Mixed Control of Multi-Fingered Haptic Interface Robot with operator’s uneasy feeling in m
应用多重PCR-DHPLC方法快速检测转基因马铃薯及EH92-527-1品系鉴定
L udC rmao rp y u d n trd . a o sga so a l eeu e o es n i i si . h s e ut w r i i ho tga h ) n e aue l V d u rd f mpe w r s dfrh e s it t t g T e ers l ee q y s s t t ye n v s
c mp rd o a e wi e e to h r ss t g lelcr p o e i.Th ut lx CR— h e m lpe P i DHPL s p r t n C e a ai me h d o to wa r p s d f rt e d tcin o s p o o e h ee t f o o
要 : 以 E 9- 2 — 转基 因马铃 薯 为试 材 ,应 用 多重 P R技 术 同 时扩增 马铃 薯 的 内源基 因( G ae 和 外 源 H 2571 C U P s)
基 因( S终 止子 、Ⅳ 7I 构基 因和 E 9 - 2— 品 系特 异 基 因) Ⅳ0 P1 结 H 257 1 ,将 扩增 产物 在 D P C非 变性 条件 下 分 离 ,分析 几 HL
灵巧型触感交互装置的设计
摘要本文所设计的主从系统是由主操作手与五指灵巧手组成。
主操作手将操作者手指运动信息传递给五指灵巧手,控制五指灵巧手完成一定的目标任务,同时将五指灵巧手所受力反馈给操作者。
主操作手采用最基本的连杆机构作为骨架结构,超声制动器与涡旋弹簧实现力反馈的作用;五指灵巧手是以超声电机作为驱动单元,由弹性线作为传动装置设计了一种仿人灵巧手。
最后,本文以DSP2812作为处理器建立了主从系统的运动控制系统,包括主从系统硬件电路设计与软件编程两大方面。
硬件电路设计由DSP2812系统电路,超声电机正反转/调速电路,数据采集电路等组成;软件编程方面采用增量式数字PID的控制方法,实现了对主从系统的位置反馈控制。
关键词:主操作手,五指灵巧手, 触感交互装置AbstractThe master-slave control system proposed in the paper is composed by master hand and five-fingered dexterous hand. The master hand transports the movement of the operator to the five-fingered dexterous hand and controls the five-fingered dexterous hand to complete the certain tasks. At the same time, the force from the five-fingered hand is feedback to the operator. The structure of the master hand adopts the links mechanism and the force feedback is achieved by the ultrasonic brakes and vortex springs. The five-fingered hand is driven by ultrasonic motors and transmitted by elastic lines.Finally, the master-slave control system based on DSP is established in the paper, including the master-slave control system hardware circuit and software programming. The hardware circuits include the module of DSP2812 system, direction control module of USMs, velocity control module of USMs, data acquisition module and so on. Incremental digital PID control method is used to realize the location feedback control.Key Words:Master hand;Five-fingered hand;Haptic interface device目录摘要 ----------------------------------------------------------------------------------------------------------------- 1 Abstract -------------------------------------------------------------------------------------------------------------- 2目录------------------------------------------------------------------------------------------------------------------- 3第一章引言-------------------------------------------------------------------------------------------------------- 41.1灵巧手系统的发展概况------------------------------------------------------------------------------- 41.2灵巧型触感装置的介绍------------------------------------------------------------------------------- 61.2.1穿戴型主操作手例说 ------------------------------------------------------------------------- 71.2.2桌面型主操作手例说 ------------------------------------------------------------------------- 9第二章被动式力反馈主操作手设计 ----------------------------------------------------------------------- 112.1主操作手设计任务------------------------------------------------------------------------------------ 112.2被动式力反馈主操作手机械结构设计----------------------------------------------------------- 112.2.1主手总体结构 --------------------------------------------------------------------------------- 122.2.2主手单手指结构设计 ------------------------------------------------------------------------ 122.3传感器的选用 ------------------------------------------------------------------------------------------ 152.4主手指尖位姿计算------------------------------------------------------------------------------------ 162.5主手力反馈计算 --------------------------------------------------------------------------------------- 182.6本章小结 ------------------------------------------------------------------------------------------------ 22第三章主从控制系统硬件设计------------------------------------------------------------------------------ 233.1电源电路 ------------------------------------------------------------------------------------------------ 233.2核心处理器 --------------------------------------------------------------------------------------------- 233.2.1控制芯片的选择 ------------------------------------------------------------------------------ 233.2.2SEED-DEC2812开发板资源利用 --------------------------------------------------------- 253.3超声电机驱动控制电路------------------------------------------------------------------------------ 263.3.1超声电机的驱动电路 ------------------------------------------------------------------------ 263.3.2超声电机的控制电路 ------------------------------------------------------------------------ 273.4数据采集电路 ------------------------------------------------------------------------------------------ 313.5本章小结 ------------------------------------------------------------------------------------------------ 33第四章总结与展望 --------------------------------------------------------------------------------------------- 344.1总结------------------------------------------------------------------------------------------------------- 344.2展望------------------------------------------------------------------------------------------------------- 34致谢 ---------------------------------------------------------------------------------------------------------------- 37参考文献------------------------------------------------------------------------------------------------------- 38第一章引言1.1灵巧手系统的发展概况随着科技水平的不断进步和新兴的交叉学科不断涌现,如太空探索、核能开发、医疗器械等都对机器人技术提出了更高的要求,而传统的工业机器人末端夹持器有一些缺点,如灵活性差,感知能力低下,力的控制精度不高等。
痰湿壅盛型高血压大鼠模型的建立
293(38):14723-14739.[14]CHEN R,ZOU Y L,MAO D X,et al.The general amino acid controlpathway regulates mTOR and autophagy during serum/glutaminestarvation[J].The Journal of Cell Biology,2014,206(2):173-182.[15]BAR-PELED L,SABATINI D M.Regulation of mTORC1by aminoacids[J].Trends in Cell Biology,2014,24(7):400-406. [16]BEUREL E,GRIECO S F,JOPE R S.Glycogen synthase kinase-3(GSK3):regulation,actions,and diseases[J].Pharmacology&Therapeutics,2015,148:114-131.[17]MIN J,WEI C.Hydroxysafflor yellow A cardioprotection inischemia-reperfusion(I/R)injury mainly via AKT/hexokinaseⅡindependent of ERK/GSK-3βpathway[J].Biomedicine&Pharmacotherapy,2017,87:419-426.[18]CHEN L,LI Q N,LEI L,et al.Dioscin ameliorates cardiachypertrophy through inhibition of the MAPK and AKT/GSK3β/mTOR pathways[J].Life Sciences,2018,209:420-429. [19]阮小芬,沈智杰,薛金贵,等.速效救心丸干预ACS血管重建术后病人的随机㊁双盲㊁安慰剂对照临床研究[J].中西医结合心脑血管病杂志,2019,17(9):1286-1290.[20]王肖龙,刘永明,朱谷晶,等.速效救心丸对急性冠脉综合征患者早期经皮冠状动脉介入效果的影响[J].中国中西医结合杂志,2012,32(11):1483-1487.[21]RUAN X F,LI Y J,JU C W,et al.Exosomes from Suxiao Jiuxinpill-treated cardiac mesenchymal stem cells decrease H3K27demethylase UTX expression in mouse cardiomyocytes in vitro[J].Acta Pharmacologica Sinica,2018,39(4):579-586. [22]YAO W F,HAN X,GE M,et al.N6-methyladenosine(m6A)methylation inischemia-reperfusion injury[J].Cell Death&Disease,2020,11(6):478.[23]FU Y,DOMINISSINI D,RECHAVI G,et al.Gene expressionregulation mediated through reversible m6A RNA methylation[J].Nature Reviews Genetics,2014,15(5):293-306. [24]SCHWARTZ S,MUMBACH M R,JOVANOVIC M,et al.Perturbationof m6A writers reveals two distinct classes of mRNA methylation atinternal and5'sites[J].Cell Reports,2014,8(1):284-296. [25]ZHAO X,YANG Y,SUN B F,et al.FTO-dependent demethylationof N6-methyladenosine regulates mRNA splicing and is requiredfor adipogenesis[J].Cell Research,2014,24(12):1403-1419. [26]ZHENG G Q,DAHL J A,NIU Y M,et al.ALKBH5is a mammalianRNA demethylase that impacts RNA metabolism and mousefertility[J].Molecular Cell,2013,49(1):18-29.[27]ZHANG C Z,SAMANTA D,LU H Q,et al.Hypoxia induces thebreast cancer stem cell phenotype by HIF-dependent andALKBH5-mediated m6A-demethylation of NANOG mRNA[J].Proceedings of the National Academy of Sciences of the UnitedStates of America,2016,113(14):E2047-E2056.[28]CHAO Y H,SHANG J,JI W D.ALKBH5-m6A-FOXM1signalingaxis promotes proliferation and invasion of lung adenocarcinomacells under intermittent hypoxia[J].Biochemical and BiophysicalResearch Communications,2020,521(2):499-506.[29]YANG P P,WANG Q,LIU A H,et al.ALKBH5holds prognosticvalues and inhibits the metastasis of colon cancer[J].PathologyOncology Research,2020,26(3):1615-1623.[30]ZHANG J,GUO S,PIAO H Y,et al.ALKBH5promotes invasionand metastasis of gastric cancer by decreasing methylation ofthe lncRNA NEAT1[J].Journal of Physiology and Biochemistry,2019,75(3):379-389.[31]ZHU H T,GAN X L,JIANG X W,et al.ALKBH5inhibitedautophagy of epithelial ovarian cancer through miR-7and BCL-2[J].Journal of Experimental&Clinical Cancer Research,2019,38(1):163.[32]LUO S K,TONG L.Molecular basis for the recognition ofmethylated adenines in RNA by the eukaryotic YTH domain[J].Proceedings of the National Academy of Sciences of the UnitedStates of America,2014,111(38):13834-13839.(收稿日期:2022-03-01)(本文编辑薛妮)痰湿壅盛型高血压大鼠模型的建立朱甫臻1,尹艳燕1,梁劲杰1,郭嵩然1,徐钟慧2,王灵芝1摘要目的:建立快速稳定的痰湿壅盛型高血压大鼠模型㊂方法:采用不同高脂饮食诱导自发性高血压大鼠(SHR)建立3种痰湿壅盛型高血压大鼠模型㊂将SHR随机分为4组:SHR对照组㊁模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组,以Wistar大鼠作为正常对照组㊂对照组饲喂普通饲料,造模组分别饲喂高脂饲料1㊁高脂饲料2和高脂饲料3,造模8周㊂造模过程中监测动物行为学变化,全自动生化仪分析血清血脂变化,尾袖法测量血压变化,超声法进行动物心脏结构分析㊂结果:采用高脂饮食1(蛋黄粉10%㊁蔗糖10%㊁猪油15%㊁胆固醇1.2%㊁胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等)饲喂SHR而建立的模型Ⅰ组大鼠血压稳定,收缩压维持在167.8 mmHg以上,体质量和低密度脂蛋白胆固醇(LDL-C)增高(P<0.05),高密度脂蛋白胆固醇(HDL-C)降低(P<0.05),造模成功率为100%㊂心脏超声表明,相比Wistar大鼠,SHR对照组和模型Ⅰ组心脏左室收缩末期前壁厚度(LVAWs)㊁左室舒张末期后壁厚度(LVPWd)㊁左心室平均质量(LV Mass A W)增加(P<0.05),左室舒张末期内径(LVIDd)降低(P<0.05);模型Ⅰ组肝脏指数较SHR对照组升高(P<0.05)㊂结论:多种脂肪来源的高脂饲料饮食诱导SHR可建立快速稳定且符合临床要求的痰湿壅盛型高血压大鼠模型㊂关键词高血压;痰湿壅盛型;动物模型;饮食诱导;血脂;实验研究d o i:10.12102/j.i s s n.1672-1349.2023.24.008Establishment of Hypertensive Rat Models with Phlegm-damp AccumulationZHU Fuzhen,YIN Yanyan,LIANG Jinjie,GUO Songran,XU Zhonghui,WANG LingzhiBeijing University of Chinese Medicine,Beijing100029,ChinaCorresponding Author WANG Lingzhi,E-mail:***************.cn;XU Zhonghui,E-mail:******************* Abstract Objective:To establish rapid and stable hypertensive rat models with phlegm-damp accumulation.Methods:Three hypertensive rat models with phlegm-damp accumulation were established by different high-fat diet-induced spontaneously hypertensive rats(SHR).SHR were randomly divided into4groups:SHR control group,modelⅠgroup,modelⅡgroup and modelⅢgroup,and Wistar rats were used as normal control group.Two control groups were fed with normal diet for8weeks,and three model groups were fed with high-fat diet1,high-fat diet2,and high-fat diet3,respectively for8weeks.Behavioral changes of SHR were monitored during the modeling process,serum lipid were analyzed by fully automated biochemistry,and blood pressure changes were detected by the tail-cuff method.Ultrasound method was used to detected the SHR's cardiac structure.Results:The blood pressure of the modelⅠgroup,which was established by feeding with the high-fat diet1(egg yolk powder10%,sucrose10%,lard15%, cholesterol1.2%,sodium cholate0.2%,appropriate amounts of casein,calcium hydrogen phosphate,and stone powder),systolic blood pressure was stably maintained above167.8mmHg.The body weight and low-density lipoprotein cholesterol(LDL-C)increased(P<0.05),and high-density lipoprotein cholesterol(HDL-C)decreased(P<0.05),and the success rate of modeling was100%.Cardiac ultrasound showed that compared with Wistar rats,the left ventricular anterior wall at end-systole(LV A Ws),left ventricular posterior wall at end-diastole (LVPWd),and left ventricular mass average weight(LV Mass AW)increased(P<0.05),and the left ventricular internal diameter at end-diastole(LVIDd)of the SHR control group and the modelⅠgroup decreased(P<0.05),while the liver index of the modelⅠgroup was significantly higher than that of the SHR control group(P<0.05).Conclusion:By a high-fat diet with multiple fat sources HSR could be used to establish rapid and stable hypertensive rat models with obstructed phlegm-damp accumulation that fulfilled clinical requirements. Keywords hypertension;phlegm-damp accumulation;animal models;diet induction;blood lipids;experimental study基金项目国家自然科学基金项目(No.81872972)作者单位 1.北京中医药大学(北京100029);2.中国医学科学院北京协和医学院北京协和医院(北京100730)通讯作者王灵芝,E-mail:***************.cn;徐钟慧,E-mail:*******************引用信息朱甫臻,尹艳燕,梁劲杰,等.痰湿壅盛型高血压大鼠模型的建立[J].中西医结合心脑血管病杂志,2023,21(24):4519-4523.高血压是一种以主动脉收缩压升高为主要特征的常见慢性病[1],严重危害着人类健康㊂2019年世界卫生组织统计,全世界约14亿例高血压病人,控制率仅为14%[2]㊂在我国,大中型城市如北京㊁上海等地高血压发病率约为35.9%和29.1%[3],给我国带来沉重的医疗负担㊂高血压病在中医学上归属于 眩晕 头痛 范畴,按照证候分为痰湿壅盛型㊁肝火亢盛型㊁阴虚阳亢型和阴阳两虚型[4]㊂其中,痰湿壅盛型占比最高,约为17.96%[5]㊂痰湿壅盛型高血压的主要临床表现为头重如裹㊁胸脘痞闷㊁纳呆恶心㊁呕吐痰涎㊁身重困倦㊁少食多寐㊁苔腻㊁脉滑等症状㊂‘景岳全书“提到: 脾为生痰之源 [6],其病机主要为脾运化不利,故生痰浊㊂‘金匮要略“记载: 心下有痰饮,胸胁支满,目眩,苓桂尤甘汤主之 ㊂张仲景提出对痰饮 当以温药和之 ,对饮停中焦之证,应用苓桂术甘汤法健脾温阳利水㊂‘丹溪心法㊃头眩“中云: 头眩,痰挟气虚并火,治痰为主,挟补气药及降火药,无痰则不作眩 ,主张清化痰热㊁补充正气㊂动物模型在研究人类疾病的发病机制㊁发展规律及药物研发中发挥着重要作用㊂目前,常用高血压动物模型主要有:1)自发性高血压动物模型,即自发性高血压大鼠(spontaneous hypertension rats,SHR),由日本京都医学院利用有明显高血压症状的Wistar Kyoto雄性大鼠与带有轻微高血压症状雌性大鼠连续交配培育而成,成年后血压高达200 mmHg以上,高血压自发率为100%㊂2)药物诱导法,常用药物包括醋酸去氧皮质酮(deoxycorticosterone acetate,DOCA)㊁亚硝基左旋精氨酸甲酯(nitro L arginine methyl ester,L-NAME)和血管紧张素Ⅱ(AngⅡ)㊂20世纪70年代,DOCA-盐模型首次用于高血压研究,皮下注射DOCA同时配合高盐饮食,饮用盐水可促进动物高血压的发展[7]㊂Leo等[8]采用L-NAME饲喂Wistar大鼠诱导高血压模型;Cao等[9]采用AngⅡ灌注C57BL6小鼠诱导高血压㊂3)手术诱导法,主要包括一肾一夹[10]㊁两肾一夹[11]㊁两肾两夹法[12]等㊂近年来,痰湿壅盛型高血压动物模型的建立逐渐引起人们关注,该模型的建立常采用陈腾蛟等[13]研究方法,即饲喂Wistar大鼠高脂饲料,该方法存在着造模周期时间长㊁成功率较低等不足,且造模评价指标为血压升高和行为学变化㊂该中医证型的临床特点是低密度脂蛋白胆固醇(LDL-C)升高,高密度脂蛋白胆固醇(HDL-C)降低[14],应进一步完善造模评价指标,以提高造模效率㊂本研究采用不同方法建立快速㊁稳定的痰湿壅盛型高血压大鼠模型,为该病的作用机制和药物研发提供合理的研究基础㊂1材料与方法1.1实验动物Wistar大鼠5只,无特定病原体(SPF)级,雄性,体质量120~150g;购自北京维通利华实验动物技术有限公司,动物合格证号:SCXK(京)2021-0006㊂SHR 共20只,SPF级,雄性,体质量75~105g,由北京维通利华实验动物技术有限公司提供,动物合格证号为SCXK(京)2021-0006㊂所有动物均饲养于北京中医药大学动物房㊂1.2实验饲料动物饲料:普通大鼠维持饲料㊁高脂饲料1(蛋黄粉10%,蔗糖10%,猪油15%,胆固醇1.2%,胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等);高脂饲料2(蛋白质24%,碳水化合物41%,猪油24%,酪蛋白㊁糊精㊁蔗糖㊁纤维素㊁豆油㊁多矿㊁多维㊁胆碱);高脂饲料3(蔗糖20%,猪油15%,胆固醇1.2%,胆酸钠0.2%,适量的酪蛋白,磷酸氢钙,石粉)㊂所有饲料均由北京华阜康生物科技股份有限公司提供㊂1.3实验方法1.3.1动物分组及造模SPF级SHR(20只)和Wistar大鼠(5只),适应性喂养1周后,将SHR随机分为SHR对照组㊁模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组,每组5只;将Wistar大鼠作为正常对照组㊂其间,SHR对照组及正常对照组喂食普通饲料,模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组分别饲喂高脂饲料1㊁高脂饲料2和高脂饲料3,连续饲喂8周㊂1.3.2观察指标建模期间,每日观察记录大鼠毛色㊁活动程度㊁二便及饮食㊁进水等情况,每周测量体质量㊂血压:采用尾袖法测定大鼠血压[15],无创血压仪型号:BP2000(美国Visitech systems公司);血压测定台37ħ预热5 min,将大鼠放入固定器内适应3~5min,测量安静状态下尾动脉血压,连续测量20次,取平均值,每2周测量1次㊂血脂:眼眶取血,置于无抗凝剂离心管内,室温放置1h,1000ˑg(重力加速度)离心15min,取上清备用㊂采用全自动生化仪(型号:AU480,美国Beckman Coulter公司)测定大鼠血清总胆固醇(TC)㊁三酰甘油(TG)㊁HDL-C㊁LDL-C水平㊂实验结束后,冰上分离大鼠心㊁肝㊁脾㊁肺㊁肾,并称重,按照如下公式计算:脏器指数(%)=脏器质量大鼠体质量ˑ100%1.3.3造模评价标准造模评价标准参照相关文献[13],痰湿型高血压病人常患有高脂血症[14],故将血脂纳入评价标准:1)身型肥胖㊁嗜睡懒动㊁胃纳呆滞㊁不思饮水㊁大便不成形㊁肛门不洁;2)收缩压ȡ140mmHg和(或)舒张压ȡ90mmHg;3)血脂水平变化符合4种高脂血症中的1种,高胆固醇血症,血清TC水平上升;高三酰甘油血症,血清TG水平升高;混合型高脂血症,血清TC㊁TG 水平均增高;低高密度脂蛋白血症,血清HDL-C水平降低㊂1.3.4心脏结构变化大鼠麻醉后,使用超高分辨小动物超声影像系统VevoTM2100(加拿大Visual Sonics公司)测量左室收缩末期内径(left ventricular internal diameter at end-systole,LVIDs)㊁左室舒张末期内径(left ventricular internal diameter at end-diastole,LVIDd)㊁左室收缩末期后壁厚度(left ventricular posterior wall at end-systole,LVPWs)㊁左室舒张末期后壁厚度(left ventricular posterior wall at end-diastole,LVPWd)㊁左室收缩末期前壁厚度(left ventricular anterior wall at end-systole,LVAWs)㊁左室舒张末期前壁厚度(left ventricular anterior wall at end-diastole,LVAWd)㊁左心室平均质量(LV Mass AW)㊁左室射血分数(left ventricular ejection fraction,LVEF)㊁左室短轴缩短率(left ventricular fraction shortening,LVFS)㊂1.4统计学处理采用SPSS19.0分析软件进行数据处理,符合正态分布的定量资料以均数ʃ标准差(xʃs)表示,两组间比较采用t检验,多组间比较采用单因素方差分析ANOVA法㊂采用GraphPad Prism8进行绘图㊂以P< 0.05为差异有统计学意义㊂2结果2.1不同模型大鼠形态学指标造模期间,正常对照组和SHR对照组大鼠毛发洁白㊁柔顺有光泽,精神状态良好,活动度正常,大便黏软有形,肛周洁净㊂各模型组大鼠在造模期间均呈痰湿证表现,包括体质量增加㊁嗜睡萎靡㊁活动度下降㊁饮食饮水减少㊁便溏㊁肛周不洁等㊂从第4周开始,各模型组动物体质量均高于SHR对照组(P<0.05)㊂详见图1㊂2.2不同模型大鼠收缩压变化造模期间,正常对照组收缩压基本维持在131.8~ 150.2mmHg,SHR各组收缩压维持在167.8mmHg以上,且呈现缓慢上升趋势㊂详见图2㊂图1不同模型大鼠体质量变化图2不同模型大鼠收缩压变化2.3不同模型大鼠血脂含量变化模型Ⅰ组LDL-C从第4周开始较SHR对照组升高(P<0.05),HDL-C第8周较SHR对照组降低(P< 0.05);模型Ⅱ组第8周TC和TG均显著增高(P< 0.05),模型Ⅲ组第8周HDL-C水平较SHR对照组显著降低(P<0.05),第4周LDL-C水平较SHR对照组显著升高(P<0.05)㊂详见图3㊂根据临床报道,模型Ⅰ组更符合临床症状[14]㊂2.4不同模型大鼠心脏结构变化为确立痰湿壅盛型高血压大鼠模型,进一步对模型Ⅰ组进行心脏结构分析㊂相较于正常对照组大鼠, SHR对照组大鼠和模型Ⅰ组LVAWs㊁LV Mass AW㊁LVPWd增加(P<0.05),LVIDd降低(P<0.05),模型Ⅰ组LVIDs较SHR对照组降低㊂详见图4㊁表1㊂表明痰湿壅盛型高血压大鼠已出现心脏向心性肥大,提示心脏结构变化可作为痰湿壅盛型高血压模型的评价指标㊂2.5不同模型大鼠脏器指数比较与正常对照组比较,SHR对照组和模型Ⅰ组心脏指数均升高;模型Ⅰ组肝脏指数较SHR对照组升高(P<0.05)㊂提示该饲喂方式对肝脏结构具有一定影响㊂详见表2㊂图3不同模型大鼠血脂含量变化(A为TC;B为TG;C为HDL-C;D为LDL-C㊂与正常对照组同时间比较,*P<0.05;与SHR对照组同时间比较,#P<0.05)图4不同模型大鼠心脏超声结构(短轴)表1不同模型大鼠心脏结构变化(xʃs)组别只数LVAWd(mm)LVAWs(mm)LVIDd(mm)LVIDs(mm)正常对照组5 2.37ʃ0.43 3.43ʃ0.29 6.36ʃ0.62 2.06ʃ0.32 SHR对照组5 2.27ʃ0.18 4.17ʃ0.18① 5.45ʃ0.25① 1.72ʃ0.21模型Ⅰ组5 2.35ʃ0.29 4.11ʃ0.23① 5.07ʃ0.45① 1.04ʃ0.14①②组别LVPWd(mm)LVPWs(mm)LVEF(%)LVFS(%)LV Mass AW(mg)正常对照组 2.51ʃ0.24 4.25ʃ0.1390.79ʃ0.2461.09ʃ0.14975.58ʃ109.71 SHR对照组 4.52ʃ0.28① 6.49ʃ0.37①95.29ʃ0.2872.45ʃ0.371255.49ʃ92.79①模型Ⅰ组 3.20ʃ0.36①② 4.83ʃ0.37②98.11ʃ0.4479.53ʃ1.701126.30ʃ107.27①注:与正常对照组比较,①P<0.05;与SHR对照组比较,②P<0.05㊂表2不同模型大鼠脏器指数比较(xʃs)单位:%组别只数心肝脾肺肾正常对照组50.29ʃ0.04 2.71ʃ0.180.17ʃ0.060.37ʃ0.070.35ʃ0.05 SHR对照组50.39ʃ0.02① 2.82ʃ0.130.15ʃ0.010.41ʃ0.050.36ʃ0.03模型Ⅰ组50.36ʃ0.02① 3.40ʃ0.11①②0.13ʃ0.010.36ʃ0.010.32ʃ0.02注:与正常对照组比较,①P<0.05;与SHR对照组比较,②P<0.05㊂3讨论高血压发病机制复杂多样,包括系统性代谢紊乱㊁肾脏代谢[16]㊁肥胖症[17]㊁糖尿病[18]㊁内皮功能失调[19]㊁氧化应激及炎症[20]等㊂基于中医体质学,高血压的影响因素包括平和质㊁气虚质㊁阳虚质㊁阴虚质㊁痰湿质㊁湿热质㊁血瘀质㊁气郁质㊁特禀质,其中痰湿质㊁阴虚质和气虚质为主要影响因素㊂痰湿质是由气血津液运化失司,淤积形成痰,以浊重黏滞为主要特征的一种体质[21]㊂痰湿既是高血压的病理产物,又是其致病因素,在高血压发生过程中发挥重要作用,是高血压的常见证型之一[22]㊂中医学认为血脂异常是 痰浊 重要的生理生化指标和物质基础㊂高脂血症是一种由脂质代谢异常引起的代谢性疾病,通常以TG㊁TC㊁LDL-C增加和/或HDL-C 降低进行判断㊂有研究表明,肾脏中脂质堆积阻碍肾素分泌,导致血压异常[23]㊂肥胖是高血压发生的重要因素,中医学认为 肥人多痰湿 ,肥胖㊁超重等因素可增加高血压发生的风险[24],长期高脂饮食导致SD大鼠内脏脂肪增加㊁平均动脉压升高,发生内皮功能障碍[25]㊂本研究结果表明,高脂饮食使SHR体质量显著增加,且SHR血压增加快且稳定,收缩压维持在167.8 mmHg以上,达到造模中血压标准;Wistar大鼠与SHR脂肪代谢方面存在着一定差异,SHR的HDL-C 水平低于Wistar大鼠(P<0.05),符合痰湿壅盛型高血压的模型要求,表明以SHR建立痰湿壅盛型高血压大鼠模型省时高效㊂目前常用高脂饮食诱导法建立痰湿壅盛型高血压大鼠模型,其中高脂配方中的脂肪主要来源为猪油[26-27],来源单一,存在一定的局限性;应用高脂高糖配方可诱导痰湿型高血压模型[28-29]㊂本研究采用3种不同的高脂饲料,其中高脂饲料2为经典肥胖高脂饲料配方,高脂饲料3为常用高脂高糖饲料配方,高脂饲料1中添加了10%蛋黄粉,导致SHR的HDL-C㊁LDL-C 水平升高,符合临床痰湿壅盛型的特点㊂说明丰富的脂肪种类诱导的动物模型更符合临床痰湿型,今后可进一步将HDL-C及LDL-C水平纳入建模评判标准㊂综上所述,本研究采用高脂饲料1(蛋黄粉10%㊁蔗糖10%㊁猪油15%㊁胆固醇1.2%㊁胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等)饲喂SHR建立了快速稳定的痰湿壅盛型高血压大鼠模型,可为今后相关疾病的作用机制解析和药物研发提供可靠的实验基础㊂参考文献:[1]JAHANDIDEH F,WU J P.Perspectives on the potential benefitsof antihypertensive peptides towards metabolic syndrome[J].International Journal of Molecular Sciences,2020,21(6):2192. [2]World Health Organization.Guideline for the pharmacologicaltreatment of hypertension in adults[EB/OL].(2021-08-24)[2022-10-21].https://www.who.int/publications/i/item/9789240033986.[3]中国高血压管理指南编写组,中国高血压联盟,中国心脏病学会,等.中国高血压防治指南(2018年修订版)[J].中国心血管杂志,2019,24(1):24-56.[4]中药新药治疗高血压病的临床研究指导原则(摘编之一)[J].中医药临床杂志,2007,19(2):118-119.[5]周明超,王清海.脉胀病辨证分型规律的文献研究[J].中华中医药杂志,2017,32(8):3511-3514.[6]柳亚平,潘桂娟.‘景岳全书“痰证诊治研讨[J].中华中医药杂志,2007,22(7):427-429.[7]BASTING T,LAZARTIGUES E.DOCA-salt hypertension:anupdate[J].Current Hypertension Reports,2017,19(4):32. [8]LEO M D,KANDASAMY K,SUBRAMANI J,et al.Involvement ofinducible nitric oxide synthase and dimethyl argininedimethylaminohydrolase in Nω-nitro-L-arginine methyl ester(L-NAME)-induced hypertension[J].Cardiovascular Pathology,2015,24(1):49-55.[9]CAO X,LUO T,LUO X,et al.Resveratrol prevents AngⅡ-inducedhypertension via AMPK activation and RhoA/ROCK suppressionin mice[J].Hypertension Research,2014,37(9):803-810. [10]原卫清,王颢,吕卓人. 一肾一夹 高血压大鼠动脉平滑肌细胞钠泵α亚单位的基因表达[J].高血压杂志,2001,9(2):140-142. [11]傅辰生,刘春凤,徐少伟,等.罗格列酮对两肾一夹高血压大鼠的降压作用[J].复旦学报(医学版),2006,33(6):807-809;818. [12]周四桂,高洁,符佳佳,等.两肾两夹高血压与自发性高血压大鼠左心室肥厚的比较[J].蛇志,2008,20(2):94-98.[13]陈腾蛟,徐男.自发性高血压痰湿壅盛型大鼠动物模型的构建和分析评价[J].药学研究,2015,34(9):503-506.[14]杨红,金艳蓉,杨海燕.高血压病血脂异常与辨证分型的关系[J].疑难病杂志,2002,1(4):221-222.[15]CHEN W H,LIU T H,LIANG Q E,et al.miR-1283contributes toendoplasmic reticulum stress in the development of hypertensionthrough the activating transcription factor-4(ATF4)/C/EBP-homologous protein(CHOP)signaling pathway[J].MedicalScience Monitor,2021,27:e930552.[16]TIAN Z M,LIANG M Y.Renal metabolism and hypertension[J].Nature Communications,2021,12:963.[17]SERAVALLE G,GRASSI G.Obesity and hypertension[J].Pharmacological Research,2017,122:1-7.[18]CHEUNG B M Y,LI C.Diabetes and hypertension:is there acommon metabolic pathway?[J].Current AtherosclerosisReports,2012,14(2):160-166.[19]KONUKOGLU D,UZUN H.Endothelial dysfunction andhypertension[M]//Advances in Experimental Medicine andBiology.Cham:Springer International Publishing,2016:511-540.[20]DINH Q N,DRUMMOND G R,SOBEY C G,et al.Roles ofinflammation,oxidative stress,and vascular dysfunction inhypertension[J].Bio Med Research International,2014,2014:406960.[21]王琦,叶加农,朱燕波,等.中医痰湿体质的判定标准研究[J].中华中医药杂志,2006,21(2):73-75.[22]丛德毓.痰湿质与高血压病形成的相关性研究[J].长春中医药大学学报,2012,28(1):74.[23]GAI Z B,WANG T Q,VISENTIN M,et al.Lipid accumulation andchronic kidney disease[J].Nutrients,2019,11(4):722. [24]中华医学会心血管病学分会高血压学组.肥胖相关性高血压管理的中国专家共识[J].中华心血管病杂志,2016,44(3):212-219. [25]DA SILVA A A,KUO J J,TALLAM L S,et al.Role of endothelin-1in blood pressure regulation in a rat model of visceral obesityand hypertension[J].Hypertension,2004,43(2):383-387. [26]贾磊,杨雨民,周芸慧,等.半夏白术天麻汤对痰湿壅盛型高血压大鼠血清TC㊁TG㊁LDL-C㊁HDL-C含量的影响[J].中西医结合心血管病电子杂志,2019,7(10):7-8;10.[27]徐男,时海燕,王淑玲,等.基于正交试验配合多药效指标综合评价半夏白术天麻汤治疗痰湿壅盛型高血压的有效组分配伍[J].中国实验方剂学杂志,2018,24(21):7-13.[28]何茂,许万枫,苏洁,等.复方野菊花提取物对高脂高糖饮酒致肝旺痰阻型高血压大鼠的作用研究[J].中药新药与临床药理,2019,30(2):156-161.[29]王娇,欧阳丽娟,陈慧.葛根和盐泽泻不同配伍比例对长期高糖高脂饮食致高血压大鼠的影响[J].临床合理用药杂志,2022,15(6):9-12.(收稿日期:2023-01-19)(本文编辑薛妮)。
RIC1在拟南芥根的生长发育过程中正调控生长素信号负调控ABA信号
Arabidopsis ROP-interactive CRIB motif-containing protein 1(RIC1)positively regulates auxin signalling and negatively regulates abscisic acid (ABA)signalling during root developmentYUNJUNG CHOI 1,YUREE LEE 1,SOO YOUNG KIM 3,YOUNGSOOK LEE 1,2&JAE-UNG HWANG 11POSTECH-UZH Global Research Laboratory,Division of Molecular Life Sciences,Pohang University of Science andTechnology (POSTECH),Pohang 790-784,Korea,2Division of Integrative Bioscience and Biotechnology,POSTECH,Pohang 790-784,Korea and 3Department of Molecular Biotechnology &Kumho Life Science Laboratory,College of Agriculture and Life Sciences,Chonnam National University,Gwangju 500-757,KoreaABSTRACTAuxin and abscisic acid (ABA)modulate numerous aspects of plant development together,mostly in opposite directions,suggesting that extensive crosstalk occurs between the signal-ling pathways of the two hormones.However,little is known about the nature of this crosstalk.We demonstrate that ROP-interactive CRIB motif-containing protein 1(RIC1)is involved in the interaction between auxin-and ABA-regulated root growth and lateral root formation.RIC1expression is highly induced by both hormones,and expressed in the roots of young seedlings.Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1knockout,ABA-responsive gene induction and the effect of ABA on seed germination,root growth and lateral root for-mation were potentiated.Thus,RIC1positively regulates auxin responses,but negatively regulates ABA responses.Together,our results suggest that RIC1is a component of the intricate signalling network that underlies auxin and ABA crosstalk.Key-words :hormone crosstalk;lateral root;RIC protein;root growth;ROP GTPase.INTRODUCTIONAuxin and abscisic acid (ABA)are two major plant growth regulators.In general,auxin promotes the growth of vegeta-tive tissues,whereas ABA suppresses proliferation and confers stress resistance.For example,auxin promotes lateral root initiation,whereas ABA inhibits it.Auxin opens stomata,whereas ABA closes them.Such antagonistic effects of two hormones have been reported to regulate numerous stress responses and developmental and physiological pro-cesses in the plant (Gehring,Irving &Parish 1990;Casimiro et al .2003;Tanaka et al .2006).The interaction between auxin and ABA seems to be more complex during early seedlingdevelopment and primary root elongation than later on.Although both auxin and ABA are necessary for early seed-ling development,exogenously applied ABA,which presum-ably is applied at a significantly greater concentration than the endogenous hormone,inhibits growth.Primary root elon-gation is promoted by nanomolar amounts of both auxin and ABA (Gaither,Lutz &Forrence 1975;Mulkey,Kuzmanoff &Evans 1982),but is inhibited by higher concentrations of these hormones (Pilet &Chanson 1981;Mulkey et al .1982;Eliasson,Bertell &Bolander 1989).The observation that the two hormones function together to regulate many responses indicates that the signalling pathways that transduce the primary hormonal signals to downstream responses may intersect at specific points and/or involve common players.Indeed,the expression of ABA INSENSITIVE 3(ABI3)is activated by both auxin and ABA,and ABI3functions as a positive regulator of ABA-mediated inhibition of seed ger-mination and as a negative regulator of auxin-mediated lateral root formation and ABA-mediated inhibition of primary root growth (Brady et al .2003;Zhang,Garreton &Chua 2005).Given the vast array of responses of plants to auxin and ABA,one would expect that many such points of crosstalk exist;however,this aspect of auxin and ABA signal transduction remains largely unexplored.Rho family GTPases act as molecular switches that mediate diverse cellular responses to multiple extracellular signal including hormones (Bos 2000).ROP (Rho of plants;also called RAC)GTPases represent the sole Rho family of Ras-related G proteins in plants (Yang 2002),and the model plant Arabidopsis contains 11ROP GTPases in its genome (Bischoff et al .1999;Winge et al .2000;Zheng &Yang 2000).Several studies have reported that ROP GTPases play impor-tant roles in auxin-and ABA-related responses (Lemichez et al .2001;Tao,Cheung &Wu 2002;Zheng et al .2002;Bloch et al .2005;Tao et al .2005).Auxin treatment increases the amount of activated ROP GTPase in tobacco (Tao et al .2002)and Arabidopsis (Xu et al .2010;Lin et al .2012)seed-lings.Overexpression of wild-type or constitutively active forms of ROP GTPases stimulates auxin-related phenotypes and auxin-responsive gene expression in Arabidopsis and tobacco (Li et al .2001;Tao et al .2002,2005).Activated ROP GTPases promote the 26S proteasome-dependentCorrespondence:Y.Lee.Fax:+82542792199;e-mail:ylee@postech.ac.kr;J-U.Hwang.Fax:+82542792199;e-mail:thecute@postech.ac.krY.L.and J-U.H.contributed equally to the manuscript.Plant,Cell and Environment (2013)36,945–955doi:10.1111/pce.12028©2012Blackwell Publishing Ltd945degradation of auxin/indole-3-acetic acid(AUX/IAA)pro-teins in tobacco and Arabidopsis(Tao et al.2005).ROP GTPase mutations cause defects in auxin-dependent cell expansion(Fu et al.2005,2009;Xu et al.2010).In contrast to the positive role of ROP GTPases in the auxin response, ROP GTPases appear to be negative regulators of ABA responses.ABA treatment reduces the amount of activated ROP GTPase in Arabidopsis suspension cells and seedlings (Lemichez et al.2001).Expression of constitutively active forms of Arabidopsis ROP2and ROP6reduces sensitivity to ABA during seed germination(Li et al.2001)and stomatal closing(Lemichez et al.2001;Hwang et al.2011).The obser-vation that an Arabidopsis mutant that lacks ROP10expres-sion is hypersensitive to ABA,and that ROP10expression is suppressed by ABA,suggests the existence of an interesting feedback regulation loop in the ABA signalling pathway (Zheng et al.2002).RICs(ROP-interactive CRIB motif-containing proteins) are a unique group of interacting partners of activated ROP GTPases.RIC proteins interact with multiple ROP GTPases via their conserved CRIB motif,and link ROP proteins to diverse target molecules that bind to their variable domains (Yang2002).The11RIC genes present in Arabidopsis are categorized into four phylogenetic groups(Wu et al.2001;Gu et al.2005).However,knowledge on RIC functions is limited; RIC3and RIC4have been shown to regulate[Ca2+]cyt and F-actin dynamics during the polar growth of pollen tubes (Wu et al.2001;Gu et al.2005).RIC7is reported to interact with active ROP2in stomatal guard cells and to suppress light-induced stomatal opening(Jeon et al.2008).In epider-mal cells of the leaf and hypocotyl,RIC1suppresses aniso-tropic cell expansion by regulating microtubule(MT) dynamics(Fu et al.2005,2009;Xu et al.2010).RIC1is expressed in a broad range of tissues(Wu et al. 2001).However,the function of RIC1has been analysed mostly in the development of leaf pavement cells(Fu et al. 2005).In this cell type,RIC1is associated with MTs and regulates their assembly.In the lobe-forming regions of pave-ment cells,RIC1is inactivated by active ROP2,which sup-presses MT assembly,but promotesfine F-actin assembly and thereby induces outgrowth of the region.In contrast,in the neck-forming regions of pavement cells,RIC1is activated by active ROP6and then promotes the assembly of MTs,which limits the expansion of the region and results in the forma-tion of a narrow neck.The cortical MTs in the leaf pavement cells of ric1mutants are randomly organized,resulting in pavement cells with wider necks.This ROP6-RIC1-MT sig-nalling pathway seems to function in both hypocotyl elonga-tion and leaf epidermal cell development(Fu et al.2005, 2009).In pollen tubes,however,RIC1is localized to the apical plasma membrane,where MTs are absent,and over-expression of RIC1suppresses the depolarized tube growth induced by ROP1overexpression(Wu et al.2001).Given its broad expression pattern,RIC1may mediate diverse pro-cesses in the growth and development of plants,which have yet to be elucidated.In this work,we established that RIC1positively regulates the auxin effect and negatively regulates the ABA effect during root growth and lateral root development.These results will advance our current limited understanding on the mode of action of RIC1protein during regulation of plant development by auxin and ABA.MATERIALS AND METHODSPlant materials and growth conditionsSeeds of wild-type,ric1,and ric1/RIC1p:GFP:RIC1Arabi-dopsis thaliana plants(ecotype Ws)were surface sterilized, placed at4°C in the dark for2d,and then sown in half-strength Murashige and Skoog(MS)agar medium.Arabi-dopsis seedlings were grown in a growth chamber with a16h light/8h dark cycle at22°C.Isolation of the RIC1knockout mutantsSeeds of T-DNA insertion mutant for RIC1(ric1; FLAG_075E05)were obtained from Institut National de la Recherche Agronomique(INRA)-Versailles Genomic Resource Center(http://www-ijpb.versailles.inra.fr/en/cra/ cra_accueil.htm).Reverse transcriptase(RT)-PCR analysis using gene-specific primers confirmed that this is a null mutant.Primer information used for RT-PCR is available in Supporting Information Table S1.Complementation of ric1with RIC1p:GFP:RIC1For the ric1complementation assay,the RIC1promoter region(~2kb)and the RIC1open reading frame were indi-vidually obtained by PCR amplification.These genomic DNA fragments and GFP coding sequence were sequentially cloned into a pCR®8/GW/TOPO®vector(Invitrogen,Carls-bad,CA,USA),and then transferred into a pMDC100 gateway vector(Curtis&Grossniklaus2003).The RIC1p:GFP:RIC1construct was transformed into ric1plants by the Agrobacterium-mediatedfloral dipping method (Clough&Bent1998).The phenotypes of the T3seedlings of homozygous ric1/RIC1p:GFP:RIC1lines were observed. RIC1p:GUS expression assayThe genomic DNA fragment containing the promoter region (~2kb)andfirst exon of RIC1was amplified by PCR and fused to the GUS-coding region of the pMDC164vector (RIC1p:GUS).The RIC1p:GUS construct was transformed into wild-type Arabidopsis plants using the Agrobacterium-mediatedfloral dipping method(Clough&Bent1998). RIC1p:GUS expression was observed in T3plants from six independently transformed lines.Briefly,the seedlings of RIC1p:GUS were incubated in GUS staining buffer[100m m Na2HPO4(pH7.2),3m m potassium ferricyanide,3m m potas-sium ferrocyanide,10m m ethylenediaminetetraacetic acid (EDTA),0.1%Triton X-100,and2m m5-bromo-4-chloro-3-indolyl-b-D-glucuronide(Duchefa,Haarlem,The Nether-lands)]at37°C for12h.Chlorophyll was extracted in70% ethanol solution.946Y.Choi et al.©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–955Observation of the cellular localizationof GFP:RIC1Wild-type Arabidopsis plants were stably transformed with a GFP:RIC1construct under the control of CaMV35S pro-moter.In multiple independently transformed lines of Arabidopsis,the subcellular localization of GFP:RIC1was observed by using a Zeiss LSM510Meta Laser scanning microscope(Zeiss,/).To investigate the effects of auxin and ABA on the cellular localization of RIC1,7-day-old seedlings that stably express GFP:RIC1 were incubated in half-strength MS medium containing1m m auxin[naphthalene-1-acetic acid(NAA)]or10m m ABA for1h.Quantification of RIC and ABA-orauxin-responsive gene transcript levelsQuantitative real-time RT-PCR(Q-PCR)was used to quan-tify transcript levels of RIC genes,ABA-responsive genes and auxin-responsive genes.Total RNA was extracted from each sample and then reverse transcribed into cDNA. Q-PCR was carried out using a Takara TP800thermal cycler and Takara SYBR RT-PCR Kit(Takara Bio,Kyoto,Japan), following the manufacturer’s instructions.Transcript levels of RIC s,ABA-responsive genes and auxin-responsive genes were normalized against that of tubulin8. Measurement of lateral root formation and primary root growthTo examine the effects of ABA or auxin on lateral root formation and primary root growth,Arabidopsis seedlings were grown for4d under a16h photoperiod and then trans-ferred to fresh half-strength MS agar plates supplemented with the indicated concentrations of ABA or auxin.After an additional5–7d,the net elongation of primary roots was measured and the number of lateral roots was counted using a stereo microscope(Olympus SZX12,Tokyo,Japan). Seed germination assayFor germination assays,the seeds were placed in the dark at 4°C for2d and then sown on MS medium agar plates con-taining1%sucrose in the presence or absence of0–1.5m m concentrations of ABA.The seeds were incubated under a 16h photoperiod at22°C.Germinated seeds(as determined by cotyledon greening or radicle emergence)were scored every12h for6d.Germination ratio refers to the number of germinated seeds as a proportion of the total number of seeds tested.RESULTSRIC1expression is induced by both auxinand ABAMembers of the ROP small GTPase family are reported to mediate ABA and auxin responses(Li et al.2001;Zheng et al.2002;Tao et al.2005).We hypothesized that RIC proteins might serve an important intermediary in the ROP-mediated ABA and auxin signalling pathways.If this hypothesis was true,then the level of the RIC proteins may be substantially regulated by ABA and auxin.Thus,we tested the effect of auxin and ABA on the expression of10out of the11Arabi-dopsis RIC genes(Fig.1).Arabidopsis seedlings were grown on half-strength MS medium for7d and then treated with 1m m NAA or10m m ABA for1h.Total RNA was isolated from these seedlings and RIC gene transcript levels were examined using quantitative real-time PCR(Q-PCR).Upon NAA and ABA treatment,the transcript level of many RIC s (RIC2,3,4,5,7,9and11)increased,but the increase in RIC1 was the highest.Therefore,we chose to focus our analysis on RIC1.Loss of RIC1expression alters gene induction by auxin and ABAAuxin and ABA induce the expression of sets of genes, which are known as auxin-responsive and ABA-responsive genes,respectively(Brady et al.2003;Zhang et al.2005;Li et al.2009).To examine the involvement of RIC1in auxin and ABA signal transduction,we evaluated the effect of RIC1knockout(ric1)on the expression levels of typical auxin-and ABA-responsive genes.ric1,a T-DNA insertion mutant(Stock No.FLAG_075E05),was obtained from INRA-Versailles Genomic Resource Center(http://www-ijpb.versailles.inra.fr/en/cra/cra_accueil.htm).RT-PCR analy-sis confirmed that the T-DNA insertion into the fourth exon completely blocked the expression of RIC1in ric1(Fig.2a). The small auxin-up RNAs(SAURs)encode short tran-scripts that accumulate rapidly upon auxin treatment(Li et al.2009).IAA6and IAA19are members of INDOLE-3-ACETIC ACID/AUXIN(IAA/AUX)genes andtheir Figure1.Expression of RIC genes were induced by auxin and abscisic acid(ABA).Seven-day-old Arabidopsis seedlings were treated without or with1m m auxin[naphthalene-1-acetic acid (NAA)]or10m m ABA for1h,and total RNA was isolated from seedlings for Q-PCR analysis.The transcript levels of RIC genes were normalized against the transcript level of Tubulin8,which served as the internal control,and are presented as values relative to the untreated control.Data are meansϮSEM of three to eight biological replicates.Asterisks indicate values that are statistically significantly different from the untreated control(***P<0.005;**P<0.001;*P<0.05).RIC1regulates root development947©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–955948Y.Choi et al.©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–955expressions are induced by auxin(Abel,Nguyen&Theologis 1995;Tatematsu et al.2004).Using Q-PCR analysis,we com-pared the transcript levels of SAUR and IAA genes in ric1 seedlings with those in wild-type seedlings(Fig.2b).Under control conditions without NAA treatment,the transcript levels of these genes in ric1seedlings were similar to or slightly higher than those in wild-type seedlings(Fig.2b).In 7-day-old wild-type seedlings,treatment with1m m NAA for 1h induced a two-to fourfold increase in SAUR gene expres-sion(Fig.2b).Interestingly,however,the induction of SAUR genes by1m m NAA was suppressed in ric1seedlings (Fig.2b);SAUR9transcript level increased3.3Ϯ0.1-fold in the wild type,but1.7Ϯ0.1-fold in ric1(t-test,P<0.005); SAUR15transcript level increased3.9Ϯ0.6-fold in the wild type,but1.8Ϯ0.2-fold in ric1(t-test,P<0.01);SAUR23 transcript level increased3.0Ϯ0.3-fold in the wild type,but 1.4Ϯ0.2-fold in ric1(t-test,P<0.005);SAUR62transcript level increased2.5Ϯ0.2-fold in the wild type but1.4Ϯ0.2-fold in ric1(t-test,P<0.001);and SAUR66transcript level increased3.9Ϯ0.4-fold in the wild type,but1.7Ϯ0.2-fold in ric1(t-test,P<0.001).Similarly,induction of IAA6and IAA19upon NAA treatment was suppressed by ric1(Fig.2b bottom panel),whereas the transcript level of IAA6 increased21.9Ϯ1.3-fold in the wild type,but only11.3Ϯ0.2-fold in ric1(P<0.05),and the transcript level of IAA19 increased27.1Ϯ3.3-fold in the wild type,but only13.1Ϯ1.9-fold in ric1(P<0.05).These results indicate that RIC1is involved in the control of the auxin signalling pathway.ABI3,ABI5,responsive to ABA18(RAB18),and respon-sive to dehydration29A(RD29A)and29B(RD29B)are well-characterized ABA-responsive genes that play critical roles in ABA signalling(Parcy et al.1994;Finkelstein& Lynch2000;Lopez-Molina&Chua2000;Hoth et al.2002; Kang et al.2010).To analyse the involvement of RIC1in ABA signalling,we gauged the effects of ABA on expres-sions of these genes in the roots of wild-type and ric1seed-lings(Fig.2c).Seven-day-old seedlings were incubated in half-strength liquid MS medium in the presence or absence of0.5m m ABA for1h.Under control conditions(i.e.in the absence of ABA),transcript levels of ABI3,ABI5,RD29A, RD29B and RAB18were slightly higher in ric1seedlings than in wild-type seedlings,and this difference was further increased after ABA treatment(Fig.2c).Upon ABA treat-ment,ric1seedlings exhibited much higher transcript levels of thosefive ABA-responsive genes,compared with wild-type seedlings(Fig.2c);ABI3transcript level increased 2.4Ϯ0.5-fold in the wild type,but 5.5Ϯ0.9-fold in ric1 (P<0.01);ABI5transcript level increased5.9Ϯ0.4-fold in the wild type,but12.9Ϯ1.9in ric1(P<0.005);RD29A tran-script level increased12.3Ϯ3.9-fold in the wild type,but 17.4Ϯ6.6-fold in ric1(P<0.06);RD29B transcript level increased5.5Ϯ1.2-fold in the wild type,but10.9Ϯ0.8-fold in ric1(P<0.05);and RAB18transcript level increased 4.6Ϯ1.1-fold in the wild type,but8.0Ϯ1.3-fold in ric1 (P<0.01).In summary,RIC1knockout suppressed the induction of auxin-responsive genes by auxin,but promoted the induction of ABA-responsive genes by ABA.These results suggest that RIC1exerts opposite regulatory functions in the auxin and ABA signalling pathways.RIC1is expressed in the roots ofyoung seedlingsTo identify which auxin-and ABA-mediated processes are regulated by RIC1,wefirst determined the tissue-specific and developmental stage-specific expression of RIC1.The genomic DNA region containing the RIC1promoter(~2kb) and thefirst exon was fused to the GUS-coding region (RIC1p:GUS),and introduced into wild-type plants. RIC1p:GUS expression was observed in T3seeds and seed-lings from six independently transformed Arabidopsis lines (Fig.3a,b).In germinating seeds and young seedlings,the RIC1p:GUS signal was evident in roots.In germinating seeds,RIC1p:GUS signal was limited to the embryonic root tip(Fig.3a,left),and in seedlings at1–3d after sowing,RIC1p:GUS extended the expression to other parts of root including differentiation zone,root hairs and root–shoot junction(Fig.3a,right).In the roots of2-week-old plants,RIC1p:GUS signal was detected in root tips and also in maturation zone,where lateral roots grow out(Fig.3b).RIC1p:GUS signal was strongly detected in columella cells from the root tip, (Fig.3b-d).In maturation zone of root,cells surrounding emerged lateral root(Fig.3b-b)and epidermal cells at the base of lateral roots(Fig.3b-c)showed clear RIC1p:GUS signals.These RIC1expression patterns indicate that RIC1is likely to be involved in the regulation of seed germination, early seedling development and root development.In addition to being expressed in the roots,RIC1p:GUS was also expressed in the hypocotyls,petioles,and weakly in the leaves of young seedlings(Fig.3a,b).In Arabidopsis plants of later development stages,expression of RIC1p:GUS was weak except inflowers,where RIC1expression was pre-viously reported(Wu et al.2001;Fu et al.2005,2009;Xu et al.Figure2.ric1knockout mutation altered induction of auxin-and abscisic acid(ABA)-responsive genes.(a)Schematic structure of theRIC1gene(left).The triangle indicates the T-DNA insertion site in ric1.Exons are represented as boxes and introns as lines.RT-PCR analysis using a RIC1-specific primer set(RT-F and RT-R)shows that ric1is a true null mutant(right).Tubulin8was used as an internal control.(b)Expression of SAUR9,SAUR15,SAUR23,SAUR62,SAUR66,IAA6and IAA19in plants treated or not with1m m auxin [naphthalene-1-acetic acid(NAA)].(c)Expression of ABI3,ABI5,RD29A,RD29B and RAB18in plants treated or not with0.5m m ABA.Q-PCR analyses of transcripts of auxin-and ABA-responsive genes were performed using total RNA isolated from the roots of8-day-old seedlings after1h of treatment without or with auxin or ABA.Data were normalized using Tubulin8as an internal control,and are presented as values relative to the untreated wild type(WT).Data are meansϮSEM of four independent experiments.Asterisks indicate values that are significantly different from those of the WT(***P<0.005;**P<0.01;*P<0.05;#P<0.06).RIC1regulates root development949©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–9552010);RIC1p:GUS signal was strongly observed in the anthers and mature pollen grains (Supporting Information Fig.S1).RIC1knockout suppresses the effect of auxin on lateral root formation and primary root elongationAs RIC1is expressed in root (Fig.3)and RIC1expression is up-regulated by auxin (Fig.1),we examined whether auxin-dependent root growth and lateral root formation were affected in the ric1mutant (Fig.4).Arabidopsis seedlings were grown on half-strength MS medium for 4d and then transferred to fresh half-strength MS medium supplemented with various concentrations (0–100n m )of NAA.After 5d,the number of lateral roots (including newly emerged ones)was counted.Auxin promoted the formation of lateral roots in different genotypes,including the wild type,ric1,and ric1/RIC1p:GFP:RIC1(complementation lines,C1and C2;Fig.4a);however,this effect was significantly less in ric1than in the wild type and complementation lines (Fig.4b).InFigure 3.RIC1expression in Arabidopsis plants.(a)One dayafter sowing (DAS),an embryo exhibited RIC1p::GUS signal at the root tip (left,indicated by arrow).Seed coat was removed after GUS staining for observation.A young seedling that had justgerminated but had not yet undergone cotyledon expansion (right;1–3DAS)exhibited relatively stronger RIC1p::GUS signal in the root tip and differentiation zone of the root including the root hairs.Bar =300m m.(b)A 2-week-old seedling displayed RIC1p::GUS signal in the root tip and maturation zone withemerged lateral roots,and,weakly,in the shoot.(b-a )Bar =1cm.(b-b ),(b-c )and (b-d )are enlarged images of maturation zone with an emerged lateral root,a lateral root with GUS staining at the base,and a root tip with GUS staining in columellacells.Figure 4.Auxin responses were reduced in ric1plants.Arabidopsis seedlings were grown vertically on half-strength Murashige and Skoog (MS)medium for 4d,transferred to fresh half-strength MS medium supplemented or not with 0–100n m auxin [naphthalene-1-acetic acid (NAA)],and grown for anadditional 5–7d.(a)Levels of RIC1transcript in wild-type (WT),ric1,and ric1/RIC1p:GFP:RIC1(lines C1and C2)plants.RIC1expression in seedlings was quantified using Q-PCR and presented values relative to that of WT.Data are means ϮSEM of four independent experiments.(b)Number of lateral roots formed in the absence or presence of NAA (means ϮSEM of 28seedlings from four independent experiments),measured 5d after transfer to medium supplemented with or without NAA.Asterisks indicate values that are significantly different from those of the WT atP <0.05.(c)Relative values of lateral root number (mean ϮSEM,n =28).Values in (b)were normalized to the values of non-treated controls.Asterisks indicate values that are significantly different from those of the WT (***P <0.005).(d)Primary root elongation in the absence or presence of NAA (means ϮSEM of 28seedlings from four independent experiments).The net primary root growth was measured 7d after transfer to medium supplemented with or without NAA.Asterisks indicate values that are significantly different from those of the WT (**P <0.05;*P <0.1).(e)Relative values of net primary root elongation (mean ϮSEM,n =28).Values in (d)were normalized to the values ofnon-treated controls.Asterisks indicate values that are significantly different from those of the WT (***P <0.005;*P <0.05).950Y.Choi et al .©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–955the absence of exogenous auxin(0n m NAA),ric1plants produced more lateral roots than did the wild type and ric1 complementation lines(n=28,N=4,P<0.05;Fig.4b). However,in the presence of auxin,lateral root number was less in ric1plants than in the wild type(Fig.4b,P<0.05). Whereas80and100n m NAA increased the number of lateral roots per unit length(cm)of primary root in wild-type seedlings to734and920%of non-treated control values, respectively,the same concentration of NAA increased this number in ric1to466and613%of control values,respec-tively(Fig.4c).This alteration in lateral root formation in ric1 plants was completely reversed by the expression of RIC1 driven by its native promoter(ric1/RIC1p:GFP:RIC1).In two independent ric1/RIC1p:GFP:RIC1lines(C1and C2), lateral root formation was recovered to wild-type levels both in the absence and presence of NAA(Fig.4b,c).The effect of RIC1knockout on primary root elongation was also examined(Fig.4d,e).Seven days after transfer to half-strength MS medium supplemented or not with NAA, the net elongation of primary roots was measured.In medium lacking NAA,ric1mutants had reduced primary root elongation compared with wild-type plants(n=28, N=4,P<0.05);the net primary root elongation of wild-type seedlings was4.9Ϯ0.16cm,while that of ric1seedlings was 4.3Ϯ0.22cm(Fig.4d).NAA(50–100n m)inhibited primary root elongation in both ric1and wild-type seedlings (Fig.4d,e).However,ric1seedlings were less sensitive than the wild type to NAA(n=28,N=4,P<0.1);whereas100n m NAA reduced primary root elongation in wild-type seedlings by34.4%(to3.2Ϯ0.16cm),it inhibited that in ric1seedlings by only19.4%(to3.5Ϯ0.13cm).Primary root elongation in the complementation lines(C1and C2)was similar to that in the wild type,in both the absence and presence of NAA (Fig.4d,e).These results suggest that RIC1participates in auxin-regulated lateral root development and primary root elongation.RIC1knockout enhances the effect of ABA on seed germination,lateral root formation and primary root elongationWe then tested whether RIC1knockout also altered the plant’s response to ABA by comparing seed germination and root development in ric1and wild-type plants treated with ABA(Figs5&6).Seeds were sown on half-strength MS medium after2d of stratification.In the presence of0.5m m ABA,seed germination,as gauged by cotyledon greening, was delayed to a greater extent in ric1than in wild-type seeds (Fig.5a,b);whereas only25%of ric1seedlings exhibited cotyledon greening84h after sowing,66%of wild-type seed-lings exhibited greening(Fig.5b).Similar enhanced sensitiv-ity to ABA in inhibition of seed germination was observed when germination rate was analysed based on radicle emer-gence(Supporting Information Fig.S2).Seed germination rates in the ric1/RIC1p:GFP:RIC1lines were restored to wild-type levels in the presence of0.5m m ABA,confirming that loss of RIC1expression was responsible for the enhanced suppression of seed germination by ABA(Fig.5b).The delayed germination of ric1seeds in the presence of ABA was not due to a defect in seed development,because the germination rate of ric1seeds in the absence of ABA was not significantly different from that of wild type(Fig.5c and Supporting Information Fig.S2b).ABA was reported to inhibit root elongation and lateral root development(Pilet&Chanson1981).We compared primary root elongation and lateral root number in ric1and wild-type plants in the presence and absence ofexogenous Figure5.Inhibition of seed germination by abscisic acid(ABA) was enhanced in the ric1mutant.(a)Representative photographs showing young seedlings of wild type(WT),ric1,and the tworic1/RIC1p:GFP:RIC1lines(C1and C2)in the presence of0.5m m ABA(taken96h after sowing).(b)Seed germination rate in the presence of0.5m m ABA,measured as a percentage of seedlings with green cotyledons at the indicated time points after sowing on half-strength Murashige and Skoog(MS)medium supplemented with ABA.Data are meansϮSEM of three independent experiments.(c)Seed germination rate in the absence of ABA. There was no significant difference between genotypes.RIC1regulates root development951©2012Blackwell Publishing Ltd,Plant,Cell and Environment,36,945–955。
阿昔洛韦联合人干扰素α2b凝胶治疗带状疱疹的应用及临床效果探讨
DOI:10.19368/ki.2096-1782.2023.24.136阿昔洛韦联合人干扰素α2b凝胶治疗带状疱疹的应用及临床效果探讨韦珠荣南宁市第八人民医院皮肤性病科,广西南宁530000[摘要]目的分析采用阿昔洛韦联合人干扰素α2b凝胶治疗带状疱疹的临床效果和价值。
方法选择2021年3月—2023年3月南宁市第八人民医院收治的80例带状疱疹患者为研究对象,按照信封法分为对照组和研究组,各40例。
对照组采用阿昔洛韦+炉甘石洗剂治疗,研究组为阿昔洛韦+人干扰素α2b凝胶治疗。
评价两组患者的治疗效果,并对比两组临床指标、血清炎症因子水平和安全性。
结果研究组治疗总有效率为97.50%,高于对照组85.00%,差异有统计学意义(χ2=3.914,P<0.05)。
治疗后,研究组临床各项起效时间指标均短于对照组,差异有统计学意义(P均<0.05)。
研究组各项血清炎症因子指标表达均优于对照组,差异有统计学意义(P均<0.05)。
两组不良反应均较为轻微,差异无统计学意义(P>0.05)。
结论阿昔洛韦联合人干扰素α2b凝胶治疗带状疱疹疗效确切、优越,联合应用可缩短疗程、病程,有助于抑制机体炎症反应,安全可靠。
[关键词]阿昔洛韦;人干扰素α2b凝胶;带状疱疹;治疗效果[中图分类号]R752 [文献标识码]A [文章编号]2096-1782(2023)12(b)-0136-04Application of Acyclovir Combined with Human Interferon α2b Gel in the Treatment of Herpes Zoster and Exploration of Clinical EffectivenessWEI ZhurongDepartment of Dermatologic Diseases, Nanning Eighth People's Hospital, Nanning, Guangxi Zhuang Autonomous Re⁃gion, 530000 China[Abstract] Objective To analyze the clinical effect and value of herpes zoster treated with acyclovir combined with human interferon α2b gel. Methods 80 patients with herpes zoster admitted to the Nanning Eighth People's Hospital from March 2021 to March 2023 were selected as the research subjects. They were divided into a control group and a study group using envelope method, with 40 cases in each group. The control group was treated with acyclovir+cala⁃mine lotion, and the study group was treated with acyclovir+human interferon α2b gel. The therapeutic effect of two groups of patients, and compare the clinical indexes, serum inflammatory factor levels, and safety between the two groups were evaluated. Results The total effective rate of treatment in the study group was 97.50%, which was higher than the control group's 85.00%, and the difference was statistically significant (χ2=3.914, P<0.05). After treatment, the clinical onset time indicators of the study group were shorter than those of the control group, and the differences were statistically significant (all P<0.05). The expression of all serum inflammatory factor indicators in the study group were better than that those in the control group, and the differences were statistically significant (all P<0.05). The adverse reactions in both groups were relatively mild, and the difference was not statistically significant (P> 0.05). Conclusion Acyclovir combined with human interferon α2b gel has exact and superior efficacy in the treat⁃ment of herpes zoster, and the combined application can shorten the course of treatment and the duration of the dis⁃ease, and help to inhibit the inflammatory response of the body, which is safe and reliable.[Key words] Acyclovir; Human interferon α2b gel; Herpes zoster; Therapeutic effect[作者简介] 韦珠荣(1970-),女,瑶族,本科,副主任医师,研究方向为皮肤病与性病、皮肤美容。
遗传学名词解释(中英对照版)
遗传学名词解释(中英对照版)abortive transduction 流产转导:转导的DNA片段末端掺入到受体的染色体中,在后代中丢失。
acentric chromosome 端着丝粒染色体:染色体的着丝粒在最末端。
Achondroplasia 软骨发育不全:人类的一种常染色体显性遗传病,表型为四肢粗短,鞍鼻,腰椎前凸。
acrocetric chromosome 近端着丝粒染色体:着丝粒位于染色体末端附近。
active site 活性位点:蛋白质结构中具有生物活性的结构域。
adapation 适应:在进化中一些生物的可遗传性状发生改变,使其在一定的环境能更好地生存和繁殖。
adenine 腺嘌呤:在DNA中和胸腺嘧啶配对的碱基。
albino 白化体:一种常染色体隐性遗传突变。
动物或人的皮肤及毛发呈白色,主要因为在黑色素合成过程中,控制合成酪氨酸酶的基因发生突变所致。
allele 等位基因:一个座位上的基因所具有的几种不同形式之一。
allelic frequencies (one frequencies)在群体中存在于所有个体中某一个座位上等位基因的频率。
allelic exclusion 等位排斥:杂合状态的免疫球蛋白基因座位中,只有一个基因因重排而得以表达,其等位基因不再重排而无活性。
allopolyploicly 异源多倍体:多倍体的生物中有一套或多套染色体来源于不同物种。
Ames test 埃姆斯测验法:Bruce Ames 于1970年人用鼠伤寒沙门氏菌(大鼠)肝微粒体法来检测某些物质是否有诱变作用。
amino acids 氨基酸:是构成蛋白质的基本单位,自然界中存在20种不同的氨基酸。
aminoacyl-tRNA 氨基酰- tRNA:tRNA的氨基臂上结合有相应的氨基酸,并将氨基酸运转到核糖体上合成蛋白质。
aminoacyl-tRNA synthetase 氨基酰- tRNA合成酶:催化一个特定的tRNA结合到相应的tRNA分子上。
分子生物学常见名词解释(中英文对照)
分子生物学常见名词解释(中英文对照)分子生物学重要概念AAbundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。
Abundant mRNA(高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。
Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。
Acentric fragment(无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而在细胞分化中被丢失。
Active site(活性位点):蛋白质上一个底物结合的有限区域。
Allele(等位基因):在染色体上占据给定位点基因的不同形式。
Allelic exclusion(等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码的免疫球蛋白质。
Allosteric control(别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能力。
Alu-equivalent family(Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu家族相关。
Alu family (Alu家族):人类基因组中一系列分散的相关序列,每个约300bp长。
每个成员其两端有Alu 切割位点(名字的由来)。
α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA聚合酶,特别是聚合酶II 转录。
Amber codon (琥珀密码子):核苷酸三联体UAG,引起蛋白质合成终止的三个密码子之一。
Amber mutation (琥珀突变):指代表蛋白质中氨基酸密码子占据的位点上突变成琥珀密码子的任何DNA 改变。
Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反密码子被改变,从而能识别UAG 密码子和之前的密码子。
Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2基团和tRNA 终止碱基的3¢或者2¢-OH 基团上。
胃泌素释放肽前体在小细胞肺癌诊断及治疗中应用探讨
Journal of Mathematical Medicine Vol.34No.32021文章编号:1004-4337(2021)03-0328-03中图分类号:R7342文献标识码:A•临床科研分析•胃泌素释放肽前体在小细胞肺癌诊断及治疗中应用探讨卢佳荣(汕头市澄海区人民医院汕头515800)摘要:目的:探究胃泌素释放肽前体在小细胞肺癌诊断及治疗中应用。
方法:选取2018年12月〜2019年11月某院收治的小细胞肺癌和非小细胞肺癌患者各65例,分为小细胞肺癌患者组和非小细胞肺癌患者组。
结果:小细胞肺癌组的Pr()GRP(胃泌素释放肽前体)CEA(癌胚抗原)以及NSE(神经元特异度烯醇化酶)等血清指标高于非小细胞肺癌组(P<0.05)且小细胞肺癌组的CY-FRA21-1(细胞角蛋白片段浓度)等血清指标明显低于非小细胞肺癌组(P<0.05);小细胞肺癌组中,Pr()GRP的敏感度和特异度均高于CEA、NSE和CYFRA2-1等血清指标(P<0.05)结论:PoGRP可以为小细胞肺癌的临床诊断和治疗提供依据,值得推广。
关键词:胃泌素释放肽前体;小细胞肺癌;诊断;治疗doi:10.3969/j.issn.1004-4337.2021.03.005现阶段我国空气污染问题日益加重,肺癌患者的数量正在逐年增加,成为恶性肿瘤中的首位。
肺癌在临床上按照性质分为小细胞肺癌(SCLC)以及非小细胞肺癌(NSCLC),小细胞肺癌在肺癌患者数量中占有1/4,属于一类恶化度高,具有较快的侵袭性生长,极易形成具备广泛性坏死以及淋巴结转移等特征的恶性肿瘤。
经临床实践可知,大多数患者在诊断和治疗时已经为晚期,预后水平比较低,具有极低的5年生存率。
对两者进行明确区分是十分必要的,胃泌素释放肽前体(PoGRP)是现阶段应用的肿瘤标记物本文研究胃泌素释放肽前体在小细胞肺癌诊断及治疗中应用,现报告如下。
1资料与方法1.1一般资料选取2018年12月〜2019年11月我院收治的小细胞肺癌和非小细胞肺癌患者各65例,主要分为小细胞肺癌患者组和非小细胞肺癌患者组。
遗传学名词解释(英文)
细菌遗传合成代谢功能的突变型(anabotic function mutants)合成代谢功能(anabolic functions):野生型(wild type)在基本培养基上具有合成和生长所必需的有机物的功能营养缺陷型(auxotroph):野生型品系的任何一个基因突变,都不能进行一个特定的生化反应,从而阻碍整个合成代谢功能的实现分解代谢功能的突变型(catabolic functional mutation分解代谢功能(catabolic function):指野生型E coli能利用比葡萄糖复杂的不同碳源,转化成葡萄糖或其他简单的糖类,也能把复杂的氨基酸或脂肪分子降解成乙酸或三羧酸循环的中间产物的功能抗性突变型细菌由于某基因的突变而对某些噬菌体或抗菌素产生抗性(resistant),从而使其不能吸附或吸附在这种突变细菌上的能力降低conjugation (接合生殖)F因子又称性因子或致育因子(sex or fertility factor),它是能独立增殖的环状DNA分子F+细菌丢失F因子,成为F-细菌(acriflavine处理)F-受体细胞只接受部分的供体染色体,这样的细胞称为部分二倍体(partial diploid)或半合子(merozygote)内基因子(endogenote)和外基因子(exogenote)重组作图(recombination mapping)是根据基因间重组率进行基因定位末端(outside marker),受体部位(recept site):外源DNA片段进入受体细菌形成临时性通道的特定区域感受态细胞(receptor site):能接受外源DNA分子并被转化的细菌细胞感受态因子(competence factor):促进转化作用的酶或蛋白质分子噬菌体所携带供体(细菌)染色体片段是完全随机的,即供体基因组中所有基因具有同等机会被转导形成部分二倍体,经交换和重组后,形成转导频率大致相等的不同转导子,这种转导称为普遍性转导(general transduction)共转导或并发转导(cotransduction):指两个基因同时转导的现象,如果两个基因共转导的频率愈高,表明两个基因连锁愈紧密,相反共转导频率愈低,则表明两个基因距离愈远双因子转导(two-factor transduction)实验:就是每次观察两个基因的转导,通过每两个基因的共转导频率确定这些基因在染色体上的顺序溶菌酶(lysozyme)原噬菌体(prophage)或原病毒(provirus):是指整合到宿主染色体中的噬菌体基因组溶源性(lysogeny):有些细菌带有某种噬菌体,但并不立即导致溶菌,这种现象称为溶源性;这种细菌称为溶源性细菌或溶源菌(lysogenic bacterium),此过程称为溶源周期裂解途径:裂解周期(lytic cycle)溶源途径:溶源周期(lysogenic cycle)条件致死突变型。
【高中生物】Nature:蛋白表达,过犹不及
【高中生物】Nature:蛋白表达,过犹不及摘要:许多生物学过程都符合儒家“过犹不及”的规律:增之一分太多,减之一分太少,恰如其分刚刚好。
近日来自麻省理工学院的神经科学家们发现两种罕见的自闭症相关疾病是由大脑中的同一种神经传导受体mglur5以两种相反的机制引起。
这一研究发现在线发表在11月23日的《自然》(nature)杂志上。
生物通报导许多生物学过程都合乎儒家“过犹不及”的规律:减之一分太多,减至之一分太太少,恰如其分刚刚好。
近日源自麻省理工学院的神经科学家们辨认出两种少见的自闭症有关疾病就是由大脑中的同一种神经传导受体mglur5以两种恰好相反的机制引发。
这一研究辨认出在线刊登在11月23日的《自然》(nature)杂志上。
众所周知脆性x综合症(fragilexsyndrome)是由单个基因fmr1的突变引起的,当fmr1基因发生突变时会阻碍其编码蛋白fmrp表达,导致大脑中fmrp缺失。
几年前,麻省理工学院的神经学教授markbear发现在正常情况下fmrp蛋白可以控制或阻断大脑细胞中mglur5激活的信号途径。
fmrp缺失时,mglur5信号过度激活,促发过量突触蛋白合成,从而导致大脑神经元联系异常以及与脆性x综合症相关的行为及认知障碍。
mglur5就是一种在传输神经元之间信号上起至关键促进作用的受体。
当神经元前细胞放出神经递质,它将与神经元后神经元mglur5融合,引爆崭新突触蛋白的制备。
fmrp在这一过程中起至着蛋白制备制动器的功能。
通过调节mglur5提振和fmrp遏制之间的均衡,细胞制备适度水平的突触蛋白。
当fmrp出现缺位时,则可以引致过量分解成突触蛋白,引起脆性x综合症常用症状:自学障碍和自闭症犯罪行为等。
在过去的研究中,bear和其他研究人员证实切断mglur5即可爆冷小鼠的这些症状。
在确定了mglur5与脆性x综合症之间的联系后,bear和同事们开始进一步探究mglur5过度激活是否还可能引起了表现自闭症类似症状的其他单基因综合症。
Nature子刊最新研究高脂饮食自由或将实现
Nature子刊最新研究高脂饮食自由或将实现原创 Succy 国际科学最近,微博上有一个话题火了!一条“研究称高脂饮食自由或将实现”的话题受到了网友们的广泛关注。
我们都知道,蛋糕烧烤这类食物的热量究竟有多高,撇开吃一顿胖三斤不说,这些高脂食物吃多了,迟早会得高血压、高血脂、糖尿病、脂肪肝等疾病。
这些病听起来好像很正常,因为一些年纪大的长辈多多少少都有这方面的烦恼,但是,这几种疾病一旦恶化,给我们带来的伤害却几乎是难以挽救的。
因此,如果这项研究真能让大家实现高脂饮食自由,那真是太棒了!在看这项研究之前,我们先来了解一下什么是AMPK蛋白质复合物。
AMPK蛋白质复合物可以感知身体的营养并采取行动保持平衡。
例如,如果AMPK检测到葡萄糖含量低,它可以促进脂质分解以产生能量。
AMPK的活性受可逆磷酸化的严格调控,而大量脂肪的摄入会阻碍AMPK的活性,导致新陈代谢失衡。
不过,直到现在,有关脂肪如何在细胞中抑制AMPK活性的研究十分有限,尤其是在活体模型中。
为探究调控AMPK去磷酸化的蛋白质,研究人员利用 Flag 标记的AMPKα 进行了蛋白质质谱分析,发现磷酸酶PP6的调节亚基SAPS3 和PP6 的催化亚基可以与AMPK形成复合物。
PP6 的催化亚基是真核生物中最保守的蛋白质之一,没有特异性。
PP6磷酸酶的特异性调控取决于其调节SAPS3那么,含SAPS3的PP6复合物是否能响应葡萄糖匮乏的营养条件将AMPK去磷酸化呢?蛋白共表达和免疫共沉淀实验表明SAPS3/PP6复合物可在葡萄糖匮乏的条件下与磷酸化的AMPK结合,PP6催化亚基与AMPK的结合需要SAPS3的参与。
研究人员进一步在细胞和小鼠中敲除SAPS3来探索其在AMPK信号通路中的作用。
他们发现敲除SAPS3后,即便恢复葡萄糖水平,细胞也无法调控AMPK的去磷酸化。
他们还发现在小鼠中进行肝脏特异性SAPS3敲除足以阻止高脂饮食诱发的肝脂肪变性、肥胖和胰岛素抗性的发生。
遗传学中英文词汇
中英文词汇--------------------------------------------------------------------------------近端着丝粒染色体(Acrocentric chromosome)——着丝粒靠近染色体端部的染色体。
加和原则(Additivity principle)——如果两个事件相互排斥,那么获得其中一个或另一个的概率为它们的各自概率之和。
等位基因(Allele)——在一既定基因座上一个基因的替换形式。
等位基因特异性寡核苷酸(Allele-specific oligonucleotide,ASO)——设计合成的寡核苷酸,可在适当条件下与特异序列杂交而不与其相关的序列杂交。
用针对每个等位基因序列设计的ASO甚至可容易地检出单个核苷酸的变异。
在几种设计相似、用来区分密切相关等位基因的方法中,ASO还可用作PCR引物。
等位基因异质性(Allelic heterogeneity)——在同一遗传基因座上,由不同的突变等位基因引起的相同或相似的表型。
α1-抗胰蛋白酶(α1-Antitrypsin)——是抑制弹性蛋白酶活性的一种丝氨酸蛋白酶抑制剂,该抑制剂的缺乏(如α1-抗胰蛋白酶不足)将导致严重的慢性肺和肝脏疾病。
Alu重复序列(Alu repetitive sequence)——位于基因间或内含子DNA中的中等重复序列,含有限制性内切酶AluⅠ的识别位点,这些序列长约300bp,并在人类基因组中重复出现约500,000次。
羊膜穿刺术(Amniocentesis)——一种产前诊断的方法,通常在妊娠4至6月抽取羊膜囊内婴儿四周的羊水进行。
扩增(Amplification)——一段DNA序列多个拷贝的产生。
非整倍体(Aneuploid)——指单倍体非整倍数的任何染色体数目。
通常非整倍体是指单条染色体的额外拷贝(三体性),或缺少单条染色体(单体性)。
由减数分裂或有丝分裂过程中染色体不分离所致。
多重指向性免疫层析分析[发明专利]
专利名称:多重指向性免疫层析分析
专利类型:发明专利
发明人:保罗·C·哈利斯,布莱恩·G·理查斯申请号:CN200680034491.5
申请日:20060817
公开号:CN101300490A
公开日:
20081105
专利内容由知识产权出版社提供
摘要:本发明揭示定量测量流体样本中一种或一种以上所关注分析物的量的方法和适用于所述方法的套组。
所述方法包括:提供固相装置,所述装置包含具有施加点、样本捕捉区、和控制捕捉区的膜,其中所述样本捕捉区和所述控制捕捉区与所述施加点大致等距;和提供样本收集装置,所述装置包含一个或一个以上分析物结合性颗粒群。
在所述分析中,将流体样本引入所述样本收集装置中,并且将所得混合物施加到所述膜施加点。
所述流体能够通过毛细作用将所述分析的组分输送到并通过所述样本捕捉区和所述控制捕捉区。
所述流体样本中各所关注分析物的量与经校正的颗粒量相关(例如,直接相关或成反比),所述经校正的颗粒量可(例如)以相应样本捕捉区中的颗粒量与所述控制捕捉区中的颗粒量的比率测定。
申请人:反应生医公司
地址:加拿大哥伦比亚郡
国籍:CA
代理机构:北京中原华和知识产权代理有限责任公司
代理人:寿宁
更多信息请下载全文后查看。
ZFhx3基因变异与心房颤动、脑梗死和肺血栓栓塞的关系
doi :10.3969/j.issn.1002-7386.2023.18.016·论著·ZFhx3基因变异与心房颤动、脑梗死和肺血栓栓塞的关系柏松 黄博雅 李津 张竹芬 张毅茹 曹玉萍 张国彦项目来源:保定市科学技术研究与发展计划项目(编号:2141ZF085)作者单位:071000 河北省保定市第一中心医院通讯作者:张国彦 E⁃mail:zgy7312@ 【摘要】 目的 通过现象学扫描研究老年人群中单核苷酸多态性(SNP )rs2106261,在转录因子ZFhx3基因、心房颤动(AF )及其他相关表型中的表达。
方法 本研究从老年疾病SNP 数据库(JG⁃SNP )中检索连续的临床体检数据(n =2433,平均年龄80岁)。
收集医疗图表临床资料,包括AF 诊断。
采用DNA 芯片法进行基因分型。
还分析42个病理和26个临床表型,包括脑梗死(CI )和肺血栓栓塞(LT ),在临床体检中通过肉眼检查诊断。
结果 2433例患者中,18.6%为心房颤动(AF ),29.4%为CI ,4.9%为LT 表现型。
经年龄、性别、糖尿病、高血压和吸烟校正后,rs2106261SNP 的A 等位基因与AF 显著相关(AA +AG /GG ,OR =1.51,95%CI :1.16~1.97,P =0.002)。
CI 与rs2106261无关(P =0.14)。
然而,在<80岁的患者中,rs2106261与CI 显著相关(AA +AG /GG ,OR =1.57,95%CI :1.09~2.26,P =0.01)。
LT 也与rs2106261相关(AA +AG /GG ,OR =1.99,95%CI :1.31~3.01,P =0.001)。
在对AF 的存在进行调整后,rs2106261与CI 和LT 的相关性仍为阳性,表明该SNP 变异可能作为一个独立的风险标记。
结论 ZFHX3基因多态性rs2106261(A 等位基因)是AF 及AF 相关表型的风险标记。
全病程管理在门诊小阴唇肥大缩小术中的应用
全病程管理在门诊小阴唇肥大缩小术中的应用李 婷,郝晓艳,郭 媛,舒茂国(西安交通大学第一附属医院整形美容·颌面外科 陕西 西安 710061)[摘要]目的:探讨全病程管理在门诊小阴唇肥大缩小术中的应用。
方法:选取2017年1月-2019年1月于某三甲医院门诊收治的行小阴唇肥大缩小术64例患者为研究对象,随机分为对照组32例,干预组32例。
对照组给予传统管理模式,干预组给予全病程管理模式,比较两组患者术后并发症发生率,心理焦虑状态及患者满意度情况。
结果:干预组并发症发生率、焦虑评分均明显低于对照组,差异具有统计学意义(P <0.05)。
干预组护理服务满意度高于对照组,差异有统计学意义(P <0.05);两组患者手术效果比较差异无统计学意义(P >0.05)。
结论:全病程管理模式可改善患者心理焦虑状态,提升患者满意度,减少相关并发症的发生。
[关键词]全病程管理;小阴唇肥大缩小术;门诊手术;并发症;满意度;心理焦虑[中图分类号]R473.6 [文献标志码]B [文章编号]1008-6455(2021)02-0171-04Application of Whole Course Management in Labia Minora Hypertrophy ReductionSurgery in the OutpatientLI Ting,HAO Xiao-yan,GUO Yuan,SHU Mao-guo(Department of Plastic and Cosmetic Maxillofacial Surgery,the First Affiliated Hospital of Xi’an Jiaotong University,Xi’an710061,Shaanxi,China)Abstract: Objective To explore the application of whole course management in labia minora hypertrophy reduction surgery in the outpatient. Methods A total of 64 patients with labia minora hypertrophy were selected as the research objects from January 2017 to January 2019. The patients were randomly divided into two groups: the control group (n =32) and the intervention group(n =32). The control group was given the traditional management model, while the intervention group was given the whole course management mode. The postoperative complication rate, patients’psychological anxiety and satisfaction were compared between the two groups. Results The incidence of complications and anxiety score of the intervention group were significantly lower than those of the control group, the differences were statistically significant(P <0.05). The nursing service satisfaction of the intervention group was higher than that of the control group(P <0.05). There was no significant difference in curative effect between the two groups(P >0.05). Conclusion The whole course management mode can ameliorate patients’ psychological anxiety, improve patients’satisfation and reduce the postoperative complication rate.Key words: whole course management; labia minora hypertrophy reduction surgery; outpatient surgery; complications; satisfaction; psychological anxiety通信作者:舒茂国,主任医师;研究方向:各类先天性颅颌面畸形的矫正手术,唇腭裂的修复治疗、颌骨畸形、面部轮廓、下颌角、颧骨、颏部整形的综合诊疗;E-mail:*****************小阴唇肥大是一种较为常见女性外阴畸形,轻症者影响外观,改变尿流方向,重症者活动时,局部反复摩擦导致皮肤破溃及癌变[1]。
半夏泻心汤加减治疗寒热错杂型功能性消化不良的临床效果
60内蒙古中医药第 40 卷2021 年3 月第3 期 Inner Mongolia Journal of Traditional Chinese Medicine Vol.4〇No.3 2〇21免疫功能紊乱。
还有研究发现,相比碘轻度缺乏地区,碘中度缺 乏地区的甲状腺结节发病率更高,且甲状腺结节直径更大。
可见,甲状腺结节的发病与碘的摄人量密切相关。
西医治疗甲状 腺结节,保守治疗疗效不佳,手术治疗不良反应多,应用受限 中医、中药为甲状腺结节的临床治疗提供了新的思路=甲状腺结节在中医学上属于“瘿病”的范畴,饮食失调、素体亏虚、情志不畅等,可致血瘀、气滞、痰阻,进而导致疾病的发 生吹本研究中,应用疏肝散结方治疗甲状腺结节,方中丹参、当归具有活血、化瘀的效果;柴胡具有疏肝解郁、升举阳气的效 果;海藻具有软坚、消痰的效果;桃仁、赤芍具有活血祛瘀的效 果;路路通具有疏肝理气、通经络的效果;红花具有活血、散瘀、止痛的效果;炒白芥子具有温肺化痰、利气散结、通络止痛的效 果;木鳖子具有消肿散结的效果。
诸药合用疏肝活血、通络散 结、软坚化痰、清热止痛,为甲状腺结节的对症良方。
本研究结 果证实,疏肝散结方治疗甲状腺结节,疗效确切。
综上所述,疏肝散结方干预可以有效提高甲状腺结节临床疗效,值得推广。
参考文献[1] 曹洁,张庚良,王柳芸,等.自拟散结汤联合小金丸治疗良性甲状腺结节临床疗效研究[J].河北中医药学报,2020,35(4):丨5_19. [2] 陈玲,郭盼盼,万会娜,等.中医药治疗甲状腺结节的研究进展[J].河北中医,20丨9,41( 12): 1914-1920.[3] 曲超,杨宇峰,王仁和,等.基于中医传承辅助平台的石岩教授治疗甲状腺结节的用药规律分析[J].中华中医药学刊,2019, 37(7):1685-1689+1818.[4] 常清语,孟达理.许芝银教授应用柴胡疏肝散加减治疗甲状腺、乳腺疾病验案3则[J].天津中医药,20丨9,36(4):342-345. [5] 张亚兵,张莹雯,彭艳芳,等.疏肝健脾化痰方治疗肝郁痰凝型良性甲状腺结节临床观察[J].现代中西医结合杂志,2018,27(30):3356-3358.[6] 徐玥瑾,万迎新.张铁忠教授从“郁、痰、瘀”论治甲状腺结节[J].辽宁中医药大学学报,2018,20(7): 207-209.半夏泻心汤加减治疗寒热错杂型功能性消化不良的临床效果计成(北京市海淀区苏家坨镇社区卫生服务中心北京100095)摘要目的:探讨半夏泻心汤加减治疗寒热错杂型功能性消化不良的临床效果。
双重组英文带翻译
双重组英文带翻译Double Helix DNA: The Key to Unlocking the Mysteries of Life 双螺旋DNA,揭开生命之谜的关键。
DNA, or deoxyribonucleic acid, is the genetic material that contains the instructions for the development and function of all living organisms. The discovery of the double helix structure of DNA in 1953 by James Watson and Francis Crick was a monumental breakthrough in the field of molecular biology. This discovery has paved the way for countless advancements in genetics, medicine, and biotechnology.DNA, 或者脱氧核糖核酸,是包含所有生物体发展和功能指令的遗传物质。
詹姆斯·沃森和弗朗西斯·克里克于1953年发现了DNA 的双螺旋结构,这是分子生物学领域的里程碑式突破。
这一发现为遗传学、医学和生物技术等领域的无数进展铺平了道路。
The double helix structure of DNA consists of two strands of nucleotides that are twisted together in aspiral shape. Each nucleotide is composed of a sugar molecule, a phosphate group, and a nitrogenous base. The nitrogenous bases, which include adenine, thymine, guanine, and cytosine, pair up in a specific way: adenine with thymine, and guanine with cytosine. This base pairing is what allows DNA to replicate and transmit geneticinformation from one generation to the next.DNA的双螺旋结构由两条核苷酸链组成,这两条链以螺旋形扭在一起。
不可分型流感嗜血杆菌重组Hap蛋白的表达及其生物学活性分析
不可分型流感嗜血杆菌重组Hap蛋白的表达及其生物学活性分析姚锋;李婉宜;邝玉;李明远;丰锋;冯伟;张强【期刊名称】《南方医科大学学报》【年(卷),期】2010(030)005【摘要】目的在原核系统中表达并纯化不可分型流感嗜血杆菌(NTHi)的重要粘附因子Hap蛋白,并对其免疫原性和粘附活性进行初步研究.方法 IPTG诱导重组质粒pET32a(+)-Hap在E.coli BL21中高效表达,Ni2+亲和层析柱纯化表达产物.用纯化的Hap重组蛋白进行体外竞争黏附实验,SEM观察及菌落形成单位计数法分析该重组蛋白的黏附活性.纯化蛋白与黏膜免疫佐剂CT-B联合鼻腔免疫BALB/C小鼠,ELISA检测小鼠抗Hap的IgA及IgG抗体水平.结果纯化产物的SDS-PAGE分析显示获得单一的目的蛋白条带,Gel analysis软件分析蛋白纯度可达85%,纯化产物超滤浓缩后,测得其蛋白浓度为3.2 g/L.体外竞争黏附实验观察到Hap重组蛋白的加入可明显抑制NTHi对胞外基质的黏附,且细菌黏附量的减少与对照组相比差异具有统计学意义(P<0.01).该重组蛋白与免疫佐剂CT-B联合免疫小鼠.可刺激机体产生较高水平的IgG或IgA抗体,与重组抗原单独免疫组相比,差异具有显著性(P<0.05).结论 Hap蛋白在原核系统中获得较高浓度和纯度的表达,纯化Hap重组蛋白具有良好的免疫原性和粘附活性.【总页数】4页(P953-956)【作者】姚锋;李婉宜;邝玉;李明远;丰锋;冯伟;张强【作者单位】四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041;四川大学华西基础医学与法医学院微生物学教研室,四川成都610041【正文语种】中文【中图分类】R183.3;R373.13【相关文献】1.不可分型流感嗜血杆菌P6重组蛋白的原核表达及其黏膜免疫效应 [J], 乔海霞;张彦霞;戴明艳;张存辉;常月立;贾晓辉;张玉妥2.非分型流感嗜血杆菌Haps蛋白的分离纯化 [J], 李婉宜;邝玉;李明远;杨远;蒋中华;姚锋;陈长春3.不可分型流感嗜血杆菌外膜蛋白P6基因真核质粒的构建及表达 [J], 何多姣;刘雪晴;李双霞;贾天军;张玉妥4.非分型流感嗜血杆菌Haps蛋白表达量影响因素的探索 [J], 邝玉;李婉宜;李明远;李虹;曾蔚;马巨辉5.猪白细胞介素-2重组蛋白的原核表达及其生物学活性分析 [J], 宋世斌因版权原因,仅展示原文概要,查看原文内容请购买。
双酶切体系
Double Digestion(双酶切反应)时Universal Buffer(通用缓冲液)的使用表
■ 说明
使用二种酶同时进行DNA切断反应(Double Digestion) 时,为了节省反应时间,通常希望在同一反应体系内进行。
TaKaRa采用Universal Buffer表示系统,并对每种酶表示了在各Universal Buffer中的相对活性。
尽管如此,在进行Double Digestion时,有时还会难以找到合适的Universal Buffer。
本表以在pUC系列载体的多克隆位点处的各限制酶为核心,显示了在Double Digestion可使用的最佳Universal Buffer条件。
在本表中,各Universal Buffer 之前表示的[数字×] 是指各Universal Buffer的反应体系中的最终浓度。
TaKaRa销售产品中添附的Universal Buffer全为10倍浓度的缓冲液。
终浓度为0.5×时反应体系中的缓冲液则稀释至20倍,1×时稀释至10倍,2×时稀释至5倍进行使用。
■ 注意
◇1 μg DNA中添加10 U的限制酶,在50 μl的反应体系中,37℃下反应1小时可以完全降解DNA。
◇为防止Star活性的产生,请将反应体系中的甘油含量,尽量控制在10%以下。
◇根据DNA的种类,各DNA的立体结构的差别,或当限制酶识别位点邻接时,有时会发生Double Digestion不能顺利进行的可
能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mixed Control of Multi-Fingered Haptic InterfaceRobot with operator’s uneasy feeling in mindHaruhisa Kawasaki and Tetsuya Mouri(Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan, {h_kawasa, mouri}@gifu-u.ac.jp) Abstract—This paper presents a mixed control of multi-fingered haptic interface robot consisting of a 6 DOF arm and a 15 DOF hand. The interface is placed opposite the human hand and presents force and tactile feeling to the fingertips. In order to reduce the uneasy feeling in the operator, a mixed control consisting of a finger force control and an arm position control intended to maximize the control performance index, which consists of the hand manipulability measure and the norm of the arm-joint angle vector, is proposed. Experimental results demonstrate the effectiveness of the mixed control.Keywords—Haptic interface, Force control, Manipulability, Design, Virtual reality1.INTRODUCTIONHaptic interfaces that present force and tactile feelings have been utilized in the areas of telemanipulation [1], interaction with micro/nano scale phenomena [2], medical training [3], and so on. A multi-fingered haptic interface has a greater potential for these applications than does a single point haptic interface. A haptic interface consisting of an arm and fingers [4]-[9] can be used in a wide space. Most of them consist of a hand and arm exoskeleton system. With this system, it is hard to represent the weight of virtual objects through the fingertips because the hand mechanism is mounted on the back of human hand. Fixing the haptic interface to the hand binds the hand and creates an oppressive sensation in the operator. Moreover, the operator will have a strong feeling of unsafety when the system shows an abnormal performance.A haptic interface must be safe, function in a wide operation space, and represent not only force at the contact points but also the weight of virtual objects. In addition, it should not cause an oppressive feeling when it is attached to humans and should not represent its own weight. In response to these issues, we developed a five-fingered haptic interface named HIRO II [10], which consists of a 6 DOF arm and a 15 DOF hand. The interface is placed opposite the human hand, which ensures safety and freedom of movement. The controller of the haptic interface opposite the human hand is required to take redundancy of the mechanism into consideration in general. At the same time, to enhance the operator’s sense of identification with the hand’s movement, the excessive arm motion had to be reduced.This paper presents a mixed control consisting of finger force control and arm force control for multi-fingered haptic interface robot, which is an upgraded version reference [13]. In the arm control, a desired hand pose is determined that will maximize the control performance indexconsisting of the hand manipulability measure and the norm of the arm joint angle vector, which is introduced to reduce the operator’s uneasy feeling. Several studies have addressed the manipulability measure for a robot arm [14], for cooperative arms [15], and for dexterous hands[16]. Most of them have utilized the manipulability measure for their mechanism design and off-line path planning, but they have not used it for real-time control of the hand and arm robot systems. In the proposed control method, the manipulability measure is used in real-time control. A great potential of the multi-fingered haptic interface robot utilizing the mixed control method is demonstrated experimentally.2. M UTI -FINGERED HAPTIC INTERFACE ROBOTMulti-fingered haptic interfaces joined to the arm can provide a wide operation space. However, most of them are mounted on the back of a human hand in the manner of the CyberForce [9]. Fixing the haptic interface to the hand binds the hand and creates an oppressive sensation in the operator. In order to reduce this feeling and increase safety, we have developed a Haptic Interface RObot named HIRO II [10]. Figure 1 shows the developed five-fingered haptic interface where it is connected to the five fingers of an operator‘s hand. The haptic interface consists of an interface arm, a haptic hand with five haptic fingers, and a controller. When the operator moves his/her hand, the haptic interface follows the motion of operator’s fingertips and presents the sensation of force. The operator feels only a small constriction because the coupled part between the human hand and the haptic interface is centered only on the fingertips of the operator.The haptic hand consists of 5 fingers, which are designed to be similar to human fingers in geometry and range of motion. The developed haptic finger is shown in Figure 2. It is designed based on an anthropomorphic robot hand, named Gifu Hand III [17]. Each finger has 3 joints allowing 3 DOF. The first joint, relative to the hand base, allows abduction/adduction (rotation about the y axis shown in Fig. 2). The second joint and the third joint allow flexion/extension (rotation about the z axis shown in Fig. 2). All joints are driven by DC servomotors with geartransmissions and rotary encoders. Maximum output joint torques from the 1st to the 3rd finger joints are 0.96, 0.52, and 0.20 Nm, which provide force on a fingertip of 7.8, 4.2, and 3.9 N, Fig. 1. Five-fingered haptic interface robot: HIRO II2nd link1st link 1st motor xForce sensor spherical jointFinger holder z Fig. 2. Haptic fingerrespectively. In order to read the finger loading forces, the force sensor (NANO sensor made by BL AUTOTEC, LTD.) in the second link of each finger is installed. The resolution of the force sensors F x , F y , and F z , are 32, 32, and 98 mN, respectively.To manipulate the haptic interface, an operator has to wear a finger holder on his/her fingertips as shown in Figure 1. The finger holder contains an iron sphere, which is attached to the permanent magnet at the force sensor tip to form a passive spherical joint. This passive spherical joint plays two roles. One, is to adjust to differences between the human and haptic fingers orientations. Each human finger attached to the arm has 6 DOF spatially, while each haptic finger has 3 DOF. Hence, additional passive 3 DOF are needed. The second role is to ensure that the operator can remove his fingers from the haptic interface if it malfunctions. The suction force created by the permanent magnet is 5 N.The interface arm has 6 joints allowing 6 DOF. The lengths of the upper arm and the forearm are 0.3 and 0.31 m, respectively. The arm joints are actuated by AC servomotors equipped with rotary encoders and gear transmissions. The maximum output force is 45 N and the maximum velocity at the haptic hand base is 0.8 m/s. The interface arm has a size similar to the human arm, and a workspace of the wrist compatible with it.3. M IXED C ONTROLThe control of HIRO II adopts a mixed finger force control and arm position control to follow the operator‘s fingertip motion and to present the sensation of force while allowing the operator to identify with the device’s motion.3.1 Finger Force ControlLet us denote a kinematic Jacobian, joint torque, joint angle of the i -th finger, contact force, and desired contact force between the human and the haptic i -th fingers as 33×∈R Fi J , 3R Fi ∈τ, 3R Fi ∈q , 3R i ∈F , and 3R di ∈F , respectively. Then, the haptic finger is controlled by joint torque based force feedback control as follows:())(321F F F F d e F e F T F F dt q g qK F F K F K J τ+−++=∫&, (1) whereT F T T F ),,,(521ττττL =, T T F T F T F F ),,,(521q q q q L =, ),,(51F F F diag Block J J J L =, T T T T ),,,(521F F F F L =, T T d T d T d d ),,,(521F F F F L =, i d e F F F −=, K F1 >0 is the force feedback gain matrix, K F2 >0 is the force integral feedback gain matrix, K F3 is the velocity feedback gain matrix, and 15)(R F F ∈q g is the gravitational compensator term. Each finger joints is controlled to follow the desired finger force independently. In this control, a finger that reaches the limit of the movable range is switched to a position control to keep the joint angle in the movable range, while the remaining fingers are controlled by the force control. After reaching the limit of the movable range, the finger that switched to position control is switched back again to force control when the direction of the joint torque input is in the same direction of that of the joint angle apart from the limit of the movable angle.3.2 Arm Position ControlIn order to avoid the large arm motion at the small motion of the operator’s fingers, we considerthe following control performance index added an arm joint angle norm to the hand manipulability measure:()∑=++=51i A i i i i Q P W CPI βα, (2) where i α and i β are weighting coefficients and W i is a manipulability measure of the i -th finger, P i is a penalty function of the i -th finger to keep the joint angle within the range of movement, and A Q is a penalty function to avoid large arm motion. The manipulability measure of the i -th finger is given by()21)det(Fi T Fi i W J J = (){}322213cos cos sin i i i i i i q q l q l q ++= , (3)where l ij is the j-th link length of i -th finger and q ij is the j-th joint angle of the i -th finger. Equation(4) shows that the manipulability measure of finger does not depend on the first joint angle q i1. Figure 3 shows values of W i by using the finger length of HIRO II. However, this maximum point is near the limit of the movement range of q i 2. Moreover, there is a line of singular points at q i3 = 0 rad, which leads to a local extreme of W i . In order to keep the finger joint angles within the movement range, the following penalty function is added:(){}(){}[]∑=−+−−−=31exp exp j ij ij ij ij j i b q a q P μμγ,(4) where j γ is the weighting coefficient of the j -th joint, μ is the parameter to adjust an exponential function, ij a and ij b are the lower limit and the upper limit of the j -th joint angle of the i -th finger,respectively. Figure 4 shows the values of i i i i P W βα+under the condition of 0.1=i α, 5104.3×=i β , 2.11=γ, 0.12=γ, 1.13=γand 0.10=μ. The value of i i i i P W βα+ has one localextreme for q i3 > 0. The hand manipulability measure given by the first term of the left hand side of equation (2) leads to the optimum position and orientation of the hand base; however, this sometimes creates a θ3(rad)M a n i p u l a b i l i t y m e a s u r e (m m 3)Maximum pointθ2(rad)Fig. 3. Manipulability measure of finger W iθ3(rad)M a n i p u l a b i l i t y m e a s u r e (m m 3)Maximum pointθ2(rad)Fig. 4. Modified manipulability measure of finger i i i i P W βα+large arm movement even if the operator moves his/ her finger only slightly. This phenomenon make the operator unsafe because operator usually thinks that the haptic arm does not move widely when his/her finger motion is small. To prevent a large change of arm joint angle, the following penalty function is added:()()A Ad T A Ad A Q q q Γq q −−−=21, (5) where 6R A ∈q is the current arm joint angle vector, 6R Ad ∈q is an desired arm joint angle vector, and 0>Γis a weighting matrix. The desired arm joint angle is defined to maximize equation (2) under a constraint condition in which the five haptic fingertip positions F q are fixed to the operator’s fingertip positions. Equation (2) can be rewritten as a function of F q and A q . Hence, the optimum arm joint angle Ad q is computed by the conjugate gradient method on line with the convergence criterion CPI[k ]-CPI[k -1] < δ , where k is the iteration number and δ is the scalar constant. At the same time, a maximum iteration number is limited to 30 because of the limitation of the control’s sampling time. Figure 5 shows the relation between the value of the control performance index and the iteration number at 2100.1×=δ. In most cases, the optimum arm joint angle Ad q is obtained at some iteration number, because the current arm joint angle A q is treated as an initial point near the extreme of the control performance index.The haptic arm is controlled by the following PD control with gravitational and external force compensators:Ae T A A A A Ad A A Ad A A F J q g q qK q q K τ++−+−=)()()(21&&, (6) where 6R A ∈τ is the haptic arm joint torque, K A1 is the position feedback gain matrix, K A2 is the velocity feedback gain matrix, )(A A q g is the gravitational compensator term, 66×∈R A J is the kinematic Jacobian of the haptic arm, and Ae F is a external force compensator term given by⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛×=∑∑==5151i i Fi i i Ae F p F F , (7) where Fi p is the position vector from the origin of hand base coordinate to the i -th haptic fingertip.This term is the force and moment equivalent to the total external forces at the haptic fingertips. 4.Finger responses induced by the force control when pushing a virtual wall are shown in Figure 6. In this case, the operator’s index finger is connected to the haptic interface. Initially the finger approaches the wall, expressing a response in the free space. The desired force at the finger is set to zero. The average force error is 0.08 N. The finger then pushes the wall, expressing a response in the constraint space. The desired force at the finger is set to penetration depth of the finger into the wall, K (= 2.0 N/mm) is the stiffness of the wall, and d (=5.5x10-5 Ns/mm) is the damping coefficient of the wall. The average force error is almost the same as that in free space. We constructed a virtual piano system using HIRO II as shown in Figure 7 to evaluate the 051.52x106C o n t r o l p e r f o r m a n c e i n d e x Iteration number 1.50x1061.48x106 Fig. 7. Virtual piano systemmotion performance of the device. An operator can play piano with his/her right hand. Sounds are generated when the operator’s fingertips touch the surface of the virtual keyboard. Figure 8 shows position and force responses of the thumb and the little finger on the condition of the most rapid tap timing, in which the arm motion as well as the thumb and the little finger motions are generated. This shows that an acceptable tempo is about 5 times per second. Most of the applications will be used at less than this motion rate. Moreover, the proposed mixed control reduce the feeling of insecurity in the operator as compared with a arm control based on hand manipulability measure only .5.C ONCLUSIONA mixed control of a multi-fingered haptic interface in consideation of the operator’s uneasy feeling has been presented. A mixed control method involving finger force control and arm position control has been evaluated experimentally. In the arm control, a control performance index to reduce the feeling of insecurity in the operator has been presented. This interface can be utilized in a wide range of applications as a master or a slave in real and virtual environments. Future research will be directed toward the implementation of the interface in various applications such as the medical training and the teleoperation of the anthropomorphic robot hand.A CKNOWLEDGMENTThe authors’ thanks are addressed to the members of the haptic interface research project of Gifu University.R EFERENCES[1]I. Ivanisevic and V. J. Lumelsky, “Configuration space as a means for arugmenting humanperformance in teleoperation tasks,” IEEE Trans. on SMC, Part B, vol. 30, no. 3, pp. 471-484, 2000.[2]M. Guthold, et. al. ,“Controlled manipulation of molecular samles with the nanomanipulator,”IEEE/ASME Trans. on Mechatronics, vol. 5, no. 2, pp. 189-198, 2000.[3]C. Basdogan, C. H. Ho, and M. A. Srinivasan, “Virtual environments for medical training:graphical and haptic simulation of laparoscopic common bile duct exploration,” IEEE/ASME Trans. on Mechatronics, vol. 6, no. 3, pp. 269-286, Sept. 2001.[4]M.S. Shimamoto, ``TeleOperator/telePresence System (TOPS) Concept Verification Model(CVM) Development,'' N.K. Saxena, ed., Recent Advances in Marine Science and Technology, '92, Pacon International, pp. 97-104, 1992[5]M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, G.M. Prisco, F. Salsedo, G. Sartini,An arm exoskeleton system for teleoperation and virtual environments applications, Proc. of 1994 IEEE International Conference on Robotics and Automation, pp 1449 – 1454, 1994 [6]H. Maekawa and J. H. Hollerbach, Haptic display for Object Grasping and manipulating inVirtual Environment, Proc. of 1998 IEEE Int. Conf. On Robotics and automation, pp.2566-2573, 1998[7]A. Nakai, Y. Kunii, and H. Hhashimoto, Development of 7 DOF Exoskeleton Type HapticInterface, Journal of RSJ, vol. 17, no.8, pp.1126-1133, 1999 (in Japanese)[8]Y. Adachi, et. al., “Development of a haptic device for multi fingers by Macro-MicroStructure,” Journal of the Robotics Society of Japan, vol. 20, no. 7, pp. 725-733, 2002 (in Japanese)[9]Immersion Corporation, “CyberForce,” url:/3d/products/cyber_force.php[10]H. Kawasaki, T. Mouri, M. O. Alhalabi, Y. Sugihashi, Y. Ohtuka, S. Ikenohata, K. Kigaku, V.Daniulaitis, K. Hamada and T. Suzuki, “Development of five-fingered haptic intereface: HIRO II,” Proc. of ICAT 2005, Christchurch, New Zealand, pp. 209-214, 2005[11]J.E. Colgate, P.E. Grafing, M.C. Stanley, G. Schenkel, Implementation of stiff virtual walls inforce-reflecting interfaces, Proc. of IEEE Virtual Reality Annual International Symposium, pp.202-208, 1993[12]R.J. Adams and B. Hannaford, Control Law Design for Haptic Interfaces to Virtual Reality,IEEE Trans. on Control System Technology, vol. 10, no.1, pp.3-13, 2002[13]T etsuya Mouri, Haruhisa Kawasaki, Kazugige Kigaku, and Yoshio Ohtsuka, Novel ControlMethods for Multi-fingered Haptic Interface Robot, Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, pp. 1576-1581, 2006 [14]T. Yoshikawa, “Measure of manipulability for robot manipulator,” Trans. of JRM, Vol. 2,No.1, pp. 63-67, 1983 (in Japanese)[15]S. Lee, “Dual redundant arm configuration Optimization with task-oriented dual armmanipulability,” IEEE Trans. on Robotics and automation, Vol. 5, No.1, pp. 78-97,1989 [16]A. Bicchi, C. Melchiorri, and D. Balluchi, “On the mobility and manipulability of generalmultiple lim Robots,” IEEE Trans. on Robotics and automation, Vol. 11, No.2, pp. 215-228, 1995[17]T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, and S. Ito, “Anthropomorphic robot hand:Gifu Hand III, Proc. of Int. Conf. ICCAS2002,” pp.1288-1293, 2002。