数学综合题是初中数学中覆盖面最广、综合性最强的题型

合集下载

专题10 函数中点的存在性问题(解析版)

专题10 函数中点的存在性问题(解析版)

决战2020年中考典型压轴题大突破模块三中考压轴题函数综合题专题考向导航函数综合题是初中数学中覆盖面最广、综合性最强的题型。

近几年的中考压轴题多以数学综合题的形式出现。

解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤。

解数学综合题必须要有科学分析问题的方法。

数学思想是解数学综合题的灵魂,要善于总结数学综合题中所隐含的转化思想、数形结合思想、分类讨论的思想、方程的思想等,更要结合实际问题加以领会与掌握,这是学习解综合题的关键。

函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,因此是各地中考的热点题型,并且长盛不衰,年年有新花样。

专题10 函数“存在性”问题方法点拨这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断. 由于“存在性”问题的结论有两种可能,所以具有开放的特征。

在假设存在性以后进行的推理或计算,对基础知识、基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识能力的一次全面的考验。

精典例题(2019·白银)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN 有最大值,最大值是多少?【点睛】(1)由二次函数交点式表达式,即可求解;(2)分AC =AQ 、AC =CQ 、CQ =AQ 三种情况,分别求解即可; (3)由PN =PQ sin ∠PQN =√22(−13m 2+13m +4+m ﹣4)即可求解. 【详解】解:(1)由二次函数交点式表达式得:y =a (x +3)(x ﹣4)=a (x 2﹣x ﹣12)=ax 2﹣ax ﹣12a , 即:﹣12a =4,解得:a =−13,则抛物线的表达式为y =−13x 2+13x +4;(2)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4√2,∠OBC =∠OCB =45°,将点B 、C 的坐标代入一次函数表达式:y =kx +b 并解得:y =﹣x +4…①, 同理可得直线AC 的表达式为:y =43x +4,设直线AC 的中点为K (−32,2),过点M 与CA 垂直直线的表达式中的k 值为−34, 同理可得过点K 与直线AC 垂直直线的表达式为:y =−34x +78⋯②, ①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3);②当AC =CQ 时,如图1,CQ =5,则BQ =BC ﹣CQ =4√2−5, 则QM =MB =8−5√22, 故点Q (5√22,8−5√22); ③当CQ =AQ 时, 联立①②并解得:x =252(舍去);故点Q 的坐标为:Q (1,3)或(5√22,8−5√22); (3)设点P (m ,−13m 2+13m +4),则点Q (m ,﹣m +4), ∵OB =OC ,∴∠ABC =∠OCB =45°=∠PQN , PN =PQ sin ∠PQN =√22(−13m 2+13m +4+m ﹣4)=−√26(m ﹣2)2+2√23, ∵−√26<0,∴PN 有最大值,当m =2时,PN 的最大值为:2√23.巩固突破1.(2020·青白江区模拟)如图,抛物线y =ax 2+bx +c 与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA =3OB .(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求△ACP 的面积的最大值及此时点P 的坐标; (3)在线段OC 上是否存在一点M ,使BM +√22CM 的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.【点睛】(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)△ACP的面积=12PH×OA=12×3×(x2﹣2x+3+x﹣3)=32(﹣x2+3x),即可求解;(3)故当B、M、N三点共线时,BM+√22CM=BN最小,即可求解.【详解】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=12PH×OA=12×3×(x2﹣2x+3+x﹣3)=32(﹣x2+3x),当x=32时,△ACP的面积的最大,最大值为:278,此时点P(32,154);(3)过点M作MN⊥AC,则MN=√22CM,故当B、M、N三点共线时,BM+√22CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=√22AB=2√2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).2.(2019·青海)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足P A+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)【点睛】(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),即可求解;(2)连接B、C交对称轴于点P,此时P A+PC的值为最小,即可求解;(3)S四边形OEBF=OB×y E=5×y E=12,则y E=125,将该坐标代入二次函数表达式即可求解.【详解】解:(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),则5a=4,解得:a=4 5,抛物线的表达式为:y=45(x2﹣6x+5)=45x2−245x+4,函数的对称轴为:x=3,顶点坐标为(3,−165); (2)连接B 、C 交对称轴于点P ,此时P A +PC 的值为最小,将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=5k +bb =4,解得:{k =−45b =4,直线BC 的表达式为:y =−45x +4, 当x =3时,y =85, 故点P (3,85);(3)存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则S 四边形OEBF =OB ×|y E |=5×|y E |=12, 点E 在第四象限,故:则y E =−125, 将该坐标代入二次函数表达式得: y =45(x 2﹣6x +5)=−125, 解得:x =2或4, 故点E 的坐标为(2,−125)或(4,−125). 3.(2020·锦江区模拟)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 的图象与x 轴交于A (4,0),B 两点,与y 轴交于点C (0,2),对称轴x =32与x 轴交于点H .(1)求抛物线的函数表达式;(2)直线y =kx +1(k ≠0)与y 轴交于点E ,与抛物线交于点 P ,Q (点P 在y 轴左侧,点Q 在y 轴右侧),连接CP ,CQ ,若△CPQ 的面积为√172,求点P ,Q 的坐标; (3)在(2)的条件下,连接AC 交PQ 于G ,在对称轴上是否存在一点K ,连接GK ,将线段GK 绕点G 逆时针旋转90°,使点K 恰好落在抛物线上,若存在,请直接写出点K 的坐标;若不存在,请说明理由.【点睛】(1)对称轴x =32,则点B (﹣1,0),则抛物线的表达式为:y =a (x +1)(x ﹣4)=a (x 2﹣3x ﹣4),即可求解; (2)△CPQ 的面积=12×CE ×(n ﹣m )=√172,即n ﹣m =√17, 联立抛物线于直线PQ 的表达式并整理得:−12x 2+(32−k )x +1=0…①,m +n =3﹣2k ,mn =﹣2,n ﹣m =√17=√(m +n)2−4mn =√(3−2k)2+8,即可求解; (3)证明△GNK ≌△K ′MG (AAS ),NK =32−27=1714=MG ,NG =137−m ,则点K ′(157−m ,4314),将该坐标代入抛物线表达式,即可求解.【详解】解:(1)对称轴x =32,则点B (﹣1,0),则抛物线的表达式为:y =a (x +1)(x ﹣4)=a (x 2﹣3x ﹣4), 即﹣4a =2,解得:a =−12,故抛物线的表达式为:y =−12x 2+32x +2;(2)设直线PQ 交y 轴于点E (0,1),点P 、Q 横坐标分别为m ,n ,△CPQ 的面积=12×CE ×(n ﹣m )=√172, 即n ﹣m =√17,联立抛物线于直线PQ 的表达式并整理得:−12x 2+(32−k )x +1=0…①,m +n =3﹣2k ,mn =﹣2,n ﹣m =√17=√(m +n)2−4mn =√(2k −3)2+9 解得:k =0(舍去)或3; 故y =3x +1,则−12x 2+32x +2=3x +1,解得:x =−3±√172, 故点P 、Q 的坐标分别为:(−3−√172,−7−3√172)、(−3+√172,−7+3√172);(3)设点K (32,m ),联立PQ 和AC 的表达式并解得:x =27,故点G (27,137),过点G 作y 轴的平行线交过点K ′与x 轴的平行线于点M ,交过点K 与x 轴的平行线于点N ,则△GNK ≌△K ′MG (AAS ), NK =32−27=1714=MG ,NG =137−m ,则点K ′(157−m ,4314)将该坐标代入抛物线表达式并解得:m =9±√2114, 故点K (32,9+√2114)或(32,9−√2114).4.(2020·下陆区模拟)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =−49x 2+bx +c 经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =−49x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.【点睛】(1)将A 、C 两点坐标代入抛物线y =−49x 2+bx +c ,即可求得抛物线的解析式; (2)①先用m 表示出QE 的长度,进而求出三角形的面积S 关于m 的函数; ②直接写出满足条件的F 点的坐标即可,注意不要漏写. 【详解】解:(1)将A 、C 两点坐标代入抛物线,得 {c =8−49×36+6b +c =0, 解得:{b =43c =8,∴抛物线的解析式为y =−49x 2+43x +8; (2)①∵OA =8,OC =6, ∴AC =√OA 2+OC 2=10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴QE 10−m=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m ;②∵S =12•CP •QE =12m ×35(10﹣m )=−310m 2+3m =−310(m ﹣5)2+152, ∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形, ∵抛物线的解析式为y =−49x 2+43x +8的对称轴为x =32, D 的坐标为(3,8),Q (3,4), 当∠FDQ =90°时,F 1(32,8),当∠FQD =90°时,则F 2(32,4),当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n =6±√72, ∴F 3(32,6+√72),F 4(32,6−√72),满足条件的点F 共有四个,坐标分别为 F 1(32,8),F 2(32,4),F 3(32,6+√72),F 4(32,6−√72).5.(2019·临朐二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B(4,0),与过A 点的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C .(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O ,C 重合),过P 作PN ⊥x 轴,交直线AD 于M ,交抛物线于点N ,NE ⊥AD 于点E ,求NE 的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为t .是否存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.【点睛】(1)将点B 、D 的坐标代入二次函数表达式,即可求解; (2)利用NE =MN cos ∠ENP =2√55(−34m 2+114m +1−12m ﹣1),即可求解; (3)设:OP =t ,则点M (t ,12t +1)、N (t ,−34t 2+114t +1),由|MN |=CD ,即可求解. 【详解】解:(1)将点B 、D 的坐标代入二次函数表达式得:{16a +4b +1=09a +3b +1=52,解得:{a =−34b =114, 则函数的表达式为:y =−34x 2+114x +1;(2)将点A (0,1)、D 的坐标代入一次函数表达式:y =mx +n 并解得: 直线AD 的表达式为:y =12x +1,即直线AD 的倾斜角的正切值为12,则tan ∠ENP =12,则cos ∠ENP =2√55,设点N (m ,−34m 2+114m +1)、点M (12m +1),则NE =MN cos ∠ENP =2√55(−34m 2+114m +1−12m ﹣1)=−3√510(m −32)2+27√540, 故当m =32时,则NE 的最大值为27√540;(3)设:OP =t ,则点M (t ,12t +1)、N (t ,−34t 2+114t +1),点M 可能在CD 得左侧也可能在CD 得右侧,由题意得:|MN |=CD , ±52=−34t 2+114t +1−12t ﹣1, 解得:t =9±√2016(舍去负值), 故t =9+√2016时,以点M ,C ,D ,N 为顶点的四边形是平行四边形. 6.(2019·恩施州)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,−83),与x 轴交于A 、B 两点. (1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB 的值.(3)点F (0,y )是y 轴上一动点,当y 为何值时,√55FC +BF 的值最小.并求出这个最小值. (4)点C 关于x 轴的对称点为H ,当√55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【点睛】(1)将点C 、D 的坐标代入抛物线表达式,即可求解; (2)当△AOC ∽△AEB 时,S △AOC S △AEB=(AC AB )2=(√54)2=516,求出y E =−85,由△AOC ∽△AEB 得:AO AC=AE AB=√5,即可求解;(3)如图2,连接BF ,过点F 作FG ⊥AC 于G ,当折线段BFG 与BE 重合时,取得最小值,即可求解; (4)①当点Q 为直角顶点时,由Rt △QHM ∽Rt △FQM 得:QM 2=HM •FM ;②当点H 为直角顶点时,点H (0,2),则点Q (1,2);③当点F 为直角顶点时,同理可得:点Q (1,−32).【详解】解:(1)由题可列方程组:{c =−2a −2a +c =−83,解得:{a =23c =−2∴抛物线解析式为:y =23x 2−43x ﹣2;(2)如图1,∠AOC =90°,AC =√5,AB =4,设直线AC 的解析式为:y =kx +b ,则{−k +b =0b =−2,解得:{k =−2b =−2,∴直线AC 的解析式为:y =﹣2x ﹣2; 当△AOC ∽△AEB 时S △AOC S △AEB=(AC AB)2=(√54)2=516,∵S △AOC =1,∴S △AEB =165, ∴12AB ×|y E |=165,AB =4,则y E =−85, 则点E (−15,−85); 由△AOC ∽△AEB 得:AO AC=AE AB=√5∴AE AB=√55; (3)如图2,连接BF ,过点F 作FG ⊥AC 于G ,则FG =CF sin ∠FCG =√55CF ,∴√55CF +BF =GF +BF ≥BE , 当折线段BFG 与BE 重合时,取得最小值, 由(2)可知∠ABE =∠ACO∴BE =AB cos ∠ABE =AB cos ∠ACO =45=8√55,|y |=OB tan ∠ABE =OB tan ∠ACO =3×12=32,∴当y =−32时,即点F (0,−32),√55CF +BF 有最小值为8√55;(4)①当点Q 为直角顶点时(如图3): 由(3)易得F (0,−32),∵C (0,﹣2)∴H (0,2)设Q (1,m ),过点Q 作QM ⊥y 轴于点M .则Rt △QHM ∽Rt △FQM ∴QM 2=HM •FM , ∴12=(2﹣m )(m +32), 解得:m =1±√334, 则点Q (1,1+√334)或(1,1−√334) 当点H 为直角顶点时:点H (0,2),则点Q (1,2); 当点F 为直角顶点时: 同理可得:点Q (1,−32); 综上,点Q 的坐标为:(1,1+√334)或(1,1−√334)或Q (1,2)或Q (1,−32).7.(2019·阜新)如图,抛物线y =ax 2+bx +2交x 轴于点A (﹣3,0)和点B (1,0),交y 轴于点C . (1)求这个抛物线的函数表达式.(2)点D 的坐标为(﹣1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【点睛】(1)抛物线的表达式为:y =a (x +3)(x ﹣1)=a (x 2+2x ﹣3)=ax 2+2ax ﹣3a ,即﹣3a =2,即可求解;(2)S 四边形ADCP =S △APO +S △CPO ﹣S △ODC ,即可求解;(3)分点N 在x 轴上方、点N 在x 轴下方两种情况,分别求解.【详解】解:(1)抛物线的表达式为:y =a (x +3)(x ﹣1)=a (x 2+2x ﹣3)=ax 2+2ax ﹣3a ,即﹣3a=2,解得:a=−2 3,故抛物线的表达式为:y=−23x2−43x+2,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点P(x,−23x2−43x+2),则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=12×AO×y P+12×OC×|x P|−12×CO×OD=12×3×(−23x2−43x+2)+12×2×(﹣x)−12×2×1=−x2﹣3x+2,∵﹣1<0,故S有最大值,当x=−32时,S的最大值为174;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,−23x2−43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN 1O +∠M 1N 1E =90°,∠M 1N 1E +∠EM 1N 1=90°,∴∠EM 1N 1=∠FN 1O , ∠M 1EN 1=∠N 1FO =90°,ON 1=M 1N 1, ∴△M 1N 1E ≌△N 1OF (AAS ),∴M 1E =N 1F , 即:x +1=−23x 2−43x +2,解得:x =−7±√734(舍去负值), 则点N 1(−7+√734,−3+√734); N 2的情况(△M 2N 2O ): 同理可得:点N 2(−1−√734,−3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4, 同理可得:点N 3、N 4的坐标分别为:(−7−√734,−3−√734)、(−1+√734,−3−√734);综上,点N 的坐标为:(−7+√734,−3+√734)或(−1−√734,−3+√734)或(−7−√734,−3−√734)或(−1+√734,−3−√734). 8.(2019·通辽)已知,如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为M (1,9),经过抛物线上的两点A (﹣3,﹣7)和B (3,m )的直线交抛物线的对称轴于点C . (1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上A 、M 两点之间的部分(不包含A 、M 两点),是否存在点D ,使得S △DAC =2S △DCM ?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,M ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【点睛】(1)二次函数表达式为:y=a(x﹣1)2+9,即可求解;(2)S△DAC=2S△DCM,则S△DAC=12DH(x C﹣x A)=12(﹣x2+2x+8﹣2x+1)(1+3)=12(9﹣1)(1﹣x)×2,即可求解;(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=12DH(x C﹣x A)=12(﹣x2+2x+8﹣2x+1)(1+3)=12(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣16=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1±√7,故点P(1+√7,2)或(1−√7,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1+√7,2)或(1−√7,2).9.(2019·长沙模拟)如图,在平面直角坐标系中,直线y=12x﹣1与抛物线y=−512x2+bx+c相交于A,B两点,点A在x轴上,点B的横坐标为﹣6,点P是抛物线上位于直线AB上方的一动点(不与点A,B重合).(1)求该抛物线的解析式;(2)连接P A,PB,在点P运动的过程中,是否存在某一位置,使得△P AB恰好是一个以点P为直角顶点的等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)过点P作PD∥y轴交直线AB于点D,以PD为直径的⊙E与直线AB相交于点G,求DG的最大值.【点睛】(1)在函数y=12x﹣1中,求出A(2,0)、B(﹣6,﹣4),将A(2,0),B(﹣6,﹣4)代入y=−512x2+bx+c中,即可求解;(2)存在,理由:由A、B点坐标得:则点E(﹣2,﹣2),则AE=√(−2−2)2+(−2)2=2√5,tan∠OAC=AOAE=ACAF,即:2√5=√5AF,则AF=5,可得直线EF的表达式为:y=﹣2x﹣6…②,联立①②即可求解;(3)GD =PD sin ∠DPG =5(−512x 2−76x +4−12x +1),即可求解.【详解】解:(1)在函数y =12x ﹣1中, 当y =0时,x =2,∴A (2,0), 当x =﹣6时,y =﹣4,∴B (﹣6,﹣4), 将A (2,0),B (﹣6,﹣4)代入y =−512x 2+bx +c 中, 得{−512×22+2b +c =0−512×(−6)2−6b +c =−4,解得{b =−76c =4,∴该抛物线得解析式为y =−512x 2−76x +4…①; (2)存在,理由:设直线AB 交y 轴于点C ,则点C (0,﹣1),如图所示,作线段AB 的垂直平分线交x 轴于点F 、交y 轴于点E ,由A 、B 点坐标得:则点E (﹣2,﹣2),则AE =√(−2−2)2+(−2)2=2√5, tan ∠OAC =AO AE =ACAF ,即:2√5=√5AF,则AF =5, 故点F (﹣3,0),由点E (﹣2,﹣2)、F (﹣3,0)得直线EF 的表达式为:y =﹣2x ﹣6…②, 联立①②并解得:x =﹣4或6(舍去x =6), 故点P 的坐标为(﹣4,2), PE =√(−4+2)2+(2+2)2=2√5;(3)如下图所示,PD 为直径,则∠PGD =90°, 即:PG ⊥AC∠OAC =90°﹣∠PDC =∠DPG ,在Rt △AOC 中,sin ∠OAC =15=sin ∠DPG , 则GD =PD sin ∠DPG ,设点P 坐标为(x ,−512x 2−76x +4),则点D (x ,12x ﹣1), GD =PD sin ∠DPG =1√5(−512x 2−76x +4−12x +1), 当x =−b 2a =−2时,GD 最大,最大值为:4√53. 10.(2019·硚口区区模拟)抛物线y =ax 2−12x +54经过点E (5,5),其顶点为C 点.(1)求抛物线的解析式,并直接写出C 点坐标.(2)将直线y =12x 沿y 轴向上平移b 个单位长度交抛物线于A 、B 两点.若∠ACB =90°,求b 的值.(3)是否存在点D (1,a ),使抛物线上任意一点P 到x 轴的距离等于P 点到点D 的距离?若存在,请求点D 的坐标;若不存在,请说明理由.【点睛】(1)将点E 坐标代入解析式,求出系数a ,获得解析式,并求出顶点C 坐标;(2)平移直线y =12x ,获得平移后的解析式y =12x +b ,直线与抛物线交于两点A 、B ,设A (x 1,y 1)、B (x 2,y 2),因为∠ACB =90°,利用A 、B 、C 三点构造相似,得到1−x 1y 2−1=y 1−1x 2−1,将直线与抛物线联立获得方程,根据韦达定理,获得x 1+x 2,x 1•x 2,从而获得关于b 的方程,求出b 值;(3)过点P 作PQ ⊥x 轴,设点P (m ,14m 2−12m +54)因为PQ =PD ,所以PQ 2=PD 2,整理可得(a −2)m 2+2(a −2)m +2(a −2)(a −12)=0,所以当a =2时,存在点D (1,2).【详解】解:(1)将点E (5,5)代入y =ax 2−12x +545=25a −52+54a =14∴y =14x 2−12x +54,顶点(1,1)(2)直线y =12x 平移后获得解析式y =12x +b交抛物线于A (x 1,y 1)、B (x 2,y 2)y 1=12x 1+b ,y 2=12x 2+b联立{y =12x +by =14x 2−12x +54x 2﹣4x +5﹣4b =0∴x 1+x 2=4,x 1•x 2=5﹣4b如图,过点A 、B 作y 轴的平行线与过点C 平行于x 轴的线交于点E ,F可证△ACE ∽△BCF∴1−x 1y 2−1=y 1−1x 2−1∴(x 1+x 2)﹣(x 1•x 2)﹣1=y 1•y 2﹣(y 1+y 2)+1∴b 2﹣5b +94=0,解,b 1=92,b 2=12(舍)∴b =92.(3)设P(m,n),作PQ⊥x轴于Q若PQ=PD,则PQ2=PD2(m﹣1)2+(n﹣a)2=n2整理得m2﹣2m+1+a2﹣2an=0将n=14m2−12m+54代入整理得(a−2)m2+2(a−2)m+2(a−2)(a−12)=0当a=2时,方程成立∴D(1,2)11.(2020·云南模拟)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【点睛】(1)利用待定系数法即可解决问题;(2)易知直线AD 解析式为y =﹣x +3,设M 点横坐标为m ,则P (t ,﹣t 2+2t +3),M (t ,﹣t +3),可得l =﹣t 2+2t +3﹣(﹣t +3)=﹣t 2+3t =﹣(t −32)2+94,利用二次函数的性质即可解决问题;(3)由S △P AD =12×PM ×(x D ﹣x A )=32PM ,推出PM 的值最大时,△P AD 的面积最大;(4)如图设AD 的中点为K ,设P (t ,﹣t 2+2t +3).由△P AD 是直角三角形,推出PK =12AD ,可得(t −32)2+(﹣t 2+2t +3−32)2=14×18,解方程即可解决问题;【详解】解:(1)把点 B (﹣1,0),C (2,3)代入y =ax 2+bx +3,则有{a −b +3=04a +2b +3=3,解得{a =−1b =2,∴抛物线的解析式为y =﹣x 2+2x +3.(2)在y =﹣x 2+2x +3中,令y =0可得0=﹣x 2+2x +3,解得x =﹣1或x =3,∴D (3,0),且A (0,3),∴直线AD 解析式为y =﹣x +3,设M 点横坐标为m ,则P (t ,﹣t 2+2t +3),M (t ,﹣t +3),∵0<t <3,∴点M 在第一象限内,∴l =﹣t 2+2t +3﹣(﹣t +3)=﹣t 2+3t =﹣(t −32)2+94,∴当t =32时,l 有最大值,l 最大=94;(3)∵S △P AD =12×PM ×(x D ﹣x A )=32PM ,∴PM 的值最大时,△P AD 的面积中点,最大值=32×94=278. ∴t =32时,△P AD 的面积的最大值为278.(4)如图设AD 的中点为K ,设P (t ,﹣t 2+2t +3).∵△P AD 是直角三角形,∴PK =12AD ,∴(t −32)2+(﹣t 2+2t +3−32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0,解得t =0或3或1±√52, ∵点P 在第一象限,∴t =1+√52. 12.(2019·大渡口区模拟)如图,抛物线y =−35x 2+125x +3与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,连结BC .(1)如图1,点N 为抛物线上的一动点,且位于直线BC 上方,连接CN 、BN .点P 是直线AB 上的动点.当△NBC 面积取得最大值时,求出点N 的坐标及△NBC 面积的最大值,并求此时PN +CP 的最小值;(2)如图2,点M 、P 分别为线段BC 和线段OB 上的动点,连接PM 、PC ,是否存在这样的点P ,使△PCM 为等腰三角形,△PMB 为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.【点睛】(1)S△NBC=12HN×OB=52(−35x2+125x+3+35x﹣3)=−32x2+152x,求出N的坐标是(52,214),点C关于直线AB的对称点C'(0,﹣3),PN+PC的最小值为NC′即可求解;(2)利用△BMP~△BOC,即可求解.【详解】解:(1)过点N作y轴的平行线交直线BC与点H,y=−35x2+125x+3,令x=0,则y=3,令y=0,则x=5或﹣1,即点A、B、C的坐标分别为(﹣1,0)、(5,0)、(0,3),则直线BC的表达式为:y=kx+3,将点B坐标代入上式并解得:k=−3 5,则直线BC的表达式为:y=−35x+3,设点N(x,−35x2+125x+3),点H(x,−35x+3),S△NBC=12HN×OB=52(−35x2+125x+3+35x﹣3)=−32x2+152x,∵−32<0,则S△NBC有最大值,当x=52时,△NBC面积最大,最大值为758;此时点N的坐标是(52,214),如图,点C 关于直线AB 的对称点C '(0,﹣3),PN +PC 的最小值NC′=√(214+3)2+(52)2=√11894; (2)存在,∵B (5,0),C (0,3),∴BC =√32+52=√34,①当∠PMB =90°,则∠PMC =90°,△PMC 为等腰直角三角形,MP =MC ,设PM =t ,则CM =t ,MB =√34−t ,∵∠MBP =∠OBC ,∴△BMP ~△BOC ,∴PM OC =BM OB =BP BC ,即t 3=√34−t 5=√34, 解得t =3√348,BP =174, ∴OP =OB −BP =5−174=34,当∠PMB =90°,CM =PM 时,同理可得:点P (3√34−95,0); 此时P 点坐标为(34,0)或(3√34−95,0). 13.(2019·崇安区一模)已知二次函数y =ax 2﹣9ax +18a 的图象与x 轴交于A ,B 两点(A 在B 的左侧),图象的顶点为C ,直线AC 交y 轴于点D .(1)连接BD ,若∠BDO =∠CAB ,求这个二次函数的表达式;(2)是否存在以原点O 为对称中心的矩形CDEF ?若存在,求出这个二次函数的表达式,若不存在,请说明理由.【点睛】(1)利用配方法求出抛物线y =ax 2﹣9ax +18a 的顶点C 的坐标为(92,−94a ).作CM ⊥x 轴于M ,则OM =92,CM =|−94a |.求出A (3,0),B (6,0).再证明△ODA ∽△OBD ,根据相似三角形对应边成比例求出OD =3√2.根据平行线分线段成比例定理得出OD CM =OA AM ,求得CM =3√22,那么|−94a |=3√22,求出a ,即可得到二次函数的解析式; (2)连接OC ,根据矩形的性质得出OC =OD ,那么∠ODC =∠OCD .再证明∠OCD =∠DCM .作AN ⊥OC 于N ,根据角平分线的性质得出AN =AM =32.由sin ∠AON =AN OA =12,得出∠AON =30°,求出CM =OM •tan30°=3√32,那么|−94a |=3√32,求出a ,即可得到二次函数的解析式.【详解】解:(1)∵y =ax 2﹣9ax +18a =a (x −92)2−94a ,∴顶点C (92,−94a ).作CM ⊥x 轴于M ,则OM =92,CM =|−94a |.当y =0时,ax 2﹣9ax +18a =0,解得x 1=3,x 2=6,∴A (3,0),B (6,0).∵∠BDO =∠CAB ,∠CAB =∠DAO ,∴∠DAO =∠BDO .在△ODA 与△OBD 中,{∠DAO =∠BDO ∠AOD =∠DOB =90°,∴△ODA ∽△OBD ,∴OD OB =OA OD ,即OD 6=3OD ,∴OD =3√2.∵CM ∥OD ,∴OD CM =OA AM ,即3√2CM =392−3,∴CM =3√22,∴|−94a |=3√22,∴a =±2√23,∴二次函数的解析式为y =2√23x 2﹣6√2x +12√2或y =−2√23x 2+6√2x ﹣12√2;(2)存在.连接OC ,则OC =OD .∴∠ODC =∠OCD .∵CM ∥OD ,∴∠ODC =∠DCM ,∴∠OCD =∠DCM .作AN ⊥OC 于N ,AN =AM =32.∵sin ∠AON =AN OA =323=12, ∴∠AON =30°,∴CM =OM •tan30°=92×√33=3√32, ∴|−94a |=3√32, ∴a =±2√33, ∴二次函数的解析式为y =2√33x 2﹣6√3x +12√3或y =−2√33x 2+6√3x ﹣12√3.14.(2019·长沙一模)如图,已知直线y =kx ﹣6与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,﹣4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.【点睛】(1)已知点A 坐标可确定直线AB 的解析式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B 的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C 的坐标,在△POB 和△POC 中,已知的条件是公共边OP ,若OB与OC 不相等,那么这两个三角形不能构成全等三角形;若OB 等于OC ,那么还要满足的条件为:∠POC =∠POB ,各自去掉一个直角后容易发现,点P 正好在第二象限的角平分线上,联立直线y =﹣x 与抛物线的解析式,直接求交点坐标即可,同时还要注意点P 在第二象限的限定条件.(3)分别以A 、B 、Q 为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A (1,﹣4)代入y =kx ﹣6,得k =2,∴y =2x ﹣6,令y =0,解得:x =3,∴B 的坐标是(3,0).∵A 为顶点,∴设抛物线的解析为y =a (x ﹣1)2﹣4,把B (3,0)代入得:4a ﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =1−√132(m =1+√132>0,舍),∴P (1−√132,√13−12).(3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB ,∴AD OD =DQ 1DB ,即√56=13√5,∴DQ 1=52, ∴OQ 1=72,即Q 1(0,−72);②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即Q 2(0,32);③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E ,则△BOQ 3∽△Q 3EA ,∴OBQ 3E =OQ 3AE ,即34−OQ 3=OQ 31,∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,即Q 3(0,﹣1),Q 4(0,﹣3).综上,Q 点坐标为(0,−72)或(0,32)或(0,﹣1)或(0,﹣3).15.(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (﹣5,0),B (﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.【点睛】(1)将点A 、B 坐标代入二次函数表达式,即可求解;(2)①S △PBC =12PG (x C ﹣x B ),即可求解;②分点P 在直线BC 下方、上方两种情况,分别求解即可.【详解】解:(1)将点A 、B 坐标代入二次函数表达式得:{25a −5b +5=016a −4b +5=−3,解得:{a =1b =6,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=−32t2−152t﹣6,∵−32<0,∴S△PBC有最大值,当t=−52时,其最大值为278;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC =∠BCD ,∴点H 在BC 的中垂线上,线段BC 的中点坐标为(−52,−32),过该点与BC 垂直的直线的k 值为﹣1,设BC 中垂线的表达式为:y =﹣x +m ,将点(−52,−32)代入上式并解得:直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x +2…④,联立③④并解得:x =﹣2,即点H (﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤,联立①⑤并解得:x =−32或﹣4(舍去﹣4),故点P (−32,−74);当点P (P ′)在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ′∥CD ,则直线BP ′的表达式为:y =2x +s ,将点B 坐标代入上式并解得:s =5,即直线BP ′的表达式为:y =2x +5…⑥,联立①⑥并解得:x =0或﹣4(舍去﹣4),故点P (0,5);故点P 的坐标为P (−32,−74)或(0,5).16.(2019·山西)综合与探究如图,抛物线y =ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4).连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【点睛】(1)由抛物线交点式表达,即可求解;(2)利用S △BDC =12HD ×OB ,即可求解;(3)分BD 是平行四边形的一条边、BD 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)由抛物线交点式表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8)=ax 2﹣2ax ﹣8a , 即﹣8a =6,解得:a =−34,故抛物线的表达式为:y =−34x 2+32x +6;(2)点C (0,6),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =−32x +6,如图所示,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,−34m 2+32m +6),则点H (m ,−32m +6)S △BDC =12HD ×OB =2(−34m 2+32m +6+32m ﹣6)=2(−34m 2+3m ),34S △ACO =34×12×6×2=92,即:2(−34m 2+3m )=92,解得:m =1或3(舍去1),故m =3;(3)当m =3时,点D (3,154),①当BD 是平行四边形的一条边时,如图所示:M 、N 分别有三个点,设点N (n ,−34n 2+32n +6)则点N 的纵坐标为绝对值为154,即|−34n 2+32n +6|=154, 解得:n =﹣1或3(舍去)或1±√14,故点N (N ′、N ″)的坐标为(﹣1,154)或(1+√14,−154)或(1−√14,−154), 当点N (﹣1,154)时,由图象可得:点M (0,0),当N ′的坐标为(1+√14,−154),由中点坐标公式得:点M ′(√14,0), 同理可得:点M ″坐标为(−√14,0),故点M 坐标为:(0,0)或(√14,0)或(−√14,0);②当BD 是平行四边形的对角线时,点B 、D 的坐标分别为(4,0)、(3,154) 设点M (m ,0),点N (s ,t ),由中点坐标公式得:{4+3=m +s 154+0=t +0,而t =−34s 2+32s +6, 解得:t =154,s =﹣1,m =8,故点M 坐标为(8,0);故点M 的坐标为:(0,0)或(√14,0)或(−√14,0)或(8,0).17.(2019·眉山)如图1,在平面直角坐标系中,抛物线y =−49x 2+bx +c 经过点A (﹣5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.【点睛】(1)抛物线的表达式为:y=−49(x+5)(x﹣1),即可求解;(2)PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG),即可求解;(3)分MN=DM、NM=DN、DN=DM,三种情况分别求解.【详解】解:(1)抛物线的表达式为:y=−49(x+5)(x﹣1)=−49x2−169x+209,则点D(﹣2,4);(2)设点P(m,−49m2−169m+209),则PE=−49m2−169m+209,PG=2(﹣2﹣m)=﹣4﹣2m,矩形PEFG的周长=2(PE+PG)=2(−49m2−169m+209−4﹣2m)=−89(m+174)2+252,∵−89<0,故当m=−174时,矩形PEFG周长最大,此时,点P的横坐标为−17 4;(3)∵∠DMN=∠DBA,∠BMD+∠BDM=180°﹣∠ADB,∠NMA+∠DMB=180°﹣∠DMN,∴∠NMA=∠MDB,∴△BDM ∽△AMN ,AN BM =AM BD ,而AB =6,AD =BD =5,①当MN =DM 时,∴△BDM ≌△AMN ,即:AM =BD =5,则AN =MB =1; ②当NM =DN 时,则∠NDM =∠NMD ,∴△AMD ∽△ADB ,∴AD 2=AB ×AM ,即:25=6×AM ,则AM =256, 而AN BM =AM BD ,即AN 6−256=2565,解得:AN =5536;③当DN =DM 时,∵∠DNM >∠DAB ,而∠DAB =∠DMN , ∴∠DNM >∠DMN ,∴DN ≠DM ;故AN =1或5536.。

2014年泉州会代数与几何综合问题的的创设及教学探讨

2014年泉州会代数与几何综合问题的的创设及教学探讨

代数与几何综合问题的的创设及教学探讨晋江市丰光中学张时贤代数与几何综合问题是指需综合运用代数、几何这两部分知识解题的问题,是初中数学中知识涵盖面最广、综合性最强的题型。

代数与几何综合问题考查了数学基础知识和灵活运用知识的能力;考查了对数学知识的迁移整合能力;考查了将复杂问题简单化的能力;考查了对代数与几何知识之间的内在联系的认识,运用数学思想或方法分析与解决问题的能力. 解这类题目时应从代数、几何两方面入手,多角度、多线索地深入分析,架起连接代数与几何的桥梁关键点. 灵活运用数学思想方法,如数形结合思想、数学建模思想、分类讨论思想、转化的思想、函数与方程思想等.一、代数与几何综合问题的的创设从问题创设的角度看,常见的题型主要有:以二次函数为基架的实际应用问题、以二次函数为基架的存在性问题探究、以函数的图像的变化(平移、旋转、翻折)为主线的代数几何综合问题、以多种函数交叉为手段的代数几何综合问题、以动态几何(动点、动线、图形动)为载体的代数几何综合问题……现以题例为载体,选择几种类型加以剖析.1.以二次函数为基架的实际应用问题【例1】(2011年江津区)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y 米,BC=x 米.(注:取π=3.14)(1)试用含x 的代数式表示y ;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.【简析】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价;②利用配方法求得最小值进行验证;③建立不等式与一元二次方程,结合实际解决问题.【简解】(1)x y -=200;(2)①12560000400002002+-=x x W ;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下:由①知7721010056.1)100(200>⨯+-=x W ,所以不能;③由x ≤y 32即x ≤)200(32x -解得x ≤80, ∴0≤x ≤80,又577210482.61010056.1)100(200⨯+=⨯+-=x W整理得441)100(2=-x ,解得791=x ,1212=x (不合题意舍去),∴只能取x =79,则y =200-79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆.2.以二次函数为基架的点的存在性问题探究【例2】(2011年茂名)如图,在平面直角坐标系xoy 中,已知抛物线经过点A (0,4),B (1,0),C (5,0),抛物线对称轴l 与x 轴相交于点M .(1)求抛物线的解析式和对称轴;(2)设点P 是抛物线(5>x )上的一点,若以A 、O 、M 、P 为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P 的坐标;(3)连接AC .探索:在直线AC 下方的抛物线上是否存在一点N ,使△NAC 的面积最大?若存在,请你求出点N 的坐标;若不存在,请你说明理由.【简析】此题主要利用待定系数法求二次函数的解析式,勾股定理以及三角形面积的最大值问题.解题的关键是方程思想与数形结合思想的应用.(1)交点式求抛物线解析式并将求得解析式配方(或利用抛物线的对称性直接得出对称轴为直线3=x );(2)由题意可知以A 、O 、M 、P 为顶点的四边形有两条边AO=4、OM=3,又知点P 的坐标中x >5,所以MP >2,AP >2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况;(3)中途设点:设N 点的横坐标为t ,则点N 坐标为(t ,42+-t t )(0<t <5),再求得直线AC 的解析式,即可求得NG 的长与△ACN 的面积,利用二次函数最大值的问题解答.【简解】(1) 解析式为4524542+-=x x y ,对称轴为直线3=x ;(2)P (6,4);(3)设N 点的坐标为(t ,42+-t t )(0<t <5),过点N 作NG ∥y 轴交AC 于G ;作AM ⊥NG 于M ,由点A (0,4)和点C (5,0)可求出直线AC 的解析式为:4+-=x y ;把t x =代入4+-=x y 得点G 坐标为(t ,4+-t ),此时:NG t t t t t 4)4(422+-=+--+-=,t t t t OC NG S S S CGN ANG ACN 1025)454(212122+-=⨯+-⨯=⋅=+=∆∆∆ 配方得,225)25(22+--=∆t S ACN∴当25=t 时,△CAN 面积的最大值为225,点N 坐标为(25,-3). 3.以函数的图像的变化(平移、旋转、翻折)为主线的代数几何综合问题【简析】(1)根据翻折的性质可求拋物线2C 的表达式;(2)①分类讨论(AE AD 31=和AE AB 31=两种情况),注意数形结合(点的坐标与相关线段的长的转化)②综合分析法:涉及内容主要有中心对称的性质,平行四边形的判定,矩形的性质与判定,勾股定理的逆定理.【简解】(1)332-=x y ;(2)①分AE AD 31=和AE AB 31=两种情况讨论,当21=m 或2时,B ,D 是线段AE 的三等分点;②存在.理由:连接AN ,NE ,EM ,MA .依题意可得:M (m -,3),N (m ,3-). 即M ,N 关于原点O 对称,∴OM=ON .∵A (-1-m ,0),E (1+m ,0),∴A ,E 关于原点O 对称则有OA=OE∴四边形ANEM 为平行四边形.∵4)3()1(222=+++-=m m AM , 444)3()1(2222++=+++=m m m m ME ,484)11(222++=+++=m m m m AE ,∴若要使四边形ANEM 为矩形,则必须有222AE ME AM =+成立,此时△AME 是直角三角形,且∠AME=︒90,由484)444(422++=+++m m m m ,解得1=m∴当1=m 时,以点A ,N ,E ,M 为顶点的四边形是矩形.4.以多种函数交叉为手段的代数几何综合问题.【例4】(2011年嘉兴)已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.(1)当k =-1时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1).①直接写出t =1秒时C 、Q 两点的坐标;②若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.(2)当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2), ①求CD 的长;②设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?【简析】(1)属双动点问题:①由题意知P (t ,0),C (t ,-t+3),Q (3-t ,0)②分两种情况解答.(2)融入二次函数:①消参:将)343,(+-t t C 代入以点C 为顶点的函数式消去参数n m ,,由交点的特征,列出关于x 的方程,再结合△DEC ∽△AOB 来解答.②通过求解可知三角形COD 的面积为定值,又由Rt △PCO ∽Rt △OAB ,在线段比例中t 为2536时,h 最大. 【简解】(1)①C (1,2),Q (2,0);②由题意得:P (t ,0),C (t ,3+-t ),Q (t -3,0)分△AQC ∽△AOB 和△ACQ ∽△AOB 两种情况讨论可得5.1=t 或2=t ;(2) ①由题意得:)343,(+-t t C ,∴以C 为顶点的抛物线解析式是343)(2+--=t t x y , 由343343)(2+-=+--x t t x 解得t x =1,432-=t x . 过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB=90°,∵DE ∥OA ,∴∠EDC=∠OAB ,∴△DEC ∽△AOB , ∴BACD AO DE =, ∵AO=4,AB=5,DE=43)43(=--t t , ∴16154543=⨯=⨯=AO BA DE CD , ②∵CD=1615,CD 边上的高=512543=⨯, ∴89512161521=⨯⨯=∆COD S , ∴COD S ∆为定值.要使OC 边上的高h 的值最大,只要OC 最短,因为当OC ⊥AB 时OC 最短,此时OC 的长为512,∠BCO=90°,∵∠AOB=90°,∴∠COP=90°-∠BOC=∠OBA ,又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB , ∴BA OC BO OP =解得OP=253653512=⨯=⨯BA BO OC , 即2536=t , ∴当2536=t 秒时,h 的值最大. 5.以动态几何(动点、动线、图形动)载体的代数几何综合问题.【例5】(2011南京六合区一模)如图1,△ABC 中,AB=AC=5cm ,BC=6cm ,边长为2cm 的菱形DEFG 两边DG 、DE 分别在AC 、AB 上.若菱形DEFG 以1cm/s 的速度沿射线AC 方向平移.(1)经过 秒菱形DEFG 的顶点F 恰好在BC 上;(2)求菱形DEFG 的面积;(3)设菱形DEFG 与△ABC 的重合部分为2Scm ,菱形DEFG 平移的时间为t 秒.求S 与t 的函数关系式.【简析】(1)要求菱形DEFG 的顶点F 恰好在BC 上的时间,只要求出D 点移动的距离即可,可根据平行线及等腰三角形的知识求得△EFC 是等腰三角形,利用线段差可求AD 的大小;(2)要求菱形的面积,知道菱形的边长,只要求出菱形的一条对角线的长,利用勾股定理求得另一条对角线的长,可求面积;(3)要求S 与t 的函数关系式,要分四种情况,对每种情况进行逐个分析,可得结论.【简解】(1)经过1秒菱形DEFG 的顶点F 恰好在BC 上;(2)如图1,259621=⋅=AF GE S AEFG 菱形 (3)①当0≤t ≤1时,2596=S ; ②当1<t ≤3时,2)1(25122596--=-=∆t S S S FMN AEFG 菱形; ③当3<x ≤5时,2)5(2512t S -=; ④当t >5时,0=S .【例6】(2009年上海)在直角坐标平面内,O 为原点,点A的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线b x y +=(b 为常数)经过点B ,且与直线CM 相交于点D ,连接OD .(1)求b的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD ∆是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.【简析】本题考查的主要内容有动点、中心对称、直线、等腰三角形、点的坐标、圆与圆的位置关系、相似三角形的性质与判定、三角函数、勾股定理,解方程;主要数学思想有数形结合思想、分类思想、化归思想.(1)由点B 与点A 对称求点B ,B 在直线上求b ,D (x ,4)在直线上求点D 坐标;(2)分三种情况讨论等腰POD ∆的存在性(3)两圆外切⇔r R d +=【简解】(1)D (3,4); (2)当5==OD PD 时,点P 的坐标为)0,6(;当5==OD PO 时,点P 的坐标为(5,0); 当5==PD PO 时,设点P 的坐标为)0,(x ,取OD 的中点N ,过N 作OD 的垂线交x 轴的正半轴于点3P ,则33DP OP=,易知△3ONP ∽DCO ∆. ∴DC ON OD OP =3即3253=OP 解得6253=OP ∴)0,625(3P . 图3图1 xb 图2综上所述,符合条件的点P 有三个,分别是1P (5,0),2P (6,0),)0,625(3P , (3))①当1P (5,0)时,⊙O 的半径为525-.②当2P (6,0)时, ⊙O 的半径为1. ③当)0,625(3P 时,62533==OP D P , ∴⊙P 的半径为625. ∵⊙O 与⊙P 外切,∴⊙O 的半径为0,即此圆不存在. 综上所述,所求⊙O 的半径为525-或0. 【例7】(2011年重庆)如图,矩形ABCD 中,AB=6,BC=2,点O 是AB 的中点,点P 在AB 的延长线上,且BP=3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.【简析】本题考查的主要内容有相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.主要数学思想有数形结合思想、分类思想、化归思想.(1)当边FG 恰好经过点C 时,∠CFB=60°,BF=3-t ,在Rt △CBF 中,解直角三角形可求t 的值;(2)按等边△EFG 和矩形ABCD 重叠部分的图形特点,分为0≤t<1,1≤t <3,3≤t <4,4≤t <6四种情况,分别写出函数关系式;(3)分为AH=AO=3,HA=HO ,OH=OA 三种情况,分别画出图形,根据特殊三角形的性质,列方程求t 的值.【简解】(1)如图①,1=t ;(2)当0≤t <1时,3432+=t S ;当1≤t <3时,23733232++-=t t S ;当3≤t <4时,32034+-=t S ;当4≤t <6时,33631232+-=t t S ;(3)存在.当AH=AO=3时,(如图②)33±=t ;当HA=HO时,(如图③)t =2或t =4;当OH=OA 时,(如图④),t =6(舍去)或t =0;综上所述,存在5个这样的t 值,使△AOH 是等腰三角形,即33±=t 或t =2或t =4或t =0.二、代数几何综合问题复习教学探讨代数几何综合题从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也融入了开放性、探究性等问题,如探究条件、探究结论、探究存在性等.解代数几何综合题,除在第一轮适当精讲一些相对较为简单的综合题之外,还应在第二轮复习时安排专题训练,由浅入深,不断提高难度,变化题型。

中考数学压轴题解题技巧超详细

中考数学压轴题解题技巧超详细

中考数学压轴题解题技巧超详细The document was finally revised on 20212012年中考数学压轴题解题技巧解说数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。

综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。

压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。

下面谈谈中考数学压轴题的解题技巧。

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。

初中代数几何综合题(一)

初中代数几何综合题(一)

代数几何综合题(一)代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0),连结BP,过P点作交过点A的直线a于点C(2,y)(1)求y与x之间的函数关系式;(2)当x取最大整数时,求BC与PA的交点Q的坐标。

解:(1)A(2,0),C(2,y)在直线a上,,(2),的最大整数值为 ,当时,,设Q点坐标为,则点坐标为说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD 为6,连结CD、AO.(1)求证:CD∥AO;(3分)(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3分)(3)若AO+CD=11,求AB的长。

(4分)2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。

①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;②在①中,设BD与CE的交点为P,若点P,B在抛物线上,求b,c的值;3 若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l 的解析式。

中考数学压轴题解题技巧超详细

中考数学压轴题解题技巧超详细

中考数学压轴题解题技巧超详细-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2012年中考数学压轴题解题技巧解说数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。

综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。

压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。

下面谈谈中考数学压轴题的解题技巧。

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分 压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止 “捡芝麻丢西瓜”。

初三数学考试复习资料

初三数学考试复习资料

初三数学考试复习资料初三数学考试复习资料复习是对前面已学过的知识进行系统再加工,并根据学习情况对学习进行适当调整,为下一阶段的学习做好准备。

下面是为大家整理的关于初三数学考试复习资料,希望对您有所帮助!初三数学知识点分类复习题【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。

压轴题的做题技巧

压轴题的做题技巧

压轴题的做题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。

综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。

压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。

下面谈谈中考数学压轴题的解题技巧。

压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。

所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

2、解数学压轴题做一问是一问。

第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。

过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。

审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。

解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。

认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

中考数学压轴题解题方法大全和技巧(可编辑修改word版)

中考数学压轴题解题方法大全和技巧(可编辑修改word版)
用知识的能力而设计的题目, 其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。 解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基 本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同 学参考。
1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特 点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何 图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所 表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方 程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组 并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的 多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分 类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想 解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体 包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同 知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体 的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤 立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察, 所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴 题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了, 当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一 种分题、分段的得分策略。 5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是 第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第 (1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的 分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

中考复习之代几综合问题知识讲解

中考复习之代几综合问题知识讲解

代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。

初中数学中考大题题型

初中数学中考大题题型

初中数学中考大题题型
初中数学中考大题题型主要包括以下几种:
1. 代数综合题:这类题目通常涉及到代数式、方程、不等式、函数等知识的综合运用,需要学生具备较强的逻辑思维和数学运算能力。

2. 几何综合题:这类题目主要考察学生的几何知识和空间思维能力,包括三角形、四边形、圆等图形的性质和判定,以及图形的平移、旋转、对称等变换。

3. 函数与图像题:这类题目主要考察学生对函数图像的理解和应用,通常涉及一次函数、二次函数、反比例函数等,需要学生通过数形结合的方法解决。

4. 实际应用题:这类题目通常以实际问题为背景,需要学生运用数学知识解决实际问题,例如概率统计、优化问题等。

5. 新题型:近年来,中考数学中出现了一些新题型,例如开放题、探究题、动手操作题等,这些题目注重对学生创新思维和实践能力的考察。

以上是初中数学中考大题的主要题型,学生可以通过多做真题和模拟题来熟悉这些题型,提高自己的数学成绩。

综合型问题(含答案)

综合型问题(含答案)

第10课时综合型问题综合型试题是将所学的知识在一定的背景下进行优化组合,找到解决问题的方案,在解决问题的时候所用到的知识不再是单一的知识点,而是相关的知识,可能同时用到方程、函数,也有可能是三角形与多边形,也有可能是相关学科的知识,这类题目对学生综合能力的要求较高,同时这类题目有相对新颖的背静环境,数学综合题是初中数学中覆盖面最广、综合性最强的题型.解数学综合题必须要有科学的分析问题的方法,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.类型之一代数类型的综合题代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.1.(·安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。

一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。

⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。

2.(沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)类型之二几何类型的综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.3.(龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D 在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.4.(益阳) △ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.Ⅰ.证明:△BDG≌△CEF;Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在..................... .如果...Ⅱ.a.和.Ⅱ.b.的两个问题中选择一个你喜欢的问题解答两题都解,只以.............Ⅱ.a.的解答记分Ⅱa. 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了. 设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是:①在AB边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC于F;③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.类型之三 几何与代数相结合的综合题几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力.5.(·恩施自治州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若∆ABC 固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.(3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2.(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.6.(茂名)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c ,经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.7.(嘉兴市)如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .(1)求B C ,两点的坐标;(2)求直线CD 的函数解析式;(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?参考答案1.【解析】本题是一道包含着分类思想的应用综合应用题。

矩形折叠动点问题

矩形折叠动点问题

矩形的折叠问题班级________姓名____________①(10哈尔滨)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=20°,那么∠EFC’的度数为°.②(10 江西)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.1③(10 青岛)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC = 5 cm,则重叠部分△DEF的面积是cm2.④(11 绵阳)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.第①题图第②题图第③题图第④题图⑤(10 荷泽)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合点为A',则△A'B G的面积与该矩形的面积比为()A.112B.19C.18D.16⑥(10 连云港)矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B’处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为________.⑦(10 吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A’,D’处,则整个阴影部分图形的周长..为()A.18cm B.36cm C.40cm D.72cm矩形折叠类综合题1.如图,矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连结B1B,判断△B1BG的形状,并写出判断过程.第⑤题图第⑥题图第⑦题图O A BC B 1D y x 2.如图,矩形OABC OA 、OC 的长满足:|OA -2|+(OC -23)2=0. (1)求B 、C 两点的坐标.⑵把△ABC 沿AC 对折,点B 落在点B 1处,AB 1线段与x 轴交于点D ,求直线BB 1的解析式 ⑶在直线BB 1上是否存在点P 使△ADP 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =53cm ,ECFC =34,求矩形ABCD 的周长.4.如图一,平面直角坐标系中有一张矩形纸片OABC ,O 为坐标原点,A 点坐标为(10,0),C 点坐标为(0,6),D 是BC 过上的动点(与点B 、C 不重合),现将△COD 沿OD 翻折,得到△FOD ;再在AB 边上选取适当的点E ,将△BDE 沿DE 翻折,得到△GDE ,并使直线DG 、DF 重合,⑴如图二,若翻折后点F 落在OA 上,求直线DE 的函数关系式; ⑵设D (a ,6),E (10,b ),求b 关于a 的函数关系式GxyOA B C D FE y OAB C D FG xE5.将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA =6,OC =10.(1)如图①,在OA 上取一点E ,将EOC ∆沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图②,在OA 、OC 边上选取适当的点E '、F ,将OF E '∆沿F E '折叠,使O 点落在AB 边上的D '点,过D '作y G D //'轴,交F E '于T 点,交OC 于G 点,求证:E A TG '=.(3)在⑵的条件下,设),(y x T ,①探求:y 与x 之间的函数关系式;②指出自变量x 的取值范围.(4)如图③,如果将矩形OABC 变为平行四边形C B A O ''',使10='C O ,C O '边上的高等于6,其他条件均不变,探求:这时),(y x T '的坐标y 与x 之间是否仍然满足⑶中所得的函数关系式?若满足,请说明理由;若不满足,写出你认为正确的函数关系式.yE 'ABC OxFD 'G图②A E y C xBO D OyD ''E ''A ' 'C ' F ' G 'T ' x班级________姓名____________1. 如图,矩形ABCD 中,AB B →C →M 运动,则△APM 的面积y 与点( )2. 如图,在直角坐标系中,过点C (3,6)分别作x 轴和y 轴的垂线CB 和CA ,垂足为B 和A ,若点P 从O 沿OB 向点B 以1个单位长度/秒的速度运动,点Q 从B 沿BC 向点C 以2个单位长度/秒的速度运动. 如果P 、Q 分别从O 、B 同时出发, 试求:(1)经过多少时间,△PBQ 的面积等于2个平方单位;(2)线段PQ 与AB 能否垂直?若能垂直,求出此时点Q 的坐标;若不能,请说明理由.yx3题图MQ PCBO A3.53211A yxO 3.532C11y xO3.532B 11y x O 3.532D11y xOCD P A 第1题图4.(10广东东莞)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF=2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: ⑴说明△FMN ∽ △QWP ;⑵设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?⑶问当x 为何值时,线段MN 最短?求此时MN 的值.MPQWN 图(2)A BACN MWQDP 图(1)5.(11 聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm ,点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EF G 的面积为S (cm2).(1)当t =1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围.(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似?请说明理由.6.(11福州)已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.ABCDEF图10-1O图10-2ACD E P备用图A CDEP7.( 11 衡阳)如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.几何综合测验【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.2、(09广东省)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

项斌2010研讨课件1

项斌2010研讨课件1
y C P N MO
A
B
x
翻折, 点恰好落在 边上的P处 点恰好落在AC边上的 将△BMN沿MN翻折,B点恰好落在 边上的 处,求 沿 翻折 的值及点P的坐标 的坐标; 的值及点 的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是 ) )的条件下, 否存在点Q,使得以B, , 为顶点的三角形与 否存在点 ,使得以 ,N,Q为顶点的三角形与 相似? 的坐标; △ABC相似?如果存在,请求出点 的坐标; 相似 如果存在,请求出点Q的坐标 如果不存在,请说明理由. 如果不存在,请说明理由.
二、代数几何综合题构题的基本方式
1、基本方式一 ———在图形中引入动元素 、 在图形中引入动元素 例题1(青岛市试题 例题 青岛市试题) 青岛市试题 如图,在梯形 如图,在梯形ABCD中,AD∥BC,AD=6cm, 中 , , CD=4cm,BC=BD=10cm,点P由B出发沿 方 出发沿BD方 , , 由 出发沿 向匀速运动,速度为1cm/s;同时,线段 由DC 向匀速运动,速度为 ;同时,线段EF由 出发沿DA方向匀速运动,速度为1cm/s,交BD于 出发沿 方向匀速运动,速度为 , 于 方向匀速运动 Q,连接 .若设运动时间为 (s) ,连接PE.若设运动时间为t( ) ).解答下列问题 (0<t<5).解答下列问题 : ).
A E Q P B F C D
例题2( 江西省试题 江西省试题) 例题 (09江西省试题) 如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中 如图 ,在等腰梯形 中 ∥ , 是 的中 过点E作 ∥ 交 于点 于点F. 点,过点 作EF∥BC交CD于点 .AB=4,BC=6,, , ,, ∠B=60º. 的距离; (1)求点 到BC的距离; )求点E到 的距离 为线段EF上的一个动点 (2)点P为线段 上的一个动点,过P作⊥EF交BC ) 为线段 上的一个动点, 作 交 于点M, 交折线ADC于点 ,连结 , 于点N,连结PN, 于点 ,过M作MN∥AB交折线 作 ∥ 交折线 于点 设EP=x.

谈谈数学中考几种压轴题的解题思想

谈谈数学中考几种压轴题的解题思想
教 探讨
9 ll _ 豁 l l l
谈 谈 数 掌 中考 几种 轴题 的 解 题 飓 想
文 / 建 波 林
数学综合题是初中数学中覆盖而最广、 综合性最强 的题型 , 近 速度 向右移动 , 直到点 N与点 B重合为止 。 几 年 的中考压 轴题 多 以数学综 合 题 的形 式 出现 。解数 学综 合题 一 般可分为认真审题 、 理解题意, 探求解题思路 , 正确解答三个步骤。 解数学综合题必须要有科学的分析问题 的方法。数学思想是解数 学 综合题 的灵 魂 ,要 善 于总结 解数 学综 合题 中所 隐含 的重 要的 转 化思想、 数形结合思想、 分类讨论的思想 、 类比的思想等 , 要结合实 际问题加以领会与掌握 , 这是学 习解综合题的关键 。 ( ) 当等腰直角三 角形 P 1设 MN移动 xs , (时 等腰直角三 角 ) 在这里介绍一些有用的策略与方法 , 让读者在学 习数学 的 过程中, 能有一些遵循 的模式与法则 。当然并不是所有 的问题 形 P MN与等腰梯形 A C B D重叠部 分的面积 为 y m) Y X ( 2求 与 c , 都能经 由这些模式去解 决 , 只是 试图提出一些理性 的 、 有效率 之 间 的 函数 表 达式 。 的建议 , 以提供读者参考 。 ( )当 x 4 )时 ,求 等腰直角三 角形 P N与等腰梯形 2 = s M AC B D重叠 部 分 的而 积 。 数 形 结 合 思 想 数 形 结 合 是 数 学 解题 中 常用 的思 想 方 法 , 形 结 合 的思 想 分 析 : 出 分界 点 D, 出 每 一 时 刻 的 图形 ( 1 图 2, 两 种 数 找 画 图 , )分 可 以使某些抽象 的数学 问题 直观化 、 生动化 , 能够变抽 象思维 情 况类 讨 论 : 为形象思维 , 助于把握数学问题的本质 ; 有 另外 , 由于使用 了数 ①当边 P N与线段 A D相交时, 重叠部分的形状是“ 等腰直角 形 结合 的方 法 , 多 问 题 便 迎 刃 而 解 , 解 法 简捷 。 很 且 三角形”图 1 , ( )这时, 求得 A N的取值范围:< N≤6 即 0 x 。 0A , < ≤6 题 型 : 在 性 问题 存 ② 当边 P N与线段 D C相交 时 , 重叠部分的形状是“ 等腰梯 ( )A 6 N≤1 , 6< ≤ 1 。 0即 x 0 近 几 年 的 中考 数 学 试 题 中, 关 函 数 图 象 存 在 性 问题 屡 见 形 ” 图 2 , N的 取值 范 围 : <A 有 不 鲜 。 类 试 题 知识 面广 , 法灵 活, 巧 性 强 。 除 了考 查 考 生 解题思路 : 出分界线( )将各个时刻 的图形分别画出 , 同 这 方 技 它 找 点 , 相 的 相关 基 础 知 识 外 , 特 别 注 重 考 查 分析 转 化 能 力 、 形 结 合 图形或求解相同的归为 同类 , 还 数 进行分类讨论 。 思想 的运 用 能 力 以及 探 究 能 力 。 此类 综 合 题 , 不仅 综 合 了 “ 数 函 P 及其图像” 一章 的基本知识 , 还涉及方程( 、 组)不等式 ( ) 组 及几何 的许多知识点 , 是中考命题的热点。根据数形结合的特点 , 函数 将 问题 、 问题转 化为 方程 问题 , 几何 往往是 解题 的关键 。 例 1 图, . 如 已知 二 次 函数 图像 的 顶点 坐标 为 C 一2 0 , ( ,)直 线 y x4与 该 二 次 函数 的 图像 交 于 A 0 4 、 点 , D 为直 =+ ( , )B两 点 图 线A B与这个 二次 函数 图像对称轴的交点 。 三 、 比 思 想 类 ( ) 二 次 函 数 的解 析式 及 点 B 的坐 标 。 1求 () 线段 A 2在 B上 是 否 存 在 点 P 点 E在 这 个 二 次 函 数 图 ( 类 比法 不 仅 是 一 种 以 特殊 到特 殊 的 推理 方 法 , 也是 一种 寻 猜测 问题答案或结论的发现方法。通过类 比命题 像上 )使得 四边形 D E , C P是平行 四边形 ?如果存在 , 求点 P的 求解题思路 、 坐标。 的解决思路和方法的启发 , 寻求原命题 的解决思路与方法 。 题型 : 法 型 问题 方 例 3(0 8 京 市 ) 阅 读 下列 材 料 : . 0北 2 请 问题 : 图 1在菱形 A C 如 , B D和菱形 B F E G中, A B E在 点 、、 分析 : ①设 元 :( n P m,) 同一条直线上 , P是线段 D F的 中点 , 连接 P 、 C G P 。若 A C= B ②找 出等量关系 , 列关于 i、 方程组 nn B F 6。, P P E : 0 探究 G与 C的位置关系及{ 的值。 等量关系 1点 P在直线 A : B上 , 列方程为 n m+ 。 = 4 等 量 关 系 2 线 段 等量 D = E , 方 程 为 n m 2 2 : C P .列 一( + ) 。 = ③ 解 关 于 n、 ln的方 程 组 。 二 、 类思 想 分 数 学 分类 思 想 , 就是 根据 数 学 对 象 本质 属 性 的相 点 与 不 圈1 ■2 同点 , 其 分 成 几 个 不 同种 类 的一 种 数 学 思 想 。它 既 是 一 种重 将 要 的数学思想 ,又是一种重要 的数学逻辑方法 。 数学分类讨 小聪同学 的思路是 : 长 G 延 P与 D C交于点 H, 构造全等三 论方法 , 就是将数学对象分成 几类 , 分别 进行讨论从 而解决 问 角形 , 经过推理使 问题得到解决 。 题 的一种 数 学 方 法 。 请你参考小聪 同学的思路 , 探究并解决下列 问题 : 题型: 关于图形运动产生 的面积函数关 系问题

中考数学压轴题解题技巧江苏徐州

中考数学压轴题解题技巧江苏徐州

中考数学压轴题解题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。

综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。

压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。

下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。

先以20XX年河南中考数学压轴题为例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.这是一道函数型压轴题。

函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。

这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。

先从知识角度来分析:(1)通过观察图象可以发现,直线AD和x轴平行,直线AB和y轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为(4,8).知道了点A的坐标,加上已知条件点C的坐标,利用待定系数法很容易可以求出抛物线的解析式。

此问在本题中占3分,解决此问的关键在于:①多角度、全方位观察图形;②熟练掌握待定系数法求抛物线解析式。

(2)这是个动态的问题,解决动态问题的一个根本方法就是化动为静,动静结合。

先看第一小问,当t 为何值时,线段EG 最长?我们通过观察图形,很容易能够发现t 的变化,会导致点P 位置的变化,点P 位置的变化会引起点E 位置的变化,而E 点位置的变化直接决定了线段EF 位置和长度的变化,而线段EF 位置和长度的变化决定了线段EG 位置和长度的变化,我们看到,问题最终就是回归到线段EG 的长度之上。

九年级代数几何综合题

九年级代数几何综合题

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. 【例1】如图,已知四边形ABCD 内接于⊙O,A 是的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ; ⑵ AC2=12BC·CE; ⑶如果AB =2,EM =3,求cot∠CAD 的值。

【例2】如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

【例3】如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?【例4】如图2-5-7,矩形ABCD 中,AB =8,BC =6,对角线AC 上有一个动点P (不包括点A 和点C ).设AP =x ,四边形PBCD 的面积为y .(1)写出y 与x 的函数关系,并确定自变量x 的范围.(2)有人提出一个判断:“关于动点P ,⊿PBC 面积与⊿PAD 面积之和为常数”.请你说明此判断是否正确,并说明理由.综合巩固练习1、如图2-5-8所示,在直角坐标系中,△ABC各顶点坐标分别为A (0,3 ),B(-1,0)、C(0,1)中,若△DEF各顶点坐标分别为D( 3 ,0)、E(0,1)、F(0,-1),则下列判断正确的是()A.△DEF由△ABC绕O点顺时针旋转90○得到;B.△DEF由△ABC绕O点逆时针旋转90○得到;C.△DEF由△ABC绕O点顺时针旋转60○得到;D.△DEF由△ABC绕O点顺时针旋转120○得到2.如图2-5-9,已知直线 y=2x+1与x轴交于A点,与y轴交于B点,直线y=2x—1与x轴交于C点,与y轴交于D点,试判断四边形ABCD的形状.3.如图2-5-10所示,在矩形ABCD中,BD=20,AD>AB,设∠ABD=α,已知sinα是方程25z2-35z+ 12=0的一个实根.点E、F分别是BC、DC上的点,EC+CF=8,设BE=x,△AEF面积等于y.⑴求出y与x之间的函数关系式;⑵当E、F两点在什么位置时y有最小值?并求出这个最小值.4.如图2-5-11所示,直线y=-43 x+ 4与x 轴、y 轴分别交于点M 、N .(1)求M 、N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125 为半径的圆与直线y=-43x+ 4相切,求点P 的坐标.5.如图2-5-12所示,已知等边三角形ABC 中,AB=2,点P 是AB 边上的任意一点(点P 可以与点A 重合,但不与点B 重合),过点P 作PE ⊥BC .垂足为E ;过点E 作EF ⊥AC ,垂足为F ;过点F 作FQ ⊥AB ,垂足为Q .设BP=x ,AQ=y . ⑴ 写出y 与x 之间的函数关系式;⑵ 当BP 的长等于多少时,点P 与点Q 重合;⑶ 当线段 PE 、FQ 相交时,写出线段PE 、EF 、FQ 所围成三角形的周长的取值范围(不必写出解题过程)6.如图2-5-13所示,已知A 由两点坐标分另为(28,0)和(0,28),动点P 从A 点开始在线段AO 上以每秒3个长度单位的速度向原点O 运动,动直线 EF 从 x 轴开始以每秒1个长度单位的速度向上平行移动(即EF ∥x 轴)并且分别交y 轴,线段AB 交于E 、F 点.连接FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒.⑴ 当t =1秒时,求梯形OPFE 的面积,t 为何值时,梯形OPFE 的面积最大,最大面积是多少? ⑵ 当梯形OPFE 的面积等于△APF 的面积时,求线段 PF 的长.⑶ 设t 的值分别取t 1,t 2时(t 1≠t 2),所对应的三角形分别为△AF 1P 1和△AF 2P 2 ,试判断这两个三角形是否相似,请证明你的判断.7.如图2-5-14所示,在直角坐标系中,矩形ABCD 的顶点,A 的坐标为(1,0),对角线的交点P 的坐标为(52 ,1)⑴ 写出B 、C 、D 三点的坐标;⑵ 若在AB 上有一点 E 作,’入过 E 点的直线‘将矩形ABCD 的面积分为相等的两部分,求直线l 的解析式;⑶ 若过C 点的直线l 将矩形ABCD 的面积分为4:3两部分,并与y 轴交于点M ,求过点C 、D 、M 三点的抛物线的解析式.8.已知矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4)其中m≠0.⑴写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示)⑵若一次函数y=kx-1的图象l把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示)⑶在⑵的前提下,l又与半径为1的⊙M相切,且点 M(0,1),求此矩形ABCD的中心P点的坐标.9.如图2-5-15所示,等边三角形ABC的边长为6,点D、E分别在边AB,AC上,且AD=AE=2,若点F从点B开始以每秒二个单位长度的速度沿射线BC方向运动,设点F运动的时间为t秒,当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB 与GH相交于点O.⑴设△EGA的面积为S,写出S与 t的函数解析式;⑵当t为何值时,AB⊥GH;⑶请你证明△GFH的面积为定值.10. 如图2-5-16,在矩形ABCD中,AB=10。

二轮专题复习(10):数学综合问题

二轮专题复习(10):数学综合问题

题中考第二轮专题复习十:数学综合问题一、【知识网络梳理】数学综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以数学综合题的形式出现.解数学综合题一般可分为认真审题、理解题意,探求解题思路,正确解答三个步骤.解数学综合题必须要有科学的分析问题的方法.数学思想是解数学综合题的灵魂,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.题型1方程型综合题这类题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.题型2函数型综合题函数型综合题主要有:几何与函数相结合型、坐标与几何方程与函数相结合型综合问题,历来是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象及性质、方程的有关理论的综合.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.题型3几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系.(2)注意推理和计算相结合,力求解题过程的规范化.(3)注意掌握常规的证题思路,常规的辅助线添法.(4)注意灵活地运用数学的思想和方法.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.二、【知识运用举例】例1(15安徽省六安市)已知关x的一元二次方程230x x m+-=有实数根.(1)求m的取值范围(2)若两实数根分别为1x和2x,且221211x x+=求m的值.例2(15北京市)已知关于x的方程2(2)20a x ax a+-+=有两个不相等的实数根1x和2x,并且抛物线2(21)25y x a x a=-++-与x轴的两个交点分别位于点(2,0)的两旁.(1)求实数a的取值范围.(2)当1222x x+=时,求a的值.例3(15重庆市) 如图2-4-18,090B ∠=,O 是AB 上的一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D .若AD =23,且AB 、AE 的长是关于x 的方程280x x k -+=的两个实数根.(1)求⊙O 的半径.(2)求CD 的长.例4.(2017四川绵阳)已知x 1,x 2 是关于x 的方程(x -2)(x-m )=(p -2)(p -m )的两个实数根. (1)求x 1,x 2的值;(2)若x 1,x 2是某直角三角形的两直角边的长,问当实数m ,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.例5.(17茂名市)已知函数22y x x c =++的图象与x 轴的两交点的横坐标分别是12x x ,,且222122x x c c +=-,求c 及1x ,2x 的值.例7(15贵阳市)如图2-4-20,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D . (1)求D 点的坐标. (2)求一次函数的解析式.(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.例8(15吉林省) 如图2-4-21,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式. (2)求△MCB 的面积.例9(15湖南省娄底市)已知抛物线2(4)24y x m x m =-+-++与x轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+=(1)求抛物线的解析式; (2)能否找到直线y kx b=+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ 的面积?求出k 、b 所满足的条件.题例10(15桂林市) 已知:如图2-4-23,抛物线2y ax bx c=++经过原点(0,0)和A (-1,5). (1)求抛物线的解析式.(2)设抛物线与x 轴的另一个交点为C .以OC 为直径作⊙M ,如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 轴的正半轴交于点为E ,连结MD .已知点E 的坐标为(0,m ),求四边形EOMD 的面积.(用含m 的代数式表示)(3)延长DM 交⊙M 于点N ,连结ON 、OD ,当点P 在(2)的条件下运动到什么位置时,能使得DONEOMD S S ∆=四边形?请求出此时点P 的坐标.例11(17上海市)如图9,在直角坐标平面内,函数my x=(0x >,m是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式. 解例13.(17北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC △中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.图9xCO DBA yA D EP NM y O 图2-4-21x例14.(17宁波市)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l ,点P 为四边形ABCD 对角线AC 所在直线上的一点,PD =PB ,PA≠PC,则点P 为四边形ABCD 的准等距点. (1)如图2,画出菱形ABCD 的一个准等距点.(2)如图3,作出四边形ABCD 的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD 中,P 是AC 上的点,PA≠PC,延长BP 交CD 于点E ,延长DP 交BC 于点F ,且∠CDF =∠CBE ,CE =CF .求证:点P 是四边形AB CD 的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).解:(1)如图2,点P 即为所画点.(答案不唯一.点P 不能画在AC 中点)(2)如图3,点P 即为所作点.(答案不唯一) (3)连结DB , 在△DCF 与△BCE 中, ∠DCF =∠BCE , ∠CDF =∠CBE , ∠ CF =CE .∴△DCF ≌△BCE(AAS), ∴CD =CB , ∴∠CDB =∠CBD . ∴∠PDB =∠PBD , ∴PD =PB , ∵PA≠PC∴点P 是四边形ABCD 的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.例15.(17南充市) 如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C .(1)求点C 的坐标,并画出抛物线的大致图象.(2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值. (3)CE 是过点C 的⊙M 的切线,点E 是切点,求OE 所在直线的解析式.解:(1)由已知,得 A (2,0),B (6,0),∵ 抛物线216y x bx c =++过点A 和B ,则221220,61660,6b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩解得4,32.b c ⎧=-⎪⎨⎪=⎩则抛物线的解析式为 214263y x x =-+.故 C (0,2).(说明:抛物线的大致图象要过点A 、B 、C ,其开口方向、顶点和对称轴相对准确)(2)如图①,抛物线对称轴l 是 xCA MByODE题=4.∵ Q (8,m )抛物线上,∴ m =2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK =2,AK =6,∴ AQ =22210AK QK +=.又∵ B (6,0)与A (2,0)关于对称轴l 对称, ∴ PQ +PB 的最小值=AQ =210.(3)如图②,连结EM 和CM . 由已知,得 EM =OC =2.CE 是⊙M 的切线,∴ ∠DEM =90º,则 ∠DEM =∠DOC . 又∵ ∠ODC =∠EDM . 故 △DEM ≌△DOC . ∴ OD =DE ,CD =MD .又在△ODE 和△MDC 中,∠ODE =∠MDC ,∠DOE =∠DEO =∠DCM =∠DMC . 则 OE ∥CM .设CM 所在直线的解析式为y =kx +b ,CM 过点C (0,2),M (4,0),∴40,2,k b b +=⎧⎨=⎩解得1,22,k b ⎧=-⎪⎨⎪=⎩直线CM 的解析式为122y x =-+.又∵ 直线OE 过原点O ,且OE ∥CM ,则 OE 的解析式为 y =12-x .例16.(17宿迁市) 如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切.(1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来; (2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由. 解:⑴圆运动一周覆盖正方形的区域用阴影表示如下:⑵圆的直径等于正方形的边长一半时,覆盖区域的面积不是最大.理由如下: 设正方形的边长为a ,圆的半径为r 覆盖区域的面积为S∵圆在正方形的内部,∴0<r ≤由图可知:S =a2―[(a ―4r )2+4r2-πr2] =a2―[(20―π)r2―8ar +a2]=―(20―π) r2+8ar=―(20―π)(r ―)2+∵ 0<<∴当r = 时,S 有最大值 ∵≠∴圆的直径等于正方形的边长一半时,面积不是最大.C A MBxyOD E图②C A MBxyOD EQPK图①l已知抛物线y x m x m=++++22211()与x轴的两个交点分别为A(x1,0)、B(x2,0),点A在点B左侧,抛物线与y轴的交点为C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型1.代数型综合题函数型综合题主要是以二次函数为主线,几何与二次函数相结合的综合形式。

二次函数是初中数学的重点,也是难点,以二次函数为背景的代数型综合题能较全面地反映学生的综合能力和较好的区分度,因此是各地中考的热点题型,是压轴题的主要来源之一.解题时重点把握:1.二次函数的图象信息与方程的代数信息的相互转化.例如函数图象与x 轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等;2.方程、分类讨论、数形结合始终是解题的主旋律,尤其是题中数量信息转化为方程;3.探索问题,动点问题联系转化来解决;4.计算能力的培养。

题型2几何型综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1. 几何型综合题,常用相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧的长度的计算,角、角的三角函数值的计算,以及各种图形面积的计算等. 3. 几何论证题主要考查学生综合应用所学几何知识的能力. 4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化; (3) 掌握常规的证题思路,尤其理解作辅助线的本质就是挖掘题中的隐含条件; (4) 解题自信心的培养解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的。

例1.已知抛物线2(4)24y x m x m =-+-++与x 轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+= (1)求抛物线的解析式;(2)能否找到直线y kx b =+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ的面积?若能,求出k 、b 所满足的条件.解析:(1)∵△=22(4)4(24)320m m m -++=+>,∴对一切实数m ,抛物线与x 轴恒有两个交点,由根与系数的关系得124x x m +=- ①, 12(24)x x m =-+ ②.由已知有1220x x += ③.③-①得2124,228.x m x x m =-=-=-代入②得(28)(4)(24)m m m --=-+. 化简得29140m m -+=.解得121122,7.2,4,2m m m x x ====-=当时,满足12x x <. 当27m =时,126,3x x ==-,不满足12x x <,∴抛物线的解析式为228y x x =--+. (2)如图,设存在直线y kx b =+与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积,设点P 的横坐标为Q x ,直线与y 轴交于点E . ∵1122PCE QCEP Q S S CE x CE x ∆∆==∙∙=∙∙, ∴P Q x x =,由y 轴平分△CPQ 的面积得点P 、Q 在y 轴的两侧, 即P Q x x =-,∴0P Q x x +=,由228y kx by x x =+⎧⎨=--+⎩得2(2)80x k x b +++-=.又∵P x 、Q x 是方程2(2)80x k x b +++-=的两根,∴(2)0P Q x x k +=-+=,∴2k =-.又直线与抛物线有两个交点,∴当28k b =-<且时,直线y kx b =+与抛物线的交点P 、Q ,使y 轴能平分△CPQ 的面积. 故2,8k b =-<.例2如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =._Q_C _P_E_y_O _x(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C ,把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,52BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1PAB △. 222228480AB AQ BQ ∴=+=+=在1Rt ANP △中,222221119980(5.5)2PNAP AN AB AN =-=-=-= 1519922P ⎛⎫∴- ⎪ ⎪⎝⎭, ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △. 在2Rt BMP △中,222222252958042MP BP BM AB BM =-=-=-= 25829522P ⎛⎫-∴ ⎪ ⎪⎝⎭,③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△. 312P K BQ CK AQ ∴==.3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-, AC B x0 11Q 2P 1P3PNM Ky例3.如图,抛物线2(0)y x bx c b =++≤的图象与x 轴交于A B ,两点,与y 轴交于点C ,其中点A 的坐标为(20)-,;直线1x =与抛物线交于点E ,与x 轴交于点F ,且4560FAE ≤∠≤.(1)用b 表示点E 的坐标; (2)求实数b 的取值范围;(3)请问BCE △的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由. 解(1)抛物线2y x bx c =++过(20)A -,,24c b ∴=-点E 在抛物线上,112433y b c b b b ∴=++=+-+=-,∴点E 的坐标为(133)b -,.(2)由(1)得33EF b =-,4560FAE ≤∠≤,3AF =,130b ∴-≤≤.(3)BCE △的面积有最大值,2y x bx c =++的对称轴为2bx =-,(20)A -,, ∴点B 的坐标为(20)b -,,由(1)得(024)C b -,, 而BCE EFB OCB OCEF S S S S =+-△△△梯形111()222OC EF OF EF FB OB OC =++- []111(42)(33)1(33)(1)(2)(42)222b b b b b b =-+-⨯+----- 21(32)2b b =-+, 21(32)2y b b =-+的对称轴是32b =,130b -≤≤∴当13b =-时,BCE S △取最大值,其最大值为2133(13)3(13)222+⎡⎤---+=⎣⎦.例4.已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方A O FB xyC E1x =程210160x x -+=的两个根,且抛物线的对称轴是直线2x =-(1)求此抛物线的表达式;(2)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 解:(1)解方程210160x x -+=得122,8x x ==∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线2y ax bx c =++的对称轴是直线2x =- ∴由抛物线的对称性可得点A 的坐标为(-6,0) ∵点C (0,8)在抛物线2y ax bx c =++的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得2036683042883a a b a b b ⎧=-⎪=-+⎧⎪⇒⎨⎨=++⎩⎪=-⎪⎩∴所求抛物线的表达式为228833y x x =--+(2)依题意,AE =m ,则BE =8-m ,∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴EF AC =BE AB 即EF 10=8-m 8 ∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8 (3)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0,∴当m =4时,S 有最大值,S 最大值=8∵m =4,∴点E 的坐标为(-2,0)CE CB ∴= ∴△BCE 为等腰三角形.例5、如图5,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上. (1)求m 的值及这个二次函数的表达式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由. 解析: (1) ∵ 点A(3,4)在直线m x y +=上,∴4=3+m . ∴m =1.设所求二次函数的关系式为2(1)y a x =- ∵ 点A(3,4)在二次函数2(1)y a x =-的图象上,∴24(31)a =- ∴ 1a =∴ 所求二次函数的关系式为2(1)y x =-即221y x x =-+ (2) 设P 、E 两点的纵坐标分别为p y 和E y∴ 22(1)(21)3p E PE h y y x x x x x ==-=+--+=-+ 即h =23(03)x x x -+<<(3) 存在. 解:要使四边形DCEP 是平行四边形,必需有PE=DC. 点D 在直线1y x =+上 ∴ 点D 的坐标为(1,2),EB ACP图5O xyDPB ACO xyQ图6E F PB A CO xyQ图6-1∴ 232x x -+= 解之得122,1x x ==(不合题意,舍去) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形例6 如图6,已知抛物线2y ax bx c =++经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式.(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 解析:(1)∵ 抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3),∴ ⎪⎩⎪⎨⎧==+=+03390416c b a b a 解得 0,334,33==-=c b a .∴ 所求抛物线的函数关系式为x x y 334332+-=.(2)① 过点B 作BE ⊥x 轴于E ,则BE=3,AE=1,AB=2. 由tan ∠BAE=3=AEBE ,得∠BAE =60°.(ⅰ)当点Q 在线段AB 上运动,即0<t ≤2时,QA=t ,PA=4-t . 过点Q 作QF ⊥x 轴于F ,则QF=t 23,∴ S=21PA ·QF t t 23)4(21⋅-=t t 3432+-=23(2)34t =--+∵ 043<-,∴ 当t =2时,S 有最大值,最大值S=3(ⅱ)当点Q 在线段BC 上运动,即2≤t <4时,Q 点的纵坐标为3,PA=4-t . 这时,S=3)4(21⋅-t 3223+-=t∵ 023<-, ∴ S 随着t 的增大而减小. ∴ 当t =2时,S 有最大值,最大值332223=+⋅-=S综合(ⅰ)(ⅱ),当t =2时,S 有最大值,最大值为3. △PQA 是等边三角形. ③ 存在. 当点Q 在线段AB 上运动时,要使得△PQA 是直角三角形,必须使得∠PQA =90°,这时PA=2QA ,即4-t =2t ,∴ 34=t .∴ P 、Q 两点的坐标分别为P 1(34,0),Q 1(310,332).当点Q 在线段BC 上运动时,Q 、P 两点的横坐标分别为(41)(2)5t t ---=-和t ,要使得△PQA 是直角三角形,则必须5-t =t ,∴ 25=t∴ P 、Q 两点的坐标分别为P 2(25,0),Q 2(25,3).例7.如图,在平面直角坐标系中,抛物线上有A (-1,0),B (3,0)C (0,-1)三点。

相关文档
最新文档