核酸的分离纯化技术

合集下载

核酸的分离纯化

核酸的分离纯化

DNA乙醇沉淀举例
5M NaCl 8L 100% 乙醇 400L
200L DNA 溶液
-20℃冰箱过夜 离心去上清,70%乙醇洗涤沉淀, 离心去上清,风干沉淀。
H2O或TE缓冲液溶解
(四)核酸的浓度、纯度及完整性测定
1 紫外分光光度法
前提
核酸样品要较纯,无显著蛋白质、酚、琼 脂糖及其他核酸污染。测定浓度应大于 0.25 μg/ml 。
优点:
需体积小,速度快,适于浓度低、体积大
的DNA样品沉淀。一般不需低温长时间放置。 缺点: 易使盐类、蔗糖与DNA共沉淀.异丙醇难 以挥发除去。所以,最后用70%乙醇漂洗数
次。
3 核酸沉淀的温度和时间
一般强调,核酸沉淀在低温长时间下进行。 低温长时间沉淀,易导致盐与DNA共沉淀, 影响以后的实验。 一般使用0℃冰水,10-15min, DNA样品足 可达到实验要求。
氯仿:加速有机相与水相分层,去除核酸溶液中残余 的酚,因为残余的酚会影响后续的酶反应。 异戊醇:降低表面张力,减少气泡产生,使离心后的 水相、变性蛋白相及有机溶剂相维持稳定。 (酚:氯仿:异戊醇=25:24:1) 具体操作:第一次用酚氯仿异戊醇抽提,之后用氯 仿异戊醇再洗2-3遍,以除去残余的酚。 用量:与DNA粗提液同倍体积,即1:1。
5. 观察、拍照
6. 分析、回收特定片段 (注意使用不同的UV 波长, 254nm; 365nm)
DNA电泳定量示意图
(五)核酸的保存
1 对DNA ① DNA样品溶于pH8.0的TE,4℃或 -20℃保存; ② 长期保存样品中可加入1滴氯仿。
2
对RNA
① RNA样品溶于0.3 mol/L NaAc (pH5.2)或双蒸灭菌水中,-70 ℃保存; ② 长期保存可以沉淀形式贮于乙醇中; ③ 在RNA溶液中,加1滴0.2 mol/L VRC(氧钒核糖核苷复合物)冻贮于 -70℃,可保存数年。

核酸分离纯化的原则

核酸分离纯化的原则

磁珠法核酸纯化技术采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸发生吸附反应。

硅磁(Magnet ic Silic a Partic le)就是指磁珠微珠表面包裹一层硅材料,来吸附核酸,其纯化原理类型于玻璃奶的纯化方式。

离心磁珠是指磁珠微珠表面包裹了一层可发生离心交换的材料(如DEAE,COO H)等,从而达到吸附核酸目的。

不同性质的磁珠微珠所对应的纯化原理是不一致。

使用磁珠法来纯化核酸的最大优点就是自动化。

磁珠在磁场条件下可以发生聚集或分散,从而可彻底摆脱离心等所需的手工操作流程。

Omega拥有全面的磁珠法核酸分离试剂盒,基于这种技术的试剂盒,名称前都有’Mag-Bind’。

核酸分离与纯化的原则核酸在细胞中总是与各种蛋白质结合在一起的。

核酸的分离主要是指将核酸与蛋白质、多糖、脂肪等生物大分子物质分开。

在分离核酸时应遵循以下原则:保证核酸分子一级结构的完整性;排除其他分子污染。

核酸分离与纯化的步骤大多数核酸分离与纯化的方法一般都包括了细胞裂解、酶处理、核酸与其他生物大分子物质分离、核酸纯化等几个主要步骤。

每一步骤又可由多种不同的方法单独或联合实现。

1. 细胞裂解:核酸必须从细胞或其他生物物质中释放出来。

细胞裂解可通过机械作用、化学作用、酶作用等方法实现。

(1) 机械作用:包括低渗裂解、超声裂解、微波裂解、冻融裂解和颗粒破碎等物理裂解方法。

这些方法用机械力使细胞破碎,但机械力也可引起核酸链的断裂,因而不适用于高分子量长链核酸的分离。

有报道超声裂解法提取的核酸片段长度从< 500bp ~> 20kb 之间,而颗粒匀浆法提取的核酸一般< 10kb。

(2) 化学作用:在一定的p H 环境和变性条件下,细胞破裂,蛋白质变性沉淀,核酸被释放到水相。

上述变性条件可通过加热、加入表面活性剂(SDS、Triton X-100 、Tween 20 、NP-40 、CTAB、sar-cosyl 、Chelex-100 等) 或强离子剂(异硫氰酸胍、盐酸胍、肌酸胍) 而获得。

核酸提取纯化方法

核酸提取纯化方法

核酸提取纯化方法
1. 电泳法:利用电泳技术将核酸从混合物中分离出来,再用某种方法将它从电泳胶中分离出来,从而获得纯化的核酸。

2. 离心分离法:利用离心力将核酸从混合液中分离出来,再用某种方法将它从离心液中分离出来,从而获得纯化的核酸。

3. 水解法:利用酶将核酸水解成小分子片段,再用某种方法将它们分离出来,从而获得纯化的核酸。

4. 硅胶柱法:将核酸溶液中的成分通过硅胶柱分离,从而获得纯化的核酸。

5. 氯仿沉淀法:将核酸溶液中的成分用氯仿沉淀,从而获得纯化的核酸。

核酸纯化方大全

核酸纯化方大全

核酸纯化方大全一:酚氯仿抽提—经典的纯化技术酚氯仿抽提可算得上是核酸分离纯化技术中最经典的方法之一,该方法是由冷泉港实验室中的研究人员首先提取的,并被大量的科研究工作者进行改良使用。

其原理是:在酚氯仿的共同作用下,蛋白质会被变性,形成不溶解的物质。

由于蛋白质的密度小于酚而大于水,所以离心后,会在酚相和水相于之间,形成蛋白质中间层,从而有效地将蛋白质和核酸分离开来。

由于DNA的抽提方式有很多,这个技术并没有被试剂公司接受。

但是另一方面,使用酸性酚氯仿抽提RNA的纯化方式却被广泛接受(因为有效的RNA纯化方式并不多),其纯化原理为:在酸性酚的条件下,DNA溶解于有机相,RNA溶解于水相,而蛋白质则在中间相;从而有效地将DNA,RNA和蛋白质一起分开。

该技术的创始人是Chomczynski。

RNA-Solv Reagent (Omega Bio Tek)就是这一技术的改良产品。

这一技术的最大优点就是经济,灵活。

二:盐析法—经济型核酸抽提技术该技术原理是在组织或细胞裂解液中,加入高浓度盐(NaCl或NH4Cl,KI,KAC)来沉淀去除蛋白质,从而得到高纯度的基因组DNA。

Omega公司在这一方面有着非常卓越的产品。

基于这一技术的产品,其名称都有’SQ’。

该系列的产品最大的优点就是:经济和灵活,是目前提取基因组DNA最经济的试剂盒。

此外,Omega在首次研发了基于这一技术的DNA,RNA和蛋白质共提取的试剂盒,这一个目前最方面最快速的DNA,RNA和蛋白质共提取的试剂盒。

三:玻璃珠—第一个固液相核酸纯化技术在高离液盐(盐酸胍,异硫氰酸胍,NaI)条件下,玻璃珠会同核酸发生吸附反应,而在低盐条件下,核酸又可以被洗脱下来。

但是玻璃珠的残留以及干燥问题影响了这一技术的运用。

至目前为止,大部分的公司已经去除这个纯化技术。

早期的Omega也有许多基于这个技术的试剂盒,但是今天Omega公司只在凝胶回收中保留了这个试剂盒(Ultra-Sep Gel Extraction Kit)。

核酸的分离与纯化

核酸的分离与纯化
核酸的分离与纯化


核酸的分离主要是指将核酸与蛋白质、多 糖、脂肪等生物大分子分开。 在分离核酸时,应遵循两个原则:一是保 证核酸一级结构的完整性;二是尽量排除 其它分子的污染,保证核酸样品的纯度。
2018/7/20
2


核酸分离与纯化的过程一般都包括了材料 的选择、核酸的释放、核酸与其它生物大 分子的分离、核酸的纯化与鉴定、核酸的 浓缩、保存等几个主要步骤。 每一步骤又可由多种不同的方法单独或联 合实现。
34
2018/7/20
5. 质粒DNA的纯化
(1)聚乙二醇沉淀法 质粒DNA的粗制品首先用LiCl沉淀大分子 RNA,并用RNase消化小分子RNA;然 后在高盐条件下,用PEG选择性地沉淀大 的质粒DNA;沉淀的质粒DNA进一步用 酚/氯仿抽提,乙醇沉淀。
2018/7/20
35
(2)柱层析法 柱层析法纯化质粒DNA的关键是其填充的树脂。 树脂可分为两类:一类是利用疏水的相互作用来 纯化质粒DNA样品;一类则通过离子交换与吸附 的相互作用进行纯化。 以硅基质作为填充材料的柱层析,其作用原理是 在多盐条件下,依靠DNA与硅基质的可逆性结合 来进行纯化。通过暴露的磷酸盐残基,DNA吸附 到硅基质上,以50%的乙醇溶液洗去RNA和糖 类等生物大分子,然后加入TE或水溶液使DNA 分子重新水合,并通过离心洗脱出来。

在酚或酚-氯仿中加入少许的异戊醇,是可以
减少实验中的气泡的产生,而且利于分相,保
持分相的稳定性。
2018/7/20
21
为什么苯酚要重蒸饱和后才能用于DNA的分离? 苯酚在空气中经常被氧化生成醌,它能够产生 自由基,如果直接用于DNA分离,会使磷酸二 酯键断裂,造成DNA降解。氧化苯酚需要经过 高温重蒸以除去氧化物,并用Tris-Hcl饱和酚, 并调节至中性。使用饱和酚可以减少酚吸收更 多的DNA,降低DNA的损失率。

核酸提取原理及方法

核酸提取原理及方法

核酸提取原理及方法核酸提取是分子生物学实验中的重要步骤,它是从细胞或组织中分离出核酸并净化的过程。

核酸提取的成功与否直接影响到后续的实验结果,因此掌握核酸提取的原理和方法对于科研工作者来说至关重要。

一、核酸提取原理。

核酸提取的原理主要包括细胞破碎、核酸溶解和净化三个步骤。

首先,细胞膜和细胞壁需要被破坏,以释放细胞内的核酸。

其次,核酸需要被有效地溶解,使其能够被提取出来。

最后,通过净化步骤去除蛋白质、多糖和其他杂质,从而得到纯净的核酸样品。

二、核酸提取方法。

1. 酚氯仿法。

酚氯仿法是最常用的核酸提取方法之一。

其原理是利用酚和氯仿两种有机溶剂与水相不相溶的特性,将细胞裂解液中的蛋白质等杂质分离出去,从而得到纯净的核酸。

这种方法操作简单,适用于提取大量样品。

2. 硅胶柱法。

硅胶柱法利用硅胶膜对核酸的亲和力进行提取和分离。

通过将样品加入硅胶柱后,核酸能够与硅胶膜结合,而其他杂质则被洗脱掉。

这种方法提取的核酸纯度高,适用于对纯度要求较高的实验。

3. 磁珠法。

磁珠法是近年来发展起来的一种核酸提取新方法。

通过在磁珠表面修饰亲核酸的功能基团,使得核酸能够与磁珠结合。

利用磁场的作用,可以将核酸与磁珠分离出来,从而实现核酸的提取和纯化。

这种方法操作简便,且适用于高通量提取。

三、注意事项。

在进行核酸提取时,需要注意以下几点:1. 样品的质量和保存对提取结果有重要影响,因此在提取前需要确保样品的完整性和纯度;2. 根据不同的实验目的和样品特点选择合适的提取方法,以确保提取效果;3. 在操作过程中要注意无菌操作,避免外源性核酸的污染;4. 核酸提取后,应根据实验需求储存或立即进行下一步实验。

总结,核酸提取是分子生物学实验中的重要步骤,掌握核酸提取的原理和方法对于科研工作者来说至关重要。

不同的提取方法有着各自的特点和适用范围,选择合适的提取方法能够提高实验效率和结果的准确性。

在实验操作中要严格按照操作规程进行,确保提取的核酸样品质量和纯度。

核酸的分离纯化

核酸的分离纯化

(4)精胺
精胺不是有机溶剂,但可快速有效沉淀DNA。
原理是: 精胺与DNA结合后,使DNA在溶液中结构凝 缩而发生沉淀,并可使单核苷酸和蛋白质 杂质与DNA分开,达到纯化DNA的目的。
2.3.3 核酸沉淀的温度和时间
低温长时间沉淀,易导致盐与DNA共沉淀,
一般强调,核酸沉淀在低温长时间下进行。 影响以后的实验。一般使用0℃冰水,1015min, DNA样品足可达到实验要求。
贮存液浓度(mol/L)
1 3 (pH5.2) 3 (pH5.2) 10 5 8
终浓度(mol/L)
0.01 0.3 0.3 2.5 0.2 0.8
2.3.2 有机沉淀剂
(1)乙醇
优点: 对盐类沉淀少,沉淀中所含迹量乙醇易 挥发除去,不影响以后实验。 缺点: 需要量大,一般要求低温操作。
(2)异丙醇
Home
核酸(nucleic acid)是遗传信息的携带者, 是基因表达的物质基础。
1 核酸分离、纯化原则
1.1 保持核酸分子一级结构的完整性 1.1.1 —级结构还决定其高级结构的形式以及 和其他生物大分子结合的方式。
1.1.2 分离核酸原则:
1)温度不要过高; 2)控制pH值范围(pH值5-9); 3)保持一定离子强度; 4)减少物理因素对核酸的机械剪切力.
Home
2.4
核酸的浓度测定
2.4.1 紫外分光光度法测DNA和RNA的含量
前提:核酸样品要较纯,无显著蛋白质、酚、 琼脂糖及其他核酸污染。测定浓度应大于0.25 μg/ml 。 结论:在波长260nm紫外光下,1 OD值的吸光度 相当于双链DNA浓度为50μg/ml;单链DNA为37 μg/ml;RNA为40 ug/ml。

核酸分离与纯化的技术路线与原则

核酸分离与纯化的技术路线与原则

核酸分离与纯化的技术路线与原则核酸包括DNA 、RNA两类分子,在细胞内均与蛋白质结合成核蛋白。

真核生物基因组中,95%DNA 为双链线性分子,存在于细胞核中,5%为双链环状分子,存在于细胞器中;原核生物DNA 及质粒DNA 为双链或单链环状分子;RNA 为单链线性分子,主要存在于细胞质中。

DNA 与RNA 性质的不同导致对其分离与纯化的条件也不相同。

一、核酸分离与纯化的原则(1)保证核酸一级结构的完整性。

生物的遗传信息全部贮存在核酸一级结构中,而且核酸的一级结构还决定其高级结构的形式及和其他大分子结合的方式。

所以,所提取的核酸一级结构的完整性直接影响着后续实验中对其结构与功能研究的质量。

因此,在制备核酸的过程中,要做到:尽量简化操作程序,缩短提取过程;避免过酸、过碱等化学因素对核酸链中磷酸二酯键的破坏,在pH 值4~10条件下进行操作;操作时动作要轻缓,提取的样品小包装保存,以免诸多的物理因素对核酸的降解;避免细胞内及环境中核酶对核酸的生物性降解。

(2)排除其他生物大分子的污染,如蛋白质、多糖和脂类分子的污染应尽可能降低到最低程度,特别是提取DNA 分子时应除去RNA 分子,反之亦然。

(3)排除核酸样品中有机溶剂和过高浓度的金属离子。

二、分离与纯化的技术路线(一)核酸的释放通常情况下DNA 及RNA 均位于细胞内,因此核酸分离与纯化的第一步就是制备单个细胞,再破碎细胞,从而释放核酸。

破碎细胞的方法包括机械法与非机械法两大类。

机械法又可分为液体剪切法与固体剪切法;非机械法可分为干燥法与溶胞法。

由于溶胞法采用适宜的化学试剂与酶,能有效地裂解细胞,方法温和,能保证较高的核酸获得率,并能较好地保持核酸的完整性,从而得到广泛的应用。

(二)核酸的分离与纯化利用核酸与其他物质性质上的差异,可以分离与纯化核酸。

这种差异包括细胞定位与组织分布上的差异,物理、化学性质上的不同,以及各自独特的生物学特性。

操作过程中,既可以从复杂样品中抽提出核酸分子,也可以将样品中的非核酸成分(非核酸的生物大分子、非需要的核酸分子及在操作过程中加入的溶液与试剂)逐步清除。

第五章核酸的分离纯化

第五章核酸的分离纯化
2、长期贮存: TE缓冲液中-70℃保存数年;在DNA溶液中加一滴氯仿可有 效防止细菌和核酸的污染。
三、核酸的鉴定与保存
2、RNA的储存 RNA溶于0.3mol/L的NaAc溶液或三蒸水中,-70℃ 保存。如用DEPC处理过的水溶解RNA或者在RNA溶液 中加入RNasin或VRC,保存时间可延长。
• 甲酰胺解聚法适用于从标本中制备高分子量的 DNA样品。可得DNA 200kb左右
三、玻棒缠绕法
• 现今使用的缠绕法是以1987年Bowtell的方 法经改进而来。
三、玻棒缠绕法
DNA玻棒缠绕法示意图
四、其它方法
常用的一些分子诊断技术,并不需要高分子量的DNA样 品,因此步骤简化、操作简便的DNA快速提取法运用而 生并广泛使用
第五章 核酸的分离纯化
第一节 核酸分离纯化的设计及原则 第二节 基因组DNA的分离纯化 第三节 质粒DNA的提取与纯化 第四节 RNA的分离纯化
第一节 核酸分离纯化的设计及原则
第一节 核酸分离纯化的设计及原则
一、材料与方法的选择 二、技术路线的设计 三、核酸的鉴定与保存
一、材料与方法的选择
(一) 材料与方法的选择 (二) 选择原则
在TE缓冲液中,纯DNA的A260/A280为1.8 纯RNA的A260/A280比值为2.0
三、核酸的鉴定与保存
1. DNA或RNA的定量 OD260=1.0相当于 50μg/ml双链DNA 40μg/ml单链DNA(或RNA) 20μg/ml寡核苷酸
2.判断核酸样品的纯度 DNA纯品: OD260/OD280 = 1.8 RNA纯品: OD260/OD280 = 2.0
SDS的作用:
1 溶解膜蛋白和脂肪,从而是细胞膜破裂; 2 溶解核膜和核小体,使其解聚,将核酸

核酸分离纯化

核酸分离纯化
的—级结构还决定其高级结构的形式以及和其他生物 大分子结合的方式。
1.1.2 分离核酸原则: 1)温度不要过高; 2)控制pH值范围(pH值5-9); 3)保持一定离子强度; 4)减少物理因素对核酸的机械剪切力.
返回
1.2 防止核酸的生物降解
细胞内或外来的各种核酸酶能消化核酸链 中的磷酸二酯键,破坏核酸一级结构。

MgCl2 NaAc KAc NH4Ac NaCl LiCl
贮存液浓度(mol/L)
1 3 (pH5.2) 3 (pH5.2)
10 5 8
终浓度(mol/L)
0.01 0.3 0.3 2.5 0.2 0.8
返回
2.3.2 有机沉淀剂
(1)乙醇
优点: 对盐类沉淀少,沉淀中所含迹量乙醇易
挥发除去,不影响以后实验。 缺点:
返回
2.3.3 核酸沉淀的温度和时间
一般强调,核酸沉淀在低温长时间下进行。 低温长时间沉淀,易导致盐与DNA共沉淀, 影响以后的实验。一般使用0℃冰水,1015min, DNA样品足可达到实验要求。
返回
2.4 核酸的浓度测定
2.4.1 紫外分光光度法测DNA和RNA的含量
前提:核酸样品要较纯,无显著蛋白质、酚、 琼脂糖及其他核酸污染。测定浓度应大于0.25 μg/ml 。 结论:在波长260nm紫外光下,1 OD值的吸光度 相当于双链DNA浓度为50μg/ml;单链DNA为37 μg/ml;RNA为40 ug/ml。
返回
测定结果分析
A:测DNA: 纯的DNA样品OD260/OD280应为1.8,OD260m /OD230应大于2.0。
1) OD260/OD280大于1.9时,表明有RNA污染。
2) 小于1.6时,表明样品中存在蛋白质或酚污染;

第六章核酸的分离与纯化

第六章核酸的分离与纯化
(2)荧光光度法:用溴化乙锭等荧光染料示踪的核酸电泳结果可用于判定核酸的纯度。由于DNA分子较RNA大许多,电泳迁移率低;而RNA中以rRNA最多,占到80%~85%,tRNA及核内小分子RNA占15%~20%,mRNA占1%~5%。故总RNA电泳后可呈现特征性的三条带。在原核生物为明显可见的23S、16S的rRNA条带及由5S的rRNA与tRNA组成的相对有些扩散的快迁移条带。在真核生物为28S、18S的rRNA及由5S、5.8S的rRNA和tRNA构成的条带(图6-1)。mRNA因量少且分子大小不一,一般是看不见的。通过分析以溴化乙锭为示踪染料的核酸凝胶电泳结果,我们可以鉴定DNA制品中有无RNA的干扰,亦可鉴定在RNA制品中有无DNA的污染。
三、鉴定、保存与应用
(一)核酸的鉴定
1.浓度鉴定核酸浓度的定量鉴定可通过紫外分光光度法与荧光光度法进行。
(1)紫外分光光度法:紫外分光光度法是基于核酸分子成分中的碱基均具有一定的紫外线吸收特性,最大吸收波长在250nm~270nm之间。这些碱基与戊糖、磷酸形成核苷酸后,其最大吸收波长不变。由核苷酸组成核酸后,其最大吸收波长为260nm,该物理特性为测定溶液中核酸的浓度奠定了基础。在波长260nm的紫外线下,1个OD值的光密度大约相当于50µg/ml的双链DNA,38µg/ml的单链DNA或单链RNA,33µg/ml的单链寡聚核苷酸。如果要精确定量已知序列的单链寡核苷酸分子的浓度,就必须结合其实际分子量与摩尔吸光系数,根据朗伯-比尔定律进行计算。若DNA样品中含有盐,则会使A260的读数偏高,尚需测定A310以扣除背景,并以A260与A310的差值作为定量计算的依据。紫外分光光度法只用于测定浓度大于0.25µg/ml的核酸溶液。
2.纯度鉴定紫外分光光度法还是荧光光度法,均可用于核酸的纯度鉴定。

常用核酸提取技术介绍

常用核酸提取技术介绍

常用核酸提取技术介绍核酸提取是从细胞或组织中分离纯化核酸的过程。

核酸提取技术广泛应用于生命科学研究中,例如基因测序、PCR扩增、基因克隆、基因组学研究等。

下面将介绍几种常用的核酸提取技术。

1.酚-氯仿法酚-氯仿法是一种经典的核酸提取方法。

该方法主要包括细胞破碎、蛋白质消化和核酸沉淀三个步骤。

首先,细胞经过机械强化破碎,释放出核酸。

接着,通过酚的提取使蛋白质溶解,然后利用氯仿分离出水相中的核酸沉淀。

最后,通过酒精沉淀获得纯化的核酸。

优点是操作简单,适用于各种样品类型。

缺点是提取的核酸可能含有蛋白质、多糖等杂质,纯度较低。

2.磁珠法磁珠法是一种高效的核酸提取方法。

该方法利用特定的磁性珠子将核酸选择性地吸附,然后通过磁力将珠子与非目标杂质分离。

该方法相对于传统的酚-氯仿法具有许多优点,包括提取纯度高、自动化程度高、适用于大规模样品处理等。

磁珠法特别适用于高通量的核酸提取和高通量测序等需求。

3.硅胶柱法硅胶柱法是一种常用的核酸提取方法。

该方法利用硅胶膜的亲和性,将核酸吸附到硅胶膜上,然后通过洗涤和洗脱步骤来纯化核酸。

硅胶柱法适用于从小规模样品中提取纯度较高的核酸,例如从血液、组织和细菌培养物中提取DNA。

硅胶柱法提取的核酸能够进行各种分子生物学和分子诊断应用。

4.针对特定样品的提取方法不同类型的样品可能具有不同的特性和组分,因此需要针对特定样品开发相应的核酸提取方法。

例如,提取环境样品中的核酸可能需要经过过滤、浓缩、去除抑制物等步骤。

提取血液样品中的核酸可能需要应用抗凝剂来避免核酸降解。

提取植物样品中的核酸可能需要使用纤维素酶来消化细胞壁。

因此,在选择和设计核酸提取方法时,应该考虑到样品的特点和需求。

总之,核酸提取是生命科学中基础而重要的步骤,良好的核酸提取方法可以确保提取纯度高、完整的核酸样品,为后续的基因分析提供可靠的基础。

不同的核酸提取方法各有优缺点,根据实验需求和样品特点选择合适的方法是至关重要的。

医学-核酸的分离与纯化

医学-核酸的分离与纯化

息从父母传递给后代,并控制蛋白质的合成。
核酸的分类
DNA
DNA是脱氧核糖核酸的缩写,是细胞内主要的遗传物质,负 责携带遗传信息。根据功能和结构的不同,DNA可分为染色 体DNA和线粒体DNA。
RNA
RNA是核糖核酸的缩写,主要参与蛋白质的合成。根据功能 和结构的不同,RNA可分为信使RNA、转运RNA和核糖体 RNA等。
戊糖
戊糖是核酸中的碳水化合物部分,包括D-核糖和脱氧核糖。D-核糖是构成RNA的碳水化 合物,而脱氧核糖是构成DNA的碳水化合物。
含氮碱基
含氮碱基是构成核苷酸的有机碱,包括腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺 嘧啶(T)等,这些碱基在核酸分子中具有特定的配对规则。
核酸的结构与功能
01
DNA双螺旋结构
吸附法纯化
硅胶吸附法
利用硅胶的吸附性质,将DNA混合液通过硅胶柱,去除 杂质,得到纯化的DNA。
磁珠吸附法
利用磁珠的吸附性质,将DNA混合液加入磁珠中,去除 杂质,得到纯化的DNA。
凝胶过滤法
利用凝胶的分子筛效应,将DNA混合液通过凝胶柱,去 除杂质,得到纯化的DNA。
膜分离纯化
超滤法
利用膜的分子筛效应,将DNA混合液通过超滤膜,去除杂质,得 到纯化的DNA。
疫苗开发
在疫苗开发中,核酸可以作为抗原提供给免疫系统,刺激机 体产生免疫反应。通过核酸分离与纯化技术,可以获得高纯 度、安全性和有效性均符合标准的疫苗抗原,为疫苗研发提 供关键技术支持。
05
展望未来
核酸分离与纯化的挑战与机遇
挑战
随着医学技术的不断发展,对核酸的分离与纯化提出了更高的要求,尤其是在保 证高纯度、高效率、低成本等方面。同时,对于特殊样本的处理和复杂样本的解 析也带来了新的挑战。

核酸的分离与纯化ppt课件

核酸的分离与纯化ppt课件
核酸提取方法——分离与纯化
——盐析法
产量较低,但方法简单,比较酚氯仿方法无化学危害;
同样不适合大规模自动化提取。
提取好的DNA用蛋白酶处理纯度会提高。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
核酸提取方法——分离与纯化
每一步骤又可由多种不同的方法单独或 联合实现。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
核酸提取方法——细胞裂解
细胞裂解可通过以下几种方法实现:
物理作用 化学作用 酶作用 (生物作用)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
碱性pH环境:强碱(NaOH) 或碱性缓冲液 ( TE、
STE 等)
在一定的p H 环境下,表面活性剂或强离子剂可使细胞裂解、蛋 白质和多糖沉淀,核酸释放到水相;某些缓冲液中的一些金属离 子螯合剂( EDTA 等) 可螯合对核酸酶活性所必须的金属离子 Mg2+ 、Ca2+ ,从而抑制核酸酶的活性,保护核酸不被降解。
核酸提取方法——分离与纯化
——硅胶吸附法
产量较低,纯度很好; 也能造成大片段核酸的损伤; 对极小片段核酸提取不够好; 简单方便,可进行自动化处理。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
核酸提取方法——分离与纯化
——硅胶吸附法
1、细胞裂解和酶处理同前述;

核酸提取与纯化

核酸提取与纯化

核酸提取与纯化引言核酸提取与纯化是生物学研究中常用的操作步骤之一。

核酸提取是指从生物样本中分离出DNA或RNA分子,纯化则是指将提取得到的核酸分子除去杂质,获得纯净的核酸样品。

本文将介绍核酸提取与纯化的基本原理、常用方法以及注意事项。

核酸提取原理核酸提取的基本原理是利用生物样本中DNA和RNA分子与其他组分(如蛋白质、细胞壁等)之间的化学或物理性质的差异,将核酸分子从样本中分离出来。

常见的提取方法有有机溶剂法、盐析法和离心法等。

有机溶剂法有机溶剂法是一种常用的核酸提取方法。

其原理是利用有机溶剂(如酚-氯仿混合液)与生物样本中的其他组分之间的亲和性差异,将核酸分子从样本中提取出来。

这种方法操作简单,适用于提取DNA和RNA。

具体操作步骤如下:1.准备生物样本,如细胞培养物或组织样本。

2.加入细胞裂解缓冲液,破坏细胞膜、核膜等结构,释放核酸分子。

3.加入酚-氯仿混合液,与细胞裂解液混合,形成两相体系。

4.离心分离两相,核酸分子会在有机相中分配到有机相中,而其他杂质会在水相中。

5.取出有机相,加入异丙醇或乙醇等沉淀剂,沉淀核酸分子。

6.离心沉淀,弃去上清液。

7.用乙醇洗涤沉淀,去除残留的盐和有机溶剂。

8.干燥沉淀,加入适量的去离子水溶解核酸。

盐析法盐析法是利用核酸分子与盐溶液中的离子交互作用的原理进行分离。

该方法适用于高含量的核酸样本(如DNA或RNA)。

其操作步骤如下:1.准备生物样本,如细胞裂解液。

2.加入适量的盐溶液,使盐浓度达到一定程度。

3.离心分离沉淀,核酸分子会与高浓度盐溶液结合形成沉淀,而其他杂质会在上清液中。

4.取出沉淀,用盐溶液洗涤核酸,去除杂质。

5.干燥沉淀,加入适量的去离子水溶解核酸。

离心法离心法是一种快速分离核酸的方法。

其原理是利用离心力将核酸分子从样本中沉淀下来。

离心法适用于小样本量和快速提取的情况。

具体步骤如下:1.准备生物样本,如细胞裂解液。

2.加入高盐缓冲液,增加核酸与其他组分之间的亲和性差异。

核酸的分离和纯化

核酸的分离和纯化
29
RNA制备前的准备
玻璃器皿 在使用前应180℃烤至少4小时 塑料器皿 用0.1% 焦碳酸二乙酯(DEPC)或用氯仿洗涤 电泳槽 用去污剂洗涤,水冲洗,乙醇干燥,再浸泡于
3%H2O2 液中10分钟,然后0.1%DEPC处理水彻 底冲洗。 配制的溶液应用0.1% DEPC在37℃处理12小时以上,再高 压灭菌去除 DEPC。 不能高压灭菌的溶液用
EDTA/0.1 SDS的试管收集洗脱的RNA溶液。
35
6)按步骤2重新平衡柱子,重复步骤2-4的poly(A)选 择吸附和洗脱过程。
7)调整收集的RNA溶液的乙酸钠浓度至 0.3mol/L, 加2.5倍体积乙醇,移至2个硅化的SW-55离心管 中,-20℃放置过夜 。
8)4℃离心, 30, 000g 30分钟沉淀RNA(极稀浓 度 )。弃去乙醇,晾干沉淀,重溶于150微升无 RNA酶的TE缓冲液,合并样品。取5微升在70℃ 加热5分钟后,在1%琼脂糖凝胶电泳中检查RNA 的质量。
31
方法 一、异硫氰酸胍法制备总RNA
二、TRIzol试剂提取细胞总RNA
步骤:
1) 组织标本需在预冷的碾钵中捣碎,收获1x106-5x106细
胞, 移入1.5 ml管中。
2) 加TRIzol试剂1 ml,混匀,冰浴5 mins。
3) 加氯仿0.2毫升,混匀,冰浴10 mins。
4) 4℃,10, 000g离心5 mins。
288 kb
痘病毒
196 kb
质体 几~100以上kb
线粒体
藻类 线状
15kb
酵母 环状
19~78 kb
植物 环状 100~150 kb
动物(扁虫到人)环状 15~18 kb
锥虫 网状

《核酸分离纯化》课件

《核酸分离纯化》课件

《核酸分离纯化》课件一、课件概述核酸分离纯化是分子生物学和生物技术领域中的一项基本技术,其目的是从复杂的生物样品中提取和纯化出高质量的核酸,以便进行后续的分析和应用。

本课件将介绍核酸分离纯化的基本原理、方法和步骤,帮助学生掌握这一技术。

二、课件内容1. 核酸分离纯化的意义核酸是生物体内重要的遗传物质,其分离纯化对于研究基因表达、基因调控、基因突变等方面具有重要意义。

核酸分离纯化是进行基因克隆、基因测序、PCR等实验的基础步骤。

2. 核酸分离纯化的基本原理核酸的物理化学性质:核酸具有一定的溶解度、吸附性、变性温度等。

核酸与蛋白质、RNA、DNA等分子的差异:通过特定条件下对不同分子的相互作用进行分离。

利用核酸的特异性:通过特定酶的作用,实现对核酸的分离纯化。

3. 核酸分离纯化的方法盐析法:利用核酸在高盐浓度下的溶解度降低,将核酸与其他物质分离。

有机溶剂沉淀法:利用有机溶剂(如酚、氯仿等)与水相不相溶的性质,将核酸与其他物质分离。

吸附法:利用特定吸附剂(如硅胶、纤维素等)对核酸的选择性吸附,将核酸与其他物质分离。

透析法:利用透析袋的选择性透过性,将核酸与其他大分子物质分离。

酶法:利用特定酶(如DNA酶、RNA酶等)对核酸的降解作用,实现对核酸的分离纯化。

4. 核酸分离纯化的步骤样品处理:取适量生物样品,加入适量裂解液,进行充分搅拌,使细胞破碎并释放核酸。

核酸提取:将样品转移至离心管中,进行高速离心,将核酸沉淀与其他物质分离。

核酸纯化:根据核酸的物理化学性质,选择适当的分离方法(如盐析、有机溶剂沉淀等),将核酸与其他物质分离。

核酸洗涤:用适量的洗涤液对核酸沉淀进行洗涤,去除残留的杂质。

核酸重悬:加入适量的溶解液,将核酸沉淀重悬,以便进行后续分析或应用。

5. 实验操作注意事项实验操作应在生物安全柜中进行,避免交叉污染。

实验过程中应使用无RNA酶、无DNA酶的试剂和工具。

实验操作过程中应注意个人防护,避免接触核酸样品。

第九章核酸的分离与提纯

第九章核酸的分离与提纯
第九章核酸的分离与提纯
核酸得种类
脱氧核糖核酸(DNA):细胞核,单链或双链
核糖体RNA
核糖核酸(RNA) 转运RNA 信使RNA
细胞质, 单链或双链
但无论哪核酸,在生物体中一般以核蛋白得形式存在, 因此,为了提取制备核酸,必须将核蛋白解联(即利用接
联剂将核蛋白裂解为核酸和蛋白)并去除蛋白, 同时必须维持核酸得天然性状,不使核酸发生变性或降
常与其她方法结合使用。
5、高通量得RNA分离技术
(1)微量移液法(micropipeting)
由Karrwer等人于1995年建立得一种方法。 特点:此法借助毛细管或微量移液管直接提取细
胞得内含物,进行RNA抽提。
操作过程
用激光移液管拉伸器(1aserpipette puller)将毛细石 英管拉成孔径为l0um得微量移液管,将其顶端弯曲23°, 以便穿透细胞壁。
分离总RNA
分离细胞器DNA RNA poly(A)RNA 特异DNA
感染或转染细胞(病毒型) 转化细菌细胞(质粒型)
分离病毒颗粒
培养转化细胞、收集菌体
病毒载体DNA分离与纯化
破碎细胞
பைடு நூலகம்
质粒DNA分离与纯化
大家学习辛苦了,还是要坚持
继续保持安静
(3)防止核酸得生物降解
细胞内外各种核酸酶可作用于磷酸二酯键,直接破坏核酸得 一级结构,使其降解;
DNA酶需要Mg 2+、Ca 2+得激活,因此实验中常加入 EDTA、柠檬酸盐,以络合核酸酶作用时所必需得Mg 2+离 子,以抑制DNA酶得活性;
制备RNA则需克服核糖核酸酶(RNase)得降解作用。因为 RNase不但分布广泛,极易污染,而且耐高温,即使加热到蛋 白变性, Rnase得活力也不会完全丧失,且具有惊人得回复 力,而细胞内得核蛋白又总就是和她联在一起,若去除不彻底, 她将部分恢复活力,导致RNA降解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸的分离纯化技术
从细胞中提取核酸后,仍混杂着蛋白质、多糖和各种大小分子核酸同类物。

除去这些“杂质”的过程,也就是核酸提纯过程。

在核酸的分离纯化时,为防止核酸大分子的变性降解,必须在0~4℃的低温条件下操作。

核酸酶的水解作用,是过去制备具有活性核酸大分子的严重障碍,现普遍采用加入去污剂或加入EDTA、8-羟基喹啉、柠檬酸钠以除去核酸酶的激活剂Mg2+,就可以抑制核酸酶的活性,保证在提纯过程中核酸大分子的完整。

关于核酸分离纯化阶段中除去多糖、蛋白质及不同类型核酸之间分离的一些方法,分别介绍如下:(1)肝糖元、淀粉及粘多糖,由于其物理化学性质与核酸有许多相似之处,常在提取液中残存下来。

除去的方法常有:①取材前尽量减少组织中多糖的含量,如先使动物饥饿数天然后杀死,可使细胞内肝糖元大大减少。

②加入淀粉酶,将大分子多糖分解为小分子,在以后纯化步骤中逐渐被除去。

③在浓磷酸盐存在下,以2-甲氧基乙醇抽提核酸提取液,使多糖溶于下层水相,核酸在上面有机层中。

④以钙盐沉淀DNA,再以草酸钾处理,使之形成DNA钾盐回收,然后用离子交换法吸附DNA,使之与多糖分离。

(2)蛋白质的除去:由于核酸在细胞内以核蛋白体形式存在,不论采用哪种方法提取核酸,蛋白质都不同程度地存在于体系中。

因此,除去蛋白质是核酸分离纯化不可避免的步骤。

常用方法有下列几种:①加入去污剂如硫酸十二脂钠,从提取到分离纯化各阶段均可反复使用此法。

去污剂与氯仿法或苯酚法结合使用,效果更加理想。

②氯仿-戊醇或辛醇对提取液摇荡抽提,蛋白质在氯仿-水界面形成凝胶,离心后除去,核酸留在水溶液中。

此法在分离纯化中也常反复使用。

③苯酚水溶液抽提,在对氨基水杨酸等阴离子化合物存在下,DNA或RNA都可以进入水相,蛋白质则沉淀于酚层,然后取水相加入乙醇或2-乙氧基乙醇沉淀RNA 或DNA,残余的酚可用葡聚糖凝胶G-10或G-25除去。

(3)不同类型核酸的分离:两种类型核酸的制备过程中,DNA制品中混杂着少量RNA或RNA制品中混杂着少量DNA是经常发生的。

由于DNA和RNA结构和性质都很相似,而且分子量都十分大,所以两类核酸的分离是核酸纯化工作中比较复杂和繁琐的一步。

从DNA中除去RNA的方法常有:①核糖核酸酸酶选
择地破坏RNA,这是比较有效的方法,但使用的核糖核酸酶中常含有极微量的脱氧核糖核酸酶,必须事先加热处理除去,然后将纯净的核糖核酸酶与样品溶液一起在37℃孵育数分钟,就可达到破坏RNA的目的。

②钙盐分步沉淀:在核酸溶液中加入1/10体积10%的氯化钙溶液,使DNA与RNA均成为钙盐后,再利用DNA钙盐在2/10体积乙醇中能形成沉淀析出,RNA钙盐不形成沉淀而彼此分离。

③活性炭吸附:将处理好的活性炭按1/15~1/20体积加入每毫升含有0.5~1mgDNA溶液中,0~4。

C下搅拌1h ,以31000×g离心1h,除去RNA后的DNA 回收率可达94%。

在RNA制品中除去DNA,苯酚水溶液抽提是较有效和常用的方法。

在没有阴离子化合物存在下,以等体积90%苯酚水溶液反复抽提RNA,可以除去绝大部分DNA。

此外,也可采用加入脱氧核糖核酸酶处理,破坏DNA,或参考上述DNA 与RNA分离方法将DNA除去。

(4)同类核酸的分离
①RNA混合物的分离:经过提取的初步纯化的RNA制品中含有各类RNA和某些已降解的RNA混杂物。

进一步纯化时,多应用柱层析、梯度离心及逆流分溶等方法。

例如tRNA与rRNA的分离用吸附于硅藻土表面的甲基化白蛋白柱吸附后,以不同梯度氯化钠溶液洗脱,或用蔗糖梯度(顶部5%浓度,底部20%浓度)离心法分开。

mRNA的代谢速度较快,在细菌中平均寿命为90min,在哺乳动物中约为几小时至十几小时,常用密度梯度离心法和DNA-琼脂柱进行分离。

制备rRNA时,由于共沉作用,常混有mRNA,一般可用萘-1,5-二磺酸处理,使二者分开。

各种tRNA的提纯,通常采用逆流分溶法在磷酸缓冲液-甲酰胺-异丙醇系统下进行,分离效果较好。

②DNA混合物的分离:主要是变性或降解的DNA和天然的分离,常用磷酸钙、ECTEOLA-纤维素、DEAE-纤维素和甲基化白蛋白柱层析,逆流分溶,梯度离心等方法。

一个具有生物活性高度提纯的DNA制品应具有如下标准:不含有蛋白质及多糖;不含有可透析的小分子杂物;在pH7时紫外吸收最大值在257~261μm之间,E(P)在6600左右;不含有RNA;固体为纤维状,水溶液具有高的粘度并有流动双折射作用;具有电泳均一性及超离心中单分散性;具有生物活性。

相关文档
最新文档