《高等代数》第二章习题及答案

合集下载

高等代数与解析几何1~4章习题答案(DOC)

高等代数与解析几何1~4章习题答案(DOC)

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数作业 第二章行列式答案

高等代数作业  第二章行列式答案

高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2. 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3. 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x-=000000 ( )× 6.0000000=yxh gf e d c b a ( )√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

( )×9.n na a a a a a ΛN 2121= ( )×10. 01000200010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )× 三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093142112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )513312446526a a a a a a 4. n 阶行列式的展开式中,取“–”号的项有( )项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )3,1k l ==,符号为正; (D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602. 计算3111131111311113. 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2.222)(00000000a b b a a b b a ab -= ( )√ 3.222)(00000000b a a b b a a b b a -= ( )√4.0=d b a c d b c a b d c a b d a c ( )√ 5.483111131111311113= ( )√ 6.)(000000hx gy a yh fdx g e c b a -= ( )× 7.0107310111187654321=--- ( )√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2- 2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零 (B )行列式主对角线上有一个元素为零 (C )行列式零元素的个数多于n 个 (D )行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a 的解是( )B (A )2221211a b a b x =,2211112b a b a x =(B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=10011001101aa aa ---解:方法1:100110011001aa a a ---21r r ↔=a aa a 100110001011---21r ar +=aaa a a 1001100100112--+-32r r ↔=aaa a a 10101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2. 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4. 计算=n D 12111111111n a a a +++L L M M M L解:=n D 12111111111na a a +++LL M M MLna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++LLM M M L1211--+=n n n a a a D a Λ).11(121∑=+=ni in a a a a Λ 5. 解方程:22x 9132513232x 213211--=0.解:22x9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=22400130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()()()43433232212222222222222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c d d d d d d dd d d -----++++++++++++++++++++++++++++ 40推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

高等代数二练习题答案

高等代数二练习题答案

高等代数二练习题答案一、多项式运算1. 给定多项式 \( p(x) = x^3 - 3x^2 + 2x - 1 \) 和 \( q(x) =x^2 + 1 \),求 \( p(x) \) 除以 \( q(x) \) 的商和余数。

2. 计算多项式 \( r(x) = 2x^3 - 5x^2 + 7x - 3 \) 和 \( s(x) =x - 2 \) 的乘积。

3. 证明多项式 \( t(x) = x^4 - 5x^3 + 6x^2 + 8x - 9 \) 可以分解为两个二次多项式的乘积。

二、矩阵运算1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 和 \( B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \),求矩阵 \( A \) 与 \( B \) 的乘积。

2. 若矩阵 \( C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \),求 \( C \) 的逆矩阵。

3. 判断矩阵 \( D = \begin{bmatrix} 2 & 1 \\ 1 & 2\end{bmatrix} \) 是否可对角化,并给出相应的对角矩阵。

三、线性方程组1. 解线性方程组:\[\begin{align*}x + 2y - z &= 1 \\3x - y + 2z &= 0 \\2x + y + z &= -1\end{align*}\]2. 判断下列线性方程组是否有唯一解:\[\begin{align*}x + y &= 3 \\2x + 2y &= 6\end{align*}\]3. 用克拉默法则解线性方程组:\[\begin{align*}x - y + z &= 2 \\2x + y - z &= 1 \\-x + 2y + z &= 3\end{align*}\]四、特征值与特征向量1. 求矩阵 \( E = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \) 的特征值和对应的特征向量。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数(王萼芳石生明著)课后答案高等教育出版社

高等代数(王萼芳石生明著)课后答案高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++ (3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x --6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+-- 7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩ 8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数习题解答(第二章)

高等代数习题解答(第二章)

高等代数习题解答第二章 行列式1.决定以下9级排列的逆序数,从而决定它们的奇偶性: 1)134782695; 2)217986354; 3)987654321.1)解 ()134********τ=,排列134782695是偶排列. 2)解 ()21798635418τ=,排列217986354是偶排列. 3)解 ()98765432136τ=,排列987654321是偶排列. 2.选择i 与k 使1)1274569i k 成偶排列; 2)1254897i k 成奇排列.1)解 当8,3i k ==时,()12748563910τ=,排列127485639为偶排列. 2)解 当3,6i k ==时,()1325648975τ=,排列132564897为奇排列. 3.写出把排列12435变成排列25341的那些变换. 解 (1,2)(1,5)(4,3)12435214352543125341→→→.4.决定排列(1)21n n - 的逆序数,并讨论它的奇偶性. 解 ()(1)(1)21012(2)(1)2n n n n n n τ--=++++-+-=. 当4n k =或41()n k k +=+∈ 时,排列为偶排列; 当42n k =+或43()n k k +=+∈ 时,排列为奇排列.5.如果排列121n n x x x x - 的逆序数为k ,排列121n n x x x x - 的逆序数是多少?解 由于一个n 级排列中,构成逆序的数对与构成顺序的数对总数是2(1)2n n n C -=,把一个排列颠倒后,原来的逆序变成顺序,原来的顺序变成逆序,所以排列121n n x x x x - 的逆序数(1)2n n k --. 6.在6级行列式中,233142561465a a a a a a 与324314516625a a a a a a 这两项应带有什么符号?解 由于(234516)(312645)4ττ+=+=;(341562)(234165)6410ττ+=+=,故两项均应带有正号.7.写出4级行列式中所有带负号并且包括因子23a 的项. 解 所求的项为112332a a a a -;12233441a a a a -;14233142a a a a - 8.按定义计算行列式:1)000100200100000n n-; 2)010000200001000n n -;3)00100200100000n n-.1)解 原行列式(1)((1)21)2(1)!(1)!n n n n n n τ--=-=- .2)解 原行列式(231)1(1)!(1)!n n n n τ-=-=- . 3)解 原行列式(1)(2)((1)(2)21)2(1)!(1)!n n n n n n n τ----=-=- .9.由行列式的定义证明:123451234512121200000000a a a a ab b b b bc cd de e =. 证明 由定义,行列式的一般项为125125()125(1)j j j j j j a a a τ- , 其中,125j j j 是一个5级排列.在这个5级排列中,345,,j j j 至少有一个大于或等于3,则相应的元素等于0,由此可知每一项都为0,从而行列式为0.10.由行列式的定义计算212111()321111xx x f x x x-=中4x 与3x 的系数,并说明理由.解 ()f x 的展开式中x 的4次项只有一项:(1234)(1)2x x x x τ-⋅⋅⋅,故4x 项的系数为2;x 的3次项也只有一项:(2134)(1)1x x x τ-⋅⋅⋅,故3x 项的系数为1-.11.由1111110111=证明:奇偶排列各半.证明 由于行列式的每个元素都等于1,所以它的每一项的绝对值都等于1,当行标按自然顺序排列时,符号由列标排列的奇偶性确定,当列标排列为奇排列时,符号为负,当列标排列为偶排列时,符号为正.由又由于行列式等于0,说明带正号的项与带负号的项个数相等,即(列标排列中)奇排列与偶排列各占一半.12.设21211112111111()1n n n n n n x x x a a a p x a a a ------=,其中121,,,n a a a - 是互不相同的数.1)由行列式定义,说明()p x 是一个1n -次多项式;2)由行列式性质,求()p x 的根.解 1)()p x 的展开式中,含1n x -的只有一项,其系数是211112112222111111(1)1n n n n n n n a a a a a a a a a --+-----,由于121,,,n a a a - 互不相同,上述的范德蒙德行列式不等于0,故1n x -项的系数不等于0,从而()p x 是一个1n -次多项式.2)2121111111112111111()()()1n n n n i j k i i k n n n n n x x x a a a p x a x a a a a a ----=≤<≤-----==∏-⋅∏-,而111()0n j k i k n a a -≤<≤-∏-≠,于是()p x 的根是121,,,n a a a - .13.计算下面的行列式:1)2464273271014543443342721621; 2)xy x y yx y x x y xy+++;3)3111131111311113; 4)1234234134124123;5)1111111111111111xx y y+-+-; 6)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++.1)解 2464273271014543443342721621123100042732720005434431000721621c c c ++=23100010032720001004431000100621c c -= 121000100511327102144311621c c ÷÷=21312511327100121100294r r r r --=--529410=-⨯.2)解 xy x y y x y x x yx y +++()()()123222c c c x y y x y x y x yx x y xy++++=+++()()121211c x y y x y x y x y x xy÷++=++()2131120r r r r y x yx y xy x yx--+=+---()2x yx y x y x-=+--()()22()()x y x y x y =+----()22332()2()x y x xy y x y =+-+-=-+.3)解311113111131111312346111631161316113c c c c +++=2131416111020000200002r r r r r r ---=622248=⨯⨯⨯=.4)解1234234134124123123410234103411041210123c c c c +++=21314110234011302220111r r r r r r ----=-----32412102340113004404r r r r -+-=--101(4)(4)160=⨯⨯-⨯-=.5)解1111111111111111xx y y +-+-123411110011110r r r r x x x y yy--+--=+--21431100001010c c c c x x x y yy--+--=+--241300(1)0x x y y+++--=---拉普拉斯定理22xy xy x y =⋅=.注1:也可以不用拉普拉斯定理;注2:另解 将第4行拆成两行.6)解2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++++++++2131412222214469214469214469214469c c c c c c a a a a b b b b cc c cd d d d ---++++++=++++++324222223221262126021262126c c c c a a b b cc d d --++==++.14.证明1111111112222222222b cc a a b a b cb c c a a b a b c b c c a a b a b c ++++++=+++. 证法一 左边1231111122222222c c c a c a a b a c a a b a c a a b ---++=-++-++1(2)11111222222c a c a a b a c a a b a c a a b ÷-++=-++++ 21311112222c c c c a c b a c b a c b --=-231112222c c a b ca b c a b c ↔==右边.证法二 左边123111111122222222()2()2()c c c a b c c a a b a b c c a a b a b c c a a b ++++++=++++++++12111111122222222c a b c c a a b a b c c a a b a b c c a a b ÷++++=++++++++ 213111111222222c c c c a b c b c a b c b c a b c b c --++--=++--++--1231112222c c c a b c a b c a b c ++--=----23(1)111(1)2222c c a b ca b c a b c ⨯-⨯-==右边. 15.略16.计算下面的行列式:1)1111211312254321- 2)111121121311113211102---3)0121420121135123312121035-- 4)111122011213210211012121302--- 1)解111121*********1-21314124111101151140123r r r r r r ------=---3242111101150001012r r r r +----=--3411110115001201r r ↔---=--34111101151(1)(1)(1)1001201r r ↔---=-=-⨯-⨯-⨯-=--.2)解111121121311113211102---1243223112122211211123201c c c ⨯⨯⨯-=--131211122213112123201r r ↔--=--213141331211041310541120834r r r r r r +-+-=----231211015210541120834r r +--=----32425812110152100211112003720r r r r -+--=--- 211111(1)372012--=-⨯⨯-1(2120(11)37)12=⨯-⨯--⨯1312=-.3)解 0121420121135123312121035--31415133012142012110141030551120241r r r r r r ----=------122121114101(1)355112241+---=⨯----1232422320110191141008174141219r r r r r r +++-----=-----2111019(1)(1)8174141219+--=--⨯-----2331241101907302857r r r r ---=----1173(1)(1)2857+--=--⨯--21473069r r ---=483=-.4)解 1101122011213210211012121302---13522221022201121642108110124261r r r ⨯⨯⨯--=-3141514221022201121202788300300645r r r r r r -+---=--- 31415141222112227811(1)303080645r r r r r r -++----=⨯⨯--31211222581300080645c c -----=--313111213(1)2588645c c -+--=-⨯⨯---21312611230712801017r r r r ++--=---117123(1)(1)10178+-=-⨯-⨯--33((7)1712(10))88=-⨯-⨯-=.17.计算下列n 级行列式:1)000000000000x y x y x y yx; 2)111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------;3)121212n n n x m x x x x m x x x x m---; 4)122222222232222n;5)12311100002200011n n n n-----. 1)解 000000000000x y x y x y y x111110000000000000(1)(1)00000000000000n n n x y y x y x y x y x y y x x y ++--=⋅-+⋅-按第1列展开111(1)n n n x x y y -+-=⋅+⋅-1(1)(2)n n n x y n +=+-≥.2)解 当1n =时,1111a b a b -=-; 当2n =时,11122122a b a b a b a b ----112212211212()()()()()()a b a b a b a b a a b b =-----=--;当3n ≥时,111212122212nnn n n na b a b a b a b a b a b a b a b a b ---------21311112121212131313112nr r r r n n n na b a b a b a a a a a a a a a a a a a b a b a b --------=------=0. (第2,3两行成比例)3)解121212n n n x mx x x x m x x x x m---12212121nni n i nc c c i n i ni n i x mx x x mx m x x mx x m=+++==---=--∑∑∑121(2,3,,)000i ninr r i i n x mx x m m-==--=-∑11()n n i i m x m -=⎛⎫=-- ⎪⎝⎭∑. 4)解 122222222232222n2(1,3,4,,)1000222200100002i r r i n n -=-=-2121000022200100002r r n +-=-(1)2(2)!2(2)!n n =-⨯⨯-=--.另解:1(2,3,,)i r r i n -= ,然后按第2行展开.5)解 1231110000220000011n n n n -----12(1)23120100002200011nc c c n n n n n n++++--=---10002200(1)211n n n n--+=--按第1列展开(1)(1)(2)(1)2n n n +=---11(1)(1)!(1)(1)!(1)22n n n n n n --++=--=-. 另解:第1列起,各列加到后一列,然后按第n 列展开.18.证明1)01212011111001100()100nn i ina a a a a a a a a ==-∑; 2)012111021000100010000001n n n n n x a x a x a x a x a x a xa x a ------=++++-+;3)1100010001000001n n αβαβαβαβαβαβαβαβ++++-=+-+; 4)cos 100012cos 100cos 012cos 00012cos n ααααα=;5)1231211111111111111111(1)11111nn i ina a a a a a a a =+++=++∑. 1)证法一 当1n =(2级)时,左边=0011111a a a a =-=右边;假设等式对于n 级的情形成立,则对于1n +级情形:左边=0121111001001na a a a0111(1)1(1)(1)2211111111100000(1)(1)100000100n n n n n n nna a a a a a a ++++++-=-+-按第行 展开1(1)1(121)12112101(1)(1)[()]n n n n n n n iia a a a a a a a a τ-++---=--+-∑第2个行列式根据归纳假设112112101[()]n n n n iia a a a a a a a a ---=-+-∑ 12101()nn n i ia a a a a a -=-∑=右边. 证法二 左边=012111100100100n a a a a11221(1)1033200011111111000000000000000(1)000000n n na a a a a a a a a a ++=-++-按第列 展开2(121)01223121(1)(1)n n n n n n a a a a a a a a a a τ+--=-++-- 2101223121(1)(1)n n n n n a a a a a a a a a a +--=-++--01223121n n n a a a a a a a a a a -=--- =右边.证法三提示 将第(2,3,,1)i i n =+ 行的1ia -倍加到第一行即得下三角行列式. 2)证法一 当1n =时,左边=00x a x a +=+=右边; 假设等式对于n -1级情形成立,则对于n 级情形:左边=01221000100010000001n n x a x a x a xa x a -----+0121032110001000100010001000100(1)000000100101nn n n n xa x x a x x a xa xa x x a +---------=+---+-按第1行 展开111210()(1)(1)n n n x x a x a a -+-=++++-- 第1行列式根据归纳假设2210()n x a x a x a =++++ 第1行列式根据归纳假设=右边.于是,等式成立.证法二 左边=01221000100010000001n n x a x a x a xa x a -----+120110000000010001000010000100(1)(1)000100010101n nnx x x x a a x x ++-----=-+-+----按第列 展开(1)21000000001000100001000100(1)()(1)00000000000100n nn nn n x x x x x x a x a xx x-++-------++--1122211210121(1)(1)(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x x a x +-+------=--+--++--++- 110121()n n n n a a x a x x a x ----=+++++=右边.3)将等式左边的行列式记为n D ,按第1列展开,得 12()n n n D D D αβαβ--=+-, 即 112()n n n n D D D D αβα----=-, 该等式对于一切的n 都成立,于是2123()n n n n D D D D αβα----=- 334()n n D D βα--=- =221()n D D βα-=-22[()()]n βαβαβααβ-=+--+n β=. ① 在原式中,是,αβ对称的,故同理可得1n n n D D βα--=. ②②α⨯-①β⨯,得11()n n n D αβαβ++-=-,所以 11n n n D αβαβ++-=-.另解 第二数学归纳法,按第1行展开(略).4)提示 用第二数学归纳法,按第n 行展开得122cos n n n D D D α--=⋅-. 5)提示 用数学归纳法,将第n 行拆成两行111 与00n a . 19—21略。

高等代数学答案02

高等代数学答案02
n n n n n ∑ ∑ ∑ ∑ ∑ 2 2 2 2 ¯ ( |ai | )( |bi | ) ≥ ( |ai ||bi |) = ( |ai bi |) ≥ | ai¯ bi |2 . i=1 i=1 i=1 i=1 i=1
2. 例 2.65. 3. 例 2.66. 4. 例 2.69.
复习题二
3. 由 A 非异, 则 AA−1 = A−1 A = In , 故直接计算可得 Ak (A−1 )k = (A−1 )k Ak = In . 4. 两边左乘 A−1 ; 两边右乘 A−1 . 5. 沿着这一行 (列) 展开求方阵的行列式显然值为 0, 故为奇异阵. 6. 由 Am = O , 得 (In − A)(In + A + A2 + · · · + Am−1 ) = (In + A + A2 + · · · + Am−1 )(In − A) = In . 7. 由于 B (A + B )−1 A(A−1 + B −1 ) = In , 故 A−1 + B −1 奇异. 8. 由 A2 = In 可得 (A + In )(A − In ) = O . 又 In + A 非异, 故 A − In = O , 即 A = In . 9. 由 A2 = A 可得 A2 − A − 2In = −2In , 即 (A + In )(A − 2In ) = −2In , 故 A + In 非异. 10. 由 A2 − A − 3In = O 可得 (A + In )(A − 2In ) = In , 故 A − 2In 非异.
7 30. 例 2.24. 31. 例 2.25 (3). 32. 例 2.26. 33. 例 2.10 (1). 34. (1) 例 2.36; (2) 例 2.37. 35. 例 2.3. 36. 例 2.32. 37. 例 2.33. 38. 例 2.34. 39. 例 2.35. 40. 例 1.39. 41. 例 2.70 的直接推论. 42. 例 2.71. 43. (1) 例 2.57; (2)2.3.2 训练题解答题 9. 44. 2.3.2 训练题解答题 10. 45. 例 2.48. 46. 例 2.63. 47. 例 2.61. 48. 类似例 2.52, 作多项式 f (x) = a1 + a2 x + a3 x2 + · · · + an xn−1 , 令 ϵ1 , ϵ2 , · · · , ϵn 是 −1 的所有 n 次方根. 又令 V = ··· ··· ···

《高等代数》第二章习题及答案

《高等代数》第二章习题及答案

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。

高等数学 线性代数 习题答案第二章

高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

高等代数 习题及参考答案

高等代数 习题及参考答案
17.求 值,使 有重根。
解易知 有三重根 时, 。若令
,比较两端系数,得
由(1),(3)得 ,解得 的三个根为 ,将 的三个根分别代入(1),得 。再将它们代入(2),得 的三个根 。
当 时 有3重根 ;当 时, 有2重根 。
18.求多项式 有重根的条件。
解令 ,则 ,显然当 时,只有当 才有三重根。
3) 。
解利用剩余除法试根,可得
1)有一个有理根2。
2)有两个有理根 (即有2重有理根 )。
3)有五个有理根 (即一个单有理根3和一个4重有理根 )。
28.下列多项式在有理数域上是否可约?
1) ;
2) ;
3) ;
4) 为奇素数;
5) 为整数。
解1)因为 都不是它的根,所以 在有理数域里不可约。
2)利用艾森斯坦判别法,取 ,则此多项式在有理数域上不可约。
指数组
对应 的方幂乘积
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2
原式= (1)
只要令 ,则原式左边 。另一方面,有 ,
代入(1)式,得 。再令 ,得 。
令 ,得
(2)
令 得
(3)
由(2),(3)解得 。因此
原式 。
4)原式=
指数组
对应 的方幂乘积
2 2 0 0
2 1 1 0
1 1 1 1
设原式
高等代数
第一章多项式
1.用 除 ,求商 与余式 :
1) ;
2) 。
解1)由带余除法,可得 ;
2)同理可得 。
2. 适合什么条件时,有
1) ,
2) 。
解1)由假设,所得余式为0,即 ,

高等代数第二章检测题答案

高等代数第二章检测题答案

高等代数第二章检测题答案2一、填空题1.3,12.243.(1)nn!4.05.4,-10,01二、判断题1.某2.某3.某4.某5.√三、计算题1.Dn(b(n1)a)(ab)n12.1603.某y4.a1a2an(1221)n1ann四、证明题1.证明:令f(某)c0c1某cn1某n1考虑以c0,c1cn1为未知数的方程组:f(ai)bi(i1,2,n)c0c1a1cc1a2即0cca1n01a1a12a2a22anan2c2a12c2a22c2ana1n1a2n1ann12cn1a1n1cn1a2n1cn1 ann1b1b2bn它的系数行列式为这是一个范德蒙行列式的转置行列式,且因为a1,a2an互不相等,所以D0,根据克莱姆规则,方程组在唯一解,这就是说有唯一的一个次数小于n的多项式式使f(ai)bi(i1,2n).2.证明:(用数学归纳法证)当n=1时,左=ab,右=a2b2abab所以原式成立,设结果对一切小于n的自然数都成立,证明n时也成立.将D按第一列展开ab00001abab00D(ab)Dn1(ab)Dn1abDn21ab2anbnan1bn1ab(ab)ababan1bn1ab3.证明:将第3行的a倍加至第4行,第2行的a倍加到第3行,第一行的a倍加至第2行,得2110baD0b2a20b4a41cac2a2c4a41da22dad4a4111D(ba)(ca)(da)bacada(b2a2)(ba)(c2a2)(ca)(d2a2)(da)111(ba)(ca)(da)0cddb0(ca)(c2b2)(da)(d2b2)(ba)(ca)(da)(cb)(db)11(ca)(cb)(da)(db) (ba)(ca)(cd)(db)(dc)(abcd)故原式成立.。

高等代数作业 第二章行列式答案

高等代数作业 第二章行列式答案

高等代数第四次作业第二章 行列式 §1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列、 6,52.四阶行列式44⨯=ija D 中,含24a 且带负号的项为_____、 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数就是_____、 2 二、判断题1、 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3、 设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4、 abcd zz z dy y c x b a =000000( ) √ 5、abcd dcx b y x a z y x-=000000 ( )× 6、0000000=yxh gf e d c b a ( )√7、 如果行列式D 的元素都就是整数,则D 的值也就是整数。

( )√ 8、 如果行列D 的元素都就是自然数,则D 的值也就是自然数。

( )×9、n na a a a a a ΛN 2121= ( )×10、 01000200010ΛΛΛΛΛΛΛΛΛnn -=n ! ( )× 三、选择题1.行列式01110212=-k k 的充分必要条件就是 ( ) D(A)2=k (B)2-=k (C)3=k (D)2-=k 或 3 2.方程093142112=x x 根的个数就是( )C (A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)665144322315a a a a a a (B)655344322611a a a a a a (C)346542165321a a a a a a (D)513312446526a a a a a a4、 n 阶行列式的展开式中,取“–”号的项有( )项 A(A)2!n (B)22n (C)2n (D)2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-就是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A)3,2==l k ,符号为正; (B)3,2==l k ,符号为负; (C)3,1k l ==,符号为正; (D)1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A)8 (B)12- (C)24- (D)24 四、计算题 1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602、 计算3111131111311113、 解:3111131111311113=31111311113111116•=20000200002011116•=.48263=⨯高等代数第五次作业第二章 行列式 §5—§7一、填空题1、 设ij ij A M ,分别就是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02、 122305403-- 中元素3的代数余子式就是 、6-3、 设行列式4321630211118751=D ,设j j A M 44,分布就是元素j a 4的余子式与代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= 、0,66- 4、 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k 、 2≠5、 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解、 0≠ 二、判断题1、 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2、222)(00000000a b b a a b b a ab -= ( )√ 3、222)(00000000b a a b b a a b b a -= ( )√4、0=d b a c d b c a b d c a b d a c ( )√ 5、483111131111311113= ( )√ 6、)(000000hx gy a yh fdx g e c b a -= ( )× 7、0107310111187654321=--- ( )√三、选择题1、 行列式102211321的代数余子式13A 的值就是( )D(A)3 (B)1- (C)1 (D)2-2.下列n (n >2)阶行列式的值必为零的就是 ( )D(A)行列式主对角线上的元素全为零 (B)行列式主对角线上有一个元素为零 (C)行列式零元素的个数多于n 个 (D)行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数就是( )D(A)1 (B)1- (C)4 (D)4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A)43214321b b b b a a a a - (B)))((43432121b b a a b b a a -- (C)43214321b b b b a a a a + (D)))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解就是( )B(A)2221211a b a b x =,2211112b a b a x = (B)2221211a b a b x -=,2211112b a b a x = (C)2221211a b a b x ----=,2211112b a b a x ----=(D)2221211a b a b x ----=,2211112b a b a x -----=6、 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组 ⎪⎩⎪⎨⎧=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3 四、计算题1、 计算D=100110011001aa aa---解:方法1:100110011001aa a a ---21r r ↔=aa a a 100110001011---21r ar +=aaa a a 101100100112--+-32r r ↔=aa a a a 100101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---•a aaa a a=1])1([22++++a a a a a .1324++=a a2、 计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3、 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12=4、 计算=n D 12111111111na a a +++L L M M M L 解:=n D 12111111111na a a +++LL M M M Lna a a ΛM M M ΛΛ1101101121++=12111111+111a a ++LLM M ML1211--+=n n n a a a D a Λ).11(121∑=+=ni in a a a a Λ 5、 解方程:22x 9132513232x 213211--=0、解:22x 9132513232x 213211--=223310131000103211x x -----=223310131000103211)1(x x ----•-=223300130000103211)1(x x ----•-=224000130000103211)1(x x ---•-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()()()43433232212222222222222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a bb b b b b b b b bc c c c c c c c c cd d d d d d d d d d -----++++++++++++++++++++++++++++ 40推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数第二章课后习题

高等代数第二章课后习题

第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
第二章 行列式
x1-m
x2

xn
x1
x2-m … xn
3)
.
.
.
.
. .
.
.
.
x1
x2

xn-m
第二章 行列式
第 章 行列式
2
1
第二章 行列式
5x1+6x2=1 x1+5x2+6x3=0 4) x2+5x3+6x4=0 x3+5x4+6x5=0
x4+5x5=1
2
第 章 行列式 3
ห้องสมุดไป่ตู้
a a ...a 2
n-1
n-1
n-1 n-1
其中 a1,a2,...,an-1 是互不相同的数. 1) 由行列式定义说明,p(x)是一个 n-1 次多项式;
2)由行列式性质,求 p(x)的根 .
4
1.计算下面的行列式:
第二章 行列式
246 427 327
1)
1014 543 443 ;
-342 721 621
1
第 章 行列式 2
第二章 行列式
6.由行列式定义计算
2x x 1 2
f(x)= 1 3
x 1 -1 2x 1
1 11 x
中 x4 与 x3 的系数,并说明理由.
3
第二章 行列式
证明奇偶排列各半.
8.设
1
P(x)=
1 .
.
.
1
x
x2...xn-1
a1 a12 ...a1n-1 . .. . .. . ..

高等代数作业 第二章行列式答案

高等代数作业  第二章行列式答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数作业第二章行列式答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式中,含且带负号的项为_____.3.设则4.行列式的展开式中, 的系数是_____. 2二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ()√2. 设=则=()×3. 设= 则()×4. ( ) √5. ()×6. ()√7. 如果行列式D的元素都是整数,则D的值也是整数。

()√8. 如果行列D的元素都是自然数,则D的值也是自然数。

()×9. ()× 10. =n!()×三、选择题1.行列式的充分必要条件是 ( ) D(A)(B)(C)(D)或 32.方程根的个数是( )C(A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)(B)(C)(D)4. n阶行列式的展开式中,取“–”号的项有()项 A(A)(B)(C)(D)5.若是五阶行列式的一项,则的值及该项的符号为( )B(A),符号为正;(B),符号为负;(C),符号为正;(D),符号为负6.如果,则 = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M7.如果,,则 ( )C(A)8 (B)(C)(D)24四、计算题1.计算解:=1602. 计算.解:===高等代数第五次作业第二章行列式§5—§7一、填空题1. 设分别是行列式D中元素的余子式,代数余子式,则 02. 中元素3的代数余子式是 .3. 设行列式,设分布是元素的余子式和代数余子式,则 = ,= .4. 若方程组仅有零解,则 .5. 含有个变量,个方程的齐次线性方程组,当系数行列式D 时仅有零解.二、判断题1. 若级行列试D中等于零的元素的个数大于,则D=0 ()√2. ()√3. ()√4. ()√5. ()√6. ()×7. ()√三、选择题1. 行列式的代数余子式的值是( )D(A)3 (B)(C)1 (D)2.下列n(n >2)阶行列式的值必为零的是 ( )D(A)行列式主对角线上的元素全为零(B)行列式主对角线上有一个元素为零(C)行列式零元素的个数多于n个(D)行列式非零元素的个数小于n个3.若,则中x的一次项系数是( )D(A)1 (B)(C)(D)4.4阶行列式的值等于( )D(A)(B)(C)(D)5.如果,则方程组的解是( )B(A),(B),(C),(D),6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3四、计算题1. 计算D=解:方法1:==方法2:将行列式按第一行展开,有:===2. 计算解:3. 计算解:4. 计算解:5. 解方程:=0.解:=====五、证明题1.证明:证明:2.设,求证:,其中为将中第列元素换成后所得的新行列式。

《高等代数2》习题

《高等代数2》习题

《高等代数2》习题一、填空题1、设1(2,0,1,3)α=-,2(5,7,4,6)α=-,3(3,1,7,2)α=-,则12332ααα++=2、设,,,nF k l F αβ∈∈,则()k αβ+= ,()k l α+=3、向量组12(1,1,3,2),(1,1,3,2)αα=-=---是 。

(线性相关或线性无关)4、向量组232323231234(1,,,),(1,,,),(1,,,),(1,,,)a a a b b b c c c d d d αααα==== 是 。

(,,,a b c d 两两互不相等)(线性相关或线性无关)5、向量组1234(1,0,0,0),(1,2,0,0),(1,2,3,0),(2,3,4,0)αααα====的极大无关组是 ,向量组的秩 。

6、n 阶矩阵A 可逆的充要条件是 ,且它的逆矩阵(公式)=-1A 。

7、如果1W 和2W 都是向量空间V 的有限维子空间,那么12W W +也是有限维的,并且1212dim()dim()W W W W ++= 。

8、含有n 个未知量n 个方程的齐次线性方程组有非零解的充分必要条件是 。

9、设(6,2,0,4)α=-,(3,1,5,7)β=-。

则向量32βα-= 。

10、向量组(1,0,1,0)α=-是 。

(线性相关或线性无关)11、向量组12(3,2,1),(6,4,2)αα=-=--的极大无关组是 ,向量组的秩 。

12、已知向量组123(1,0,0),(0,1,0),(0,0,1)ααα===构成3F 的一个基,向量(5,0,7)β=关于这个基的坐标是 。

13、矩阵()='+B A ,()='AB 。

14、n 阶单位矩阵I 有=I ,=-1I 。

15、线性方程组11112211211222221122 n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 有解的充分必要条件是。

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列、 6,52.四阶行列式44?=ija D 中,含24a 且带负号的项为_____、112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =ΛΛΛΛΛΛΛ则._____122122211121=n n nnn na a a a a a a a a ΛΛΛΛΛΛΛ(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数就是_____、 2 二、判断题1、若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√2、设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则121112222121n n n nn n a a a a a a a a a L L L L L L L =d ( )×3、设d =nnn n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211则d a a a a a a a a a nnn n n n-=112112122221ΛΛΛΛΛΛΛΛ( )×4、 abcd zz z dy y c x b a =000000( ) √ 5、abcd dcx b y x a z y x-=000000 ( )× 6、0000000=yxh gf e d c b a ( )√7、如果行列式D 的元素都就是整数,则D 的值也就是整数。

( )√8、如果行列D 的元素都就是自然数,则D 的值也就是自然数。

( )×9、n na a a a a a ΛN 2121= ( )×10、 01000200010ΛΛΛΛΛΛΛΛΛnn -=n !( )× 三、选择题1.行列式01110212=-k k 的充分必要条件就是 ( ) D(A)2=k (B)2-=k (C)3=k (D)2-=k 或 3 2.方程093142112=x x 根的个数就是( )C (A)0 (B)1 (C)2 (D)3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A)665144322315a a a a a a (B)655344322611a a a a a a(C)346542165321a a a a a a (D)513312446526a a a a a a4、 n 阶行列式的展开式中,取“–”号的项有( )项 A(A)2!n (B)22n (C)2n (D)2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-就是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A)3,2==l k ,符号为正; (B)3,2==l k ,符号为负; (C)3,1k l ==,符号为正; (D)1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A)2 M (B)-2 M (C)8 M (D)-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A)8 (B)12- (C)24- (D)24 四、计算题 1. 计算3214214314324321解:3214214314324321321421431432111110=123012101210111110------=440004001210111110---=400004001210111110---==1602、计算3111131111311113、解:3111131111311113=31111311113111116?=20000200002011116?=.48263=?高等代数第五次作业第二章行列式§5—§7一、填空题1、设ij ij A M ,分别就是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02、 122305403-- 中元素3的代数余子式就是、6-3、设行列式4321630211118751=D ,设j j A M 44,分布就是元素j a 4的余子式与代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= 、0,66- 4、若方程组??=+-=++=+02020z y kx z ky x z kx仅有零解,则k 、2≠5、含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解、0≠ 二、判断题1、若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ( )√2、222)(00000000a b b a a b b a ab -= ( )√ 3、222)(00000000b a a b b a a b b a -= ( )√4、0=d b a c d b c a b d c a b d a c ( )√ 5、483111131111311113= ( )√ 6、)(000000hx gy a yh fdx g e c b a -= ( )× 7、0107310111187654321=--- ( )√三、选择题1、行列式102211321的代数余子式13A 的值就是( )D(A)3 (B)1- (C)1 (D)2-2.下列n (n >2)阶行列式的值必为零的就是 ( )D(A)行列式主对角线上的元素全为零(B)行列式主对角线上有一个元素为零 (C)行列式零元素的个数多于n 个 (D)行列式非零元素的个数小于n 个3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数就是( )D(A)1 (B)1- (C)4 (D)4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A)43214321b b b b a a a a - (B)))((43432121b b a a b b a a -- (C)43214321b b b b a a a a + (D)))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 =+-=+-022221211212111b x a x a b x a x a 的解就是( )B(A)2221211a b a b x =,2211112b a b a x = (B)2221211a b a b x -=,2211112b a b a x = (C)2221211a b a b x ----=,2211112b a b a x ----=(D)2221211a b a b x ----=,2211112b a b a x -----=6、三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A)3 (B)7 (C)–3 (D)-77.如果方程组 ??=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C(A)0 (B)1 (C)-1 (D)3 四、计算题1、计算D=100110011001aa aa---解:方法1:100110011001aa a a ---21r r ?=aa a a 100110001011---21r ar +=aaa a a 101100100112--+-32r r ?=aa a a a 100101100112-+--232(1)r a r ++=aa a a a a 100120011001123-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a 方法2:将行列式按第一行展开,有:1001101101a aa a---=1011011010101a a a aa a-----=1]01111[2++---?a aaa a a=1])1([22++++a a a a a .1324++=a a2、计算12125431432321-=n n n D n ΛM M M M ΛΛΛ解:12125431432321-n n n ΛM M M M ΛΛΛ121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n ΛM M M M ΛΛΛ121125411431321)1(21-+=n n n n ΛM MM M ΛΛΛ11101111110321)1(21ΛMMM M ΛΛΛn nnn n --+=111111111)1(21ΛM M MΛΛn n n n n ---+=)1()1(0000111)1(121212)1(+-=---+=--n n n n n n n n n ΛM M MΛΛ3、计算642781169414311111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12= 4、计算=n D 12111111111na a a +++L L M M M L 解:=n D 12111111111na a a +++LL M M M Lna a a ΛM M M ΛΛ1101101121++=12111111+11a a ++LLM M ML1211--+=n n n a a a D a Λ).11(1 21∑=+=ni in a a a a Λ 5、解方程:22x 9132513232x 213211--=0、解:22x 9132513232x 213211--=223310131000103211x x -----=22 331013100003211)1(x x ----?-=223300130000103211)1(x x ----?-=224000130000103211)1(x x ---?-=223(1)(4)x x ---.2,1±±=∴x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2 222222222222222=++++++++++++d d d d c c c cb b b b a a a a 证明:()()()()()()()()()()() 43433232 212222222222 222222222222221232123252122123212325212221232521221232123252122123c c c c c c c c c c a a a a a a a a a a bb b b b b b b b bc c c c c c c c c cd d d d d d d d d d -----++++++++++++++++++++++++++++ 40推论2.设111,12,11,111211ΛΛM M M Λn n n n n a a a a a a D ---=,求证:n D D D D +++=Λ21,其中k D ()1,2,,k n =L 为将D 中第k 列元素换成121,,,,1n x x x -L 后所得的新行列式。

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案

高等代数作业第二章行列式答案高等代数作业第二章行列式答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列. 6,52.四阶行列式44?=ija D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a3.设.212222111211d a a a a a a a a a nnn n n n =则._____122122211121=n n nn n n a a a a a a a a a(1)2(1)n n d -- 4.行列式11111111---x 的展开式中, x 的系数是_____. 2 二、判断题1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ()√2. 设d =nn n n nna a a a a a a a a 212222111211则121112222121n n n nnn a a a a a a a a a =d ()×3. 设d =nnn n n na a a a a a a a a 212222111211则d a a a a a a a a a nnn n n n-=112112122221()×4.abcd zzz dy y c x b a =000000 ( ) √ 5.abcd dcx b y x a z y x -=000000 ()× 6.0000000=yxh gf e d c b a ()√7. 如果行列式D 的元素都是整数,则D 的值也是整数。

()√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。

()×9.n na a a a a a 2121= ()×10. 010002000010nn -=n !()×三、选择题1.行列式01110212=-k k 的充分必要条件是 ( ) D(A )2=k (B )2-=k (C )3=k (D )2-=k 或 32.方程093112=x x 根的个数是( )C (A )0 (B )1 (C )2 (D )3 3.下列构成六阶行列式展开式的各项中,取“+”的有 ( )A(A )665144322315a a a a a a (B )655344322611a a a a a a(C )346542165321a a a a a a (D )513312446526a a a aa a4. n 阶行列式的展开式中,取“–”号的项有()项 A(A )2!n (B )22n (C )2n (D )2)1(-n n5.若(145)11243455(1)k l k l a a a a a τ-是五阶行列式的一项,则l k ,的值及该项的符号为( )B (A )3,2==l k ,符号为正;(B )3,2==l k ,符号为负;(C )3,1k l ==,符号为正;(D )1,3k l ==,符号为负6.如果0333231232221131211≠==M a a a a a a a a a D ,则3332312322211312111222222222a a a a a a a a a D = = ( )C(A )2 M (B )-2 M (C )8 M (D )-8 M 7.如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( )C(A )8 (B )12- (C )24- (D )24四、计算题1.计算32142143143243213 2142143143243213 21421431432111110 =123012101 210111110------=4 40004001 210111110---=400004001 210111110---==1602. 计算311113111131 1113.解:3111131111311113=3111 1311113111116?=2 000020000201 1116?=.48263=?高等代数第五次作业第二章行列式§5—§7一、填空题1. 设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M 02. 122305403-- 中元素3的代数余子式是 .6-3. 设行列式4321630211118751=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= .0,66- 4. 若方程组??=+-=++=+02020z y kx z ky x z kx仅有零解,则k . 2≠5. 含有n 个变量,n 个方程的齐次线性方程组,当系数行列式D 时仅有零解. 0≠ 二、判断题1. 若n 级行列试D 中等于零的元素的个数大于2n n -,则D=0 ()√2.222)(00000000a b b a a b b a ab -= ()√ 3.222)(00000000b a a b b a a b b a -= ()√4.0=d b a c d b c a b d c a b d a c ()√ 5.483111131111311113= ()√6.)(000000hx gy a yh fdx g e c b a -= ()× 7.0107310111187654321=--- ()√三、选择题1. 行列式102211321的代数余子式13A 的值是( )D(A )3 (B )1- (C )1 (D )2-2.下列n (n >2)阶行列式的值必为零的是 ( )D(A )行列式主对角线上的元素全为零(B )行列式主对角线上有一个元素为零(C )行列式零元素的个数多于n 个(D )行列式非零元素的个数小于n 个 3.若111111111111101)(-------=x x f ,则)(x f 中x 的一次项系数是( )D(A )1 (B )1- (C )4 (D )4-4.4阶行列式4433221100000000a b a b b a b a 的值等于( )D(A )43214321b b b b a a a a - (B )))((43432121b b a a bb a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 5.如果122211211=a a a a ,则方程组 =+-=+-0022221211212111b x a x a b x a x a 的解是( )B(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x =(C )2221211a b a b x ----=,2211112b a b a x ----=(D )2221211a b a b x ----=,2211112b a b a x -----=6. 三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于( )B(A )3 (B )7 (C )–3 (D )-77.如果方程组 ??=--=+=-+050403z y kx z y z ky x 有非零解,则 k =( )C (A )0 (B )1 (C )-1 (D )3 四、计算题1. 计算D=100110011001a a a a ---解:方法1:100110011001aa aa---21r r ?=a aa a 100 110001011---21 r ar +=aaa a a 1001 100100112--+- 32r r ?=aa a a a 10 101100112-+--232(1)r a r ++=aa a a a a 100 12001100112 3-++--=aa a a 11223-++=.13)1()2(2423++=+++a a a a a a 方法2:将行列式按第一行展开,有:100110011001a a a a ---=1011011010101a a a a a a-----=1]01111[2++---?a aa a a a=1])1([22++++a a a a a .1324++=a a 2. 计算12125431432321-=n n n D n解:12125431432321-n n n121)1(254)1(143)1(32)1(21212121-++++=n n n n n n n n n n121125411431321)1(21-+=n n n n11101111110321)1(21n nnn n --+=111111111)1(21n n nn n ---+= )1()1(0000111)1(121212)1(+-=---+=--n n n nn n n n n3. 计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(------=12= 4. 计算=n D 12111111111na a a +++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。

相关文档
最新文档