三角形中位线定理的证明

合集下载

三角形中位线定理证明

三角形中位线定理证明

三角形中位线定理证明性质1中位线平行于第三边性质2等于第三边的一半1定理2证明3逆定理1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

[1]三角形的中位线2证明如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立.方法二:相似法:∵D是AB中点∴AD:AB=1:2∵E是AC中点∴AE:AC=1:2又∵∠A=∠A∴△ADE∽△ABC∴AD:AB=AE:AC=DE:BC=1:2∠ADE=∠B,∠AED=∠C∴BC=2DE,BC∥DE方法三:坐标法:设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)则一条边长为:根号(x2-x1)^2+(y2-y1)^2另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2最后化简时将x3,y3消掉正好中位线长为其对应边长的一半方法4:延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEG、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立[2]方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3]∴DE//BC且DE=BC/23逆定理逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DFFCBCFD 是平行四边形,BD,则四边形BC有ADFC,所以。

因为1DE,所以.BC 2,有F,则作FC交DE的延长线于法2C因为,DFBC。

为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DEBC 2,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD,所以FC为平行四边形,为平行四边形,有1BC.DE,所以BCDF 。

因为2法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都CENAEM 1。

DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC2法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?A BEDC图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?AEDBC图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。

2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F,使 ,连结CF,则 ,有ADFC,所以FCBD,则四边形BCFD 就是平行四边形,DFBC 。

因为 ,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F,则,有FCAD,那么FC BD,则四边形BCFD 为平行四边形,DFBC 。

因为,所以DEBC 21.法3:如图所示,延长DE 至F,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有ADCF,所以FCBD,那么四边形BCFD 为平行四边形,DF BC 。

因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 就是MN 的中点,易证四边形ADEM 与BDEN 都为平行四边形,所以DE=AM=NC=BN,DE ∥BC,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的就是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别就是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立不?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线BC上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别就是数量关系,而想到去度量、验证与猜想,水到渠成、如果教师直接叫学生去度量角度与长度,就是强扭的瓜不甜、2、教学重点:本课重点就是掌握与运用三角形中位线定理。

三角形中位线定理的证明

三角形中位线定理的证明

三角形中位线定理的证明
三角形中位线定理是指如果一个三角形内某条边的中点和另外两条边连结,它们就能够构成三个等腰三角形。

证明:假设三角形ABC有两边AB和AC,其外角BAC为
$\theta$(由外角定理可知$\angle BAC=\angle A+\angle B$)。

在三角形ABC内将AB延长到D点,且$\angle ADB=\angle B$,由正弦定理可得 $ \dfrac{AD}{AB}=\dfrac{\sin{\angle
B}}{\sin{\theta}}$。

假设B点到AC边的垂线延长到交E点,且$\angle BAE=\angle A$。

由正弦定理可得 $ \dfrac{AE}{AC}=\dfrac{\sin{\angle
A}}{\sin{\theta}}$
链接B,D,E三点,就形成了等腰三角形BDE,其外角DBE为$\angle A$,根据已知$\angle ADB=\angle B$,可知$\angle
DBE=\angle B$,即无论三角形ABC的外角多大,三角形BDE的外角都相等,它们是等腰三角形,三角形中位线定理得证。

三角形中位线证明6种方法

三角形中位线证明6种方法

三角形中位线证明6种方法三角形是几何学中最基本的图形之一,具有许多特性和性质。

三角形中位线是三角形内部一条特殊的线段,连接三角形两边中点的直线称为三角形中位线。

本文将介绍10条关于三角形中位线的证明方法,并对每一种方法进行详细阐述。

1. 三角形中位线长相等证明:对于任意三角形ABC,连接AC的中点E和BC的中点F,连接BE并延长至D,使得AD与CF相交于点G。

则有:CE=EA (连接AC的中点E)BF=FC (连接BC的中点F)EF=EF (共同边)在三角形BEF和CEF中,有EF、BE、FC互相平行,并按比例划分。

根据平行线定理,有BE/EF=BG/GF和FC/EF=CG/GF。

由此可得:BE/FC=BG/CG2BE/2FC=2BG/2CGAB/AC=BG/CG同理可证出,AC/BC=AH/HB和BC/AB=CI/IA。

即中位线长相等。

2. 三角形中位线堆垛证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。

则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。

由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。

同理可证出BE=CF,因此中位线堆垛。

3. 三角形中位线垂直证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。

则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。

由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。

连接EF并绘制ED⊥EF和FG⊥EF,分别交于点D和G。

则有:ED=GFEB=FC在三角形EBD和FCG中,有ED=FG,∠EDB=∠FGC,∠EBD=∠FCG。

由此可得:三角形EBD与三角形FCG全等(HL)BD=CG。

同理可证出AD=BG和AC=2DE,BC=2FG。

中位线垂直。

4. 三角形中位线和周长的关系证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。

三角形中位线定理的几种证明方法及教学中需要说明的地方【最新】

三角形中位线定理的几种证明方法及教学中需要说明的地方【最新】

三角形中位线定理的证明及其教学说明一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。

因为 ,所以DEBC 21.法2: 如图所示,过C 作 交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。

因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。

因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?AC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC 的顶点A 运动到直线B C 上时,中位线DE 也运动到BC 上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理的证明

三角形中位线定理的证明

∴△ADE ≌ △CFE F ∴AD=FC 、∠A=∠ECF ∴AB∥FC 又AD=DB ∴BD∥ CF且 BD =CF ∴四边形BCFD是平行四边形
A
D
E
B
F
C
1.△ABC中,D、E分别是AB、AC的中点, 5㎝ ① BC=10cm,则DE=___. 60° ②∠A=50°, ∠B=70°,则∠AED=_____.
2. △ABC的周长为18cm,这个三角形的三条中 位线围成的△DEF的周长是多少? 9㎝
A D E C
B
A
D
F
E
C
B
(1题)
(2题)
通过这一节课的学习你有 那些收获?
请动手试一试!
1 求证:DE ∥ BC,且DE= 2 BC 。
A
D
已知:如图,DE是△ABC 的中位线
证明:如 图,延 长DE 到 F,使 EF=DE ,连 结CF. ∵DE=EF ∠1=∠2 AE=EC
1 E 2
C
B
∴DF∥BC,DF=BC 即DE∥BC 又∵DE=1/2EF ∴DE=1/2BC
A
D
B
E C
学习目标
1、学会三角形的中位线定理的证明; 2、会运用三角形中位线定理解决相 关问题。
三角形的中位线定理:
三角形的中位线平行于第三边,并且 等于第三边的一半。 如图: 在△ABC中 A
∵ DE是△ABC的中位线 ∴ DE∥BC
1 DE = BC 数量关系 2
B
位置关系
DECFra bibliotek怎样将一张三角形硬纸片剪成两部 分,使分成的两部分能拼成一个平行四 边形?

证明三角形中位线判定定理

证明三角形中位线判定定理

证明三角形中位线判定定理连接三角形两边中点的线段叫做三角形的中位线,三条中位线形成的三角形的面积是原三角形的四分之一。

下面小编给大家带来证明三角形中位线判定方法,希望能帮助到大家!证明三角形中位线判定定理证明:已知△ABC中,D,E分别是AB,AC两边中点。

求证DE 平行于BC且等于BC/2过C作AB的平行线交DE的延长线于G点。

∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

证明三角形中位线判定定义在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

2DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

证明:∵DE∥BC∴△ADE∽△ABC∴AD:AB=AE:AC=DE:BC=1:2∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。

在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

2D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2证明:取AC中点E',连接DE',则有AD=BD,AE'=CE'∴DE'是三角形ABC的中位线∴DE'∥BC又∵DE∥BC∴DE和DE'重合(过直线外一点,有且只有一条直线与已知直线平行)∴E是中点,DE=BC/2注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线!证明三角形中位线判定性质延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEG、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立:向量DE=DA+AE=(BA+AC)/2=BC/2∴DE//BC且DE=BC/2三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。

因为 ,所以DEBC 21.法2C 作交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。

因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。

因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。

因为,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。

因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD,那么四边形BCFD 为平行四边形,DFBC 。

因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。

法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?ABC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?A 运动到直线BC 上时,中位线DE ",学生就不难.2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。

第二,要知道中位线定理的使用形式,如: ∵ DE 是△ABC 的中位线∴ DE ∥BC ,BC DE 21第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理.题1 如图4。

三角形中位线八种证明方法

三角形中位线八种证明方法

三角形中位线八种证明方法一、定理:对任意三角形ABC,若∠A≡∠B≡∠C,三条边都相等,则三角形ABC的位线是平行的。

二、证明:1、依据角平分线定理,若在三角形中两个角A、B相等,则AB上的角平分线交于边BC上的点M,于是构成ABM与ACM两个三角形,由于∠A≡∠B≡∠C,得AB等于AC,BM 等于CM,则ABM等于ACM,即ABM // ACM,故三角形ABC的位线是平行的。

2、假设三条边AB、AC、BC相等,则可将三角形ABC移动到某一位置(如半平面),使得三边都分别与某一已知直线平行,即三角形ABC的位线就是平行的。

3、由锐角三角形两边相乘减去两个角的平方的定理知,若ABC是一个锐角三角形,则有AB*AC*BC=2(AC*BC+BC*AB+AB*AC),由此可知,对于等边三角形来说,有AB*BC=(AC*BC+BC*AB+AB*AC),即AB//BC;同理可得,AC//BC,由此证明位线是平行的。

4、由正三角形内角和为180°的边长比例定理可以得,对于正三角形ABC来说,有1336:a:b:c=1:1:1,由此可以得出结论:三边中任意两边之比等于三个顶点之比,故位线平行。

5、由正三角形外接圆半径的理论可得,当三角形ABC的三条边相等时,其外接圆必定是一个圆,因为,三条边相等,外接圆有唯一的半径,这说明,ABC和它的垂心圆O有四个公共点D、E、F、G,则DF // EG // AB // AC // BC,由此可知位线互相平行。

6、依据反三角形定理,若∠A≡∠B≡∠C,那么连接三边上中点之间这三条线互相平行,故位线互相平行。

7、由费马小定理可知,当满足幂函数关系:b²-ac=2a²b-2ab²+a³,则三角形ABC的位线互相平行。

三角形中位线定理图解说明

三角形中位线定理图解说明

∵AD=BD边形
∴BC∥DF BC=DF
∴DE∥BC 且 DE=1/2BC
中位线特点
三角形中位线性质:三角形的中位线平行于第三边并且等于第三边的一半.
三角形三条中位线所构成的三角形是原三角形的相似形。
若在一个三角形中,一条线段是平行于一条边,且等于这条边的一半(这条 线段的端点必须是交 另外两条边上),这条线段就是这个三角形的中位线。
三角形中位线定义:连接三角形两边中点的线段角三角形的中位线。如图中线段 DE。
中位线定理 定理:三角形的中位线平行于第三边,并且等于第三边的一半 证明 1:如图,延 长 DE 到 F,使 EF=DE ,连 接 CF. ∵DE=EF 、∠AED=∠CEF 、AE=EC ∴△ADE ≌ △CFE
∴AD=FC 、∠A=∠ECF ∴AB∥FC
误区
要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它 对边的中点,而三角形中位线是连结三角形两边中点的并且与底边平行且等于底 边的 1/2 的线段。
三角形的中线定义:
连接三角形顶点与对边中点的连线段。如图: BE 都是三角形的中线。
AE、CF、
三角形中位线
又 AD=DB ∴BD∥CF, BD=CF
所以 ,四边形 BCFD 是平行四边形
∴DE∥BC 且 DE=1/2BC
证明 2:
如图,延 长 DE 到 F,使 EF=DE ,连 接 CF、DC、AF
∵AE=CE DE=EF
∴四边形 ADCF 为平行四边形
∴AD∥CF AD=CF
三角形中位线

三角形中位线证明6种方法

三角形中位线证明6种方法

三角形中位线证明6种方法以下是6种证明三角形中位线的方法:方法1:套用中线定理根据中线定理,三角形中位线所构成的三角形,面积是原来三角形的1/4,因此中位线的长度为(1/2)其所对应的边长。

因此,对于三角形ABC,若D、E、F分别为AB、BC、CA上的中点,则DE=1/2AC,EF=1/2AB,FD=1/2BC。

我们可以用勾股定理证明这些相等关系,从而证明三角形的中位线。

方法2:利用向量根据向量的性质,若d、e、f分别为v1、v2、v3的中点,则三角形DEF的质心G=v1+v2+v3。

因此,若d、e、f分别为向量a、b、c的中点,则三角形DEF的质心为G=(a+b+c)/3。

因此,DE=1/2AC,EF=1/2AB,FD=1/2BC。

可以使用向量的加减和数量积证明这些相等关系。

方法3:利用勾股定理根据勾股定理,若a、b、c分别为三角形ABC的边长,则a^2=b^2+c^2-2bc*cosA。

因此,若D、E、F分别为AB、BC、CA的中点,则DE=1/2AC=sqrt[(b^2+c^2)/4]-bc*cosA/2。

同样地,EF=1/2AB=sqrt[(c^2+a^2)/4]-ca*cosB/2,FD=1/2BC=sqrt[(a^2+b^2)/4]-ab*cosC/2。

根据余弦定理,可以证明这些相等关系。

方法4:利用相似三角形根据相似三角形的性质,若D、E、F分别为AB、BC、CA上的中点,则三角形DEF与三角形ABC相似。

因此,DE=1/2AC,EF=1/2AB,FD=1/2BC。

可以使用相似三角形的性质证明这些相等关系。

方法5:利用三角形面积公式根据三角形面积公式,若D、E、F分别为AB、BC、CA上的中点,则S(DEF)=1/4S(ABC),其中S表示面积。

因此,DE=1/2AC,EF=1/2AB,FD=1/2BC。

可以使用三角形面积公式证明这些相等关系。

方法6:利用垂直平分线根据垂直平分线的性质,若D、E、F分别为AB、BC、CA上的中点,则AD、BE、CF相互垂直。

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证实及其教学说明之杨若古兰创作以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证实方法法1: 如图所示,耽误中位线DE 至F ,使,连结CF ,则,有AD FC ,所以FC BD ,则四边形BCFD是平行四边形,DFBC.因为,所以DE BC 21. 法2:如图所示,过C 作交DE 的耽误线于F ,则,有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC.因为,所以DE BC 21.法3:如图所示,耽误DE 至F ,使,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有AD CF ,所以FCBD ,那么四边形BCFD 为平行四边形,DFBC.因为,所以DE BC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21.法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜测过程:“二维”转化为“一维”在引诱先生探索三角形中位线定理时,因为先生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,发掘它与原有常识的内在联系,从而作如下探索引诱.⑴如图,A为线段BC(或线段BC的耽误线)上的任意一点,D、E分别是AB、AC的中点,线段DE与BC有什么关系?图⑴:⑵如果点A不在直线BC上,图形如何变更?上述结论仍然成立吗?图⑵:说明:先生观察(几何画板建造的)课件演示:当△ABC的顶点A活动到直线BC上时,中位线DE也活动到BC上,如许由“二维”转化为“一维”,先生就不难猜测性质的两方面,特别是数量关系,而想到去度量、验证和猜测,水到渠成.如果教师直接叫先生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是把握和应用三角形中位线定理.第一,要晓得中位线定理的感化:可以证实两条直线平行及线段的倍分关系,计算边长或中位线的长.第二,要晓得中位线定理的使用方式,如:∵ DE 是△ABC 的中位线∴ DE ∥BC ,BC DE 21 第三,让先生通过部分题目进行练习,进而把握和应用三角形中位线定理. 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D 、E 分别为AB ,BC 的中点,点F 在CA 耽误线上,∠FDA=∠B.(1)求证:AF =DE ;(2)若AC =6,BC =10,求四边形AEDF 的周长.分析 本题是考查常识点较多的综合题,它不单考查利用三角形中位线定理的能力,而且还考查利用直角三角形和平行四边形有关性质的能力.AEDF 为平行四边形.C(2)请求四边形AEDF 的周长,关键在于求AE 和DE ,AE =21BC =5,DE =21AC =3.证实:(1)∵D、E 分别为AB 、BC 的中点,∴DE∥AC,即DE∥AF∵Rt△ABC 中,∠BAC=90°,BE =EC∴EA=EB =21BC ,∠EAB=∠B又∵∠FDA=∠B,∴∠EAB=∠FDA∴EA∥DF,AEDF 为平行四边形∴AF=DE(2)∵AC=6,BC =10, ∴DE=21AC =3,AE =21BC =5∴四边形AEDF 的周长=2(AE+DE)=2(3+5)=16题2 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,耽误BA 和CD 分别与EF 的耽误线交于K 、H.求证:∠BKE=∠CHE.分析 本题考查三角形中位线的构造方法及利用、平行线的性质.由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的地位,又使需证实的角转移过来,可考虑,连BD ,找BD 中点G ,则EG 、FG 分别为△BCD、△DBA 的中位线,因而得到了解题方法.考虑到结论辅助线不要乱作,取中点比作平行线好.证实:连BD 并取BD 的中点G ,连FG 、GE在△DAB 和△BCD 中∵F 是AD 的中点,E 是BC 的中点∴FG∥AB 且FG =21AB ,EG∥DC 且EG =21DC∴∠BKE=∠GFE,∠CHE=∠GEF∵AB=CD ∴FG=EG∴∠GFE=∠GEF ∴∠BKE=∠CHE题3 如图, ABCD 为等腰梯形,AB∥CD,O 为AC 、BD 的交点,P 、R 、Q 分别为AO 、DO 、BC 的中点,∠AOB=60°.求证:△PQR 为等边三角形.分析 本题考查三角形中位线定理、等边三角形判定方法、直角三角形斜边中线定理.利用条件可知PR =21AD ,能否把PQ 、RQ 与AD(BC)联系起来成为解题的关键,因为∠AOB=60°,OD =OC ,则△ODC 为等边三角形,再由R 为OD 中点,则∠BRC=90°,QR 就为斜边BC 的中线.证实:连RC ,∵四边形ABCD 为等腰梯形且AB∥DC ∴AD=BC ∠ADC=∠BCD又∵DC 为公共边 ∴△ADC≌△BCD∴∠ACD=∠BDC ∴△ODC 为等腰三角形∵∠DOC=∠AOB=60° ∴△ODC 为等边三角形∵R 为OD 的中点∴∠ORC=90°=∠DRC(等腰三角形底边上的中线也是底边上的高)∵Q 为BC 的中点 ∴RQ=21BC =21AD同理PQ =21BC =21AD在△OA D 中 ∵P、R 分别为AO 、OD 的中点 ∴PR=21AD ∴PR=PQ =RQ故△PRQ 为等边三角形3、教学难点:本课难点是三角形中位线定理的证实,证实方法的关键在于如何添加辅助线.教师可以在证实思路上进行引诱、启发,防止生硬地将辅助线直接作出来让先生接受.例如,教师可以启发先生:要证实一条线段的长等于另一条线段的长的一半,可将较短的线段耽误一倍,或者截取较长的线段的一半.上面的这类辅助线的作法可以概括为“短耽误、长截短”,这类辅助线的作法还可以用于证实线段和、差、倍、分等方面.证实线段的和、差、倍、分经常使用的证实计谋:1, 长截短:要证实一条线段等于另外两条线段的和与差,可在长线上截取一部分等于另两条线段中的一条,然后再证实另一部分等于剩下的一条线段的长.(角也亦然)2,短耽误:要证实一条线段等于另外两条线段的和与差,可先耽误较短的一条线段,得到两条线段的和,然后再证实其与长的线段相等.(角也如许)3,加倍法:要证实一条线段等于另一条线段的2倍或1/2,可加倍耽误线段,耽误后使之为其2倍,再证实与另一条线段相等.(角也如许)4,折半法:要证实一条线段等于另一条线段的2倍或1/2,也可取长线段的中点,再证实其中之一与另一条线段相等.(角也可用)5,代数运算推理法:这类方法是利用代数运算证实线段或角的和、差、倍、分.6,类似三角形及比例线段法:利用类似三角形的性质进行推理论证.题1(短耽误):如图所示,在正方形ABCD中,P、Q分别为BC、CD上的点.(1)若∠PAQ=45°,求证:PB+DQ=PQ.(2)若△PCQ的周长等于正方形周长的一半,求证:∠PAQ=45°证实:(1)耽误CB至E,使BE=DQ,连接AE.∵四边形ABCD是正方形∴∠ABE=∠ABC=∠D=90°,AB=AD在△ABE和△ADQ中∵AB=AD,∠ABE=∠D,BE=DQ(2)耽误CB至E,使BE=DQ,连接AE由(1)可知∆∆≅ABE ADQ题2(长截短):如图,在△ABC中,∠B=2∠C,∠A 的平分线AD交BC于D.求证:AC=AB+BD证实:在AC上截取OA=AB,连接OD,∵∠3=∠4,AD=AD∴△ABD≌△AOD,∴ BD=DO∴∠B=∠1=∠2+∠C= 2∠C∴∠2=∠C∴ OD=OC=BD∴ AC=OA+OC=AB+BD。

小议三角形中位线定理的几种证明方法

小议三角形中位线定理的几种证明方法

小议三角形中位线定理的几种证明方法三角形中位线定理是三角形的一个重要性质定理,对进一步学习三角形有关知识非常有用,尤其是在证明两直线平行和论证线段倍分关系时常常要用到,也为下一节梯形的中位线定理的证明作好充分的理论上的准备。

对这一定理的证明有多种方法,现介绍几种。

之所以要介绍这几种方法,是因为:第一,证明定理是帮助学生掌握知识体系的重要环节;第二,这个定理的证明综合运用了前面已学过的平行线、全等三角形、平行四边形、中心对称等重要知识,又提示了某些辅助线的添置方法;第三,证题时,强化了思维过程的教学,培养了求异思维,有益于开发学生的智力。

同时,启发学生用不同的方法来证明三角形中位线定理,还可以培养学生发散性思维。

下面就介绍三角形中位线定理的几种证明方法:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。

已知:如图,△ABC中,点D、E分别是AB、AC的中点求证:⑴DE∥BC⑵DE=BC证明方法1:∵点D、E分别是AB、AC的中点,∴AD=BDAE=CE∴==∵∠DAE=∠BAC∴△ADE~△ABC∴∠ADE=∠ABC ==∴DE∥BCDE=BC[小结]利用相似三角形的判定和性质,有时会收到异想不到的效果。

证明方法2:延长DE至F,使EF=DE,连接CF∵AE=CE,∠AED=∠CEF,DE=EF∴△ADE≌△CEF∴AD=CF,∠ADE=∠CFE,∵AD=BD,∴CF=BD∵∠ADE=∠CFE∴AB∥CF∴CF=BD,CF∥BD∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC∵DE=EF=DF,∴DE=BC,DE∥BC[小结] 用延长相等线段的方法构造全等三角形,利用全等三角形的判定和性质以及平行四边形的判定和性质。

证明方法3:(同第二种方法的图)过点C作CF∥AB,与DE的延长线相交于点F∵CF∥AB,∴∠ADE=∠CFE∵∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴CF=AD∵AD=BD,∴CF=BD,∵CF∥BD,∴四边形BCFD是平行四边形(以下证法与方法2相同)[小结] 作平行线的方法构造全等三角形,利用全等三角形、平行四边形的判定和性质。

3角形中位线定理

3角形中位线定理

3角形中位线定理三角形中位线定理,是在三角形中,与三条相邻边的中点相连的线段,它们构成的三个交点都在同一点上。

本文将从定理的证明、推广应用、例题等三个方面进行阐述。

一、定理的证明证明思路:设三角形ABC的三边分别为a、b、c,D为BC的中点,E为AC的中点,F 为AB的中点,则连接AD、BE、CF的交点为G。

则需证明AD、BE、CF三条线段的交点G是一个固定点。

证明:由于D、E、F都是各边中点,可得:∵ D是BC的中点,∴ BD = DC;又∵ G是AD与BE的交点,故可以得出:∵ D、E分别为BC和AC的中点,∴ DE // AC,同时AE = EC,∴ △AED与△CEB 相似。

$\frac{GA}{BD}=\frac{GC}{CE}$又 $\because BD=DC$ , $\therefore GA=GC$同理可得:于是,我们得到了两个相等的值:GA=GC,GB=GC。

由此,可知三角形GAC是一个等腰三角形,且AG与CF之间的线段垂直于CF,同理可得:因为三角形GAC、GBA、CBG均拥有最长边CG,所以它们就构成了一个共同的圆,而这个圆的中心就是点G。

因此可以得知:三角形ABC的三边中位线的交点G是一个固定点。

二、推广应用利用中位线定理,我们可以推导容易证明的三条定理和一个相关问题:中位线长定值定理、七分线长定值定理、以及在四边形中应用中位线定理、解决中位线问题。

1. 中位线长定值定理在三角形中,如果其中一条中位线相等,那么这个三角形就是等边三角形。

设△ABC为等边三角形,则BD、AE、CF三条中位线的长度均为$\frac{1}{2}$边长,又 $\because BD=AE=CF$ ,所以可以得到:BD=AE=CF=$\frac{1}{2}$a=a,同理可得:b=c=a。

在三角形中,三条中位线可将它们所在线段的长分为1:2:3的比例。

首先,由于三角形的三角形内部对角线互不交于同一点,那么三角形内部的线段AB、AC、BC是不会共线的。

中位线定理不同证明方法

中位线定理不同证明方法

中位线定理不同证明方法中位线定理,又称中线定理,是几何中的一个基本定理。

它指出,在一个三角形中,三条中线交于一点,这个交点被称为三角形的质心。

中位线定理的证明有多种方法,下面我将介绍其中的一些方法。

一、初级证明方法在这个证明方法中,我们将使用简单的几何知识来证明中位线定理。

让我们回顾一下中位线的定义。

中位线是连接一个三角形的一个顶点和对边中点的线段。

根据中位线的定义,我们可以得出结论:三条中位线交于一点。

为了方便说明,我们设这个三角形的三个顶点为A、B、C,对边分别为BC、CA和AB。

设M是BC的中点,N是CA的中点,P是AB的中点。

根据中位线的定义,线段AM是连接顶点A和对边BC的中点M的线段。

现在我们来证明中位线AM和BN的交点在CP上。

设交点为D。

根据三角形中位线的性质,AD和BC互相平分。

我们可以得出以下结论:AM = MD 和 BN = ND。

然后我们来看三角形ADM和三角形BND。

根据两个三角形的边长比较,我们可以得出:AD = ND 和 AM = MD。

根据边边边相似的性质,我们可以得出结论:三角形ADM和三角形BND全等。

根据全等三角形的性质,我们可以得出:∠DMA = ∠DNB。

因为∠DMA是三角形ADC的外角,所以∠DMA = ∠ADC + ∠ACD =∠ANB + ∠ACD。

同样的道理,∠DNB = ∠ANB + ∠BCD。

我们可以得出结论:∠ANB + ∠ACD = ∠ANB + ∠BCD。

根据等式两边相等的性质,我们可以得出:∠ACD = ∠BCD。

我们可以得出结论:CD || AB。

根据平行线的性质,我们可以得出:∠BDC = ∠ACB。

因为∠BDC是三角形BDC的内角,所以∠BDC + ∠BCD = 180°。

代入之前的等式,我们可以得出:∠ACB + ∠BCD = 180°。

我们可以得出结论:∠ACB+ ∠BCD = 180°。

根据三角形内角和的性质,我们可以得出:∠ACB + ∠BCA + ∠ABC = 180°。

三角形中位线定理的证明过程

三角形中位线定理的证明过程

三角形中位线定理的证明
噫,今日咱来讲讲那个三角形中位线定理是啷个证明嘞。

说起这个定理哦,它就是说在一个三角形里头,你取任意两边嘞中点,然后连起来,这条线就叫中位线。

这条中位线嘞长度,刚好就是它所截嘞那边嘞一半。

听起来简单,证明起来还是有那么点意思嘞。

你看嘛,假设有个三角形ABC,D、E分别是AB、AC嘞中点。

那么DE就是ABC嘞中位线。

咱要证明DE嘞长度是BC嘞一半。

首先嘞,你可以延长DE到点F,使得EF等于DE,然后连结CF。

由于D是AB嘞中点,且DE等于EF,根据平行四边形嘞性质,四边形BCFE就是平行四边形。

为啥子嘞?因为一组对边平行且相等嘛,这就是平行四边形嘞定义。

平行四边形BCFE里头,BF等于CE,且BF平行CE。

但你看嘛,E又是AC嘞中点,所以AE等于CE,那就意味着BF等于AE。

现在你看三角形ADE跟三角形CFE,它们有两边分别相等,即DE等于EF,AE等于CF,且夹角AED等于角CEF(对顶角相等)。

所以,三角形ADE跟三角形CFE是全等嘞。

全等就意味着对应边相等,所以AD等于CF。

但CF又是平行四边形BCFE嘞一边,它等于另一边BC。

而AD是AB嘞一
半,因为D是AB嘞中点。

所以嘞,DE就等于BC嘞一半。

这就证明完咯三角形中位线定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课偶得——
三角形中位线定理的再证明
王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。

关于它的证明方法,课本上给出了一种证法。

笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。

已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC

证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC
∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF
为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD
∴BD CF ∴四边形DBCF 为平行四边形
∴DF BC ∴DE=EF ∴DE ∥BC 且
证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF
∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD
∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE
∴DE=EF ∴D E ∥BC 且
证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则
∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点
∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF
即 ∴DE ∥BC 且
图1 B
C
A
D
E
图2
B
C
A
D
E
F
图3
B
C
A
D E
F
C
图4
B
A
D
E
F E ′ 图5
B
C
A
D
E
1
2
DE BC =1
2
DE BC =1
2DE BC =12
DE BC =1
2DE BC =
证法四、(相似法)如图5,
∵D 、E 分别为AB 、AC 中点 ∴ ∵∠A=∠A
∴△AD E ∽△ABC ∴ ∠ADE=∠B ∴DE ∥BC 且
证法五、(旋转拼图法)如图6,以AC 的中点E 为中心,将△ABC 绕点E 旋转180°得△ACF ,取CF 中点G ,连结EG 、DG ,则四边形ABCF 为平行四边形

AF BC ∵D 、G 分别为AB 、CF 的中点 ∴AD FG ∴四边形ADGF 为平行四边形
∴DG AF BC ∵CF ∥AB ∴∠DAE=∠GCE ∴△ADE ≌△CGE (SAS )
∴∠AED=∠CEG ∴D 、E 、G 在一条直线上 ∴DE ∥BC ∵△ADE ≌△CGE
∴DE=EG ∴ ∴DE ∥BC 且
证法六、(面积法)如图7,取BC 中点F ,连结AF 、EF ,分别过A 、E 作
A H ⊥BC ,EG ⊥BC ,垂足分别为H 、G ,过D 作DM ⊥BC 于M ,则
∴ ∵F 为BC 中点 ∴ 同理 ∴DM EG ∴四边形DMGE 为矩形
∴DE ∥BC 同理 EF ∥AB ∴四边形DBFE 为平行四边形
∴DE=BF ∵ ∴DE ∥BC 且 证法七、(解析法)如图8,以点B 为坐标原点,建立如图所示平面
直角坐标系,不妨设A (a ,b )C (c ,0)(c >0)则,D ( ),E ( )
则DE ∥x 轴,DE= ∵BC=c ∴DE ∥BC 且
证法八、(三角法)如图9,取BC 中点F ,连结EF ,设AB=2c ,AC=2b BC=2a ,∠A=α则AD=c ,AE=b ,在△ADE 中,
在△ABC 中,
图6
B C
A
D
E
F
G 图7
B
C
M A
D
E
1
2
AD AE AB AC ==1
2
DE
AD
BC AB ==12
DE BC =1
2
DE BC =12
DE BC =,ABF ACF AEF CEF S S S S ==1
4CEF ABC
S S =12CF BC =111242CF EG BC AH =⨯1
2
DM AH =1
2
BF CF BC
==12
DE BC =12
EG AH =,22
a b
,22
a c
b +222
a c
a c +-=12
DE BC =22
2222cos 2cos AD AE A bc c b DE AD AE α=+-=+-2
2
2
2
2
2cos 2(2)(2)cos (2)(2)AB AC A c b c b BC AC
AB α=+-=+-⨯⨯
∴ ∴BC=2DE ∵F 为BC 的中点 ∴DE=BF 同理 EF=BD ∴四边形DBFE 为平行四边形
∴DE ∥BF 即DE ∥BC 且
图9
B
C
A
D E
F 22
4(2cos )bc c b α
=+-2
2
4BC DE =1
2
DE BC =。

相关文档
最新文档