7.1直线的倾斜角与斜率练习题
直线的倾斜角与斜率(含答案)
直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。
直线的倾斜角和斜率练习题
2、1 直线的倾斜角和斜率1、下列命题正确的是( )A 、若直线的斜率存在,则必有倾斜角α与它对应B 、若直线的倾斜角存在,则必有斜率与它对应C 、直线的斜率为k ,则这条直线的倾斜角为arctan kD 、直线的倾斜角为α,则这条直线的斜率为tan α2、过点M (2,a ), N (a ,4)的直线的斜率为21,则a 等于( ) A 、–8 B 、10 C 、2 D 、43、过点A (2,b )和点B (3,2)的直线的倾斜角为43π,则b 的值是( ) A 、–1 B 、1 C 、–5 D 、54、如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则( )A 、k 1<k 2<k 3B 、k 3<k 1<k 2C 、k 3<k 2<k 1D 、k 1<k 3<k 25、设直线l 过原点,其倾斜角为α,将直线绕原点按逆时针方向旋转60o ,得到直线的倾斜角为( )A 、60o α+B 、120o α-C 、120o α-D 、当0120o o α≤<时为60o α+,当120180o o α≤<时为120o α-6、已知,A(3,1)、B(2,4),则直线AB 上方向向量AB u u u r 的坐标是( )A 、(5,5)B 、(1,3)C 、(5,5)D 、(3,1)7、直线l 过点()1,2A ,且不过第四象限,则直线l 的斜率的取值范围是( )A 、[]0,2B 、[]0,1C 、10,2⎡⎤⎢⎥⎣⎦D 、1,02⎡⎤-⎢⎥⎣⎦8、直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 .9、设直线l1:x-2y+2=0的倾斜角为α,直线l2:mx-y+4=0的倾斜角为2α,且1α=1α+90°,则m的值为 .210、已知直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是 .11、直线l的倾斜角60oα=,直线m l⊥,则直线m的斜率为。
(完整版)直线倾斜角与斜率经典例题(有答案精品)
直线的倾斜角与斜率(20131125)讲义类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;【变式】直线的倾斜角的范围是( )A.B.C.D.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.【变式1】如图,直线的斜率分别为,则( )A.B.C.D.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.【变式1】过两点,的直线的倾斜角为,求的值.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【变式2】已知,,三点,求点,使直线,且.【变式3】若直线与直线互相垂直,则实数=__________.直线的倾斜角与斜率(20131125)作业姓名成绩题组一直线的倾斜角1.已知直线l过点(m,1),(m+1,tanα+1),则()A.α一定是直线l的倾斜角B.α一定不是直线l的倾斜角C.α不一定是直线l的倾斜角D.180°-α一定是直线l的倾斜角2.如图,直线l经过二、三、四象限,l的倾斜角为α,斜率为k,则()A.k sinα>0B.k cosα>0 C.k sinα≤0D.k cosα≤0题组二直线的斜率及应用3.12312<k3,则下列说法中一定正确的是()A.k1k2=-1 B.k2k3=-1 C.k1<0 D.k2≥04.已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________.5.已知两点A(-1,-5),B(3,-2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是________.题组三两条直线的平行与垂直6已知两条直线l1:ax+by2bm是直线l1∥l2的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为()A.5 B.4 C.2 D.18.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( ) A.23 B .-23 C.13 D .-139.设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.10.若关于x 的方程|x -________.11.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.直线的倾斜角与斜率(20131125)讲义答案类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析:∵,∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线的倾斜角的范围是A.B.C.D.【答案】B解析:由直线,所以直线的斜率为.设直线的倾斜角为,则.又因为,即,所以.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.思路点拨:本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,∴k AB=tan150°=k AC=tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.举一反三:【变式1】如图,直线的斜率分别为,则( )A.B.C.D.【答案】由题意,,则本题选题意图:对倾斜角变化时,如何变化的定性分析理解.∴选B.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨:解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.总结升华:本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,,为锐角;当时,,为钝角.举一反三:【变式1】过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或.经检验不适合,舍去.故.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.【答案】,.即当时,,两点的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.思路点拨:如果过点AB,BC的斜率相等,那么A,B,C三点共线.解析:∵A、B、C三点在一条直线上,∴k AB=k AC.总结升华:斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.举一反三:【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【答案】经过,两点直线的斜率.经过,两点的直线的斜率.所以,,三点在同一条直线上.【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.【答案】由已知,得;.因为,,三点都在斜率为2的直线上,所以,.解得,.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.思路点拨:证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后再证明平行四边形的一个角为直角.解析:边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,边所在直线的斜率.,,,,即四边形为平行四边形.又,,即四边形为矩形.总结升华:证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.举一反三:【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【答案】由题意得边所在直线的斜率.边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,则;.所以四边形为平行四边形,又因为,,即平行四边形为矩形.已知,,三点,求点,使直线,且.【答案】设点的坐标为,由已知得直线的斜率;直线的斜率;直线的斜率;直线的斜率.由,且得解得,.所以,点的坐标是.【变式3】(2011浙江12)若直线与直线互相垂直,则实数=__________.【答案】因为直线与直线互相垂直,所以,所以.直线的倾斜角与斜率(20131125)作业答案姓名 成绩题组一 直线的倾斜角1.已知直线l 过点(m,1),(m +1, ( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角解析:设θ为直线l 的倾斜角,则tan θ=tan α+1-1m +1-m=tan α, ∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α.答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则 ( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0解析:显然k <0,π2<α<π, ∴cos α<0,∴k cos α>0.答案:B题组二 直线的斜率及应用3.12312<k 3,则下列说法中一定正确的是 ( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0解析:结合图形知,k 1<0.答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2. 答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________. 解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13. 答案:136.(2009·陕西八校模拟)12+p =0,则an =bm 是直线l 1∥l 2的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件.答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a, ∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”). 答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( )A.23 B .-23 C.13 D .-13解析:曲线y =x 3在点P (1,1)处的切线斜率为3,所以a b =-13. 答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上,∴直线l 2的方程为y =2(x +1),即2x -y +2=0.答案:2x -y +2=0题组四 直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4, k PB =6-2-1-(-5)=1, ∴直线PB 的倾斜角为π4, 从而直线l 的倾斜角的范围是[π4,3π4]. 答案:[π4,3π4] 12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP .∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5), ∴1=2x -5,∴x =7, 即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1.又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).。
高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案
直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。
当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。
(2)范围:直线l 倾斜角的范围是[0,π)。
2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。
(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。
3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。
5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。
查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。
直线的倾斜角和斜率练习题
直线斜率的性质
直线斜率等于直线倾斜角的正切 值
直线斜率为0时,直线垂直于x 轴
直线斜率为无穷大时,直线与x 轴垂直
直线斜率存在时,直线必与x轴 有交点
直线的倾斜角和斜率的 实际应用
直线的倾斜角和斜率在几何图形中的应用
确定位置:直线 的倾斜角和斜率 可以用来确定平 面上的一个点或 一条直线的位置。
添加项标题
实际应用:在解析几何中,直线的倾斜角和斜率可以用来描述直线 在平面上的位置和方向,进而解决实际问题。
添加项标题
计算方法:通过直线上两点的坐标可以计算出直线的斜率和倾斜角。
添加项标题
几何意义:直线的倾斜角和斜率可以用来研究直线与其他几何图形 之间的关系,例如直线与圆、椭圆等的位置关系。
计算距离:通 过直线的斜率 和垂直距离, 可以计算出两 点之间的距离。
判断平行:两 条直线的斜率 相等,则这两 条直线平行。
判断垂直:两 条直线的斜率 的乘积为-1, 则这两条直线
垂直。
直线的倾斜角和斜率在解析几何中的应用
添加项标题
定义:直线的倾斜角是直线与x轴正方向之间的夹角,斜率是直线 在坐标系中的倾斜程度。
直线垂直于x轴时,倾斜角为90度, 斜率不存在
特殊情况的处理
直线过原点时,倾斜角与斜率的关 系为tan(倾斜角)=斜率
添加标题
添加标题
添加标题
添加标题
直线平行于x轴时,倾斜角为0度或 180度,斜率为0
直线与x轴垂直时,倾斜角为90度, 斜率不存在
计算方法的总结
定义:直线的倾 斜角是直线与x 轴正方向的夹角, 斜率是直线在x 轴上的一个单位 长度内对应的y
练习题二:提高题
题目:已知直线方程为 y = 2x + 5,求该直线的斜率。
高一数学直线的倾斜角与斜率试题答案及解析
高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。
【考点】(1)斜率公式的应用;(2)数形结合思想的应用。
4.直线的倾斜角的大小为。
【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。
【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。
7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。
解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。
直线的倾斜角与斜率题型归纳与练习
直线的倾斜角与斜率重点一、倾斜角重点二、斜率(倾斜角为α)重点三、两条直线平行对于两条不重合...的直线l 1、l 2,其斜率分别为k 1、k 2,有l 1∥l 2⇔k 1=k 2. [归纳总结] (1)当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.(2)直线l 1、l 2的斜率分别为k 1、k 2,当k 1=k 2时,l 1∥l 2或l 1与l 2重合. (3)对于不重合的直线l 1、l 2,其倾斜角分别为α、β,有l 1∥l 2⇔α=β.重点四、两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1, 那么它们互相垂直.[归纳总结] 当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;较大的倾斜角总是等于较小倾斜角与直角的和. (1)平行:倾斜角相同,所过的点不同;(2)重合:倾斜角相同,所过的点相同; (3)相交:倾斜角不同;(4)垂直:倾斜角相差90°.【典题精练】考点1、直线的倾斜角例1.下列命题正确的是( ).A .若直线的倾斜角为α,则此直线的斜率为tan αB .若直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin 0α≥D .若直线的斜率为0,则此直线的倾斜角为0或π【解析】倾斜角为90︒的直线,其斜率不存在,故A 错误;若直线的斜率为tan α,只有当[)0,απ∈时,其倾斜角才为α,故B 错误;直线的斜率为0,其倾斜角为0而不是π,故D 错误.故选C . 所以本题答案为C.考点点睛: 1.求直线的倾斜角(1)根据题意画出图形,结合倾斜角的定义找出倾斜角,再通过解三角形或其它方法求之; (2)先求出直线的斜率k ,再由k =tan α,求倾斜角α.2.倾斜角α与直线斜率值的关系:把倾斜角α分为以下四类讨论:α=0°,0°<α<90°,α=90°,90°<α<180°.对应的斜率k 的值依次为0,正值,不存在,负值.考点2、已知两点坐标求倾斜角和斜率例2.过两点(4,A B 的直线的倾斜角为( ) A .30°B .60°C .120°D .150°【解析】直线AB 的斜率k ==,故直线AB 的倾斜角30α=,故选A 考点点睛:(1)对求斜率的两个公式注意其应用的条件,必要时应分类讨论;(2)当直线绕定点由与x 轴平行(或重合)位置按逆时针方向旋转到与y 轴平行(或重合)时,斜率由0逐渐增大到+∞;按顺时针方向时,斜率由0逐渐减小到-∞,这种方法即可定性分析倾斜角与斜率的关系,也可以定量求解斜率和倾斜角的取值范围.考点3、两直线平行关系的判断与应用例3.已知直线1:sin 0l x y θ+=与直线2:2sin 10l x y θ++=,试求θ的值,使12l l //. 【解析】12//l l ,112sin sin 0112sin 00θθθ⨯-⨯=⎧∴⎨⨯-⨯≠⎩,sin θ∴=,故θ=()4k k ππ±+∈Z考点4、两条直线垂直关系的判断与应用例4.已知()222,3A m m +-,()23,2B m m m --,()21,32C n n +-三点,若直线AB 的倾斜角为45︒,且直线AC AB ⊥,求点A ,B ,C 的坐标. 【解析】()()22232tan 45123ABm mk m m m --===+---, 解得1m =-(舍去),2m =-,∴点()6,1A ,()1,4B -.3211216AC n k n --==-+-,解得85n =,∴点2114,55C ⎛⎫⎪⎝⎭.考点点睛:两条直线垂直的判定条件:(1)如果两条直线的斜率都存在且它们的积为-1,则两条直线一定垂直;(2)两条直线中,如果一条直线的斜率不存在,同时另一条直线的斜率为0,那么这两条直线也垂直. 课后训练:1.若直线1:210l x y -+=与直线2:30l mx y +-=互相垂直,则实数m 的值为( ) A .2-B .12-C .12D .2【解析】因为直线1:210l x y -+=与直线2:30l mx y +-=互相垂直,所以20m -=,得2m =.故选:D . 2.直线30x y ++=的倾斜角为( )A .56π B .34π C .3π D .4【答案】B【解析】由题得直线的斜率为1-,故其倾斜角为34π.故选B 。
专题--直线的倾斜角和斜率习题与知识点
直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°.2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x13.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即基础卷一.选择题:1.下列命题中,正确的命题是(A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α(C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为(A )3 (B )-3 (C )33 (D )-333.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是(A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[43π,π)4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为(A )4π (B )54π (C )4π或54π (D )-4π5.已知直线l 的倾斜角为α,若cos α=-54,则直线l 的斜率为 (A )43 (B )34 (C )-43 (D )-346.已知直线l 1: y =x sin α和直线l 2: y =2x +c ,则直线l 1与l 2 (A )通过平移可以重合 (B )不可能垂直(C )可能与x 轴围成等腰直角三角形 (D )通过绕l 1上某一点旋转可以重合 二.填空题:7.经过A (a , b )和B (3a , 3b )(a ≠0)两点的直线的斜率k = ,倾斜角α= .8.要使点A (2, cos 2θ), B (sin 2θ, -32), (-4, -4)共线,则θ的值为 .9.已知点P (3 2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为 . 10.若经过点A (1-t , 1+t )和点B (3, 2t )的直线的倾斜角为钝角,则实数t 的取值范围是 .提高卷一.选择题:2.过点P (2, 3)与Q (1, 5)的直线PQ 的倾斜角为(A )arctan2 (B )arctan(-2) (C )2π-arctan2 (D )π-arctan23.直线l 1: ax +2y -1=0与直线l 2: x +(a -1)y +a 2=0平行,则a 的值是 (A )-1 (B )2 (C )-1或2 (D )0或14.过点A (-2, m ), B (m , 4)的直线的倾斜角为2π+arccot2,则实数m 的值为(A )2 (B )10 (C )-8 (D )0 二.填空题:6.若直线k 的斜率满足-3<k <33,则该直线的倾斜角α的范围是 .8.已知直线l 1和l 2关于直线y =x 对称,若直线l 1的斜率为3,则直线l 2的斜率为 ;倾斜角为 .9.已知M (2, -3), N (-3,-2),直线l 过点P (1, 1),且与线段MN 相交,则直线l 的斜率k 的取值范围是 .综合练习卷一.选择题:1.下列命题正确的是(A )若直线的斜率存在,则必有倾斜角α与它对应 (B )若直线的倾斜角存在,则必有斜率与它对应(C )直线的斜率为k ,则这条直线的倾斜角为arctan k (D )直线的倾斜角为α,则这条直线的斜率为tan α2.过点M (-2, a ), N (a , 4)的直线的斜率为-21,则a 等于(A )-8 (B )10 (C )2 (D )43.过点A (2, b )和点B (3, -2)的直线的倾斜角为43π,则b 的值是(A )-1 (B )1 (C )-5 (D )54.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则 (A )k 1<k 2<k 3 (B )k 3<k 1<k 2 (C )k 3<k 2<k 1 (D )k 1<k 3<k 26.若直线l 的斜率为k =-ab(ab >0),则直线l 的倾斜角为(A )arctan a b (B )arctan(-ab)(C )π-arctan a b (D )π+arctan ab二.填空题:7.已知三点A (2, -3), B (4, 3), C (5, 2m)在同一直线上,则m 的值为 .8.已知y 轴上的点B 与点A (-3, 1)连线所成直线的倾斜角为120°,则点B 的坐标为 .9.若α为直线的倾斜角,则sin(4-α)的取值范围是 .10.已知A (-2, 3), B (3, 2),过点P (0, -2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是 . 三.解答题:11.求经过两点A (2, -1)和B (a , -2)的直线l 的倾斜角。
《直线的倾斜角与斜率》专题练习
《直线的倾斜角与斜率》导学案一、知识梳理知识点一:直线的倾斜角 (1)倾斜角的定义①当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.②当直线l 与x 轴平行或重合时,规定它的倾斜角为0°;当直线l 与x 轴垂直时,规定它的倾斜角为90°;(2)直线的倾斜角α的取值范围为)180,0[(3)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可. 知识点二:直线的斜率(1)斜率的定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即αtan =k )90(≠a .知识点三:直线的倾斜角与斜率的对应关系直线过两点),(111y x P ,),(222y x P ,则其斜率k =1212x x y y --)(21x x ≠二、题型讲解类型一:直线的倾斜角1、下列图中α能表示直线l 的倾斜角的是 ①2、已知直线l 向上方向与y 轴正向所成的角为30°,则直线l 的倾斜角为60°或120°3、给出下列命题:①任意一条直线有唯一的倾斜角; ②一条直线的倾斜角可以为-30°; ③倾斜角为0°的直线只有一条,即x 轴; ④所有的直线都有斜率; ⑤若直线的倾斜角为α,则sin α∈(0,1); ⑥若α是直线l 的倾斜角,且sin α=22,则α=45°. 其中正确的命题是 ① 4、有下列命题:①若直线的斜率存在,则必有倾斜角与之对应; ②若直线的倾斜角存在,则必有斜率与之对应; ③坐标平面上所有的直线都有倾斜角; ④坐标平面上所有的直线都有斜率.其中错误的是②④5、已知l 1⊥l 2,直线l 1的倾斜角为60°,则直线l 2的倾斜角为150° 类型二:直线的斜率(含两点确定的斜率公式) 1、没有斜率的直线一定是 ( B )A.过原点的直线B.垂直于x 轴的直线C.垂直于y 轴的直线D.垂直于坐标轴的直线 2、已知直线l 的倾斜角为α,若cosα=-54,则直线l 的斜率为43- 3、直线x =的倾斜角33为 904、过原点且斜率为33的直线l 绕原点逆时针方向旋转30°到达l ′位置,则直线l ′5、若直线经过点(1,2)、(4,2+3),则此直线的倾斜角是30°6、若直线的倾斜角为60°7、若过两点A (4,y )、B (2,-3)的直线的倾斜角为45°,则y 等于-18、经过点P (2,m )和Q (2m,5)的直线的斜率等于12,则m 的值是39、直线l 的倾斜角是斜率为33的直线的倾斜角的2倍,则l 10、若经过A (m,3),B (1,2)两点的直线的倾斜角为45°,则m 等于211、已知点A (a,2),B (3,b +1),且直线AB 的倾斜角为90°,则a ,b 的值为( D ) A .a =3,b =1 B .a =2,b =2 C .a =2,b =3 D .a =3,b ∈R 且b ≠1 12、已知点A 的坐标为(3,4),在坐标轴上有一点B ,若k AB =2,则B 点的坐标为__(1,0)或(0,-2)_13、设P 为x 轴上的一点,A (-3,8)、B (2,14),若P A 的斜率是PB 的斜率的两倍,则点P的坐标为__(-5,0)__14、(1)当且仅当m 为何值时,经过两点A (-m,6)、B (1,3m )的直线的斜率为12 ?(2)当且仅当m 为何值时,经过两点A (m,2)、B (-m,2m -1)的直线的倾斜角是45° ? 答案: (1) m =-2. (2)m =34.类型三:直线的倾斜角与斜率的范围关系问题1、如下图,已知直线l 1、l2、l 3的斜率分别为k 1、k 2、k 3,则 ( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 22、如图所示,直线l 1、l 2、l3、l 4的斜率分别为k 1、k 2、k 3、k 4,从小到大的关系是k 1<k 3<k 4<k 23、根据以下斜率范围求倾斜角范围(1)1≥k 答案:)2,4[ππ; (2)3-≤k 答案:]32,2ππ( (3)1-≥k 答案:)2,0[),43[πππ⋃ ; (4)3<k 答案:)(3,0[),2πππ⋃ (5)13<≤-k 答案:)4,0[),32[πππ⋃ (6)1≥k 或3-≤k 答案: ]32,2)2,4[ππππ(⋃4、根据以下倾斜角范围求斜率范围 (1)30<θ 答案:)33,0[ ; (2) 135>θ 答案:)0,1(- (3) 60>θ 答案: ),3()0,(+∞⋃-∞; (4) 120<θ 答案: ),0[)3,(+∞⋃--∞(5)12045≤≤θ 答案: ),1[]3,(+∞⋃--∞5、经过两点A (2,1)、B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是-1<m <16、若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是__(-2,1)__. 类型四:三点共线1、 若三点A (2,3),B (3,2),C (12,m )共线,则实数m 的值为 292、如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,则m 的值为-63、若A (-2,3)、B (3,-2)、C (12,m )三点共线,则m 的值为124、三点(2,-3)、(4,3)及(5,k2)在同一条直线上,则k 的值等于__12__5、斜率为2的直线过(3,5)、(a,7)、(-1,b )三点,则a +b 等于1 类型五:数形结合求倾斜角或斜率取值范围1、已知点A (1,3)、B (-2,-1).若过点P (2,1)的直线l 与线段AB 相交,则直线l 的斜率k 的取值范围是-2≤k ≤122、已知点A (2,-3)、B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率的取值范围是(-∞,-4]∪[34,+∞)3、已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1).若D 为△ABC 的边AB 上一动点,则直线CD 的斜率k 的取值范围为[3,3] 4、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,求直线l 的斜率和倾斜角的范围.答案: k ∈(-∞,-3]∪[1,+∞);45°≤α≤120°.5、已知点A (3,3),B (-4,2),C (0,-2).若点D 在线段BC 上(包括端点)移动,求直线AD 的斜率的变化范围.答案:直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.升级训练1、设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为 ( D )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°2、已知直线l 的倾斜角为α,并且0°≤α≤120°,直线l 的斜率k 的取值范围是3、已知直线的倾斜角α满足παπ433<≤,则直线的斜率k 的取值范围是 4、当直线的倾斜角α满足1200<≤α,且90≠α时,它的斜率k 满足 5、直线xsin α+y +2=0的倾斜角的取值范围是],43[]4,0[πππ⋃ 6、下列各组中,三点能构成三角形的三个顶点的为( C ) A .(1,3)、(5,7)、(10,12) B .(-1,4)、(2,1)、(-2,5) C .(0,2)、(2,5)、(3,7)D .(1,-1)、(3,3)、(5,7)7、已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点. (1)求直线l 的斜率k 的取值范围;(2)求直线l 的倾斜角α的取值范围.答案: (1) k 的取值范围是k ≤-1,或k ≥1;(2)α的取值范围是45°≤α≤135°. 8、已知实数x 、y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.答案:所求的y x 的最大值为2,最小值为23.9(难).已知点A (1,3),B (-2,-1),若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是[-2,12]。
直线的倾斜角.斜率.直线方程基础练习题
直线的倾斜角.斜率.直线方程基础练习题一、选择题1.直线013=++y x 的倾斜角为( )A .150°B .120°C .60°D .30°2.关于直线的倾斜角与斜率,下列说法正确的是( )A .所有的直线都有倾斜角和斜率B .所有的直线都有倾斜角但不一定都有斜率C .直线的倾斜角和斜率有时都不存在D .所有的直线都有斜率,但不一定有倾斜角3.若直线经过(0,1),4)A B 两点,则直线AB 的倾斜角为( ) A .30o B .45o C .60o D .120o 4.直线0334=-+y x 的斜率为( ) A.34 B.43 C.43- D.34- 5.在直角坐标系中,已知(1, 2)A -,(3, 0)B ,那么线段AB 中点的坐标为( ). A.(2,2) B.(1,1) C.(-2,-2) D.(-1,-1) 6.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 7.在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π 8.一条直线经过点1(2,3)P -,倾斜角为45α=o,则这条直线的方程为( )A. 50x y ++=B.50x y --=C. 50x y -+=D. 50x y +-= 9.若直线l 经过原点和点A (2,2),则它的倾斜角为 A .-45° B .45° C .135° D .不存在 10.若直线的倾斜角为︒120,则直线的斜率为( ) A. 3 B. 3- C. 33 D. 33-11.直线02:=--+a y ax l 在x 轴和y 灿上的截距相等,则a 的值是 A.1B .-1C .-2或-1D. -2或112.倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y xA .30︒B .60︒C .120︒D .150︒14.过点(3,0),(2,3)的直线的倾斜角为( )A 、0120B 、030C 、060D 、0150 15.若直线1=x 的倾斜角为α,则α等于 A.︒0 B. ︒45 C. ︒90 D.不存在16.如右图所示,直线123,,l l l 的斜率分别为123,,k k k ,则 (A )123k k k << (B )312k k k << (C )132k k k << (D )321k k k <<17. 经过两点 (4,0)(0,3)A B -、的直线方程是( ). A .34120x y --= B. 34120x y +-= C .43120x y -+= D .43120x y ++=18.将直线y=3x 绕原点逆时针旋转90度,再向右平移1个单位,所得的直线方程为则( ) A. 3131+-=x yB. 131+-=x y C. 33-=x y D. 131+=x y 19.直线x =-1的倾斜角为 ( ▲ )(A )135︒ (B )90︒ (C )45︒ (D )0︒ 20. 直线经过点(2,0)A -,(5,3)B -,则直线的斜率为 A. -1 B. 1 C . 0 D . 221.已知直线l 经过)2,3(-A ,)3,2(-B 两点,那么直线l 的倾斜角为( ) A.3π B.6π C.4π D.43π22.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是4π,则m 的值为 A.2 B.3 C.-2D.-323.直线31y x =+的倾斜角是A .6π B .3π C .23π D .56π 24.下列四种说法中正确的是( )A .一条直线向上的方向与x 轴正向所成的角叫做这条直线的倾斜角B .直线l 的倾斜角取值范围是第一象限角或第二象限角C .已知直线l 经过),(),,(222111y x P y x P 两点,则直线l 的斜率1212x x y y k --=D .与x 轴垂直的直线斜率为0 25.直线l 的倾斜角为45°,且过(0,1),则直线l 的方程是A x+y+1=0B x-y+1=0C x-y-1=0D x+y-1=0 26.直线l 过P (1,0)、Q (12,2+-),则直线l 的倾角α=A 、ο135B 、ο45C 、ο60D 、ο225 27.直线3410x y +-=的倾斜角为α,则cos α的值为( ) A .45-B.45C.35D. 34- 28.过点P (-2,0),斜率为3的直线方程是( )A.y =3x -2B.y =3x +2C.y =3(x -2)D.y =3(x +2)29.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A.(5,8) B.(8,+∞) C.(,8)D.(5,)30.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ).A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 31.已知直线l 的倾斜角为120o,则直线l 的斜率是( ). A .3 B .3- C .33- D . 3332.直线x tan7π+y =0的倾斜角是( ) A.-7π B.7π C.7π5 D .7π633.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1- C .090,不存在D .0180,不存在34. )A B C D 35.直线30x y -+=的倾斜角是( )A 、300B 、450C 、600D 、90036.已知直线l 过点()1,2P ,()5,7Q ,则直线l 的斜率为( ) A .45 B .45- C .54 D .54- 37.直线0cos 40sin 4010x y -++=的倾斜角是( ) A .040 B .050 C .0130 D .0140 二、填空题38.已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α . 39.已知点(3,8),(2,4)A B -,若y 轴上的点P 满足PA 的斜率是PB 斜率的2倍,则P 点的坐标为_________.40.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.4110y ++=的倾斜角是 .42.给定三点A(0,1),B(a ,0),C(3,2),直线l 经过B 、C 两点,且l 垂直AB ,则a 的值为________.43.直线5x-2y-10=0在y 轴上的截距为 。
高一数学必修二《直线的倾斜角与斜率》经典例题
第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率一、基础达标1.下列说法中,正确的是() A.直线的倾斜角为α,则此直线的斜率为tan αB.直线的斜率为tan α,则此直线的倾斜角为αC.若直线的倾斜角为α,则sin α>0D.任意直线都有倾斜角α,且α≠90°时,斜率为tan α答案 D解析对于A,当α=90°时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,α=0°,sin α=0,故C不正确,故选D. 2.若A、B两点的横坐标相等,则直线AB的倾斜角和斜率分别是() A.45°,1 B.135°,-1C.90°,不存在D.180°,不存在答案 C解析由于A、B两点的横坐标相等,所以直线与x轴垂直,倾斜角为90°,斜率不存在.故选C.3.(2014·乌鲁木齐高一检测)过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5C.-1 D.-5答案 D解析由斜率公式可得:y+34-2=tan 135°,∴y+32=-1,∴y=-5.∴选D.4.直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的取值范围是( ) A .0°≤α≤90°B .90°≤α<180°C .90°≤α<180°或α=0°D .90°≤α≤135°答案 C解析 倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴.5.斜率为2的直线经过点A (3,5)、B (a,7)、C (-1,b )三点,则a 、b 的值为( ) A .a =4,b =0 B .a =-4,b =-3 C .a =4,b =-3 D .a =-4,b =3 答案 C解析 由题意,得⎩⎨⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3.6.如果过点(-2,m )和Q (m,4)的直线的斜率等于1,则m =________. 答案 1解析 由斜率公式知4-mm +2=1,解得m =1.7.已知直线l 上两点A (-2,3),B (3,-2),求其斜率.若点C (a ,b )在直线l 上,求a ,b 间应满足的关系,并求当a =12时,b 的值. 解 由斜率公式得k AB =-2-33+2=-1. ∴C 在l 上,k AC =-1,即b -3a +2=-1. ∴a +b -1=0.当a =12时,b =1-a =12. 二、能力提升8.在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为( )A.-2 3 B.0C. 3 D.2 3答案 B解析由题意知,AB,AC所在直线的倾斜角分别为60°,120°,所以tan 60°+tan 120°=3+(-3)=0.9.(2014·合肥高一检测)若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围为________.答案(-2,1)解析∵k=a-1a+2且直线的倾斜角为钝角,∴a-1a+2<0,解得-2<a<1.10.直线l过点A(1,2),且不过第四象限,则直线l的斜率的取值范围是________.答案[0,2]解析如图,当直线l在l1位置时,k=tan 0°=0;当直线l在l2位置时,k=2-01-0=2.故直线l的斜率的取值范围是[0,2].11.过点M(0,-3)的直线l与以点A(3,0),B(-4,1)为端点的线段AB有公共点,求直线l的斜率k的取值范围.解如图所示,(1)直线l过点A(3,0)时,即为直线MA,倾斜角α1为最小值.∵tan α1=0-(-3)3-0=1,∴α1=45°.(2)直线l过点B(-4,1)时,即为直线MB,倾斜角α2为最大值,∵tan α2=1-(-3)-4-0=-1,∴α2=135°.所以直线l 倾斜角α的取值范围是45°≤α≤135°. 当α=90°时,直线l 的斜率不存在;当45°≤α<90°时,直线l 的斜率k =tan α≥1; 当90°<α≤135°时,直线l 的斜率k =tan α≤-1. 所以直线l 的斜率k 的取值范围是 (-∞,-1]∪[1,+∞). 三、探究与创新12.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率;(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围. 解 (1)由斜率公式得 k AB =1-11-(-1)=0,k AC =3+1-12-(-1)=33.(2)如图所示. k BC =3+1-12-1= 3.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k 的取值范围为⎣⎢⎡⎦⎥⎤33,3.13.光线从点A (2,1)射到y 轴上的点Q ,经y 轴反射后过点B (4,3),试求点Q 的坐标及入射光线的斜率.解 法一 设Q (0,y ),则由题意得k QA =-k QB .∵k QA=1-y2,k QB=3-y4,∴1-y2=-3-y4.解得y=53,即点Q的坐标为⎝⎛⎭⎪⎫0,53,∴k入=k QA=1-y2=-13.法二如图,点B(4,3)关于y轴的对称点为B′(-4,3),k AB′=1-32+4=-13,由题意得,A、Q、B′三点共线.从而入射光线的斜率为k AQ=k AB′=-1 3.设Q(0,y),则k入=k QA=1-y2=-13.解得y=53,即点Q的坐标为⎝⎛⎭⎪⎫0,53.。
直线的倾斜角与斜率经典例题(学生版
直线的倾斜角与斜率讲义一引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值范围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角α........(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(2)k 与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略) .例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.二、题型归纳:【训练1】已知直线的倾斜角,求直线的斜率: (1)︒=30α (2)︒=45α (3)65πα= (4)32πα= (5)︒=135α【训练2】根据斜率求倾斜角:(1)当1,____,(2)_____k k αα==== 【训练3】已知直线l 的倾斜角是直线1l 的2倍,且3tan 1=α,求直线l 的斜率。
倾斜角与斜率练习题
倾斜角与斜率练习题倾斜角与斜率练习题在数学中,倾斜角和斜率是两个重要的概念。
它们在几何、物理和工程等领域中都有广泛的应用。
本文将通过一些练习题来帮助读者更好地理解和应用倾斜角和斜率的概念。
练习题一:计算倾斜角假设有一条直线,其斜率为2/3。
我们需要计算此直线的倾斜角。
首先,我们知道斜率是通过直线上两点的纵向变化与横向变化之比得出的。
在这种情况下,斜率为2/3意味着纵向变化为2,横向变化为3。
为了计算倾斜角,我们可以使用三角函数。
倾斜角可以通过反正切函数得出,即tan^(-1)(2/3)。
使用计算器,我们可以得到倾斜角的近似值为33.69度。
练习题二:计算斜率现在假设我们已知一条直线上两点的坐标为(2, 5)和(6, 9)。
我们需要计算这条直线的斜率。
斜率可以通过两点之间的纵向变化与横向变化之比得出。
在这种情况下,纵向变化为9-5=4,横向变化为6-2=4。
因此,斜率为4/4,即1。
练习题三:应用斜率和倾斜角假设我们有一条直线的倾斜角为45度,并且通过一个点(3, 4)。
我们需要确定这条直线的方程。
首先,我们可以使用正切函数来计算斜率。
tan(45度)的值为1,所以斜率为1。
接下来,我们可以使用点斜式来确定直线的方程。
点斜式的形式为y-y1=m(x-x1),其中m为斜率,(x1, y1)为直线上的一个点。
代入已知的值,我们得到y-4=1(x-3)。
进一步化简,我们得到y=1x+1,即y=x+1。
练习题四:求垂直直线的斜率现在假设我们已知一条直线的斜率为2/3,我们需要确定与之垂直的直线的斜率。
垂直直线的斜率是原直线斜率的倒数的负数。
所以,垂直直线的斜率为-3/2。
练习题五:求平行直线的斜率假设我们已知一条直线的斜率为4,我们需要确定与之平行的直线的斜率。
平行直线具有相同的斜率,所以与原直线平行的直线斜率也为4。
通过这些练习题,读者可以更好地理解和应用倾斜角和斜率的概念。
倾斜角和斜率在数学中有广泛的应用,包括直线方程的确定、图形的变化率计算等等。
直线的倾斜角与斜率经典例题学生版
直线的倾斜角与斜率讲义一引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值范围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...........P.和一个倾斜角α(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(2)k 与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略) .例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.二、题型归纳:【训练1】已知直线的倾斜角,求直线的斜率: (1)︒=30α (2)︒=45α (3)65πα= (4)32πα= (5)︒=135α【训练2】根据斜率求倾斜角:(1)当1,____,(2)_____k k αα==== 【训练3】已知直线l 的倾斜角是直线1l 的2倍,且3tan 1=α,求直线l 的斜率。
直线的倾斜角和斜率知识点例题
倾斜角不是对于上面的斜率公式要注意下 直线的倾斜角和斜率&直线的方程一、知识点(一)直线的倾斜角一条直线I 向上的方向与x 轴的正方向所成的最小正角, 叫做这条直线的倾斜角, 如图1-21中的a •特别地,当直线I 和X 轴平行时,我们规定它的倾斜角为 0°,因此,倾斜角的取值范围是 0°< a V 180 ° •直线倾斜角角的定义有下面三个要点: (1)以x 轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.按照这个定义不难看出:直线与倾角是多对一的映射关系. (二)直线的斜率 90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90的直线没有斜率-面四点:⑴ 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为 90 °; (2)k 与P1、P2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(三)直线的方程1.直线的点斜式方程--已知直线丨经过点P 1(x 1,y 1),且斜率为k ,直线的方程: y - % =k (x -xj 为直线方程的点斜式.直线的斜率k = 0时,直线方程为y 二力;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为X = X r .2 •直线的斜截式方程一已知直线l经过点P ( 0,b ),并且它的斜率为k,直线丨的方程:y = kx b为斜截式•⑴斜截式是点斜式的特殊情况,某些情况下用斜截式比用点斜式更方便⑵斜截式y =kx b在形式上与一次函数的表达式一样,它们之间只有当k = 0时,斜截式方程才是一次函数的表达式•⑶斜截式y = kx • b中,k,b的几何意义-3.直线方程的两点式当X! = x2,y^- y2时,经过A(x1, y1) B( x2, y2)的直线的两点式方程可以写成:y = x -洛y2 - y i X2 - X i倾斜角是00或900的直线不能用两点式公式表示•若要包含倾斜角为00或900的直线,两点式应变为(y — yj(x2 - %) =(x - xj(y2 - yj 的形式•4 •直线方程的截距式定义:直线与x轴交于一点(a,0 )定义a为直线在x轴上的截距;直线与y轴交于一点(0, b) 定义b为直线在y轴上的截距•过A(a,0) B(0, b)( a , b均不为0)的直线方程- ^ = 1叫做直线方程的截距式a ba, b表示截距,它们可以是正,也可以是负,也可以为0.当截距为零时,不能用截距式•5.直线方程的一般形式:点斜式、斜截式、两点式、截距式四种直线方程均可化成Ax By • C =0 (其中A、B、C是常数,A B不全为0)的形式,叫做直线方程的一般式-A C A若B - 0方程可化为y x ,它是直线方程的斜截式,表示斜率为,截距为B B B-C的直线;B二、典型例题1. 设直线ax • by • c = 0的倾斜角为:•,且sin二'cos,- 0 ,则a, b满足(A. a b =1B. a—b=1C. a b=OD. a_b=O2. 已知ab ::: 0, bc ::: 0 ,则直线ax • by 二c 通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限_ —3. 直线X =1的倾斜角和斜率分别是()_A. 450,1B. 13或-1 _C. 90°,不存在D. 180°,不存在_… 2 24. 若方程(2m -3)x (m -m)y-4m,1=0表示一条直线,则实数m满足()A.m = 0B.3m -2 一C.m =1D.3m = 1, m , m = 025.直线mx-y+2m+1=0经过一定点,则该点的坐标是()A (-2 , 1) B(2, 1)C (1 , -2 ) D(1, 2)6.已知A (1, 2) 、B (-1 , 4)、C (5i, 2),则△ ABC的边AB上的中线所在的直线方程为()(A) x+5y-15=0(B)x=3(C) x-y+1=0(D)y-3=07.下列说法的正确的是()A. 经过定点P0x0, y0的直线都可以用方程y - y0 = k x-x0表示B. 经过定点A 0, b的直线都可以用方程y=kx b表示C. 不经过原点的直线都可以用方程--2=1表示a bD .经过任意两个不同的点RX, y1)P2(X2, y2)的直线都可以用方程y 一y1 X2 - 人=x - 洛% 一*表示&若直线ax + by + c=0在等一,二,三象限,则()A. ab> 0, bc> 0, B . ab > 0, bc v 0.C. ab v 0, bc>0, D . ab v 0, bc v 0.9 •直线过点(—3, - 2)且在两坐标轴上的截距相等,则这直线方程为( )(A) 2x—3y = 0; ( B) x+ y+ 5= 0;(C) 2x—3y = 0 或x + y+ 5 = 0 (D) x + y+ 5 或x —y+ 5 = 010•直线I沿X轴负方向平移3个单位,再沿y轴正方向平1个单位后,又回到原来位置,那么l的斜率为( )1 1(A)——;(B)—3; ( C) - ;(D) 33 311 .直线kx - y • 1 = 3k,当k变动时,所有直线都通过定点( )(A) (0, 0) (B) (0, 1)(C)( 3, 1) ( D)( 2, 1)12.过点P(l,2 )且在x轴,y轴上截距相等的直线方程是____________________ . _______。
直线的倾斜角和斜率(经典练习及答案详解)
直线的倾斜角和斜率1.若直线过点(1,2),(2,2+3),则此直线的倾斜角是( )A .30°B .45°C .60°D .90°【答案】C 【解析】利用斜率公式k =3=tan α,可求倾斜角为60°.2.(2021年合肥月考)若直线l 经过原点和点A (-2,-2),则它的斜率为( )A .-1B .1C .1或-1D .0【答案】B 【解析】根据两点表示的斜率公式得k =y 2-y 1x 2-x 1=-2-0-2-0=1. 3.(2021年中山月考)若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点共线,则m 的值为( )A .12B .-12C .-2D .2【答案】A 【解析】因为A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m ,三点共线,所以k AB =k BC ,所以-2-33-(-2)=m +212-3,解得m =12. 4.若三点A (-1,-2),B (4,8),C (5,x )在同一条直线上,则实数x 的值为( )A .10B .-10C .5D .-5【答案】A 【解析】由三点在同一直线上,则可得k AB =k BC ,由斜率计算公式可知8-(-2)4-(-1)=x -85-4,解得x =10. 5.(2021年清远模拟)已知A (3,5),B (5,7),直线l 的斜率是直线AB 斜率的3倍,则直线l 的倾斜角为________.【答案】60° 【解析】设直线l 的斜率为k ,则k =3k AB =3×7-55-3= 3.所以直线l 的倾斜角为60°.6.设P 为x 轴上的一点,A (-3,8),B (2,14),若P A 的斜率是PB 的斜率的两倍,则点P 的坐标为________.【答案】(-5,0) 【解析】设P (x,0)为满足题意的点,则k P A =8-3-x ,k PB =142-x ,于是8-3-x =2×142-x,解得x =-5. 7.直线l 的一个方向向量d =(3,3),则直线l 的倾斜角是________,直线l 斜率是________.【答案】π6 33 【解析】由d =(3,3)=3⎝ ⎛⎭⎪⎫1,33,设c =⎝⎛⎭⎪⎫1,33,则d ∥c .由向量d =(3,3)是直线l 的一个方向向量,则c =⎝⎛⎭⎪⎫1,33也为直线l 的一个方向向量.故直线l 的斜率为33,所以倾斜角为π6.8.以下叙述中:(1)任何一条直线都有倾斜角,也有斜率;(2)平行于x 轴的直线的倾斜角是0°或180°;(3)直线的斜率范围是(-∞,+∞);(4)过原点的直线,斜率越大越靠近x 轴;(5)两条直线的斜率相等,则它们的倾斜角相等;(6)两条直线的倾斜角相等,则它们的斜率相等.其中正确的序号是________.【答案】(3)(5) 【解析】(1)倾斜角为90°的直线没有斜率;(2)直线的倾斜角取值范围是0°≤α<180°;(4)过原点的直线斜率的绝对值越大,其对应的直线越靠近y 轴;(6)倾斜角为90°的直线没有斜率.9.已知点A (1,2),在坐标轴上求一点P 使直线P A 的倾斜角为60°. 解:(1)当点P 在x 轴上时,设点P (a,0),因为A (1,2),所以k P A =0-2a -1=-2a -1. 又因为直线P A 的倾斜角为60°,所以tan 60°=-2a -1,解得a =1-233. 所以点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0. (2)当点P 在y 轴上时,设点P (0,b ). 同理可得b =2-3, 所以点P 的坐标为(0,2-3).10.已知交于点M (8,6)的四条直线l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,又知l 2过点N (5,3),求这四条直线的倾斜角.解:因为k 2=k MN =6-38-5=1, 所以l 2的倾斜角为45°.又l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,故这四条直线的倾斜角分别为22.5°,45°,67.5°,90°.B 级——能力提升练11.直线l 过点M (-1,2),且与以P (-2,-3),Q (4,0)为端点的线段PQ 相交,则l 的斜率的取值范围是( )A .⎣⎢⎡⎦⎥⎤-25,5B .⎣⎢⎡⎭⎪⎫-25,0∪(0,5] C .⎣⎢⎡⎭⎪⎫-25,12∪⎝ ⎛⎦⎥⎤12,5 D .⎝ ⎛⎦⎥⎤-∞,-25∪[5,+∞) 【答案】D 【解析】当l 的斜率为正时,因为其倾斜角均大于或等于直线MP 的倾斜角,故其斜率不小于k MP =5;当l 的斜率为负时,因为其倾斜角均小于或等于直线MQ 的倾斜角,故其斜率不大于k MQ=-25.12.(多选)在下列四个命题中,错误的有( )A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π)C .若一条直线的斜率为tan α,则此直线的倾斜角为αD .若一条直线的倾斜角为α,则此直线的斜率为tan α【答案】ACD 【解析】对于A ,当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在,A 错误;对于B ,直线倾斜角的取值范围是[0,π),B 正确;对于C ,一条直线的斜率为tan α,此直线的倾斜角不一定为α,如y =x 的斜率为tan 5π4,它的倾斜角为π4,C 错误;对于D ,一条直线的倾斜角为α时,它的斜率为tan α或不存在,D 错误.故选ACD .13.已知三点A (1-a ,-5),B (a,2a ),C (0,-a )共线,则a =________.【答案】2 【解析】①当过A ,B ,C 三点的直线斜率不存在时,即1-a =a =0,无解.②当过A ,B ,C 三点的直线斜率存在时,即k AB=2a-(-5)a-(1-a)=k BC=-a-2a0-a,即2a+52a-1=3,解得a=2.综上可知,当A,B,C三点共线时,a的值为2.14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________.【答案】0【解析】由于正三角形的内角都为60°,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为60°,则斜率为tan 60°=3,则边AC所在直线的倾斜角为120°,斜率为tan 120°=-3,所以AC,AB所在直线的斜率之和为3+(-3)=0.15.已知两点A(-3,4),B(3,2),过点C(2,-1)的直线l与线段AB有公共点,求直线l的斜率k的取值范围.解:如图,依题意,直线l由直线CB开始按逆时针方向旋转至直线CA止,其间直线l与线段AB都有公共点.直线CB的斜率为k CB=-1-22-3=3,直线CA的斜率k CA=-1-42-(-3)=-1.直线l由直线CB开始按逆时针方向旋转时,直线l的斜率逐渐增大,直至当直线l与x轴垂直时,倾斜角为90°,此时斜率不存在.继续旋转直线l,其斜率由负无穷大开始增大,直至直线CA终止,所以直线l的斜率取值范围是(-∞,-1]∪[3,+∞).16.已知直线l过点P(3,4),且与以A(-1,0),B(2,1)为端点的线段AB有公共点,求l的斜率k的取值范围.解:如图,当k 变化时,直线l 绕点P 旋转,当l 由P A 旋转到PB 时,l 与线段AB 有公共点,即k 由k P A 增加到k PB ,∵k P A =4-03-(-1)=1,k PB =4-13-2=3, ∴要使l 与线段AB 有公共点,斜率k 的取值范围为[1,3].C 级——探究创新练17.已知直线AB 过点A (3,-5),B (0,-9),倾斜角为α.(1)若直线CD 的倾斜角为2α,则斜率k CD =________;(2)若直线EF 的倾斜角为α2,则斜率k EF =________.【答案】-247 12 【解析】由题意,得tan α=-5+93-0=43. (1)若直线CD 的倾斜角为2α,则斜率k CD =tan 2α=2tan α1-tan 2α=2×431-169=-247.(2)由α∈[0,π),α2∈⎣⎢⎡⎭⎪⎫0,π2,故设k EF =k (k >0), 则2k 1-k 2=43,∴k =12. 18.若经过点A (1-t,1+t )和点B (3,2t )的直线的倾斜角α不是锐角,求实数t 的取值范围.解:因为直线的倾斜角α不是锐角,所以α=0°或α=90°或α是钝角.当α=0°时,1+t=2t,得t=1;当α=90°时,1-t=3,得t=-2;当α是钝角时,直线的斜率小于0,即2t-(1+t)3-(1-t)<0,得t-1t+2<0,解得-2<t<1.综上所述,实数t的取值范围为[-2,1].。
直线的倾斜角与斜率练习题
直线的倾斜角与斜率练习题一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直2.直线x+y﹣1=0的倾斜角为()A.B.C.D.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣96.直线的倾斜角是()A.30°B.45°C.60°D.120°7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或212.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣213.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.314.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣215.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是.三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.直线的倾斜角与斜率练习题参考答案与试题解析一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直【解答】解:设直线l1、l2的斜率分别为k1,k2,∵直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,∴k1k2=﹣1.∴l1⊥l2.故选:D.2.直线x+y﹣1=0的倾斜角为()A.B.C.D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.【解答】解:由题意,直线的斜率为k=直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角α为°故选:A.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°【解答】解:由于直线l:x+y+3=0的倾斜角为α,则直线的斜率tanα=﹣,再由0°≤α<180°,可得α=120°,故选:C.5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣9【解答】解:∵三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,∴kAC =kAB,即,解得b=﹣9.故选:D.6.直线的倾斜角是()A.30°B.45°C.60°D.120°【解答】解:设直线y=x+2的倾斜角是α,则tanα=,又0°≤α<180°,∴α=60°.故选:C.7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)【解答】解:若直线l经过第二、四象限,则直线l的斜率小于零,故直线的倾斜角为钝角,故选:D.8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.【解答】解:根据题意,直线l过点A(﹣1,1),B(2,﹣1),则其斜率kAB==﹣;故选:A.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.【解答】解:直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,可得,得:m=1,故选:A.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或2【解答】解:∵直线l1:ax+2y+a+3=0,l2:x+(a+1)y+4=0,l1∥l2,∴=≠,解得a=1或a=﹣2.∵当a=1时,两直线重合,∴a≠1.∴a=﹣2.故选:B.12.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣2【解答】解:直线L1:ax+3y+1=0的斜率为:,直线L1∥L2,所以L2:2x+(a+1)y+1=0的斜率为:所以=;解得a=﹣3,a=2(舍去)故选:A.13.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:因为两条直线平行,所以:解得 m=1故选:B.14.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣2【解答】解:直线l1:ax+2y+6=0,l2:x+(a﹣1)y+a2﹣1=0,且l1⊥l2,∴a•1+2(a﹣1)=0;解得:a=.故选:B.15.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④【解答】解:①过一点有且仅有一个平面与已知直线垂直,满足直线与平面垂直的条件,成立;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面,如果两点在平面两侧,不成立;③两条相交直线在同一平面内的射影必为相交直线,如果两条相交直线所在平面与已知平面垂直,射影则是一条直线,不正确;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.正确.故选:D.16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关【解答】解:当cosθ=0或sinθ=0时,这两条直线中,有一条斜率为0,另一条斜率不存在,两条直线垂直.当cosθ和sinθ都不等于0时,这两条直线的斜率分别为﹣和tanθ,显然,斜率之积等于﹣1,故两直线垂直.综上,两条直线一定是垂直的关系,故选:B.二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是0或1 .【解答】解:∵直线l1:ax﹣y+2a=0与直线l2:(2a﹣1)x+ay+a=0互相垂直,∴a×(2a﹣1)+(﹣1)×a=0,解之得a=0或1故答案为:0或1三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.【解答】解:(1)由直线l2与l1平行,可设l2的方程为3x+4y+m=0,以x=﹣1,y=3代入,得﹣3+12+m=0,即得m=﹣9,∴直线l2的方程为3x+4y﹣9=0.(2)由直线l2与l1垂直,可设l2的方程为4x﹣3y+n=0,令y=0,得x=﹣,令x=0,得y=,故三角形面积S=•|﹣|•||=4∴得n2=96,即n=±4∴直线l2的方程是4x﹣3y+4=0或4x﹣3y﹣4=0.。
高二数学直线的倾斜角与斜率试题答案及解析
高二数学直线的倾斜角与斜率试题答案及解析1.过点、的直线的斜率为______________.【答案】2.【解析】由斜率公式得:.【考点】直线的斜率公式.2.过点P和Q的直线斜率为1,那么的值为()A.1B.4C.1或3D.1或4【答案】【解析】根据,有,可得.【考点】斜率计算.3.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.4.直线l的倾斜角为,且,则直线l的斜率是( )A.B.C.或D.或【答案】C【解析】由已知中直线的倾斜角为a,且sina=,分倾斜角a为锐角和钝角两种情况分类讨论,根据同角三角函数关系,求出a的余弦值和正切值,即可得到直线的斜率,由已知中直线的倾斜角为a,且sina=,当a为锐角时,cosa=,tana=;当a为钝角时,cosa=-,tana=-;即直线的斜率是±,选C.【考点】直线的斜率.5.已知直线经过点,求分别满足下列条件的直线方程:(1)倾斜角的正弦为;(2)与两坐标轴的正半轴围成的三角形面积为4.【答案】(1)或;(2)【解析】(1)因为直线过定点,故只需求其斜率即可,由已知,根据同角三角函数基本关系式,求,再用直线点斜式方程;(2)直线与与两坐标轴的正半轴围成的三角形面积与直线在坐标轴的截距有关,所以可设直线的截距式方程,由面积为4,可得关于的方程,又直线过定点,代入得关于,联立可求.试题解析:(1)设直线的倾斜角为,,由得,,当时,由点斜式方程得:即;当时,由点斜式方程得:即,综上:直线方程为或;(2)设直线在轴上的截距为,可设直线方程为,由题意得得,,即:.【考点】1、直线的点斜式方程;2、直线的截距式方程.6.若直线经过、两点,则直线的倾斜角是()A.135°B.120°C.60°D.45°【答案】C【解析】因为,所以直线的倾斜角是60°。
直线的倾斜角和斜率习题与答案
直线的倾斜角和斜率(一)基础卷一.选择题:1.下列命题中,正确的命题是(A )直线的倾斜角为α,则此直线的斜率为tan α(B )直线的斜率为tan α,则此直线的倾斜角为α(C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率(D )直线的斜率为0,则此直线的倾斜角为0或π2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为(A )3 (B )-3 (C )33 (D )-33 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是(A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[43π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为(A )4π (B )54π (C )4π或54π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-54,则直线l 的斜率为 (A )43 (B )34 (C )-43 (D )-34 二.填空题:7.经过A (a , b )和B (3a , 3b )(a ≠0)两点的直线的斜率k =,倾斜角α=.9.已知点P (3 2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为.10.若经过点A (1-t , 1+t )和点B (3, 2t )的直线的倾斜角为钝角,则实数t 的取值范围是.提高卷一.选择题:1.已知,A (-3, 1)、B (2, -4),则直线AB 上方向向量AB 的坐标是(A )(-5, 5) (B )(-1, -3) (C )(5, -5) (D )(-3, -1)二.填空题:6.若直线k 的斜率满足-3<k <33,则该直线的倾斜角α的范围是. 7.若直线l 的倾斜角是连接P (3, -5), Q (0, -9)两点的直线的倾斜角的2倍,则直线l 的斜率为.8.已知直线l 1和l 2关于直线y =x 对称,若直线l 1的斜率为3,则直线l 2的斜率为;倾斜角为.9.已知M (2, -3), N (-3,-2),直线l 过点P (1, 1),且与线段MN 相交,则直线l 的斜率k 的取值范围是.三.解答题:三.解答题:11.求经过两点A (2, -1)和B (a , -2)的直线l 的倾斜角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 直线的倾斜角与斜率
1、已知,A(–3, 1)、B(2, –4),则直线AB 上方向向量AB
的坐标是
A 、(–5, 5)
B 、(–1, –3)
C 、(5, –5)
D 、(–3, –1)
2、过点P(2, 3)与Q(1, 5)的直线PQ 的倾斜角为
A 、arctan2
B 、arctan(–2)
C 、
–arctan2 D 、π–arctan2 3、已知点A(cos77 °,sin77°), B(cos17°, sin17°),则直线AB 的斜率为
A 、tan47°
B 、cot47°
C 、–tan47°
D 、–cot47°
4、下列命题正确的是
A 、若直线的斜率存在,则必有倾斜角α与它对应
B 、若直线的倾斜角存在,则必有斜率与它对应
C 、直线的斜率为k ,则这条直线的倾斜角为arctan k
D 、直线的倾斜角为α,则这条直线的斜率为tanα
5、过点M (–2, a ), N (a , 4)的直线的斜率为–
,则a 等于 A 、–8 B 、10 C 、2 D 、4
6、过点A (2, b )和点B (3, –2)的直线的倾斜角为,则b 的值是
A 、–1
B 、1
C 、–5
D 、5
7、如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则
A 、k 1<k 2<k 3
B 、k 3<k 1<k 2
C 、k 3<k 2<k 1
D 、k 1<k 3<k 2
8、已知点M (cosα, sinα), N (cosβ, sinβ),若直线MN 的倾斜角为θ,
0<α<π<β<2π, 则θ等于
A 、
(π+α+β) B 、(α+β) C 、(α+β–π) D 、(β–α)
1、直线013=++y x 的倾斜角中
()
A . 6
π B . 3
π
C . 3
2 π
D .6
5π
2、若经过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,求实数a 的
取值范围
3、△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在
x 轴上,
求边AB 与AC 所在直线的斜率。
1、已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。
2、直线l 上有两点M (a ,a+2),N (2,2a-1),求l 的倾斜角θ。
3、两个定点、和一个动点P (x ,y ),若
P 与
、三点共线,那么x 、y 应满足什么关系?
2
π
2
1
4
3π
212
1
212
1
),(111y x P
),(222y x P 1P 2P
选择题
1、C;
2、D;
3、B;
4、C;
5、B;
6、A;
7、B;
8、A;
9、B;10、C;11、C
填空题
12、
2 [0,)(,) 63
ππ
π
13、
24 7 -
14
6
π
15、
3
4
4
k k
≥≤-
或。