人教版五年级长方体和正方体的认识和表面积知识点
五年级下册长方体和正方体知识点
五年级下册长方体和正方体知识点一、长方体和正方体的认识。
1. 长方体的特征。
- 面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)。
相对的面完全相同。
- 棱:长方体有12条棱,相对的棱长度相等。
可以分为三组,每组有4条棱。
- 顶点:长方体有8个顶点。
2. 正方体的特征。
- 面:正方体有6个面,每个面都是正方形,并且6个面完全相同。
- 棱:正方体有12条棱,12条棱的长度都相等。
- 顶点:正方体有8个顶点。
3. 长方体和正方体的关系。
- 正方体是特殊的长方体。
当长方体的长、宽、高相等时,这个长方体就是正方体。
二、长方体和正方体的表面积。
1. 表面积的概念。
- 长方体或正方体6个面的总面积,叫做它的表面积。
2. 长方体表面积公式。
- 长方体表面积=(长×宽 + 长×高+宽×高)×2,用字母表示为S = 2(ab+ah + bh),其中a表示长,b表示宽,h表示高。
3. 正方体表面积公式。
- 正方体表面积 = 棱长×棱长×6,用字母表示为S = 6a^2,其中a表示棱长。
三、长方体和正方体的体积。
1. 体积的概念。
- 物体所占空间的大小叫做物体的体积。
2. 体积单位。
- 常用的体积单位有立方厘米(cm^3)、立方分米(dm^3)和立方米(m^3)。
- 棱长是1厘米的正方体,体积是1立方厘米;棱长是1分米的正方体,体积是1立方分米;棱长是1米的正方体,体积是1立方米。
- 1立方米 = 1000立方分米,1立方分米=1000立方厘米。
3. 长方体体积公式。
- 长方体体积=长×宽×高,用字母表示为V = abh。
4. 正方体体积公式。
- 正方体体积 = 棱长×棱长×棱长,用字母表示为V=a^3。
5. 体积单位的换算。
- 高级单位换算成低级单位乘进率,低级单位换算成高级单位除以进率。
例如:3.5m^3=3.5×1000 = 3500dm^3,2500cm^3=2500÷1000 = 2.5dm^3。
(完整版)长方体和正方体知识点汇总(最新整理)
第二讲 长方体和正方体一、长方体和正方体的认识【知识点1】棱面顶点要素立体图形数量特征数量特征数量特征长方体12互相平行的棱长度相等6相对的面完全相同8特殊长方体12垂直于正方形面的棱长度相等6两个面是正方形,其余四个面是完全相同的长方形8正方体12所有的棱长度都相等6所有面都是正方形且完全相同8同一个顶点引出的三条棱分别叫做长、宽、高一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( ) 14、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 15、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
人教版五年级下册数学长方体和正方体复习
宽 b
高 h
2.正方体表面积的含义
1 正方体棱长与每个面边长的关系
后
上
前
下
左
右
正方体展开图的每个面都是正方形,边长就是正方体的棱长,每个面的面积都等于棱长乘棱长。
正方体的表面积=棱长×棱长×6
S= a a ×6
棱长
a
S=6a2
2 正方体的11种展开图。
图(1)
图(2)
图(3)
图(4)
m³ dm³ cm³
m³ dm³=L cm³= ml
1m²=100dm² 1dm²=100cm²
1m³=1000dm³ 1dm³=1000cm³
1L=1000ml 1dm³=1L 1cm³=1ml
同体积 从里面量
长方体或正方体12条棱长的总和
棱长总和= 4 a+b+c 棱长总和=12a
3050
0.06
0.45
800
7.6
560
基础练习3 换单位
9020立方分米= 立方米 7.02立方分米= 立方分米 立方厘米 86立方厘米= 立方分米= 升 8.25升= 升 毫升 5平方分米20平方厘米= 平方分米 10立方米500立方分米= 立方米 = 立方分米 2002平方分米= 平方米 平方分米
一个棱长为2cm的正方体,在它的一个角上挖掉一个棱长为1cm的小正方体,它的表面积是 cm²。
7
24
4. 1 填一填。
6
48
384
22
88
352
2 观察上表,长方体的长、宽、高都变为原来的2倍, 它的表面积和体积都发生了什么变化
你发现了 什么规律
长方体的长、宽、高是原来的2倍,表面积是原来的4倍,体积是原来的8倍。
人教版五年级下册数学正方体与长方体的展开图与正方体与长方体的表面积课件
A、2
B、4 C、5
4、“顺”的对面是( )
祝 你考试顺
利
长方体和正方体
长方体的表面积计算
学习目标:
1、理解长方体与正方体表面积的含义。 2、掌握长方体表面积的计算方法。
课本第24页。
二、探索新知
1、表面积的含义。 展开
展开
上
后
左下
右
前 上 后
左下右 前
长方体或正方体6个面的总面积,叫做它的表面积。 日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
④“33”型
五、今天的作业
1、下面各图中,()不是正方体的平面展开图。
A、
B、
C、
2、下面图形中,( )不能折成正方体。
A、
B、
C、
练习: 1、记住长方体与正方体的特征。 2、记住正方体的展开图。 3、阳光同学写到20页。 4、预习课本24页。
3、如图是一个正方体的展开图,与6相对的面是( )。
56 123 4
一、复习导入
认识长方体
面
顶点:棱和棱的交点
lénɡ
棱:面与面相交的线段
长方体的特征: 1、面:长方体有6个面,这6个面一般是长方形,特殊情况有两个相对的面是 正方形;相对的面完全相同。 2、棱:长方体有12条棱,相对的棱长度相等。 3、顶点:长方体有8个顶点。 4、一个长方体有4条长、4条宽、4条高,同一个长方体中所有的 长相等,所有的宽、高也分别相等。 5、长方体12条棱的长度之和,叫做长方体的棱长总和。 棱长总和=(长+宽+高) ×4 棱长总和=长×4+宽×4+高 ×4
课本第24页。
一、知识回顾
h 高 宽b 长a
最新人教五年级下册三单元长方体和正方体
重点题型
运用转化法解决复合体积单位的换算问题
例1:填空
2m³300dm³=( )dm³ 8.25dm³=( )dm³( )cm³
运用图示法解决立体图形的拼割问题
例2:一个长方体木块,长1.2dm,宽9cm,高7cm。将它锯成棱长为0.3dm的正方体小木块,最多可以锯成多少块?
巩固练习
将棱长是6dm的正方体铁块浸没到一个长方体水槽中,水面上升了3dm.再放入一个不规则石块(石块完全浸没在水中),水面又上升了2dm(水没有溢出),求不规则石块的体积。
知识点三:长方体的长、宽、高
知识点:相交于一个顶点的三条棱的长度分别叫作长方体的长、宽、高。长方体的12条棱中有4条长、4条宽和4条高。长方体的棱长总和=(长+宽+高)×4
(注意:对于同一个长方体,摆放方式不同,长、宽、高也就不同)
知识点四:正方体的特征
知识点:正方体是由6个完全相同的正方形围成的立体图形。一个正方体由6个面、8个顶点、12条棱,所有的棱长度相等。正方体的棱长总和=棱长×12
重点题型
运用转化法解决水面升高问题
例1:有一个长方体容器,从里面量长5dm,宽4dm,高6dm,里面注有水,水深3dm,把一块棱长为2dm的正方体铁块浸入水中,水面上升了多少分米?
求不规则物体体积的实际运用
例2:一个长方体鱼缸,从里面量,长是25cm,宽是12cm,高是36cm.小雨放入10条金鱼后,水面高度从20cm上升到33cm.这10条鱼的总体积是多少立方厘米?
练习巩固
某小学五年级学生用棱长4cm的正方体积木在宣传栏旁边搭起了一面积木墙,这面墙长8m、宽12cm、高2m,这面墙一共用了多少块积木?
3.3.3容积和容积单位
人教版五年级下册数学第三单元知识点易错点汇总(配练习完整版)[1]1
人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 【知识点1】要素 立体图形棱面 顶点数量 特征 数量 特征数量 特征长方体12互相平行的棱长度相等 6相对的面完全相同 8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 12 垂直于正方形面的棱长度相等 6 两个面是正方形,其余四个面是完全相同的长方形 8正方体 12 所有的棱长度都相等6 所有面都是正方形且完全相同8一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形! 练习:(1)判断并改正:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。
( ) 一个长方体中,可能有4个面是正方形。
( ) 正方体是特殊的长方体。
( )长方体的三条棱分别叫做长、宽、高。
( )有两个面是正方形的长方体一定是正方体。
( ) 有三个面是正方形的长方体一定是正方体。
( ) 正方体的相邻三条棱的交点叫做顶点。
( )有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( ) 长方体和正方体最多可以看到3个面。
( )长方体的12条棱中,长、宽、高各有4条。
( )正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( ) 长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( ) 一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( ) (2)一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
(3)一个长方体的底面是一个正方形,则它的4个侧面是( )形。
(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
(5)把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
第1讲:长方体和正方体的认识、展开图、表面积解读
1.长方体的认识
两个面相交的线叫做棱, 三条棱相交的点叫做顶点。
观察上图,数一数会发现:长方体有6个 面、12条棱和8个顶点
长方体的特征
(1)面的特征 长方体的6个面是长方形(也可能是2个相对的 面是正方形),相对的面完全相同。 (2)棱的特征 长方体的12条棱可以分为3组:水平横向一组4 条;水平纵向一组4条;竖直方向一组4条。
正方体的棱长总和=棱长×12
ห้องสมุดไป่ตู้
3、长方体、正方体的展开图
在展开图中,正方体的6个面完全相同(长方体 的相对的面完全相同),相对的面完全隔开。
常见的正方形展开图
(1).141型
(2).231型 (3).222型
4.长方体、正方体的表面积
长方体的表面积=(长×宽+长×高+宽×高) ×2
正方体的表面积=棱长×棱长 ×6
同一组4条棱的长度相等;有2个正方形的面的 长方体有8条棱相等。
长方体的长、宽、高
长方体相交于同一顶点的三条棱的长度, 分别叫做它的长、宽、高。
长方体的棱长总和=(长+宽+高)×4
2.正方体(立方体)的认识
6个面是完全相同的正方形
12条棱,长度都相等
8个顶点
正方体的长、宽、高都相等,都叫做正方体的棱 长
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
五年级数学长方体与正方体知识点总结
五年级数学长方体与正方体知识点总结名师总结优秀知识点第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做。
两个面相交的边叫做。
三条棱相交的点叫做。
相交于一个顶点的三条棱的长度分别叫做长方体的。
长方体特点:(1)有个面,个顶点,条棱,相对的面的面积,相对的棱的长度。
(2)一个长方体最多有6个面是,最少有4个面是,最多有2个面是。
2、由6个完全相同的正方形围成的立体图形叫做(也叫做)。
正方体特点:(1)正方体有条棱,它们的长度都。
(2)正方体有个面,每个面都是正方形,每个面的面积都。
(3)正方体可以说是。
都相等的长方体,它是一种特殊的。
长方体正方体相同点面不同点棱都有个6个面都是。
(有可能有相对的棱的长度都面,条两个相对的面是)。
棱,个6个面都是。
12条棱都。
顶点。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和==L=长=。
a=宽=。
b=高=。
h=正方体的棱长总和=L=正方体的棱长=。
a=4、长方体或正方体6个面和总面积叫做它的。
长方体的外表积=。
S=无底(或无盖)长方体外表积=S=。
S=无底又无盖长方体外表积=S=贴墙纸正方体的外表积=。
S=用字母透露表现:S=糊口实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
名师总结优秀知识点注意1:用刀分开物体时,每分一次增加面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的倍)。
5、物体所占空间的大小叫做物体的。
长方体的体积=。
V=长=a=宽=b=高=h=正方体的体积=V=a×a×a=a3读作“”表示,(即a·a·a)长方体或正方体底面的面积叫做。
长方体(或正方体)的体积=用字母表示:V=(横截面积相当于底面积,长相当于高)。
留意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
五年级数学第三单元长方体、正方体的认识、展开图及表面积的意义
1. 填空。 (1)长方体有( 6 )个面,都是(长方)形,也可能有
( 两 )个相对的面是正方形,长方体相对的面的面 积( 相等 )。 (2)长方体有( 12 )条棱,相对的棱长度( 相等 )。长 方体的棱可以分成( 3 )组,每组有( 4 )条。
(3)在有相对两个面是正方形的长方体中,另外4个面 的形状( 相同 ),大小( 相等 )。
(2)(易错题)至少用( B )个小正方体可以搭成一个较大
的正方体。
A.4
B.8
C.12
D.3
(3)一根长288厘米的铁丝刚好围成一个正方体,则这个
正方体的棱长是( B )厘米。
A.19
B.24
C.38
D.37
长方体和正方体的关系 长方体和正方体有哪些相 同点?有哪些不同点?
以小组为单位,把你们的发现填到表格中。
2. 长方体有( 12 )条棱,相对的棱(长度相等)。
3. 长方体有( 8 )个顶点。
正方体的特征
拿一个正方体的物品来观察,想一想它有什么特点。
(1)正方体的6个面_都__是__正__方__形___。
(2)正方体的12条棱_长__度__相__等____。
棱
通过观察可以知道: 正方体是由6
棱棱
个完全相同的正方形围成的立体图形。
形 相同点 体点棱面
面的形状
不同点 面积
棱长
关系
长 方 形
6 个
12 条
8 个
6个面一般都是长 方形(也可能有 两个相对的面是
正方形)
相对的面 的面积相
等
正 方 形
6 个
12 条
8 个
6个面一般都是相 等的正方形
六个面的 面积都相
人教版五年级长方体和正方体的认识和表面积知识点
人教版五年级长方体和正方体的认识和表面积知识点一、长方体和正方体的认识1、正方体的展开1):1-4-1型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形2):1-3-2型,中间3个作侧面,共3个基本图形3):2-2-2型,两行只能有1个正方形相连4):3-3型,两行只能有一个正方形相连一共11种二、长方体和正方体表面积1、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
巩固练习(一)、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
长方体与正方体(人教版五年级数学下册思维导图)
三、长方体与正方体(二)长方体与正方体的表面积(三)长方体与正方体的体积(一)长方体与正方体的认识长方体体积和体积单位正方体(立方体)正方体是长、宽、高都相等的长方体体积单位间的进率容积和容积单位通过观察和讨论可知:长方体一般是由6个长方形围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等棱长是1cm (dm 、m )的正方体,体积是1cm³(dm³、m³)1L=1000mL, 1L=1dm³, 1mL=1cm³长方体或正方体6个面的总面积,叫做它的表面积(例题注意没有底面或没有盖的物体的表面积计算)容积单位1m³=1000dm³,1dm³=1000cm³正方体:是由6个完全相同的正方形围成的立体图形,所有的棱长度相等相交于一个顶点的三条棱的长度分别叫长、宽、高棱面面和面相交的线段顶点棱和棱的交点长方体体积体积单位正方体体积体积物体所占空间的大小叫做物体的体积计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,分别可以写作cm³、dm³、m³V=abh (a 、b 、h 代表长、宽、高) 也可以表示为V=Sh (S 为长方体底面积)V=aaa=a³,a³读作a 的立方,也可以写成 V=Sh (S 为正方体底面积)6个面(都是长方形,也有可能顶对面是正方形),12条棱,8个顶点6个面(都是正方形),12条棱,8个顶点长方体表面积:(长x 宽+长x 高+宽x 高)x2——S=2(ab+ah+bh )正方体表面积:棱长x 棱长x6——S=a²长度——米、分米、厘米——相邻两个单位间的进率为10面积——平方米、平方分米、平方厘米——相邻两个单位间的进率为100体积——立方米、立方分米、立方厘米——相邻两个单位间的进率为1000容积箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积计量单位,一般就用体积单位。
五年级数学下《长方体和正方体》知识点总结归纳
五年级数学下《长方体和正方体》知识点总结归纳
一、长方体的认识
1.长方体的面:长方体有6个面,相对的两个面是完全相同的平行四边形,相对
的棱长度相等。
2.长方体的棱:长方体有12条棱,相对的4条棱长度相等。
3.长方体的顶点:长方体有8个顶点,每个顶点连接三条棱。
二、长方体的表面积
1.长方体的表面积公式:S = 2(ab + bc + ac),其中a、b、c分别表示长方体的
长、宽、高。
2.长方体的侧面积公式:S侧= 2(lwh),其中l表示长方体的长度,w表示长方
体的宽度,h表示长方体的高度。
三、正方体的认识
1.正方体的面:正方体有6个面,每个面都是正方形,所有面都相等。
2.正方体的棱:正方体有12条棱,每条棱长度相等。
3.正方体的顶点:正方体有8个顶点,每个顶点连接三条棱。
四、正方体的表面积
1.正方体的表面积公式:S = 6a^2,其中a表示正方体的边长。
2.正方体的侧面积公式:S侧= 4a^2,其中a表示正方体的边长。
五、长方体和正方体的体积
1.长方体的体积公式:V = lwh,其中l表示长方体的长度,w表示长方体的宽
度,h表示长方体的高度。
2.正方体的体积公式:V = a^3,其中a表示正方体的边长。
(完整版)长方体和正方体知识和典型问题汇总
长方体和正方体知识和典型问题汇总一、长方体和正方体的认识知识点1:个、4个、5个面是正方形!练习:一、判断并改正:1、长方体的六个面一定是长方形;( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )10、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )11、长方体和正方体最多可以看到3个面。
( )12、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( )13、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )14、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )二、填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×棱长=棱长和÷12棱长和的变形:例:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
人教版五年级下册数学第三单元知识点易错点汇总(配练习)
人教版五年级下册数学第三单元知识点、易错点汇总(1)一、长方体和正方体的认识【知识点1】要素立体图形棱面顶点数量特征数量特征数量特征长方体互相平行的棱长度相对的面同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体垂直于正方形面的棱长度个面是正方形,其余四个面是完全相同的正方体所有的棱长度都所有面都是正方形且完全相同一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!把长方体放在桌面上,最多可以看到()个面。
最少可以看到()个面。
【知识点2】棱长和(1)有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
(2)一个长方体的礼堂如图,过节时需要在四周装上成串的彩灯,每串彩灯长2m,一共需要多少串彩灯?【知识点3】小正方体拼大正方体的规律由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……练习:(1)两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是()平方厘米。
(2)用棱长为1厘米的小正方体拼一个棱长为6厘米的大正方体需要()个小正方体。
(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要()个小正方体。
A、4个B、8个C、16个D、27个(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。
五年级寒假班第3次课:长方体与正方体表面积
长方体与正方体的要素与表面积【知识点1】长方体和正方体的认识素立体图形注:一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形! 【例题1】 一、判断并改正:1、长方体的六个面一定是长方形。
( )2、正方体的六个面面积一定相等。
( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )5、有三个面是正方形的长方体一定是正方体。
( )经典例题6、长方体和正方体最多可以看到3个面。
( )7、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( ) 8、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( ) 【巩固】1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4正方体棱长和=棱长×棱长=棱长和÷12 棱长和的变形:【例题2】有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?【巩固练习】(1)看图2-6,并填空 ( 单位:厘米)这个长方体长( )厘米,宽( )厘米,高( )厘米。
由一个顶点引出的三条棱的长度和是( )厘米。
棱长总和是( )厘米。
上下两个面是( )形。
(2)一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是( )厘米.(3)有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要再用铝合金包裹玻璃连接处,需要( )米的铝合金。
(4)把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是( )厘米。
人教版五年级下册数学第三单元知识点汇总
人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 【知识点1】要素 立体图形面棱 顶点 数量特征数量 特征 数量 特征长方体 6每个面都是长方形相对的面完全相同 12相对的棱的长度相等8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 6两个相对的面是正方形,其余四个面是完全相同的长方形 12 有4条棱长度相等,而另外8条棱长度相等 8正方体 6 每个面都是正方形且完全相同12 12条棱长度相等8一个长方体如果有两个面是正方形,那么其它4个面是面积相等的长方形,但不会存在3个、4个、5个面是正方形。
练习:填空:一个长方体有4个面完全相同,其它2个面一定是( )。
一个长方体最多有( )面是正方体。
一个长方体最多有( )个面完全相同,最多有( )条棱长度相同。
判断:有6个面,12条棱,8个顶点的物体是长方体。
( ) 长方体6个面一定是长方形。
( )正方体具有长方体所有的特征,所以正方体可以看成是特殊的长方体。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前面和后面的彩带长度=高的长度;左面和右面的彩带长度=高的长度;上面和下面的彩带长度=长的长度+宽的长度。
需要彩带的长度=高×4+长×2+宽的长度×2+打结部分长度 20×4+30×2+20×2+10=190cm 【知识点3】确定长方体中每个面的形状以及长、宽、高分别是多少。
(完整版)五年级下册数学长方体与正方体的表面积讲义
长方体和正方体的表面积学生/课程年级学科授课教师日期时段核心内容长方体和正方体的认识及表面积课型一对一/一对N教学目标1、通过动手操作,建立表面积的概念2、经历探索长方体和正方体表面积计算方法的过程3、掌握长方体和正方体表面积计算方法,能正确地计算长方体和正方体的表面积4、了解长方体和正方体表面积计算在实际生活中的应用,体会数学的价值5、结合长方体和正方体表面积计算培养学生的探索精神、空间观念和解决问题的能力重、难点重点:教学目标3、4 难点:教学目标4知识导图知识梳理长方体、正方体的认识:1、长方体的特征:长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,相对的面完全相同;有12条棱,相对(平行)的4条棱长度相等;有8个顶点。
相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。
2、正方体的特征:正方体的6个面是完全相同的正方形,12条棱的长度相等,有8个顶点。
3、正方体可以说是长、宽、高都相等的特殊的长方体。
4、长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12长方体和正方体的展开图长方体或正方体6个面的总面积,叫做它的表面积长方体的表面积=长×宽×2﹢长×高×2﹢宽×高×2字母表示或=(长×宽+长×高+高×宽)× 2 字母表示正方体的表面积=棱长×棱长×6字母表示导学一面积单位换算知识点讲解 1常用面积单位间的换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米例 1. 填空题(1)8平方米=()平方分米(2)560平方分米=()平方米(3)3平方分米8平方厘米=()平方厘米(4)5平方分米20平方厘米=()平方分米(5)4.7平方分米=()平方厘米(6)5.6平方米=()平方米()平方分米【学有所获】通过例题让学生进一步深入理解面积单位的进率及换算,理清题意后认真计算出准确的答案。
人教版小学数学五年级下册--长方体和正方体的认识
分析1: 12条棱去掉底面的4条,求剩余 8条棱的总和。
方法一: 去掉的4条棱是2条长、2条宽。
方法二: 上面的4条棱(一个长方形 的周长)+ 4条高
长×2+宽×2+高×4 90 × 2 + 55 × 2 + 22 × 4
= 180 + 110 + 88 = 378(米)
(长 + 宽 )× 2 + 高 × 4 ( 90 + 55 )× 2 + 22 × 4 = 145 × 2 + 88 = 378(米)
(1)长方体有 6 个面。
(2)每个面是什么形状的? 每个面是长方形
(特殊情况有两个相对的面是正方形)。
(4)长方体有 12条棱。 (5)哪些棱长度相等?
相对的棱长度相等。
(3)哪些面是完全相同的? 相对的面完全相同。
(6)长方体有 8个顶点。
探索图形
长方体
形
面
棱
顶点
体
个数 形状 大小关系 条数 长度关系 个数
答:焊接的边的总长度至少是340厘米。 只有上面四条边不用焊接。
课后作业
正方体的六个面分别写着A、C、D、E、F、I,与A、E、I相对的 面是哪个面?
I
A E 把正方体转一下
再转一下 FA
CF
再见
拓展提升
工人叔叔用5块铁皮焊接成一个无盖的长方体盒子,需要焊接的边
的总长度至少是多少厘米?
只有一块,作为底面
无盖:只有下面没有上面
一块
两块
两块
60 cm
60 cm
30 cm
30 cm
40 cm
40 cm
40 cm 30 cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版五年级长方体和正方体的认识和表面积知识点
一、长方体和正方体的认识
1、正方体的展开
1):1-4-1型,中间一行4个作侧面,上下两个各作为上下底面,共有六种基本图形
2):1-3-2型,中间3个作侧面,共3个基本图形
3):2-2-2型,两行只能有1个正方形相连
4):3-3型,两行只能有一个正方形相连
一共11种
二、长方体和正方体表面积
1、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×6
2、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;
(3)具有四个面的长方体、正方体物品:水管、烟囱等。
巩固练习
(一)、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。
6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。
8、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。
9、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是
()。
10、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
(二)、解决问题。
1、一个无盖的长方休鱼缸,长1.2米,宽0.6米,深圳1米,这个鱼缸至少要用玻璃多少平方米?
2、张大爷准备给小猫做一个温暖舒服的新家。
他准备了两根长120厘米的木条,要做成一个尽可能大的正方体框架,然后在其表面
包上一层铝塑板。
请你帮张大爷算一算:至少要用多少铝塑板?(含门的面积)
3、学校饭堂使用的一种长方体形状的铁皮烟囱,烟囱高6米,底部是一个边长80厘米的正方形。
制作3个这样的烟囱至少需要铁皮
多少平方米?
4、一个浴室长3米,宽2米,高2。
5米,在浴室的四壁和地面贴上规格是200mmX100mm的瓷砖,至少需要瓷砖多少块?
5、制造一个长5厘米,宽4厘米,高2。
5厘米的火柴盒外盒,至少需要多少平方厘米的硬纸皮?
6、用36厘米长的铁丝做成一个正方体框架,这个正方体的体积是多少?
7、一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?
8、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)9、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?10、把一个正方体切成两个完全一样的长方体,表面积增加了20平方厘米。
这个正方体的表面积是多少平方厘米?
11、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
12、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
13、在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?
13、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?
14、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的表面积。
15、一个正方体的表面积是384平方厘米,它的棱长是多少?
16、一个长方体的长、宽、高分别是8厘米、5厘米、2厘米,如果高增加3厘米,表面积增加多少平方厘米?
17、两个棱长为4厘米的正方体拼成一个长方体后,表面积比原来两个表面积之和减少多少?
18、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?
19、一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少?
20、一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积?
21、有一根长30分米的长方体钢材,底面是正方形,把它锯成3段后,表面积增加了0.64平方分米,原来钢材的表面积是多少?。