中考数学专题复习:等腰三角形

合集下载

2024年中考数学复习课件 第18讲 等腰三角形与直角三角形

2024年中考数学复习课件 第18讲 等腰三角形与直角三角形
∴ △ 是等边三角形.
要点梳理
典题精析
备考练习
14
第18讲 等腰三角形与直角三角形
(2)如图②, △ 仍是等边三角形,
点 在 的延长线上,连接 ,判
断 ∠ 的度数及线段 , ,
之间的数量关系,并说明理由.
图3
思路点拨 由等边三角形的性质,可将 转化为 .若能将 转化为 ,
(2)点 是否也在边 的垂直平分线上?请说明理由.
解:点 也在边 的垂直平分线上.
理由如下: ∵ = , ∴ 点 在边 的垂直平分线上.
要点梳理
典题精析
备考练习
22
第18讲 等腰三角形与直角三角形
考点四 直角三角形的性质
名师指导 在直角三角形中求角度时,通常利用“直角三角形的两锐角互
上的中线, 为 的中点.若 = 8 ,
3
= 5 ,则 = ___.
20
第18讲 等腰三角形与直角三角形
(2)求 的长.
思路点拨 利用垂直平分线的性质,可将 转化为 .
因此根据勾股定理,求出 长就可以了.
解: ∵ ∠ = 90∘ , = 12 = 5, ∴ =

图6
2 + 2 = 122 + 52 =13.
∵ 是 的垂直平分线, ∴ = = 13
①有一个角是______的三角形是直角三角形
直角
②有两个角______的三角形是直角三角形
互余
判定
2+

③(勾股定理的逆定理)若三角形的三边长 , , 满足______
2 = 2

_______,则这个三角形是直角三角形

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。

中考数学考点20等腰三角形总复习(原卷版)

中考数学考点20等腰三角形总复习(原卷版)

等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。

【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .9.(2020秋•紫阳县期末)如图.在等腰△ABC 中.AB =AC .点E 为AC 的中点.延长BC 到点D .使得CD =CE .延长DE 交AB 于点F .若∠A =60°.EF =4cm .则DF 的长为( )性质1. 三条边相等2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式 是等边三角形的边长.h 是任意边上的高A.12cm B.10cm C.8cm D.6cm 10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.85.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个5.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.26.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8 3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3 4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4 5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.10.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10 2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6 4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2 9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128 10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.。

2024年九年级中考数学专题复习训练等腰三角形存在性问题(8)

2024年九年级中考数学专题复习训练等腰三角形存在性问题(8)

1、如图,在平面直角坐标系中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.
2、如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C 移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动当P点或Q点到达终点时停止运动,在P、Q两点移动过程中,当△PQC为等腰三角形时,求时间t的值.
3、如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一动点,直线PQ 与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标。

5、如图,已知四边形ABCD是矩形,AB=16,BC=12,点E在射线BC上,点F在线段 BD上,且∠DEF=∠ADB.设BE=x,当△DEF为等腰三角形时,求x的值.
x的图象上运动(不与O重合), 7、如图所示,在平面直角坐标系中,已知A(0,2),动点P在y=√3
3
连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.
(1)求线段AP长度的取值范围.
(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由。

(3)当△OPQ为等腰三角形时,求点Q的坐标.。

专题19 等腰三角形(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题19 等腰三角形(解析版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练

专题19等腰三角形【专题目录】技巧1:等腰三角形中四种常用作辅助线的方法技巧2:巧用特殊角构造含30°角的直角三角形技巧3:分类讨论思想在等腰三角形中的应用【题型】一、等腰三角形的定义【题型】二、根据等边对等角求角度【题型】三、根据三线合一求解【题型】四、根据等角对等边证明等腰三角形【题型】五、根据等角对等边求边长【题型】六、等腰三角形性质与判定的综合【题型】七、等边三角形的性质【题型】八、含30°角的直角三角形【考纲要求】1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段中垂线的性质及判定.【考点总结】一、等腰三角形等腰三角形等腰三角形概念有两边相等的三角形角等腰三角形。

等腰三角形性质1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).【考点总结】二、等边三角形【考点总结】三、直角三角形【技巧归纳】技巧1:等腰三角形中四种常用作辅助线的方法【类型】一、作“三线”中的“一线”1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,过点A 作EF ∥BC ,且AE =AF.求证:DE =DF.等边三角形等边三角形概念三条边都相等的三角形,叫等边三角形。

它是特殊的等腰三角形。

等边三角形性质和判定(1)等边三角形的三个内角都相等,并且每一个角都等于60º。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60º的等腰三角形是等边三角形。

(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。

(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。

中考数学复习专项之等腰三角形(含答案)

中考数学复习专项之等腰三角形(含答案)

等腰三角形一、选择题1、(2022年聊城莘县模拟)如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为( ).A .B .C .D .1答案:B2、(2022年惠州市惠城区模拟)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A.16 B.18 C. 20 D. 16或20 答案:C3、(2022浙江永嘉一模)10.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论: ①∠CDF =α;②A 1E =CF ;③DF =FC ;④BE =BF . 其中正确的有( ▲ )A .②③④B .①③④C .①②④D .①②③【答案】C4、(2022重庆一中一模)11.如图,在等腰ABC Rt ∆中,︒=∠90C ,6=AC ,D 是AC 上一点.若51tan =∠DBA ,那么AD 的长为 A . 2 B .3 C .2 D . 1 【答案】A5. (2022江西饶鹰中考模拟)如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( ) A .1 B.2(第1 题图)FED C 1C BAA 1第2题图A BD′ P CD M NE C′Q F第6题CA PBDC.3D.4 答案:C6、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D7、 (2022年江苏无锡崇安一模)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2,在BC 、DE 上分别找一点M 、N , 使△AMN 的周长最小,则△AMN 的最小周长为…( ▲ ) A .2 6 B .27 C .4 2D .5答案:B二、填空题1、(2022年安徽模拟二)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为 .第1题图答案:42.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上) ①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP .3、(2022年安徽省模拟六)如图,等边三角形ABC 中,D 、E 分别在AB 、BC 边上,且AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =1200;③⊿ADF 是正三角形;④12FG AF =.其中正确的结论是 (填所有正确答案的序号). 答案:①②④4、(2022年福州市初中毕业班质量检查)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____ . 1.57.(2022年江苏无锡崇安一模)在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离为 ▲ .第1题第3题图 ABCDEF第4题图答案:47.(2022浙江东阳吴宇模拟题)如图,C 、D 、B 的坐标分别为(1, 0)(9, 0)(10, 0),点P (t ,0)是CD 上一个动点,在x 轴上方作等边△OPE 和△BPF ,连EF ,G 为EF 的中点。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

数学易错题中考专题复习:《等腰三角形》易错题导学案

数学易错题中考专题复习:《等腰三角形》易错题导学案

《等腰三角形》易错题训练考点1等腰三角形1.等腰三角形周长为18,其中一边长为4,则其它两边长分别为( ) A .4,10B .7,7C .4,10或7,7D .无法确定【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论. 【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10, ∵4+4=8<10,∴这样的三边不能构成三角形. 当底为4时,腰为(18﹣4)÷2=7, ∵0<7<7+4=11,∴以4,7,7为边能构成三角形 ∴其它两边长分别为7,7. 故选:B .2.若等边三角形ABC 的边长为a ,且三角形内一点P 到各边的距离分别是h a ,h b ,h c ,则h a +h b +h c = .【分析】本题考查的是等边三角形的性质.分别连接P A 、PB 、PC 将△ABC 分成3个小三角形,再根据等边△ABC 的面积等于三个小三角形的面积之和,就可以得出答案.【解答】解:设△ABC 的为h ,根据等边三角形的性质h =32a , 分别链结P A ,PB ,PC ,将△ABC 分割成△APB 、△APC 、△BPC S △ABC =S △APB +S △APC +S △BPC =a •(h a +hb +hc )•12=12ah那么,h a +h b +h c =32a3.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥BC .若AB =7,AC =6,那么△AMN 的周长是 .【分析】根据BO平分∠ABC,CO平分∠ACB,且MN∥BC,可得出MO=MB,NO =NC,所以三角形AMN的周长是AB+AC.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.4.如图,△ABC中,AB=AC,D是底边BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.(1)下面的证明过程是否正确?若正确,请写出①、②和③的推理根据.证明:∵AB=AC,∴∠B=∠C.①在△BDE和△CDF中,∠B=∠C,∠BED=∠CFD,BD=CD,∴△BDE≌△CDF.②∴DE=DF.③(2)请你再用另法证明此题.【分析】(1)根据等边对等角的性质和全等三角形的判定方法判断解答;(2)连接AD,根据等腰三角形三线合一的性质和角平分线上的点到角的两边的距离相等的性质证明.【解答】(1)解:证明过程正确.推理依据:①等边对等角.②AAS.③全等三角形的对应边相等;(2)证明:连接AD,∵AB=AC,D是底边BC的中点,∴AD平分∠BAC(三线合一),又∵DE⊥AB于E,DF⊥AC于F,∴DE=DF(角平分线上的点到角两边的距离相等).精选例题,错中淘金易错一等腰三角形的分情况讨论思想典例1等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20 B.22 C.20或22 D.不确定[易错分析] 腰长没有说是6还是8,需要分类讨论,有的学生易漏一种情况。

中考数学专题复习:等腰(边)三角形的判定

中考数学专题复习:等腰(边)三角形的判定

中考数学专题复习:等腰(边)三角形的判定一、选择题1.在△ABC中,若△A=15°,△B=150°,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形2.下列条件中,不能判定△ABC是等腰三角形的是( )A.a=3,b=3,c=4B.a:b:c=4:5:6C.△B=50°,△C=80°D.△A:△B:△C=1:1:23.如图1所示,已知OC平分△AOB,CD△OB.若OD=3 cm,则CD的长为( )图1A.4 cmB.3 cmC.2 cmD.1.5 cm4.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形5.如图2,△A=36°,△C=72°,BE为△ABC的平分线,DE△BC,则图中等腰三角形的个数有( )图2A.6个B.5个C.4个D.3个6.在如图3所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么满足条件的点C有( )图3A.6个B.7个C.8个D.9个二、填空题7.已知△ABC,AB=AC,请补充一个条件:_______________,使△ABC成为等边三角形.8.如图4所示,BD,CE分别是△ABC两个外角的平分线,DE过点A,且DE△BC.若DE=14,BC=7,则△ABC的周长为__________.图49.在一次活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图5所示),由此可知,B,C两地相距__________m.图5三、解答题10.如图6,在等边三角形ABC中,D是AB上一点,DE△BC,垂足为E,EF△AC,垂足为F,FD△AB.求证:△DEF为等边三角形.图611.如图7,AD平分△BAC,AD△BD,垂足为D,DE△AC交AB于点E.求证:△BDE是等腰三角形.图712.如图8所示,在等边三角形ABC中,△ABC与△ACB的平分线相交于点O,且OD△AB 交BC于点D,OE△AC交BC于点E.(1)试判断△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?并说明理由.图813.如图9所示,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动.设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ能否成为等边三角形?若能,请求出t值;若不能,请说明理由.图914.在△ABC中,CA=CB,△ACB=120°,将一块足够大的三角尺PMN(△M=90°,△MPN=30°)按图10所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角△PCB=α,斜边PN交AC于点D.(1)当PN△BC时,△ACP=________°.(2)当α=15°时,求△ADN的度数.(3)在点P滑动的过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的度数.图10参考答案1.A2.B [解析] 选项A,a=3,b=3,c=4,△a=b,△△ABC是等腰三角形;选项B,△a:b:c=4:5:6,△a≠b≠c,△△ABC不是等腰三角形;选项C,△△B=50°,△C=80°,△△A=180°-△B-△C=50°,则△A=△B,△AC=BC,△△ABC是等腰三角形;选项D,△△A:△B:△C=1:1:2,△△A=△B,△AC=BC,△△ABC是等腰三角形.故选B.3.B [解析] 根据题意,得△AOC=△BOC.因为CD△OB,所以△C=△BOC,所以△C=△AOC,则CD=OD.又因为OD=3 cm,所以CD=3 cm.4.C [解析] △若120°的角为顶角的外角,则顶角为180°-120°=60°,底角为(180°-60°)÷2=60°,三角形为等边三角形;△若120°的角为底角的外角,则底角为180°-120°=60°,顶角为180°-60°×2=60°,所以三角形为等边三角形.综上,该等腰三角形为等边三角形.5.B [解析] △ABC,△ADE,△ABE,△DBE,△BCE是等腰三角形.6.C [解析] 如图,分情况讨论.△AB为等腰三角形ABC的底边时,符合条件的点C有4个;△AB为等腰三角形ABC其中的一条腰时,符合条件的点C有4个.故符合条件的点C共有8个.7.AB=BC或AC=BC或△BAC=60°等(答案不唯一) [解析] 三边相等或有一个角是60°的等腰三角形是等边三角形.8.219.200 [解析] 如图,由已知可得AM△BN,所以△MAC=△ALB=60°.由△ALB=△NBC+△C,△NBC=30°,得△C=30°.又因为△BAC=△MAB-△MAC=30°,所以△C=△BAC,故BC=AB=200 m.10.证明:在等边三角形ABC中,△B=60°.△DE△BC,△△DEB=90°,△△BDE=30°.△FD△AB,△△ADF=90°,△△EDF=60°.同理△DEF=△DFE=60°,△△DEF为等边三角形.11.[解析] 如图,直接利用平行线的性质得出△1=△3,进而利用角平分线的定义结合互余的性质得出△B=△BDE,即可得出答案.证明:如图,△DE△AC,△△1=△3.△AD平分△BAC,△△1=△2,△△2=△3.△AD△BD,△△2+△B=90°,△3+△BDE=90°,△△B=△BDE,△△BDE是等腰三角形.12.[解析] (1)根据平行线的性质及等边三角形的判定定理可得到△ODE是等边三角形; (2)根据角平分线的性质及平行线的性质可得到△DBO=△DOB,根据等角对等边可得到DB=DO,同理可证明EC=EO.因为DE=OD=OE,所以BD=DE=EC.解:(1)△ODE是等边三角形.理由:△△ABC是等边三角形,△△ABC=△ACB=60°.△OD△AB,OE△AC,△△ODE=△ABC=60°,△OED=△ACB=60°,△△ODE是等边三角形.(2)BD=DE=EC.理由:△BO平分△ABC,且△ABC=60°,△△ABO=△OBD=30°.△OD△AB,△△BOD=△ABO=30°,△△DBO=△DOB,△BD=OD.同理EC=OE.△△ODE是等边三角形,△OD=DE=OE,△BD=DE=EC.13.解:(1)当点Q到达点C时,PQ与AB垂直.理由:△AB=AC=BC=6 cm,△当点Q到达点C时,AP=3 cm,△P为AB的中点,△PQ△AB.(2)能.假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,△BP=PQ=BQ.△△B=60°,△BP=BQ时,△BPQ为等边三角形.此时有6-t=2t ,解得t=2.△当t=2时,△BPQ 是等边三角形. 14.[解析] (1)△PN△BC ,△MPN=30°,△△PCB=△MPN=30°. △△ACB=120°,△△ACP=△ACB -△PCB=90°. 解:(1)90(2)△△ACB=120°,△PCB=15°, △△PCD=△ACB -△PCB=105°,△△PDC=180°-△PCD -△MPN=180°-105°-30°=45°, △△ADN=△PDC=45°.(3)△PCD 的形状可以是等腰三角形. 由题意得△PCD=120°-α,△CPD=30°. △当PC=PD 时,△PCD 是等腰三角形,△PCD=12(180°-△CPD)=12×(180°-30°)=75°,即120°-α=75°,解得α=45°;△当PD=CD 时,△PCD 是等腰三角形,△PCD=△CPD=30°, 即120°-α=30°,解得α=90°;△当PC=CD 时,△PCD 是等腰三角形,△PCD=180°-2×30°=120°, 即120°-α=120°,解得α=0°,此时点P 与点B 重合,点D 与点A 重合.综上所述,当△PCD 是等腰三角形时,α的度数是45°或90°或0°.。

中考数学《等腰三角形的存在性》专题复习

中考数学《等腰三角形的存在性》专题复习

中考压轴题(1)等腰三角形的存在性问题【典型例题】如图,直线33+-=x y 与x 轴、y 轴分别交于点A 、B ,抛物线()k x a y +-=22 经过点A 、B ,并与x 轴交于另一点C ,其顶点为P . (1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标.知识点思想方法 步 骤 其 他【对应练习】1.如图,在平面直角坐标xOy 中,抛物线c bx x y ++-=2与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P 为线段OA 上方抛物线上的一点,过点P 作x 轴的垂线,交OA 于点Q ,求线段PQ 长度的最大值.(3)在抛物线的对称轴上是否存在一点N ,使得△BAN 为以AB 为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N 的坐标.2.如图,抛物线a ax ax y 122--=经过点C(0,4),与x 轴交于A ,B 两点,连接AC ,BC ,M 为线段OB 上的一个动点,过点M 作PM ⊥x 轴,交抛物线于点P ,交BC 于点Q . (1)直接写出a 的值以及A ,B 的坐标:a = ,A ( , ),B ( , );(2)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.3.如图,二次函数2y x bx c =++的图象与x 轴交于A (3,0),B (-1,0)与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动. (1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q为顶点的三角形为等腰三角形?若存在,请直接写出E 点坐标;若不存在,请说明理由.。

中考数学一轮复习专题解析—等腰、等边三角形

中考数学一轮复习专题解析—等腰、等边三角形

中考数学一轮复习专题解析—等腰、等边三角形复习目标1.了解等腰三角形、等边三角形的概念,会识别这二种图形;2.理解等腰三角形、等边三角形的性质和判定;3.能用等腰三角形、等边三角形的性质和判定解决简单问题;4.了解直角三角形的概念,并理解直角三角形的性质和判定;考点梳理一、等腰、等边三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.特别提醒:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.例1.如图,等腰三角形一腰上的高与底边所成的角等于( )A.顶角的2倍B.顶角的一半C.顶角D.底角的一半【答案】B.【解析】如图,△ABC中,AB=AC,BD△AC于D,所以△ABC=△C,△BDC=90°,所以△DBC=90°-△C=90°-(180-△A)= △A,例2.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分△BAC,△EBC=△E=60°,若BE=30cm,DE=2cm,则BC=cm.【答案】32;【解析】解:延长ED交BC于M,延长AD交BC于N,作DF△BC,△AB=AC,AD平分△BAC,△AN△BC,BN=CN,△△EBC=△E=60°,△△BEM为等边三角形,△△EFD为等边三角形,△BE=30,DE=2,△DM=28,△△BEM为等边三角形,△△EMB=60°,△AN△BC,△△DNM=90°,△△NDM=30°,△NM=14,△BN=16,△BC=2BN=32,故答案为32.二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.例3.已知:在直角△ABC中,△C=90°,BD平分△ABC且交AC于D.(1)若△BAC=30°,求证: AD=BD;(2)若AP平分△BAC且交BD于P,求△BPA的度数.图1 图2【答案】(1)证明:△△BAC=30°,△C=90°,△△ABC=60°又△ BD平分△ABC,△△ABD=30°,△ △BAC =△ABD,△BD=AD;(2)解法一:△△C=90°,△△BAC+△ABC=90°△=45°△ BD平分△ABC,AP平分△BAC△BAP=,△ABP=即△BAP+△ABP=45°△△APB=180°-45°=135°解法二:△△C=90°,△△BAC+△ABC=90°△=45°△BD平分△ABC,AP平分△BAC△DBC=,△PAC=△△DBC+△PAD=45°△△APB=△PDA+△PAD =△DBC+△C+△PAD=△DBC+△PAD+△C=45°+90°=135°.1.(2022·黑龙江九年级期末)如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为9m,则这两棵树之间的坡面AB的长为()A.18m B.33m C.63m D.93m【答案】C【分析】△的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三AB是Rt ABC角形的条件,可求出AB的长.【详解】解:如图,30∠=︒,9AC=m,ACB∠=︒,90BAC△AB=2BC,△222AC BC AB+=,即222+=,BC BC94解得:33BC=m,△63AB=m,故选:C.2.(2022·长沙市雅礼实验中学九年级月考)如图,将△ABC绕点A逆时针旋转80°得到△AB′C′,若点B′恰好落到边BC上,则△CB′C′的度数为()A.50°B.60°C.70°D.80°【答案】D【分析】依据旋转的性质可求得AB=AB’,△AB’C’的度数,依据等边对等角的性质可得到△B=△BB’A,于是可得到△CB’C’的度数.【详解】解:由旋转的性质可知:AB=AB’,△BAB’=80°,△AB=AB’,△△B=△BB’A=50°.△△BB’C’=50°+50°=100°.△△CB’C’=180°−100°=80°,故选:D.3.(2022·哈尔滨市虹桥初级中学校九年级一模)如图,在Rt ABC中,90∠=︒,BAC将ABC绕点A顺时针旋转90︒后得到的''AB C(点B的对应点是点'B,点C的对应点是点'C),连接'∠=︒,则B的大小是()CC.若''32CC BA.32︒B.64︒C.77︒D.87︒【答案】C【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为△CAC′=90°,根据三角形外角的性质求出△C′B′A的度数,进而求出△B的度数.【详解】解:由旋转的性质可知,AC=AC′,△△CAC′=90°,可知△CAC′为等腰直角三角形,则△CC′A=45°.△△CC′B′=32°,△△C′B′A=△C′CA+△CC′B′=45°+32°=77°,△△B=77°,故选:C.4.(2022·沙坪坝区·重庆八中九年级二模)下列命题中是真命题的是()A.三角形三边中垂线的交点到三角形三个顶点的距离相等B.三个角对应相等的两个三角形全等C.直角三角形斜边上的高线等于斜边的一半D.等边三角形是中心对称图形【答案】A【分析】根据三角形中垂线的性质、全等三角形的判定、直角三角形的性质和等边三角形的性质判断即可.【详解】解:A、三角形三边中垂线的交点到三角形三个顶点的距离相等,正确;B、三个角对应相等的两个三角形不一定全等,错误;C、直角三角形斜边上的中线等于斜边的一半,错误;D、等边三角形是轴对称图形,错误;故选:A.5.(2022·全国九年级课时练习)如图,点O为ABC的外心,OCP△为正三角形,=,则ADP的度数为()∠=︒,AB ACBACOP与AC相交于D点,连接OA.若70A .85︒B .90︒C .95︒D .110︒【答案】A【分析】 利用外心的性质,得到OA 是△BAC 的平分线,OA =OC ,利用等腰三角形的性质,三角形外角的性质,等边三角形的性质计算即可.【详解】△O 为ABC 的外心,70BAC ∠=︒,AB AC =,△OA 是△BAC 的平分线, △1352OAC BAC ∠=∠=︒,△AO CO =,△35OAC OCA ∠=∠=︒,△110AOC ∠=︒,△OCP △为正三角形,△60COP ∠=︒,△1106050AOP AOC COP ∠=∠-∠=︒-︒=︒,又△ADP 为AOD △的外角,△85ADP OAD AOD ∠=∠+∠=︒.故选A .6.(2022·湖南师大附中博才实验中学九年级开学考试)如图,正方形ABCD 的对角线AC,BD交于点O,E是BD上的一点,连接EC,过点B作BG△CE于点G,交AC于点H,EF△EC交AB于点F.若正方形ABCD的边长为4,下列结论:△OE=OH;△EF=EC;△当G为CE中点时,BF=424-;△BG•BH=BE•BO,其中正确的是()A.△△△B.△△△C.△△△D.△△△△【答案】D【分析】△由“ASA”可证△BOH△△COE,可得OE=OH;△过点E作EP△BC于P,EQ△AB于Q,由“ASA”可证△QEF△△PEC,可得EF=EC;△由线段的垂直平分线的性质可求BC=BE=4,由正方形的性质可求BP=PE=2可求BF的长;△通过证明△BOH△△BGE,可得BH BO=,可得BH•BG=BE•BO.BE BG【详解】解:△BG△CE,EF△EC,△△FEC=△BGC=90°,△四边形ABCD是正方形,△AO=OC=OB=OD,AC△BD,△△ECO+△GHC=90°=△OBH+△BHO,△BHO=△CHG,△△OBH=△ECO,又△BO=CO,△BOH=△COE=90°,△△BOH△△COE(ASA),△OE=OH,故△正确;如图,过点E作EP△BC于P,EQ△AB于Q,△四边形ABCD是正方形,△△ABD=△CBD=45°,又△EP△BC,EQ△AB,△EQ=EP,又△EP△BC,EQ△AB,△ABC=90°,△四边形BPEQ是正方形,△BQ=BP=EP=QE,△QEP=90°=△FEC,△△QEF=△PEC,又△△EQF=△EPC=90°,△△QEF△△PEC(ASA),△QF=PC,EF=EC,故△正确;△EG=GC,BG△EC,△BE=BC=4,△BP=EP=2,△PC=4﹣2QF,△BF=BQ﹣QF=22﹣(4﹣22)=42﹣4,故△正确;△△BOH=△BGE=90°,△OBH=△GBE,△△BOH△△BGE,△BH•BG=BE•BO,故△正确,故选:D.7.(2022·全国九年级专题练习)如图,在△P AB中,M、N是AB上两点,且△PMN 是等边三角形,△BPM△△P AN,则△APB的度数是________.【答案】120°【分析】由△BPM△△P AN,可得出△BPM=△A,进而再由等边三角形的性质以及角之间的转化,即可得出结论.【详解】解:△ △BPM△△P AN,△ △BPM=△A,△ △PMN是等边三角形,△ △A+△APN=60°,即△APN+△BPM=60°,△ △APB=△BPM+△MPN+△APN=60°+60°=120°.故答案为:120°.8.(2022·西宁市教育科学研究院中考真题)如图,ABC是等边三角形,6AB ,N是AB的中点,AD是BC边上的中线,M是AD上的一个动点,连接,BM MN,则BM MN+的最小值是________.【答案】33【分析】根据题意可知要求BM+MN的最小值,需考虑通过作辅助线转化BM,MN的值,从而找出其最小值,进而根据勾股定理求出CN,即可求出答案.【详解】解:连接CN,与AD交于点M,连接BM.(根据两点之间线段最短;点到直线垂直距离最短),AD是BC边上的中线即C和B关于AD对称,则BM+MN=CN,则CN就是BM+MN的最小值.△ABC是等边三角形,6AB=,N是AB的中点,△AC=AB=6,AN=12AB=3, CN AB⊥,△2222632733CN AC AN=--=即BM+MN的最小值为33故答案为:339.(2022·福建省福州杨桥中学九年级月考)如图,已知ABCD,120ABC∠=︒,点E为线段BC上的一点,连接AE.(1)将线段AE绕点A逆时针旋转60︒得到线段AF,点E的对应点是点F.请用尺规作图作出线段AF(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:点F在ABC∠的平分线上.【答案】(1)见详解;(2)见详解【分析】(1)作△DAT=△EAB,在射线AT上截取AF,使得AE=AF即可;(2)在AD上取一点H,使得AH=AB,连接BH,FH. 证明ΔABH是等边三角形,证明B、H、F共线可得结论.【详解】(1)如图,线段AF即为所求;(2)证明:在AD上取一点H,使得AH=AB,连接BH,FH.△四边形ABCD是平行四边形,△AD△BC,△△DAB+△ABC=180°,△△ABC =120°, △△BAH =60°, △AH =AB ,△ΔABH 是等边三角形, △△AHB =△ABH =60°, △△EAF =60°, △ △EAF =△BAH , △ △F AH =△EAB , 在ΔF AH 和ΔEAB 中,AF AE FAH EAB AH AB =⎧⎪∠=∠⎨⎪=⎩△ΔF AH △ΔEAB (SAS ), △△AHF =△ABE =120°, △△AHF +△AHB =180°, △B 、H 、F 共线, △△FBA =△FBE =60°,△点F 在△ABC 的角平分线上。

中考数学复习《等腰三角形与等边三角形》

中考数学复习《等腰三角形与等边三角形》

(B)
A. 5个
B. 4个
C. 3个
D. 2个
6. 如图1-4-4-11,△ABC中,BE平分∠ABC,CE平分∠ACB,DF 经过点E,分别与AB,AC相交于点D,F,且DF∥BC. (1)求证:△DEB是等腰三角形; (2)求证:DF-BD=CF.
证明:(1)∵BE平分∠ABC, ∴∠ABE=∠CBE. ∵DF∥BC,∴∠DEB=∠CBE. ∴∠ABE=∠DEB. ∴BD=DE. ∴△DEB是等腰三角形. (2)∵CE平分∠ACB,∴∠ACE=∠BCE. ∵DF∥BC,∴∠FEC=∠BCE. ∴∠ACE=∠FEC. ∴EF=CF. ∵BD=DE,∴DF-BD=CF.
第一部分 教材梳理
第四章 图形的认识(一) 第4节 等腰三角形与等边三角形
知识梳理
概念定理
1. 等腰三角形 (1)定义:两边相等的三角形叫做等腰三角形. (2)性质 ①性质定理:等腰三角形的两个底角相等(简称:等边对等 角). ②推论:等腰三角形顶角的平分线、底边上的中线及底边上 的高线互相重合(简称:三线合一).
解:(1)∵△ABC是等边三角形, ∴∠B=60°. ∵DE∥AB,∴∠EDC=∠B=60°. ∵EF⊥DE,∴∠DEF=90°. ∴∠F=90°-∠EDC=30°. (2)∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=2. ∵∠DEF=90°,∠F=30°, ∴DF=2DE=4.
(3)其他性质 ①等腰直角三角形的两个底角相等且等于45°. ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但 顶角可为钝角(或直角).
③等腰三角形的三边关系:设腰长为a,底边长为b,则
________.
④等腰三角形的三角关系:设顶角为∠A,底角为∠B,∠C,

2019-2020年中考数学备考专题复习等腰三角形含解析

2019-2020年中考数学备考专题复习等腰三角形含解析

2019-2020年中考数学备考专题复习等腰三角形含解析一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。

则A,B,C,D的面积的和等于 ()A、B、C、D、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M 为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB 的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A、B、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A、B、C、D、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(xx•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(xx•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(xx•黔东南州)xx年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(xx•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(xx•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(xx•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm .三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B 的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(xx•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n 的值.22、(xx•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(xx•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B 逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(xx•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q 是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部。

中考总复习之等腰三角形与直角三角形

中考总复习之等腰三角形与直角三角形

中考总复习之等腰三角形与直角三角形在中考数学的复习中,等腰三角形和直角三角形是两个非常重要的知识点。

它们不仅在几何题目中经常出现,而且在解决实际问题中也有着广泛的应用。

接下来,让我们系统地复习一下这两个重要的三角形类型。

一、等腰三角形(一)定义等腰三角形是指至少有两边相等的三角形。

相等的两条边称为这个三角形的腰,另一边称为底边。

两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(二)性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。

例如,在等腰三角形 ABC 中,AB = AC,那么∠B =∠C。

2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。

若 AD 是等腰三角形 ABC 的顶角平分线,则 AD 也是底边 BC 上的中线和高;反之亦然。

(三)判定1、有两条边相等的三角形是等腰三角形。

2、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

(四)常见题型1、计算角度:利用等腰三角形的性质,求出顶角或底角的度数。

例如,已知等腰三角形的一个底角为 70°,则顶角为 180° 70°× 2 =40°。

2、证明线段相等:通过证明三角形是等腰三角形,得出两条线段相等。

3、求边长:根据等腰三角形的性质和已知条件,计算出三角形的边长。

二、直角三角形(一)定义有一个角为 90°的三角形,叫做直角三角形。

直角所对的边称为斜边,其余两边称为直角边。

(二)性质1、直角三角形两直角边的平方和等于斜边的平方(勾股定理)。

若直角三角形的两条直角边分别为 a、b,斜边为 c,则 a²+ b²=c²。

2、在直角三角形中,斜边上的中线等于斜边的一半。

例如,在直角三角形 ABC 中,∠C = 90°,D 是斜边 AB 的中点,则 CD = 1/2 AB 。

3、直角三角形的两个锐角互余。

数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形

数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形

考点15 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.学-科网3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是 A .35°B .20°C .35°或20°D .无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C .典例2 如图,等腰三角形ABC 中,∠BAC =90°,在底边BC 上截取BD =AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是A .1B .2C .3D .4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.1.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.学_科网【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,∠PAB的度数是A.10°B.15°C.20°D.25°【答案】C【解析】因为AD=AP,所以∠APD=∠ADP,因为∠APD=70°,所以∠ADP=70°,所以∠PAD=180°-70°-70°=40°,因为∠BAC=60°,所以∠PAB=60°-40°=20°,故选C.3.如图,四边形ABCD是正方形,△PAD是等边三角形,则∠BPC等于A.20°B.30°C.35°D.40°考向四等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.6.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cm C.8 cm D.6 cm1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A.30°B.40°C.45°D.36°3.下列长度的线段中,能构成直角三角形的一组是A.3,4,5B.6,7,8C.12,25,27 D.23,25,424.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为A.8 B.4 C.12 D.65.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A∶∠B∶∠C=3∶4∶56.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17 C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5 C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A.8个B.9个C.10个D.11个9.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于A.5 B.6 C.4 D.310.将一个有45°角的三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A.6 B.32C.42D.6211.等腰三角形的一腰的中线把三角形的周长分成16 cm和12 cm,则等腰三角形的底边长为______.12.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.学科_网13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE 的长为__________.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠EFD =__________°.17.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上的一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为__________.18.如图,在等腰三角形ABC 中,AC =BC ,分别以BC 和AC 为直角边向上作等腰直角三角形△BCD 和△ACE ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G .求证:CG 垂直平分AB .19.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.(1)求证:CE=CF;(2)若BD=12CE,AB=9,求线段DF的长.21.已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=62米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.1.(2018·南通)下列长度的三条线段能组成直角三角形的是 A .3,4,5 B .2,3,4 C .4,6,7D .5,11,122.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为 A .5 B .6 C .7D .83.(2018·湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是A .20°B .35°C .40°D .70°4.(2018·宿迁)若实数m 、n 满足|2|40m n -+-=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 A .12 B .10 C .8D .65.(2018·绥化)已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.6.(2018·青海)如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若∠BAC =25°,则∠BAD =__________.7.(2018·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__________.8.(2018·桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是__________.9.(2018·襄阳)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为__________. 10.(2018·嘉兴)已知,在ABC △中,AB AC =,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E F ,,且DE DF =.求证:ABC △是等边三角形.11.(2018·广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形. (2)画一个底边长为4,面积为8的等腰三角形. (3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.1.【答案】B【解析】当3 cm 是底时,则腰长是(15-3)÷2=6(cm ),此时能够组成三角形;当3 cm 是腰时,则底是15-3×2=9(cm ),此时3+3<9,不能组成三角形,应舍去,故选B . 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】B【解析】∵四边形ABCD 是正方形,△PAD 是等边三角形, ∴9060150BAP BAD PAB ∠=∠+∠=︒+︒=︒. ∵PA =AD ,AB =AD ,∴PA =AB , ∴180150152ABP ︒-︒∠==︒,∴901575PBC ABC ABP ∠=∠-∠=︒-︒=︒,同理:75PCB ∠=︒,∴180757530BPC ∠=︒-︒-︒=︒.故选B . 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】B【解析】如图,底面圆周长为2πr ,底面半圆弧长为πr ,即半圆弧长为:12×2π×6π=6(cm ),展开得:变式拓展∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.1.【答案】C【解析】∵原式可化为a2+b2=c2,∴此三角形是直角三角形,故选C.2.【答案】D【解析】∵AD=BD,∴∠A=∠ABD,∴∠BDC=2∠A.∵BD=BC,∴∠C=∠BDC=2∠A.∵AB=AC,∴∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.故选D.4.【答案】C【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4,∴BC=BD+DC=8+4=12,故选C.5.【答案】D【解析】A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A∶∠B∶∠C=3∶4∶5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形.故选D.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD22AB BD-=4.故选C.考点冲关8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt△ACH中,∵AH=3,∠AHC=90°,∠ACH=30°,∴AC=2AH=6,在Rt△ABC中,AB22226662AC BC+=+=D.11.【答案】203cm或12 cm【解析】设等腰三角形的腰长是x,底边是y,根据题意得162122xxxy⎧+=⎪⎪⎨⎪+=⎪⎩或122162xxxy⎧+=⎪⎪⎨⎪+=⎪⎩,解得323203xy⎧=⎪⎪⎨⎪=⎪⎩或812xy=⎧⎨=⎩,经检验,均符合三角形的三边关系.因此三角形的底边是203cm或12 cm.故答案为:203cm或12 cm.12.【答案】60°【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.13.【答案】4【解析】∵△BDE是正三角形,∴∠DBE=60°.∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°,∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=4,∴BE=DE=4,故答案为:4.14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10.16.【答案】15【解析】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.【答案】32或42【解析】如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∠BCD=90°,∴∠A1CM=45°,即△AMC是等腰直角三角形,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1A1M,∴CA118.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.19.【解析】在直角△ABO中,已知AB=2.5 m,BO=0.7 m,则AO,∵AO=AA′+OA′,∴OA′=2 m,∵在直角△A′B′O中,AB=A′B′,且A′B′为斜边,∴OB′=1.5 m,∴BB′=OB′-OB=1.5 m-0.7 m=0.8 m.答:梯足向外移动了0.8 m.20.【解析】(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AE=BD,∴AC-AE=BC-BD,∴CE=CD,且∠ACB=60°,∴△CDE是等边三角形,∴∠ECD=∠DEC=60°,∵EF⊥DE,∴∠DEF=90°,∴∠CEF=30°,∵∠DCE=∠CEF+∠CFE=60°,∴∠CEF=∠CFE=30°,∴CE=CF.(2)∵BD=12 CE,CE=CD,∴BD=12CD,∵AB=9,∴BC=9,∴BD=3,CD=6,∵CE=CF=CD,∴CF=6,∴DF=DC+CF=12.21.【解析】(1)由题意可得:AC=6 m,DC=62m,∠CAD=90°,可得AD=22CD AC-=6(m),故△ACD是等腰直角三角形.(2)∵AC=6 m,BC=10 m,∠CAD=90°,∴AB=22BC AC-=8(m),则BD=AB-AD=8-6=2(m).答:船体移动距离BD的长度为2 m.1.【答案】A【解析】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.直通中考4.【答案】B【解析】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去;②若腰为4,底为2,则周长为:4+4+2=10,故选B.5.【答案】50︒或80︒【解析】∵等腰三角形的一个外角为130︒,∴与130°相邻的内角为50°,当50︒为顶角时,其他两角都为65︒,65︒;当50︒为底角时,其他两角为50︒,80︒,所以等腰三角形的顶角为50︒或80︒,故答案为:50︒或80︒.6.【答案】70°【解析】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.【答案】2或2.5【解析】如图,∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB 或BC=CD,∴BC=2或BC=2.5,故答案为:2或2.5.8.【答案】3【解析】∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.9.【答案】2327△是锐角三角形,如图1,【解析】分两种情况:①当ABC∵CD⊥AB,∴∠CDA=90°,∵CD=3,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4-1=3,∴BC2222CD BD+=+=;3(3)23②当ABC△是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=2222CD BD+=+=.综上所述,BC的长为23或27,(3)527故答案为:23或27.10.【解析】∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.11.【解析】如图所示:。

中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)

中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)

中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。

2)、“角平分线+垂线”构造等腰三角形。

3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。

2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习:等腰三角形
一、选择题
1. 下列命题中,属于假命题的是()
A.等腰三角形底边上的高是它的对称轴
B.有两个角相等的三角形是等腰三角形
C.等腰三角形底边上的中线平分顶角
D.等边三角形的每一个内角都等于60∘
2. 如图,在△ABC中,∠B=∠C, AB=5,则AC的长为()
A.2
B.3
C.4
D.5
3. 如图:等腰直角△ABC中,若∠ACB=90∘,CD=DE=CE,则∠DAB的度数为()
A.60∘
B.30∘
C.45∘
D.15∘
4. 等腰三角形的一腰上的高与另一腰的夹角是48∘,它的一个底角的度数是()
A.48∘
B.21∘或69∘
C.21∘
D.48∘或69∘
5. 已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()
A.7㎝
B.9㎝
C.12㎝或者9㎝
D.12㎝
6. 等腰直角三角形的底边长为5,则它的面积是()
A.25
B.12.5
C.10
D.6.25
7. 如图,△ABC中,∠ABC=90∘,∠C=30∘,AD是角平分线,DE⊥AC于E,AD、BE相交于点F,则图中的等腰三角形有()
A.2个
B.3个
C.4个
D.5个
8. 一个角是60∘的等腰三角形是()
A.等腰直角三角形
B.等边三角形
C.直角三角形
D.上述都正确
9. 以下关于等边三角形的判定:
①三条边相等的三角形是等边三角形;
①有一个角是60∘的等腰三角形是等边三角形;
①有两个角为60∘的三角形是等边三角形
①三个角相等的三角形是等边三角形
其中正确的是()
A.只有①①①
B.只有①①①
C.只有①①①
D.①①①①
10. 如图,在△ABC中,∠B=60∘,AB=9,BP=3,AP=AC,则BC的长为()
A.8
B.7
C.6
D.5
11. 等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于()
A.30∘
B.30∘或150∘
C.120∘或150∘
D.120∘、30∘或150∘
12. 等腰三角形的一个角比另一个角的2倍少20度,等腰三角形顶角的度数是( )
A.140∘
B.20∘或80∘
C.44∘或80∘
D.140∘或44∘或80∘
二、填空题
13. 等腰三角形一腰的高等于腰长的一半,则其顶角的度数为________.
14. 如图,△ABC是边长为8的等边三角形,点D在BC的延长线上,做DF⊥AB,垂足为F,
若CD=6,则AF的长等于________.
15. 如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角
三角形(4)的斜边长为________.
16. 如图等边三角形ABC中,AB=3,D、E是BC上的两点,AD、AE把△ABC分割成周长相
等的三个三角形,则CD=________.
17. 如图,在△ABC中,∠ABC=∠C,∠A=100∘,BD平分∠ABC交AC于点D,点E是BC上一
个动点.若△DEC是直角三角形,则∠BDE的度数是________.
三、解答题
18. 从①∠B=∠C;①∠BAD=∠CDA;①AB=DC;①BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).
已知:________(只填序号),
求证:△AED是等腰三角形.
19. 如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
20. 如图所示,在矩形ABCD中,DE⊥CE,∠ADE=30∘,DE=4,求这个矩形的周长.
21. 如图,在△ABC中,∠ACB−∠B=90∘,∠BAC的平分线交BC于点E,∠BAC的外角∠CAD 的平分线交BC的延长线于点F,试判断△AEF的形状.
22. (1)如图①,△ABC是等边三角形,△ABC所在平面上有一点P,使△PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来. 25.
(2)如图①,正方形ABCD所在的平面上有一点P,使△PAB,△PBC,△PCD,△PDA都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.
参考答案
13.【答案】30∘或150∘
14.【答案】1
15.【答案】4
16.【答案】−3+3√33
16
17.【答案】30∘或70∘
18.证明:选择的条件是:
①∠B=∠C①∠BAD=∠CDA(或①①,①①,①①);
证明:在△BAD和△CDA中,
① {∠B=∠C,
∠BAD=∠CDA,
AD=DA,
① △BAD≅△CDA(AAS),
① ∠ADB=∠DAC,
即在△AED中∠ADE=∠DAE,
① AE=DE,△AED为等腰三角形.
19.证明:∵BD//AC,
① ∠EBD=∠C,BD=BC,BE=AC,
① △EDB≅ABC(SAS),
① ∠D=∠ABC
20.解:① 四边形ABCD是矩形,
① ∠A=∠B=90∘,AD=BC.
在Rt△ADE中,① ∠A=90∘,∠ADE=30∘,DE=4,
① AE=1
2
DE=2,AD=√3AE=2√3.
① DE⊥CE,∠A=90∘,
① ∠BEC=∠ADE=90∘−∠AED=30∘.
在Rt△BEC中,① ∠B=90∘,∠BEC=30∘,BC=AD=2√3, ① BE=√3BC=6,
① AB=AE+BE=2+6=8,
① 矩形ABCD的周长=2(AB+AD)=2(8+2√3)=16+4√3.
21.解:△AEF是等腰直角三角形;理由如下:如图所示:
① AE平分∠BAC,AF平分∠CAD,
① ∠EAC=1
2∠BAC,∠FAC=1
2
∠CAD,
① ∠BAC+∠CAD=180∘,
① ∠EAC+∠FAC=1
2
(∠BAC+∠CAD)=90∘,
即∠EAF=90∘,
① ∠ACB−∠B=90∘,
① ∠ACB=90∘+∠B,
① ∠1=90∘−∠B=∠B+∠BAC,
① ∠B=1
2
(90∘−∠BAC),
① ∠4=∠B+∠AEF,
① AE平分∠DAC,
① ∠3=∠4=∠B+∠AEF,
① ∠BAC+∠3+∠4=180∘,
① 2(∠B+∠AEF)+∠BAC=2[1
2
(90∘−∠BAC)+∠AEF]+∠BAC=180∘,
① ∠AEF=45∘,
① ∠AFE=45∘,
① △AEF是等腰直角三角形.
22.【解答】(1)10个,如解图①,当点P在△ABC内部时,P是边AB.BC.CA的垂直平分
线的交点:当点P在△ABC外部时,P是以三角形各顶点为圆心,边长为半径的圆与三条垂
直平分线的交点每条垂直平分线上得3个交点,故具有这样性质的点P共有10个.
(2)9个,如解图①.两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个,故具有这样性质的
点P共有9个.。

相关文档
最新文档