(完整版)平行线及其判定与性质练习题

合集下载

中考数学专题练习平行线及其判定(含解析)

中考数学专题练习平行线及其判定(含解析)

2019中考数学专题练习-平行线及其判定(含解析)一、单选题1.如图,在四边形ABCD中,下列条件中可以判定AD∥BC的是()A.∥1=∥3B.∥2=∥4C.∥B=∥DD.∥B+∥BCD=180°2.如图,能得到AB∥CD的条件是()A.∥B=∥DB.∥B+∥D+∥E=180°C.∥B+∥D=180°D.∥B+∥D=∥E3.如图,若∥A=75°,则要使EB∥AC可添加的条件是()A.∥C=75° C .∥ABE=75° D .∥EBC=105°B.∥DBE=75°C.∥ABE=75°D.∥EBC=105°4.在“同一平面”条件下,下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角.A.1个B.2个C.3个D.4个5.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∥CAB=∥FDEB.∥ACB=∥DFEC.∥ABC=∥DEFD.∥BCD=∥EFG6.有下列四种说法:(1)两条直线的位置关系有相交和平行两种(2)过一点能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中正确的个数是()A.1个B.2个C.3个D.4个7.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行8.如图,要使AD∥BC,那么可以选择下列条件中的()A.∥1=∥4B.∥2=∥3C.∥1+∥B=180°D.∥B=∥D9.如图,已知∥1=∥2=∥3=55º,则∥4=()A.135ºB.125ºC.110ºD.无法确定10.如图,下列条件:①∥1=∥2;②∥A=∥4;③∥1=∥4;④∥A+∥3=180°;⑤∥C=∥BDE,其中能判定AB∥DF的有()A.2个B.3个C.4个D.5个11.如图,下列推理错误的是()A.∥∥1=∥2,∥c∥dB.∥∥3=∥4,∥c∥dC.∥∥1=∥3,∥a∥bD.∥∥1=∥4,∥a∥b12.如果a∥b,a∥c,那么b与c的位置关系是()A.不一定平行B.一定平行C.一定不平行D.以上都有可能13.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行14.下列说法正确的有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB 与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个二、填空题15.如图,直线a、b被直线c所截,若满足________,则a、b平行.16.如图,是小明学习三线八角时制作的模具,经测量∥2=100°,要使木条a与b平行,则∥1的度数必须是________.17.如图,已知∥1=∥2,∥3=∥4,∥E=90°,试问:AB∥CD吗?为什么?解:∥∥1+∥3+∥E=180°________∥E=90°________∥∥1+∥3=________∥∥1=∥2,∥3=∥4________∥∥1+∥2+∥3+∥4=________∥AB∥CD________.18.如图所示,请写出能判定CE∥AB的一个条件________.19.要使AB∥CD,必须使________(写出你认为正确的一个条件即可)。

平行线的性质及判定典型例题

平行线的性质及判定典型例题

1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).3.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.7.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCB=45°,则∠ACB的度数为135°.②若∠ACB=140°,则∠DCE的度数为40°.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).解:(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;(3)30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).10.如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.已知:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(错角相等,两直线平行)∴∠3=∠ADE(两直线平行,错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁角互补)15.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2 )(等量代换)∴DE∥(BC)(错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°16.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:(1)AF∥ED;(2)∠BED=∠A;(3)∠1=∠2(1)证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;(2)证明:∵AF∥ED,∴∠BED=∠A;(3)证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁角互补,两直线平行)∴∠A=∠F(两直线平行,错角相等)18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格填空或在括号填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.已知:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:AB∥DC;(2)若∠B=30°,∠1=65°,求∠OFE的度数.(1)证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;(2)解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.(2018秋•牡丹区期末)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.解:(1)CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

(完整版)平行线的判定专项练习60题(有答案)

(完整版)平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。

平行线的性质与判定(典型例题)

平行线的性质与判定(典型例题)

E
B
C
例4.如图,∠A+∠C=1800,∠D=∠E,则AB与EF平行 吗?为什么?
A
B
C
E
D F
解:∵∠A+∠C=1800( 已知 ) ∴AB//CD(同旁内角互补, 两直线平行) 又∵∠D=∠E( 已知 ) ∴EF//CD( 内错角相等,两直线平行) ∴AB//EF( 两直线都与第三条直线平行, 那么这两条直线也平行)
C D F B 2 E 3 A G
1
D 4.如图,若m∥n,∠1 = 105°,则∠2 =( A.55° B.60° C.65° D.75°

1 2
m n
5.如图,直线AB、CD相交于点O,OE⊥AB,O为 垂足,如果∠EOD = 38°,则∠AOC = 52°,∠COB = 128 。 °
A O C
E D B
6.如图所示,下列推理正确的是(C ) A.∵∠1=∠4,∴BC∥AD B.∵∠2=∠3,∴AB∥CD C.∵AD∥BC,∴∠BCD+∠ADC=180° D.∵∠1+∠2+∠C=180°,∴BC∥AD B A 1 2 4 3 D
1 B C
例7.如图,若AB⊥BC,BC⊥CD,∠1=∠2 求证:BE//CF A
1 证明: ∵AB⊥BC,BC⊥CD( 已知) ∴∠ABC=∠BCD =900(垂直的定义 ) 2 ∵∠1=∠2( 已知 ) E C ∴∠ABC-∠1=∠BCD-∠2(等式的性质) 即∠EBC=∠BCF ∴ BE// CF (内错角相等,两直线平行) B F
例2、如图有一块梯形的玻璃,已知量得 ∠A=115°,∠D=100°,请你想一想, 梯形的另外两个角各是多少度。
解:∵AD∥BC (已知) ∴ A + B=180°

平行线及其判定与性质练习题

平行线及其判定与性质练习题

g r e平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为:______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________.(______,________)(3)如果∠2+∠1=180°,那么_____.(________,______)(4)如果∠5=∠3,那么_______.(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________.(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B =∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B +∠BCE =180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC .证明∵∠ABC =∠ADC ,∴( ).2121ADC ABC ∠=∠又∵BF 、DE 分别平分∠ABC 与∠ADC ,∴( ).212,211ADC ABC ∠=∠∠=∠∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.t i m em11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。

平行线的判定与性质练习题

平行线的判定与性质练习题

平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。

从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。

在几何学中,我们需要学会判定平行线,并掌握它们的性质。

下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。

练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。

A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。

A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。

A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。

2. 若两条平行线被一条横线所截,那么对应的外角相等。

3. 若两条直线分别与一条平行线相交,那么对应的内角相等。

4. 若两条直线分别与一条平行线相交,那么同旁内角互补。

练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。

2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。

3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。

4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。

通过以上练习题,我们可以加深对平行线的判定与性质的理解。

判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。

而平行线的性质则是通过观察线段之间的关系得出的。

掌握这些性质可以帮助我们解决更复杂的几何问题。

在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。

平行线的判定与性质专项训练(20题)(学生版)

平行线的判定与性质专项训练(20题)(学生版)

平行线的判定与性质专项训练(20题)一、解答题1.已知:如图,∠1=∠C,∠2+∠3=180°.求证:AD∥EF.3.如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠24.已知AB∥DE,∠1=∠2,若∠C=54°,求∠AEC的度数.5.如图,C为∠AOB平分线上一点,CD//OB交OA于点D.求证:OD=CD.6.如图,在四边形ABCD中,AB=CD,AD=BC,点O为BD上任意一点,过点O的直线分别交AD,BC于M,N两点.求证:∠1=∠2.7.如图,AB∥CD,∠ABE=∠DCF.求证:∠E=∠F.8.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数.9.如图,BE平分∠ABC,EB∥CD,∠ABC=2∠1.判断直线AD与BC的位置关系,并说明理由.10.已知:∠DEC+∠C=180°,DE平分∠ADF,∠F=∠1.求证:∠B=∠C.11.如图,已知∠1=∠2,AB∥EF,∠3=130°,求∠4的度数.12.如图,AB//CD,点C为直线BC,CD的交点,∠B+∠CDE=180°.求证:BC//DE.13.如图,已知AD∥BE,∠1=∠C,请判断∠A与∠E是否相等?并说明理由.14.如图,已知∠ABC=∠1,∠P=∠Q.试说明∠2=∠3.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,求∠ABD,∠CED的度数.16.如图,A,C,F,D在同一直线上,AB∥DE,AB=DE,AF=DC,求证:BC∥EF.17.如图,∠1=60°,∠2=60°,∠3=100°。

要使AB∥EF,∠4应为多少度?说明理由。

18.如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.19.如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,∠AED=∠C,EF//AB.求证:∠B=∠DEF.20.如图,∠1+∠2=180°,∠C=∠D.求证:AD∥BC.。

直线、平面平行的判定及其性质_测试题有详解

直线、平面平行的判定及其性质_测试题有详解

直线、平面平行的判定及其性质 测试题〔有详解〕A一、选择题1.以下条件中,能判断两个平面平行的是( )A .一个平面的一条直线平行于另一个平面;B .一个平面的两条直线平行于另一个平面C .一个平面有无数条直线平行于另一个平面D .一个平面任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是〔 〕A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.假设直线m 不平行于平面α,且m ⊄α,则以下结论成立的是〔 〕A .α的所有直线与m 异面B .α不存在与m 平行的直线C .α存在唯一的直线与m 平行D .α的直线与m 都相交5.以下命题中,假命题的个数是〔 〕① 一条直线平行于一个平面,这条直线就和这个平面的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则以下判断正确的选项是〔 〕A .()12MN AC BC ≥+B .()12MN AC BC ≤+ C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如以下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是.三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:〔1〕MN //B 1D 1;〔2〕AC 1//平面EB 1D 1;〔3〕平面EB 1D 1//平面BDG . B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在以下条件下,可判定α∥β的是〔 〕A .α,β都平行于直线a ,bB .α有三个不共线点到β的距离相等C .a ,b 是α两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是〔 〕A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的选项是〔 〕A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂4.一条直线假设同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是〔 〕A.异面B.相交C.平行D.不能确定5.以下四个命题中,正确的选项是〔 〕①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,则夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,则夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则以下结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面,给出六个命题:其中正确的命题是________________.〔将正确的序号都填上〕8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,假设AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其部运动,则M 满足时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如以下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC . C1.平面两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;〔2〕假设AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE "假设存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.参考答案A一、选择题1.D【提示】当l =⋂βα时,α有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条.3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】假设直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α不存在与m 平行的直线.5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D【提示】此题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8.①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP.9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE.三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:〔1〕 M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1〔2〕〔法1〕连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1〔法2〕作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1 〔3〕因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,假设a ∥b ,则不能断定α∥β;B 错,假设A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,假设a∥b,则不能断定α∥β;D 正确.2.C【提示】假设直线a ,b 满足a ∥b ,b α,则a ∥α或a α3.D【提示】根据面面平行的性质定理可推证之.4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l .5.A【提示】6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在.二、填空题7.①④⑤⑥8.68或368 【提示】如图〔1〕,由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SC SC 34-,∴SC =68. 如图〔2〕,由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368. 9.M ∈HF【提示】易证平面NHF ∥平面BD D 1B 1,M 为两平面的公共点,应在交线HF 上.三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MBAM =MB MB AB -=MB MB DC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC . 证法二:过N 作NQ ∥AD 交PA 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .C1.〔1〕证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHAN NB FN =. 又NB FN MC AM =,则NH AN =MCAM ,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.(2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE,又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE.即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC.ME ⊄α,∴ME ∥α.同理可证,NE ∥BD.又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α.O F A B CD P E又ME ∩NE=E ,∴平面MNE ∥α,而MN ⊂平面MNE ,∴MN ∥平面α.一、选择题1.以下条件中,能判断两个平面平行的是( )A .一个平面的一条直线平行于另一个平面;B .一个平面的两条直线平行于另一个平面C .一个平面有无数条直线平行于另一个平面D .一个平面任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是A .0B .1C .2D .33. 直线,a b c ,及平面αβ,,使//a b 成立的条件是〔 〕A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.假设直线m 不平行于平面α,且m ⊄α,则以下结论成立的是〔 〕A .α的所有直线与m 异面B .α不存在与m 平行的直线C .α存在唯一的直线与m 平行D .α的直线与m 都相交5.以下命题中,假命题的个数是〔 〕① 一条直线平行于一个平面,这条直线就和这个平面的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .16.空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则以下判断正确的选项是〔 〕A .()12MN AC BC ≥+B .()12MN AC BC ≤+ C .()12MN AC BC =+ D .()12MN AC BC <+ 二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如以下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是.三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:〔1〕MN //B 1D 1;〔2〕AC 1//平面EB 1D 1;〔3〕平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在以下条件下,可判定α∥β的是〔 〕A .α,β都平行于直线a ,bB .α有三个不共线点到β的距离相等C .a ,b 是α两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是〔 〕A .a ∥αB .a 与α相交C .a 与α不相交D .a α3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的选项是〔 〕A .a α⊄,则//a αB .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂4.一条直线假设同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是〔 〕A.异面B.相交C.平行D.不能确定5.以下四个命题中,正确的选项是〔 〕①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,则夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,则夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则以下结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面,给出六个命题:其中正确的命题是________________.〔将正确的序号都填上〕8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,假设AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其部运动,则M 满足时,有MN ∥平面B 1BD D 1.三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如以下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NP DN,求证:直线MN ∥平面PBC .C1.平面两正方形ABCD 与ABEF ,点M ,N 分别在对角线AC ,FB 上,且AM:MC=FN:NB ,沿AB 折起,使得∠DAF =900(1)证明:折叠后MN//平面CBE ;〔2〕假设AM:MC =2:3,在线段AB 上是否存在一点G ,使平面MGN //平面CBE "假设存在,试确定点G 的位置.2.设平面α∥平面β,AB 、CD 是两条异面直线,M ,N 分别是AB ,CD 的中点,且A ,C ∈α,B ,D ∈β,求证:MN ∥平面α.参考答案A一、选择题1.D【提示】当l =⋂βα时,α有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条.3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】假设直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α不存在与m 平行的直线.5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D【提示】此题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8.①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP.9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE.三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:〔1〕 M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1〔2〕〔法1〕连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1〔法2〕作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1 〔3〕因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,假设a ∥b ,则不能断定α∥β;B 错,假设A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,假设a∥b,则不能断定α∥β;D 正确.2.C【提示】假设直线a ,b 满足a ∥b ,b α,则a ∥α或a α3.D【提示】根据面面平行的性质定理可推证之.4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l .5.A【提示】6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在.二、填空题7.①④⑤⑥8.68或368 【提示】如图〔1〕,由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SC SC 34-,∴SC =68. 如图〔2〕,由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368. 9.M ∈HF【提示】易证平面NHF ∥平面BD D 1B 1,M 为两平面的公共点,应在交线HF 上.三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面.11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MBAM =MB MB AB -=MB MB DC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC . 证法二:过N 作NQ ∥AD 交PA 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .C1.〔1〕证明:设直线AN 与BE 交与点H ,连接CH ,ANF ∆ ∽HNB ∆,∴NHAN NB FN =. 又NB FN MC AM =,则NH AN =MCAM ,∴MN//CH. 又CBE CBE MN 平面,平面⊂⊄CH ,∴MN//平面CBE.(2)解:存在,过M 作MG ⊥AB,垂足为G ,则MG//BC, ∴MG//平面CBE,又MN//平面CBE ,M MN MG =⋂,平面MGN//平面CBE.即G 在AB 线上,且AG:GB=AM:MC=2:32.证明:连接BC ,AD ,取BC 的中点E ,连接ME 、NE ,则ME 是△BAC 的中位线,故ME ∥AC.ME ⊄α,∴ME ∥α.同理可证,NE ∥BD.又α∥β,设CB 与DC 确定的平面BCD 与平面α交于直线CF ,则CF ∥BD ,∴NE ∥CF. 而NE ⊄平面α,CF ⊂α,∴NE ∥α.O F A B CD P E又ME∩NE=E,∴平面MNE∥α,而MN⊂平面MNE,∴MN∥平面α.。

(完整)七年级数学平行线的性质与判定的证明练习题及答案

(完整)七年级数学平行线的性质与判定的证明练习题及答案

平行线的性质与判定的证明温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解.(标注∠MND=∠AMN,∠DNP=∠EPN)答案:(标注∠MND=∠AMN=60°,∠DNP=∠EPN=80°)解:(1)∵AB∥CD∥EF,∴∠MND=∠AMN=60°,∠DNP=∠EPN=80°,∴∠MNP=∠MND+∠DNP=60°+80°=140°,又NQ平分∠MNP,∴∠MNQ=12∠MNP=12×140°=70°,∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN)由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,∴∠MNQ=12∠MNP=12(∠AMN+∠EPN),∴∠DNQ=∠MNQ-∠MND=12(∠AMN+∠EPN)-∠AMN=12(∠EPN-∠AMN),即2∠DNQ=∠EPN-∠AMN.小结:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)证明:因为∠AGD=∠ACB,所以DG∥BC,所以∠1=∠DCB,又因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠2=∠DCB,所以∠1=∠2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:动画过点B作BD∥AE,答案:解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°,∴∠2=30°,∴∠C=180°-30°=150°.小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°.答案:B.2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.解析:解:∵AB∥EF∥CD,∴∠B=∠BEF,∠DEF=∠D.∵∠B+∠BED+∠D=192°,即∠B+∠BEF+∠DEF+∠D=192°,∴2(∠B+∠D)=192°,即∠B+∠D=96°.∵∠B-∠D=24°,∴∠B=60°,即∠BEF=60°. ∵EG平分∠BEF,∴∠GEF=12∠BEF=30°.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.解析:标注AB∥EF,BC∥ED答案:证明:∵AB∥EF,∴∠E=∠AGD.∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.解析:标注AB∥CD,∠1=∠2答案:方法一:(标注CF∥BE)解:需添加的条件为CF∥BE ,理由:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠EBC,∴∠1=∠2;方法二:(标注CF ,BE ,∠1=∠2=∠DCF=∠ABE )解:添加的条件为CF ,BE 分别为∠BCD ,∠CBA 的平分线.理由:∵AB ∥CD ,∴∠DCB=∠ABC.∵CF ,BE 分别为∠BCD ,∠CBA 的平分线,∴∠1=∠2.小结:解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.例6 如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)

平行线的性质与判定综合训练(含答案)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。

(完整版)平行线的判定定理和性质定理练习题

(完整版)平行线的判定定理和性质定理练习题

(完整版)平行线的判定定理和性质定理练习题平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ .6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.ACB41 23 5图4ab c d 123 图3A B C ED 1 2 3 图1 图243 2 1 5ab1 2 3A F C DB E图8EBAF D C图9ADCBO图5图65 1 243 l 1 l 2图754 32 1 A DC B12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题平行线的判定和性质经典题一、选择题(共18小题)1.同位角共有()。

A。

6对B。

8对C。

1对D。

12对2.将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定3.下列说法中正确的个数为()。

①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A。

1个B。

2个C。

3个D。

4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()。

A。

150°和110°B。

140°和100°C。

110°和70°D。

7°和30°6.XXX所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠XXX等于()。

A。

4°B。

5°C。

6°D。

不能确定7.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()。

A。

1°B。

2°C。

3°D。

15°8.下列所示的四个图形中,∠1和∠2是同位角的是()。

①②③④A。

②③B。

①②C。

①④D。

②④9.已知∠AOB=40°,∠XXX的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()。

A。

5°B。

130°C。

5°或130°D。

100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()。

平行线及其判定与性质练习题

平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.证明∵∠ABC=∠ADC,∴.2121ADCABC∠=∠( )又∵BF、DE分别平分∠ABC与∠ADC,∴.212,211ADCABC∠=∠∠=∠( )∵∠______=∠______.( )∵∠1=∠3,( )∴∠2=______.( )∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.图612、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。

平行线判定与性质习题经典

平行线判定与性质习题经典

∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行

(完整版)直线与平面平行的判定和性质经典练习及详细答案

(完整版)直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ 。

①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点。

2. 下列条件中,不能判断两个平面平行的是 (填序号)。

①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b 。

其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件。

A.充分而不必要 B.必要而不充分 C 。

充要 D 。

不充分也不必要6. 能保证直线a 与平面α平行的条件是 A 。

b a b a //,,αα⊂⊄ B 。

b a b //,α⊂ C.c a b a c b //////,,,αα⊂D 。

b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A 。

(完整版)平行线的性质与判定经典题型汇总

(完整版)平行线的性质与判定经典题型汇总

1.如图,在△ ABC中,∠ B=ACB,CD 均分∠ ACB 交 AB于 D 点,AE∥ DC,交 BC的延伸线于点 E,已知∠ E=36°,则∠ B 多少度.A 4.如下图,把一个长方形纸片沿 EF 折叠后,点D, C分别落在 D′, C′的地点,若∠ EFB=65°,则∠ AED′等于DB C E2. 如图,AB∥CD∥ PN,∠ ABC=°,∠ CPN= 5. 如图,∠ 1=∠ 2,∠ C=∠D,那么∠ A=∠F,为50150°.求∠ BCP的度数.什么?3. 如下图,已知直线 AB,CD被直线 EF 所截, 6. 如图,已知∠ 1+∠2=180°,∠ 3=∠ B,试判断假如∠ BMN=∠DNF,∠ 1=∠ 2,∠AED与∠ ACB的大小关系,并说明原因.那么 MQ∥NP.为何?7.已知 ∥ ,分别商讨以下四个图形中∠APC 10. 如图, AD ⊥ BC 于点 D ,EF ⊥BC 于点 F , EF 交AB CD E ,且∠ ∠ .AD 和∠、∠ 的关系.(只需求直接写出),AB 于点 G ,交 CA 的延伸线于点PAB PCD均分∠ BAC 吗?谈谈你的原因. 1= 2 并请你从所得关系中随意选出一个说明原因。

E2 A1GB F D C8. 如图 , 已知:∠ 1=∠ 2,∠ 3=∠4,∠ 5=∠6. 11. 如图,若 AB ∥ CD ,∠ ∠ ,求∠ E 和∠ F ,1= 2求证 : AD ∥BC.的关系?E D CA1B46EFFC 2 D2 53 1A B9.如图,已知 CD ⊥AB 于 D ,EF ⊥ AB 于 F , 12. 如图, DB ∥ FG ∥EC ,∠ ABD = °,∠ ACE =60 ∠ DGC=105°,∠ BCG=75°,求∠ 1+∠2 的度数. 36°, AP 均分∠ BAC .求∠ PAG 的度数.C G1 E2AD FB13.如图, AB ∥ CD ,∠ = °,∠ = °, 16. 如图, ,∠ ∠ , AD 均分∠ ,1 1152 140 AB//CD E= C BAE DA 求∠3 的度数. 均分∠ CDF ,求证: AE ∥DF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

(______,______)4、作图:已知:三角形ABC及BC边的中点D,过D点作DF ∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC . 证明∵∠ABC =∠ADC , ∴.2121ADC ABC ∠=∠( )又∵BF 、DE 分别平分∠ABC 与∠ADC,∴.212,211ADC ABC ∠=∠∠=∠( )∵∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=______.( ) ∴______∥______。

( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______,(_________,_________)①∵∠3+∠4=180°∴c∥______,(_________,_________)②由①、②,因为a∥______,c∥______,∴a______c。

(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是( )(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC 为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___对平行线。

13、下列说法正确的是 ( )(A)有且只有一条直线与已知直线垂直(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是( )A.a∥b B.b⊥d C.a⊥d D.b∥c平行线的性质1.基础知识(1)平行线具有如下性质①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.②性质2:两条平行线______,______相等.这个性质可简述为____________,______.③性质3:____________,同旁内角______.这个性质可简述为____________,______.2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是________。

(2)如果AB∥DC,那么∠3=___,理由是______________。

(3)如果AF∥BE,那么∠1+∠2=____,理由是________.(4)如果AF∥BE,∠4=120°,那么∠5=____,理由是____.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______。

(_______________)(2)∵DE∥AB,( )∴∠3=______.(________________)(3)∵DE∥AB( ),∴∠1+______=180°.(____________)(完整版)平行线及其判定与性质练习题4.已知:如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______//_____。

解:∵∠1=∠2,( )∴______//______。

(______________)∴∠4=_____=_____°。

(_____________)(完整版)平行线及其判定与性质练习题5.已知:如图,∠1+∠2=180°,求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证____//____。

证明:∵∠1+∠2=180°,( )∴______//______.(___________)∴∠3=∠4.(_______,________)6.已知:如图,∠A=∠C,求证:∠B=∠D.证明思路分析:欲证∠B=∠D,只要证_____//_____.证明:∵∠A=∠C,( )(完整版)平行线及其判定与性质练习题∴______//______.(______,______)∴∠B=∠D.(_______,______)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,( )∴∠2=______。

(_________,_________)但∠1=∠B,( )(完整版)平行线及其判定与性质练习题∴______=______。

(等量代换)即CD是____ ___。

8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=______°(_______,______)而∠1=75°,∴∠ACD=∠1+∠2=______.∵CD∥AB,()∴∠A+______=180°.(_________,_________)(完整版)平行线及其判定与性质练习题∴∠A=______=______。

9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D 的度数.分析:可利用∠DCE作为中间量过渡.(完整版)平行线及其判定与性质练习题解:∵AB∥CD,∠B=50°,( )∴∠DCE=∠______=______°(_________,______)又∵AD∥BC,( )∴∠D=∠______=______°(_________,______)想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______。

(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.(完整版)平行线及其判定与性质练习题10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,( )∴∠BAC+∠______=180°( )∵PM∥AB,∴∠1=∠______,( )且PM ∥______。

(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )______214______,211∠=∠∠=∠∴( )90212141=∠+∠=∠+∠∴ACD BAC ( )∴∠APC =∠2+∠3=∠1+∠4=90°( ) 总结:两直线平行时,同旁内角的角平分线______。

相关文档
最新文档