据相似三角形的面积比等于相似比的平方,即可求得答案.【解答】解:∵△ABC∽△A′B′C′,且相似比为1:2,∴△ABC与△A′B′C′面积比是:1:4.故选:D.7.分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2【考点】62:分式有意义的条件.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选A.8.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3 B.0 C.3 D.6【考点】33:代数式求值.【分析】将a2+2a=3代入2a2+4a﹣3即可求出答案.【解答】解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选(C)9.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.π B. +1 C.πD.π+1【考点】MO:扇形面积的计算;LE:正方形的性质.【分析】根据扇形的面积公式可得出阴影部分的面积等于扇形BDE的面积﹣扇形ACD的面积的一半﹣【解答】解:∵AB=2,∴BD=2,S阴影=S扇形BDE﹣S扇形ACD=﹣×=π﹣π=π,故选A.10.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,…,则图7中有()个棋子.A.35 B.40 C.45 D.50【考点】38:规律型:图形的变化类.【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【解答】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图7中棋子有1+2+3+4+5+6+7+8+7×2=50个,故选:D.11.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7 B.11 C.13 D.20【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可得到结论.【解答】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF﹣CG=13米,故选C.12.在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程﹣1=的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是()A.﹣2 B.﹣1 C.0 D.2【考点】H3:二次函数的性质;B2:分式方程的解.【分析】通过解分式方程找出分式方程的解为x=1+且x≠,由其为正实数或零即可得出m的值,再根据二次函数的性质可找出关于m的一元一次不等式,解之即可得出m的取值范围,从而可确定m的值,将其相加即可得出结论.【解答】解:分式方程﹣1=的解为x=1+且x≠,∵x=1+为正实数或零且x≠,∴m=﹣2、0、1、2.∵二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,∴≤1,解得:m≤,∴m=﹣2、0、1,∴﹣2+0+1=﹣1.故选B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为 4.2×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数42000000用科学记数法表示为4.2×107,故答案为:4.2×107.14.计算:(π﹣3)0﹣|﹣2|+(﹣)﹣2= 3 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】根据负整数指数幂以及零指数幂的意义即可求出答案.【解答】解:原式=1﹣2+(﹣2)2=3故答案为:315.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB= 40 °.【考点】M5:圆周角定理.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=80°,CA=CD,∴∠CAD=∠CDA==50°,∴∠ABC=∠ADC=50°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=40°.故答案为:40.16.从﹣1,﹣2,,四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b的图象不经过第四象限的概率是.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一次函数y=kx+b的图象经过第四象限的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:∵一次函数y=kx+b的图象不经过第四象限,∴k>0、b>0,则一次函数y=kx+b的图象不经过第四象限的概率为=,故答案为:.17.甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.【考点】FH:一次函数的应用.【分析】根据速度=路程÷时间可求出甲的速度,由乙的速度=甲的速度+二者速度差可求出乙的速度,利用时间=路程÷速度可求出乙到达终点的时间,结合路程=速度×时间可求出此时甲离终点的距离,再根据相遇所需时间=甲离终点的距离÷甲、乙速度和,即可得出结论.【解答】解:甲的速度为90÷30=3(米/秒),乙的速度为3+90÷=4(米/秒).乙到达终点时,甲出发的时间为1800÷4+30=480(秒),此时甲离终点的距离为1800﹣3×480=360(米),乙返回后与甲相遇的时间为360÷(3+4)=(秒).故答案为:.18.如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是﹣.【考点】PB:翻折变换(折叠问题);KQ:勾股定理;LE:正方形的性质;S9:相似三角形的判定与性质.【分析】先连接EE',过G作BC的垂线,交BC于M,交AD于N,则MN⊥AD,运用勾股定理,等腰直角三角形的性质以及相似三角形的性质,求得△DE'H的面积,△ADG的面积以及△ADE'的面积,再根据四边形AGHE′的面积=△ADG的面积+△ADE'的面积﹣△DE'H的面积,进行计算即可.【解答】解:如图所示,连接EE',过G作BC的垂线,交BC于M,交AD于N,则MN⊥AD,由BF∥AD可得,△BGF∽△DGA,∴=∵BG=2,F是BC的中点,∴DG=4,BD=6,∴等腰Rt△ABD中,AB=3,∴BE=BA=3,∴DE=6﹣3,由折叠可得,AD⊥EE',∠EDE'=90°,∴等腰Rt△DEE'中,EE'=DE=6﹣6,△DEE'的面积=DE2=(6﹣3)2=27﹣18,由EE'∥CD,可得△EE'H∽△DCE,∴=,即==2﹣,∴△DE'H的面积=△DEE'的面积×=(27﹣18)×=,∵Rt△BGM中,GM=,∴GN=3﹣=2,∴△ADG的面积=AD×GN=×3×2=6,又∵△ADE'的面积=AD×=×3×(3﹣3)=9﹣,∴四边形AGHE′的面积=△ADG的面积+△ADE'的面积﹣△DE'H的面积=6+(9﹣)﹣=﹣.故答案为:﹣.三、解答题:(本大题个小题,每小题分,共分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.如图,在△ABC和△AEF中,AC∥EF,AB=FE,AC=AF,求证:∠B=∠E.【考点】KD:全等三角形的判定与性质.【分析】根据两直线平行,内错角相等可得∠EFA=∠C,再利用“边角边”证明△ABC和△FEA全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AC∥EF,∴∠EFA=∠C,在△ABC和△FEA中,,∴△ABC≌△FEA(SAS),∴∠B=∠E.20.为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求出中等的人数,最后补全统计图即可;(3)用总人数乘以达到“优秀”水平的学生所占的百分比,列式计算即可得解.【解答】解:(1)80÷40%=200人,360°×=108°,∴体育老师总共选取了200人的成绩;扇形统计图中“优秀”部分的圆心角度数是108°,(2)中等的人数是:200﹣60﹣80﹣20=40人,补充条形统计图如图所示,(3)2500×=750人,答:此次体能测试中达到“优秀”水平的大约有750人.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2a﹣b)2﹣2b(b﹣2a)(2)(x﹣)÷﹣.【考点】6C:分式的混合运算;4A:单项式乘多项式;4C:完全平方公式.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=4a2﹣4ab+b2﹣2b2+4ab=4a2﹣b2;(2)原式=•﹣=﹣=﹣.22.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.【考点】G8:反比例函数与一次函数的交点问题;T7:解直角三角形.【分析】(1)利用三角函数求得AM的长,则C的坐标即可求得,利用待定系数法求得反比例函数解析式,然后利用待定系数法求得一次函数的解析式;(2)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)∵在直角△ACM中,tan∠CAM==,CM=3,∴AM=4,∴OM=AM﹣OA=4﹣2=2.∴n=2,则C的坐标是(2,3).把(2,3)代入y=得m=6.则反比例函数的解析式是y=;根据题意得,解得,则一次函数的解析式是y=x+;(2)在y=中令y=﹣3,则x=﹣2.则D的坐标是(﹣2,﹣3).AD=3,则S△ABD=×3×2=3.23.我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设别墅区有x万平方米,则高层住宅区有(60﹣x)万平方米,根据高层住宅区的面积不少于别墅区面积的3倍,即可得出关于x的一元一次不等式,解之即可得出结论;(2)根据二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设别墅区有x万平方米,则高层住宅区有(60﹣x)万平方米,根据题意得:60﹣x≥3x,解得:x≤15.答:别墅区最多15万平方米.(2)根据题意得:8000(1+a%)×6(1+2a%)﹣12000(1﹣10%)×4(1+a%)=10080,解得:a1=5,a2=﹣110(舍去).答:a的值为5.24.如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;(2)如图2,若A、C、F、E共线,连接CD,求证:DC=DF.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)证明△ABE是直角三角形,求出AB、BE,理由勾股定理求出AE,再利用直角三角形斜边中线的性质即可解决问题.(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.只要证明△CDM,△CDF都是等腰直角三角形即可解决问题;【解答】解:(1)∵△ABC和△BDE都是等腰直角三角形,∴AC=BC=CD=2,BD=DE=4,BE=4,AB=2,∠ABC=∠DBE=45°,∴∠ABE=90°,∴AE===2,∵AF=EF,∴BF=AE=.(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.∵AM∥DE,∴∠MAE=∠DEF,在△AFM和△EFD中,,∴△AFM≌△EFD,∴AM=DE=BD,∵∠BCE=∠B DE=90°,∠COB=∠DOE,∴∠CBD=∠DEF=∠MAF.在△ACM和△BCD中,,∴△ACM≌△BCD,∴∠ACM=∠BCD,CM=CD,∴∠ACB=∠MC D=90°∴△CDM是等腰直角三角形,易知△BOC∽△EOD,∴=,∴=,∴△BOE∽△COD,∴∠DCO=∠OBE=45°,∴∠FCD=∠FCM=45°,∵CM=CD,∴FM=DF,CF⊥DM,∴△CDF是等腰直角三角形,∴CD=DF.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是1001 ,最大的“和平数”是9999 ;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.【考点】59:因式分解的应用.【分析】(1)根据题意即可得到结论;(2)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7,②、当a=4,d=8时,得到c=4则b=8,于是得到结论;(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.【解答】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②、当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为2754和4848.(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b),即两个“相关和平数”之和是1111的倍数.26.如图1,抛物线y=﹣x2+x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.(1)求点D的坐标;(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+BM的值最小,求点M的坐标及PM+BM的最小值;(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标.【考点】HF:二次函数综合题.【分析】(1)当y=0时,﹣ x2+x+2=0,解方程可得A(﹣,0),B(,0),当x=0时,y=2,即C(0,2),根据待定系数法可求直线BC的解析式为y=x+2,根据平行两直线间的关系可得直线AD的解析式为y=﹣x﹣,根据抛物线的对称轴为x=﹣=,可得当x=时,y=﹣x﹣=﹣,即D点坐标为(,﹣);(2)如图1,作PF∥y轴交BC于F,则△PQF∽△BOC,根据相似三角形的性质可得PQ=PF,设P(t,﹣ t2+t+2),F(t, t+2)可得PF=﹣t2+t,当t=时,PF取最大值,PQ取最大值,此时P(,),作MN⊥x轴于N,则△BMN∽△BOC,根据相似三角形的性质可得MN=BM,则当P,M,N共线时,PM+BM=PN=,M(,1)(3)如图2所示,分三种情况:1)当A′E′=A′B,A′E′∥BF1,A′E′=BF1时四边形A′E′F1B是菱形;2)当A′E′=E′B,A′E′∥BF2,A′E′=BF2时四边形A′E′F2B是菱形;3)当A′B=E′B,A′F3∥BE′,A′F3=BE′时四边形A′F3E′B是菱形;进行讨论即可求解.【解答】解:(1)当y=0时,﹣ x2+x+2=0,解得x1=,x2=﹣,即A(﹣,0),B(,0),当x=0时,y=2,即C(0,2),直线BC的解析式为y=﹣x+2,直线AD的解析式为y=﹣x﹣,抛物线的对称轴为x=﹣=,当x=时,y=﹣x﹣=﹣,即D点坐标为(,﹣);(2)如图1,作PF∥y轴交BC于F,则△PQF∽△BOC,∴==即PQ=PF设P(t,﹣ t2+t+2),F(t, t+2)∴PF=﹣t2+t当t=时,PF取最大值,PQ取最大值,此时P(,)作MN⊥x轴于N,则△BMN∽△BOC,∴==即MN=BM,则当P,M,N共线时,PM+BM=PN=,M(,1);(3)如图2所示,1)当A′E′=A′B,A′E′∥BF1,A′E′=BF1时四边形A′E′F1B是菱形,此时A1′(,),A2′(﹣,﹣);2)当A′E′=E′B,A′E′∥BF2,A′E′=BF2时四边形A′E′F2B是菱形,此时A3′(﹣,0),A4′(﹣,﹣);3)当A′B=E′B,A′F3∥BE′,A′F3=BE′时四边形A′F3E′B是菱形,此时A5′(﹣,﹣).。
2017年重庆市中考数学一模试卷(解析版)
2017年重庆市中考数学一模试卷(解析版)一.选择题1.有四个数﹣6,﹣4,﹣3,﹣1,其中比﹣2大的数是()A. ﹣6B. ﹣4C. ﹣3D. ﹣12.下列图形中,是轴对称图形的是()A. B. C. D.3.下列计算正确的是()A. a3+a3=a6B. 3a﹣a=3C. (a3)2=a5D. a•a2=a34.若一个多边形的内角和为720°,则该多边形为()边形.A. 四B. 五C. 六D. 七5.函数y= +2中,自变量x的取值范围是()A. x≥1B. x>1C. x<1D. x≤16.下列实数,介于5和6之间的是()A. B. C. D.7.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:28.如果是方程ax+(a﹣2)y=0的一组解,则a的值()A. 1B. 2C. ﹣1D. ﹣29.如图,扇形AOB的圆心角为124°,C是上一点,则∠ACB=()A. 114°B. 116°C. 118°D. 120°10.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,第③个图形中一共有16个矩形,…,按此规律,第⑧个图形中矩形的个数为()A. 30B. 36C. 41D. 4511.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡顶A处的俯角为15°,山脚处B的俯角为60°,已知该山坡的坡度i=1:,点P、H,B,C,A在同一个平面上,点HBC在同一条直线上,且PH⊥BC,则A到BC的距离为()A.10 米B.15米C.20 米D.30米12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1= 有正数解,那么这五个数中所有满足条件的m 的值之和是()A. 1B. 2C. ﹣1D. ﹣2二.填空题13.2017年第一季度,我市在改善环境绿化方面投入资金达到4080000元,4080000用科学记数法表示为________.14.2sin60°﹣(﹣)﹣2+(π﹣)0=________.15.某数学小组进行数学速算,比赛成绩如下:得100分的有2人,96分的有4人,90分的2人,那么这个数学小组速算比赛是平均成绩为________分.16.从﹣3、﹣1、、1、3这五个数中,随机抽取一个数,记为a,则关于x的一次函数y=﹣x+a的图象经过第一象限的概率为________.17.周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18.如图,已知在正方形ABCD中,F是CD边上一点(不和C,D重合),过点D做DG⊥BF交BF延长线于点G.连接AG,交BD于点E,连接EF,交CD于点M.若DG=6,AG=7 ,则EF的长为________.三.解答题19.如图,C,E,F,D共线,AB∥FD,BG∥FH,且AB=FD,BG=FH.求证:∠A=∠D.20.最近,“校园安全”受到全社会的广泛关注,重庆八中对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)扇形统计图中“基本了解”部分所对应扇形的圆心角为________度;请补全条形统计图________;(2)若达到“了解”程度的人中有1名男生2名女生,达到“不了解”的程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”的人中分别抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.四.解答题21.化简:整式与分式(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)(2)(﹣x+1)÷ .22.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.23.某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比中2月份在(1)的条件下的最高售价减少了m%,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到6600元,求m的值.24.在△ABC中,AB=AC,D为射线BA上一点,连接DC,且DC=BC.(1)如图1,若DC⊥AC,AB= ,求CD的长;(2)如图2,若E为AC上一点,且CE=AD;连接BE,BE=2CE,连接DE并延长交BC于F.求证:DF=3EF.25.一个数能否被99整除是从这个数的末位开始,两位一段,看看这些数段的和能否被99整除.像这样能够被99整除的数,我们称之为“长久数”.例如542718,因为18+27+54=99,所以542718能够被99整除;又例如25146,因为46+51+2=99,所以25146能够被99整除.(1)若这个三位数是“长久数”,求a的值;(2)在(1)中的三位数的首位和个位与十位之间加上和为9的两个数字,让其成为一个五位数,该五位数仍是“长久数”,求这个五位数.26.如图,在平面直角坐标系xOy中,拋物线y=﹣x2x与x轴交于O,A,点B在抛物线上且横坐标为2.(1)如图1,△AOB的面积是多少?(2)如图1,在线段AB上方的抛物线上有一点K,当△ABK的面积最大时,求点K的坐标及△ABK的面积;(3)在(2)的条件下,点H 在y轴上运动,点I在x轴上运动.则当四边形BHIK周长最小时,求出H、I的坐标以及四边形BHIK周长的最小值.答案解析部分一. 选择题1.【答案】D【考点】有理数大小比较【解析】【解答】解:|﹣6|>|﹣4|>|﹣3|>|﹣2|>|﹣1|,∴﹣6<﹣4<﹣3<<﹣2<﹣1,故答案为:D.【分析】可根据两负数比较大小法则:两负数相比较,绝对值大的反而小.2.【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故答案为:B.【分析】根据轴对称定义可判断:沿某一条直线对折,两边能完全重合的图形3.【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则【解析】【解答】解:A、a3+a3=2a3,不符合题意;B、3a﹣a=2a,不符合题意;C、(a3)2=a6,不符合题意;D、a•a2=a3,符合题意;故答案为:D.【分析】同底数幂的加法,同类项可系数相加,字母及指数不变;同底数幂的乘法底数不变,指数相加;幂的乘方,底数不变指数相乘.4.【答案】C【考点】多边形内角与外角【解析】【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=720°,解得n=6,故答案为:C.【分析】利用内角和公式构建方程(n﹣2)•180°=720°,求出n.5.【答案】A【考点】函数自变量的取值范围【解析】【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:A.【分析】二次根式有意义的条件为被开方数大于或等于0.6.【答案】B【考点】估算无理数的大小【解析】【解答】解:A、∵4<<5,∴本选项不符合题意;B、∵5<<6,∴本选项符合题意;C、∵6<<7,∴本选项不符合题意;D、∵=4,∴本选项不符合题意;故答案为:B.【分析】被开方数n介于两个完全平方数之间,则介于两个两个完全平方数的算术平方根之间.7.【答案】D【考点】相似三角形的性质【解析】【解答】解:∵△ABC∽△DEF,面积比为9:4,∴△ABC与△DEF的对应边之比3:2.故答案为:D.【分析】利用相似三角形的性质:面积比等于相似比的平方可解决.8.【答案】C【考点】二元一次方程的解【解析】【解答】解:将代入方程ax+(a﹣2)y=0得:﹣3a+a﹣2=0.解得:a=﹣1.故答案为:C.【分析】利用方程解的定义,把解代入方程可解出待定字母a.9.【答案】C【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB= ∠AOB= ×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:C.【分析】须在⊙O上取点D,连接AD,BD,构造出弧ACB所对的圆周角,再利用圆内接四边形的对角互补性质可解决.10.【答案】C【考点】探索数与式的规律【解析】【解答】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=8时,5×8+1=41个.故答案为:C.【分析】等差数列的通项公式可以第一个为基础,列出等式观察规律:图①有矩形有6个=6,图②矩形有11个=6+5×1图③矩形有16=6+5×2第n个图形矩形的个数是6+5(n-1)=5n+111.【答案】A【考点】解直角三角形的应用,解直角三角形的应用-仰角俯角问题【解析】【解答】解:如图作AM⊥BC于M,设AM=x.∵tan∠ABM= ,∴∠ABM=30°,∴AB=2AM=2x,∵∠HPB=30°,∴∠PBH=90°﹣∠HPB=60°,∴∠ABP=180°﹣∠PBH﹣∠ABM=90°,∴∠BPA=∠BAP=45°,∴AB=BP=2x,在Rt△PBH中,∵sin∠PBH= ,∴= ,∴x=10 .故答案为:A.【分析】可通过作垂线把特殊角放到直角三角形中,可设出未知数,在Rt△PBH中利用三角函数列出方程.12.【答案】D【考点】二元一次方程组的解,分式方程的解【解析】【解答】解:∵有解,∴直线y=﹣2x+2与直线y= x+ 不平行,∴≠﹣2,∴m≠﹣4,解﹣1= 得,x=4﹣m,∵x=4﹣m是正数,∴m=﹣3,1,3,当m=3时,原方式方程无意义,故m=﹣3,1,∴﹣3+1=﹣2,故答案为:D.【分析】可以数形结合,方程组的两个方程可看作两直线,方程组有解就是它们相交,比例系数k不相等,分式方程的正数解不能取1,m不能取3,可得出答案.二.<b >填空题</b>13.【答案】4.08×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:4080000=4.08×106.故答案为:4.08×106.【分析】绝对值较大数的科学记数法可表示为a×10n ,a是只有1位整数的小数或整数,n是原整数位数减1.14.【答案】﹣3【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值【解析】【解答】解:原式=2× ﹣4+1= ﹣3.故答案为﹣3.【分析】本题易错点在于=4,非零数的0次幂等于1.15.【答案】95.5【考点】加权平均数【解析】【解答】解:(100×2+96×4+90×2)÷(2+4+2)=(200+384+180)÷8=764÷8=95.5(分).答:这个数学小组速算比赛的平均成绩为95.5分.故答案为:95.5.【分析】利用加权平均数定义,即可求出结果.16.【答案】【考点】概率公式【解析】【解答】解:关于x的一次函数y=﹣x+a的图象经过第一象限,则a>0,﹣3、﹣1、、1、3这五个数中有3个大于0,则关于x的一次函数y=﹣x+a的图象经过第一象限的概率为,故答案为:.【分析】关注的结果有3个正数,3种结果,机会均等的结果为5种,因此概率为.17.【答案】0.7【考点】一次函数的应用【解析】【解答】解:爸爸的速度为36÷(1﹣0.1)=40(千米/小时),小明的速度为36÷(1.2+0.3)=24(千米/小时).设爸爸出发t小时后与小明相遇,此时,小明出发了(t+0.3)小时,根据题意得:40(t﹣0.1)=24(t+0.3),解得:t=0.7.答:爸爸出发0.7小时后与小明相遇.故答案为:0.7.【分析】由图像可求出二人速度,根据相遇时二人距离家的路程相等列出方程40(t﹣0.1)=24(t+0.3),可求出时间.18.【答案】【考点】全等三角形的判定与性质,正方形的性质【解析】【解答】解:如图作AH⊥BG于H交BC于T,AN⊥GD于N,取BD的中点O,连接OA、OG.∴∠BAD=∠BGD=90°,∴OA=OD=OB=OG,∴A、B、G、D四点共圆,∴∠AGB=∠ADB=45°,∠AGD=∠ABD=45°,∴AH=GH,AN=NG,∵∠N=∠AHG=∠HGN=90°,∴四边形ANGH是矩形,∵AH=HG,∴四边形ANGH是正方形,∵AG=7 ,∴AH=HG=GN=AN=7,易证△AND≌△AHB,∴DN=BH,∴GD+GB=GN﹣DN+GH+BH=2GN= AG,∴6+GB=14,∴GB=8,BD= =10,∴BH=1,∵△BHT∽△AHB,∴BH2=AH•HT,∴HT= ,∴AT=AH+TH= ,易证△ABT≌△BCF,∴AT=BF= ,∵△BEF∽△BGD,∴= ,∴= ,∴EF= ,故答案为.【分析】通过作垂线,即作AH⊥BG于H交BC于T,AN⊥GD于N,构造出全等三角形△AND≌△AHB,△ABT≌△BCF,利用△BEF∽△BGD对应边成比例列出关系式,求出EF.三.<b >解答题</b>19.【答案】证明:∵AB∥FD,BG∥FH,∴∠B=∠BEF,∠BEF=∠DFH,∴∠B=∠DFH,在△ABG和△DHF中,,∴△ABG≌△DHF(SAS),∴∠A=∠D.【考点】平行线的性质,全等三角形的判定与性质【解析】【分析】要证两角相等,可证两角所在的三角形全等,即须证△ABG≌△DHF(SAS),可得∠A=∠D.20.【答案】(1)120;(2)解:设了解的学生为(A男,A女,A女),不了解的为(B男,B女),则出现的所有可能性为:(A男,B男)、(A男、B女)、(A女,B男)、(A女,B女)、(A女,B 男)、(A女,B女),∴恰好抽到1名男生和1名女生的概率是:,即恰好抽到1名男生和1名女生的概率是.【考点】扇形统计图,条形统计图,列表法与树状图法【解析】【解答】解:(1)由题意可得,本次调查的学生有:15÷50%=30(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为:360°× =120°,了解的有:30﹣10﹣15﹣2=3(人),【分析】(1)圆心角=360°百分比;条形统计图的补全关键是求出所缺部分的数量,部分百分比=总数,具体量=样本容量相应百分比;(2)关注的结果为3个,机会均等所谓结果有6个,代入概率公式即可得概率为0.5.四.<b >解答题</b>21.【答案】(1)解:原式=4x2﹣1﹣3x2﹣x+2=x2﹣x+1(2)解:原式= • =﹣• =﹣【考点】多项式乘多项式,平方差公式,分式的混合运算【解析】【分析】(1)利用平方差公式和多项式乘多项式法则即可;(2)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分.22.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【考点】反比例函数与一次函数的交点问题,解直角三角形【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.23.【答案】(1)解:设售价应为x元,依题意得:2290﹣15(x﹣11)÷0.5≥2200,解得x≤14.答:2月份售价应不高于14元(2)解:[14(1﹣m%)﹣10(1+10%)]×2200(1+m%)=6600,令m%=t,原式为(3﹣2t)(1+t)=3.t1=0(不合题意,舍去),t2=0.5,∴m=50.答:m的值是50.【考点】一元二次方程的应用,一元一次不等式的应用【解析】【分析】由"笔记本在2月份的销售量不低于2200本“可翻译为不等式2290﹣15(x﹣11)÷0.5≥2200;(2)“3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到6600元”可转化为“方程[14(1﹣ 1 7 m%)﹣10(1+10%)]×2200(1+m%)=6600,解出m的值.24.【答案】(1)解:∵AB=AC,BC=DC∴∠B=∠ACB,∠B=∠D,∴∠ACB=∠D=∠B 又∵DC⊥AC,∴∠ACD=90°∴∠B+∠ACB+∠D=90°∴∠B=∠ACD=∠D=30°∵AB= ,∴AC= ,∴CD= AC= .(2)解:证明:∵AB=AC,BC=DC∴∠ABC=∠ACB,∠ABC=∠CDA∴∠BCE=∠CDA 又∵BC=DC,CE=DA,∴△BCE≌△DCA,∴CE=AD,BE=AC又∵BE=2CE,∴AE=CE,AD=AE,过A作AH⊥DF于H,则∠DAH=∠HAE,DH=EH,又∵∠DAC=∠ABC+∠ACB=2∠ACB,∴∠HAE=∠ACB,又∵∠AEH=∠CEF,AE=CE,∴△AEH≌△CEF,∴EH=EF,∴DH=EH=EF,即DF=3EF【考点】全等三角形的判定与性质【解析】【分析】(1)由AB=AC,BC=DC,可得∠B=∠ACB,∠B=∠D,又DC⊥AC,可得∠B=∠ACD=∠D=30°,再由30度角的正切可得CD= AC= 6;(2)由已知易证△BCE≌△DCA,可得AE=CE,再由AD=AE,AH⊥DF,可得,DH=EH,进而须证HE=EF,因此证出EH=EF即可.25.【答案】(1)解:∵这个三位数是“长久数”,∴4+10a+5=99,解得:a=9.(2)解:设这个五位数为,根据题意得:10(9﹣x)+5+49+x=99k(k为正整数),∴144﹣9x=99k.∵x、k均为正整数,且144<198,∴k=1,x=5.答:这个五位数为54945.【考点】一元一次方程的应用【解析】【分析】(1)利用新定法则,把这个“长久数”转换为各数的和;(2)仍利用新法则,两位一段,构建关于x的方程,求出x.26.【答案】(1)解:当y=0时,得A(10,0);当x=2时,y=4,所以B(2,4),∴;(2)解:过K作KM⊥x轴交AB于M点,设K(m,﹣m2m),(2<m<10),∵A(10,0),B(2,4),∴直线AB的解析式为y=﹣x+5,则KM=﹣m2m﹣(﹣m+5)=﹣m2+3m﹣5,∴S△ABK= •KM•|x A﹣x B|=4KM=﹣m2+12m﹣20=﹣(m﹣6)2+16,∴当m=6时,S△ABK有最大值.此时,K(6,6),S△ABK=16.(3)解:如图,作点B关于y轴的对称点B′(﹣2,4)、点K关于x轴的对称点K′(6,﹣6),连接B′K′,分别交x轴于点I,交y轴于点H,此时四边形BHIK的周长最小,∴B′K′的解析式为y=﹣x+ ,∴H(0,)、I(,0),∴四边形BHIK周长的最小值为B′K′+BK= + =2 +2 .【考点】轴对称-最短路线问题,与二次函数有关的动态几何问题【解析】【分析】(1)要求面积可求高,即y B;(2)(三边均没有水平边或竖直边的三角形可称为斜三角形)△ABK是斜三角形,须过点K做x轴的垂线,把它分割为两个有竖直边的三角形,设出自变量,构建函数,解决最值问题;(3)四边形BHIK周长可转化为多条线段的和,可利用对称法求两线段之和最小,即做出定点B、K分别关于y、x轴的对称点,当三条线段B'H,HI、IK' 在一条直线上时,周长最短..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、21.(本小题满分10分)
23本题满分10分) 解:(1)过点C 作CD ⊥Rt △ACD 中,tan ∠CAD ▄▄▄▄▄
26.(本题满分12分)
解:(1)过点C 作CH ⊥x 轴,垂足为∵在Rt △OAB 中,∠OAB =900,∠BOA ∴OB =4,OA =32
02
请在各个题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各个题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效效
24.(本题满分10分)
F
O
E
D
C
B
A
证明:(1)(1)∵BD =2BC
∴ BC =DC
∵CE ⊥BD ∴ DE =BE
∴∠D =∠DBE ………………………………………………(2分) ∵AC =AB ∴∠ACB =∠ABC ∵∠ACB =∠D +∠CAD
∠ABC =∠DBE +∠ABE ……………………………………(4分) ∴∠CAD =∠ABE ……………………………………………(5分) (2) 取DE 的中点为F ,连接CF ……(6分)
∵CE ⊥BD ∴ DF =CF =EF ∵ BC =CD
∴ CF ∥BE 且CF = BE
∴∠CF A =∠AEB ………………(7分) 在△CAF 和△ABE 中
∵∠CF A =∠AEB AC =BA ∠CAF =∠ABE
∴△CAF ≌△ABE (ASA ) ………(9分) ∴AE =CF ∴AE =CF =DF =EF ∵CF ∥BE
∴AO =CO ………………………(10分) 其余 方法二:取AD 的中点为M ,连接CM . 方法三:取AB 的中点为G ,连接CG .
方法四:过A 作AH ⊥BC 于H ,AH 交BE 于点K . 方法五:过A 作AN ∥BD 交BE 的延长线于点N。