(完整word版)直线的倾斜角和斜率习题与答案

合集下载

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角的余弦值为________.【答案】.【解析】由直线方程可得直线的斜率为,设直线的倾斜角为知,,再由同角三角函数公式,联立这两个方程组得.【考点】直线的倾斜角.2.直线的倾斜角为.【答案】【解析】方程可化为斜截式,所以斜率,所以倾斜角【考点】直线方程、直线的倾斜角与斜率3.直线的斜率是( )A.B.C.D.【答案】A【解析】将直线一般式化为斜截式得斜率.【考点】直线一般式与斜截式的转化.4.若直线y=0的倾斜角为α,则α的值是( )A.0B.C.D.不存在【答案】A【解析】∵直线y=0的斜率为0,倾斜角的正切值是斜率,∴α=0.【考点】直线的倾斜角与斜率.5.直线的倾斜角的大小是.【答案】【解析】由直线方程可知其斜率为,设其倾斜角为,则,因为,所以。

【考点】直线的斜率和倾斜角。

6.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.7.直线l的倾斜角为,且,则直线l的斜率是( )A.B.C.或D.或【答案】C【解析】由已知中直线的倾斜角为a,且sina=,分倾斜角a为锐角和钝角两种情况分类讨论,根据同角三角函数关系,求出a的余弦值和正切值,即可得到直线的斜率,由已知中直线的倾斜角为a,且sina=,当a为锐角时,cosa=,tana=;当a为钝角时,cosa=-,tana=-;即直线的斜率是±,选C.【考点】直线的斜率.8.已知点A(2,3),B(-3,-2).若直线过点P(1,1)且与线段AB相交,则直线的斜率的取值范围是( )A.B.C.或D.【答案】C【解析】如图,,,又过点且与轴垂直的直线也与线段相交,故直线的斜率满足或.选C.【考点】直线的斜率.9.()直线的倾斜角为A.B.C.D.【答案】C.【解析】因为直线的斜率为,所以此直线的倾斜角..【考点】直线的倾斜角与斜率的关系.点评:除倾斜角为外,倾斜角与斜率是一一对应的关系,因而求直线的倾斜角可通过求直线的斜率再求倾斜角即可.10.直线的斜率为A.2B.1C.D.【答案】B【解析】解:因为直线的斜率为1,因此选B11.如果过点和的直线的斜率等于,那么的值为( )A.4B.C.或D.或【答案】B【解析】解:因为过点和的直线的斜率等于,即,选B。

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析1.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.2.过点和的直线的斜率为 .【答案】【解析】根据求斜率的公式可知:.【考点】直线的斜率.3.直线的倾斜角为()A.B.C.D.【答案】C【解析】直线的斜率,倾斜角为,即,因为,所以【考点】直线的斜率公式和倾斜角的取值范围。

4.已知过点的直线的倾斜角为45°,则的值为()A.1B.2C.3D.4【答案】B【解析】由题意可知:,即,故,解得,故选B【考点】直线的倾斜角.5.已知点A(2,3),B(-3,-2).若直线过点P(1,1)且与线段AB相交,则直线的斜率的取值范围是( )A.B.C.或D.【答案】C【解析】如图,,,又过点且与轴垂直的直线也与线段相交,故直线的斜率满足或.选C.【考点】直线的斜率.6.若三个点P(1,1),A(2,-4),B(x,-9)共线,则x=( )A.-1B.3C.D.51【答案】B【解析】三点共线问题一般可由斜率相等列出方程求参数的值,由得,∴.【考点】三点共线问题.7.已知过点P(—2,m),Q(m,4)的直线的倾斜角为45°,则m的值为()A.1B.2C.3D.4【答案】A【解析】根据倾角好斜率的关系可知,给定的过点P(—2,m),Q(m,4)的直线的斜率为,故选A.【考点】本试题考查了直线的倾斜角的概念。

点评:解决该试题的关键是利用倾斜角与斜率的关系,得到关于m的关系式,然后求解得到结论,这是高考中重要的一个知识点,属于基础题。

8.如果AC<0,BC<0,那么直线Ax+By+C=0不通过A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】把直线方程化成斜截式方程为,因为AC<0,BC<0,所以,直线的斜率,所以直线经过一、二、四象限,不通过第三象限.【考点】直线方程的斜截式与一般式的互化.点评:判断直线经过哪些象限,不经过哪些象限,一般要把直线方程化成斜截式,然后根据斜率的值的正负,和在y轴上截距的正负,判断出直线经过哪些象限.9.若直线过点,则此直线的倾斜角是【答案】【解析】由两点间的斜率公式知该直线的斜率为,所以该直线的倾斜角为【考点】本小题主要考查两点间斜率公式的应用和特殊角的三角函数值的应用.点评:直线倾斜角的正切值是该直线的斜率,还要注意到直线的倾斜角的取值范围为.10.直线y =" x" + b与曲线x=有且仅有一个公共点,则b的取值范围是A.|b|=B.或C.D.以上都错【答案】B【解析】因为x=,化简得x2+y2=1注意到x≥0所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一四象限.这样很容易画出图来,这样因为直线与其只有一个交点,那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切,交曲线于(0,-1)和另一个点,及与曲线交于点(0,1).分别算出三个情况的B值是:-,-1,1.因为B就是直线在Y轴上的截距了,所以看图很容易得到B的范围是:-1<b≤1或b=-,故选B11.根据下列条件求直线方程(1)过点(2,1)且倾斜角为的直线方程;(2)过点(-3,2)且在两坐标轴截距相等的直线方程.【答案】(1) (2);【解析】(1)由倾斜角为,可求出其斜率为,又因为过点(2,1),然后写出点斜式方程再化成一般式即可.(2)截距相等包括过原点,和斜率为-1两种情况,当过原点时直线方程为,当斜率为-1时,设直线方程为x+y=a,因为过点(-3,2),所以a=-1,所以直线方程为x+y+1=0.12.在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是()A.3B.2C.1D.0【答案】D【解析】解:∵切线倾斜角小于∴斜率0<k<1.设切点为(x0,x3-8x),则k=y′|x=x=3x2-8,∴0<3x20-8<1,<x02<3.又∵x∈Z,∴x不存在.故选D13.直线x=-1的倾斜角为()A.135°B.90°C.45°D.0°【答案】B【解析】因为直线与x轴垂直,所以倾斜角为90°.14.已知点,则直线的倾斜角是()A.B.C.D.【答案】C【解析】解:因为点,则直线的斜率为-,则其倾斜角,选C15.直线的斜率是()A B C D【答案】A【解析】将方程化为斜截式,所以斜率为,所以选A16..已知点,若直线过点与线段相交,则直线的斜率的取值范围是()A.B.C.D.【答案】C【解析】结合位置关系可知直线的斜率的取值范围是.故选C.17.已知直线过两点,且的倾斜角是直线倾斜角的两倍,则实数的值为(▲)A.B.C.D.【答案】B【解析】本题主要考查直线的斜率公式。

直线的倾斜角与斜率、直线的方程Word版含答案

直线的倾斜角与斜率、直线的方程Word版含答案

直线的倾斜角与斜率、直线的方程【课前回顾】1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan_α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式【课前快练】1.若直线x =2的倾斜角为α,则α为( ) A .0 B.π4C.π2 D .不存在答案:C2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3D .1或4解析:选A 由k =4-mm +2=1,得m =1. 3.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:由已知,得BC 的中点坐标为⎝⎛⎭⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝⎛⎭⎫x -32,即x +13y+5=0.答案:x +13y +5=04.直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________. 解析:令x =0,得y =k 4;令y =0,得x =-k 3,则有k 4-k3=2,所以k =-24.答案:-24考点一 直线的倾斜角与斜率1.掌握直线倾斜角与斜率问题的3种类型(1)在已知斜率表达式的情况下,研究倾斜角的范围,应首先求出斜率的取值范围,然后借助正切函数的图象求解.(2)解决三点共线问题,若已知三个点中的两个坐标,可以先通过这两个已知点求出直线方程,然后将第三个点代入求解;也可利用斜率相等或向量共线的条件解决.(3)在解决与含参数的直线有关的直线相交问题时,首先要考虑该直线是否过定点. 2.避免2类失误(1)考虑直线的斜率不存在的情况.(2)由直线的斜率k 求倾斜角α的范围时,要对应正切函数的图象来确定,要注意图象的不连续性.3.记牢倾斜角α与斜率k 的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).【典型例题】1.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析:选B 因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 2.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:43.已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.解析:如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .结合图象知,若直线l 与PQ 有交点, 应满足-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. 答案:⎣⎡⎦⎤-23,12 考点二 直线的方程1.求解直线方程的2种方法(1)应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在.(2)应用“截距式”方程时要注意讨论直线是否过原点,截距是否为0.(如典题领悟第2题(1))(3)应用一般式Ax +By +C =0确定直线的斜率时注意讨论B 是否为0.【典型例题】1.求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.解:设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.2.已知点A (3,4),求满足下列条件的直线方程: (1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线在x 轴,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4). ∴直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +ya =1, 又点(3,4)在直线上,∴3a +4a =1,∴a =7.∴直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 故所求直线的方程为x -y +1=0或x +y -7=0.【针对训练】1.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0D .x -3y -4=0解析:选C 由题设知,直线l 的斜率存在,故可设直线l 的方程为y -2=k (x -2),即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+(-1)2=10,解得k =3,所以直线l 的方程为3x -y -4=0.2.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点, 由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 经过A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.考点三 直线方程的综合应用1.迁移要准(1)看到直线与两坐标轴的交点(不过坐标原点),求直线方程时想到直线的截距式. (2)看到直线与两坐标轴相交且同时出现与坐标原点O 有关的三角形面积或周长等问题时想到利用直线的截距式方程求解.2.方法要熟(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.3.易错要明直线在坐标轴上的截距可以是正值、负值、零,注意与距离的区别.【典型例题】过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [思维路径]①由于A ,B 两点分别在x 轴,y 轴的正半轴上,因此可考虑设截距式方程x a +yb =1,且a >0,b >0,可得4a +1b =1;②S △AOB 最小,即12ab 最小,考虑到4a +1b =1,可采用“1”的代换及基本不等式求解;③|OA |+|OB |最小,即a +b 最小,思路同第(1)问. 解:设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b =1.(1)4a +1b=1≥24a ·1b =4ab,所以ab ≥16, 当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,△AOB 的面积最小, 此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b =1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫4a +1b =5+a b +4b a ≥5+2 a b ·4ba=9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.【针对训练】1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1, 即0≤2x 0+2≤1,故-1≤x 0≤-12.3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:由已知画出简图,如图所示.因为l 1:ax -2y =2a -4, 所以当x =0时,y =2-a , 即直线l 1与y 轴交于点A (0,2-a ). 因为l 2:2x +a 2y =2a 2+4, 所以当y =0时,x =a 2+2, 即直线l 2与x 轴交于点C (a 2+2,0).易知l 1与l 2均过定点(2,2),即两直线相交于点B (2,2). 则四边形AOCB 的面积为S =S △AOB +S △BOC =12(2-a )×2+12(a 2+2)×2=⎝⎛⎭⎫a -122+154≥154. 所以S min =154,此时a =12. 答案:12【课后演练】1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =k k -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.5.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a =a +2,解得a =-2或a =1.6.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.7.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l的方程为________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=08.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞9.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________. 解析:若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,故所求直线方程为3x +2y =0或x -y -5=0.答案:3x +2y =0或x -y -5=010.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]11.两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同正,同负,故选B.12.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C. 2D .16解析:选A ∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.13.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].14.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是____________________.解析:∵直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1,代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案:3x +y -3-1=015.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:516.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16. 解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83. 故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.17.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程. 解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2, 由点C 在直线y =12x 上,且A ,P ,B 三点共线得 ⎩⎪⎨⎪⎧ m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0.18.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫1-22,12C.⎝⎛⎦⎤1-22,13D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-b a ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b.∵点M 在线段OA 上,∴-1<-b a <0, ∴0<b <a .∵点N 在线段BC 上,∴0<a +b a +1<1,∴b <1.由⎩⎨⎧ b 21-2b >b ,b 21-2b >0,b >0,解得13<b <12. (2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设|MC |=m ,|NC |=n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22. 又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1. 设D 到AC ,BC 的距离为t , 则t m =|DN ||MN |,t n =|DM ||MN |, ∴t m +t n =|DN ||MN |+|DM ||MN |=1. ∴t =mn m +n ,∴1t =1m +1n =1m +m . 而f (m )=m +1m 22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322, 即2<1t ≤322,∴23≤t <12. ∵b =1-CD =1-2t ,∴1-22<b ≤13. 综合(1)(2)可得b 的取值范围是⎝⎛⎭⎫1-22,12.法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B. 19.已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是________. 解析:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM =y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13. 所以y 0x 0的取值范围是⎝⎛⎭⎫-∞,-13∪(0,+∞).答案:⎝⎛⎭⎫-∞,-13∪(0,+∞)。

3.1直线的倾斜角和斜率(含答案)

3.1直线的倾斜角和斜率(含答案)

直线的倾斜角和斜率一:知识点(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°。

(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,直线的斜率常用k 表示。

即tan k α=斜率反映直线与轴的倾斜程度。

当[)90,0∈α时,0≥k ;当()180,90∈α时,0<k ;当90=α时,k 不存在。

②直线的倾斜角与直线的斜率的转换图为:③过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)两直线平行与垂直的判定:(ⅰ)当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

二:例题讲解1.直线013=-+y x 的倾斜角为 A .6π B .3π C .32π D .65π【答案】C2.过点(-3,0)和点(-4的直线的倾斜角是( ) A 、30° B、150° C、60 D 、120°【答案】D 3.直线142=+yx 的倾斜角的余弦值为________. 【答案】55-. 4.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 【答案】A5.已知直线013)2(01=+-+=++y x a y ax 与互相垂直,则实数a 等于( )A .-3或1B .1或3C .-1或-3D .-1或3 【答案】A6.已知点()2,2A 和点()5,2B -,点P 在x 轴上,且APB ∠为直角,则直线AP 的斜率为 . 【答案】12-或2试题分析:设()()(),0,2,2,5,2P a AP a BP a ∴=--=-,90,0APB AP BP ∠=︒∴⋅=,即()()2540a a --+=,解得1a =或6a =,P ∴的坐标为()1,0或()6,0,∴直线AP 的斜率为12-或2 . 考点:(1)数量积判断两向量的垂直关系(2)两条直线垂直与倾斜角、斜率的关系7.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是 A .344k -≤≤ B .34k ≥或4k ≤- C .344k ≤≤ D .344k -≤≤【答案】B试题分析:由于直线PN 到直线PM 的倾斜角从锐角1α增大到钝角2α,而直线PN 的斜率=1k 43t an 1=α,直线PM 的斜率,4tan 22-==αk 所以斜率4-≤k 或43≥k 考点:直线的倾斜角与斜率;8.直线sin 20x α+=的倾斜角的取值范围是( ) A .),0[π B .),43[]4,0[πππ⋃ C .]4,0[π D .),2(]4,0[πππ⋃【答案】B试题分析:设直线的倾斜角为θ,0θπ≤<,根据直线的斜率的计算方法,可得AB 的斜率为3k α=-,易得33k -≤≤,由倾斜角与斜率的关系,易得tan 33θ-≤≤,由正切函数的图象,可得θ的范围是),43[]4,0[πππ⋃. 考点:直线的倾斜角.9.已知两点A (-1,-5),B (3,-2),直线L 的倾斜角是直线AB 的倾斜角的一半,求直线L 的斜率. 【答案】直线的斜率为31【解析】设直线L 的倾斜角为α,则直线AB 的倾斜角为2α。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。

【考点】(1)斜率公式的应用;(2)数形结合思想的应用。

4.直线的倾斜角的大小为。

【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。

【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。

7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。

解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线x+y﹣1=0的倾斜角为().A.B.C.D.【答案】B【解析】可化为,即直线的斜率,所以倾斜角为.【考点】直线的倾斜角.2.已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值范围是( )[,1] B.[ ,0)∪(0,1] C.[-1, ] D.(-∞, ]∪[1,+∞)【答案】D【解析】画出图象,看M点的变化范围.可知直线CM应该在AC与BC间变化,且,,故有选D.【考点】直线的斜率的计算.3.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.【答案】.【解析】由题意易得,经过点,的直线方程为,其倾斜角的斜率为,又∵,∴.【考点】直线的倾斜角与斜率.4.如果实数满足等式,那么的最大值为______.【答案】【解析】,可看作圆上的点与坐标原点间连线的斜率,结合图形知最大值为.【考点】斜率的计算公式,数形结合的数学思想.5.过点且倾斜角为的直线方程为()A.B.C.D.【答案】A【解析】依题意可知斜率,根据直线方程的点斜式可写出直线方程:即,故选A.【考点】1.直线的倾斜角与斜率;2.直线的方程.6.点和点关于直线对称,则()A.B.C.D.【答案】C【解析】依题意可知直线与已知直线垂直且线段的中点在直线上,所以,解得,故选C.【考点】1.过两点的直线的斜率问题;2.直线垂直的判定与性质;3.点与直线的对称问题.7.在直角坐标系中,直线的倾斜角.【答案】【解析】直线化成,可知,而,故.【考点】直线的倾斜角与斜率.8.直线的倾斜角为( )A.B.C.D.【答案】B【解析】根据题意,由于直线的方程可知,该直线的斜率为,因此可知该直线的倾斜角为=60°,选B.【考点】直线的倾斜角点评:主要是考查了直线的倾斜角的求解,属于基础题。

9.直线经过点A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,结合可知【考点】直线倾斜角斜率点评:由两点确定的直线斜率为,斜率和倾斜角的关系10.已知菱形的两个顶点坐标:,则对角线所在直线方程为A.B.C.D.【答案】A【解析】线段的中点,所以所在直线为【考点】直线方程点评:本题利用菱形的几何特征可求得对角线的斜率,利用对角线互相平分可求得对角线过的点,从而可写出点斜式方程11.过点且平行于直线的直线方程为()A.B.C.D.【答案】C【解析】直线化为,其斜率为。

11.2.1 直线的倾斜角与斜率(含答案)

11.2.1 直线的倾斜角与斜率(含答案)

【课堂例题】例1.若直线123,,l l l 经过点(3,2)P ,又123,,l l l 分别经过点123(2,1),(4,2),(3,2)Q Q Q ----,试计算直线123,,l l l 的斜率.例2.经过点(0,2)画直线,使直线的斜率分别为(1)23;(2)52-课堂练习1.求经过下面两点的直线的倾斜角和斜率:(1) (3,1),(2,1)---(2) (1- (3) (2,3),(2,1)- 2.画出经过点(2,1)-且斜率为34-的直线; 3.写出经过点A 且斜率为k 的直线上的另一点: (1) 4,(1,2)k A = (2)3,(2,4)2k A =-- 4.当倾斜角增大时,斜率如何变化?xyO【知识再现】1.如果直线与x 轴有交点,那么把x 轴所在直线绕交点按逆时针方向旋转到和直线重合时所转过的 称为这条直线的倾斜角; 规定:与x 轴平行或重合的直线的倾斜角为 ; 直线倾斜角α的取值范围是 .2.已知两点1122(,),(,)P x y Q x y ,如果12x x ≠,那么直线PQ 的斜率为k = . 与x 轴垂直的直线,斜率 .3.当直线 ,倾斜角α与斜率k 的关系是 . 【基础训练】1.已知斜率为3的直线过点(1,1)和(,2)x -,则实数x = .2.下列说法中不正确的是( )A. 任意直线都有倾斜角B. 任意直线都有斜率C. 斜率存在的直线的斜率唯一D. 直线的倾斜角的取值范围是[0,)π3.(1)若直线l 的倾斜角为30︒,则直线的斜率k = ;(2)若直线l 的倾斜角为34π,则直线的斜率k = ; (3)若直线的斜率为2-,则直线的倾斜角为 . 4.画出下列直线的图像:(1)过点(1,0)P -且斜率12k =; (2)过点(2,1)P 且斜率43k =-5.分别求经过下列两点的直线的斜率和倾斜角:(1)(2,3),(4,1);(2)(1-;(3)(,),(2,A a b B a b +6.设过点A 的直线的斜率为k ,分别根据下列条件写出直线上另一点B 的坐标(答案不唯一)(1)2,(2,3)k A =---;(2)4,(3,2)3k A =-;(3)(1,0)k A =-7.利用斜率判断下列三点是否在同一直线上:(写出判断依据) (1)(0,2),(2,5),(3,7);(2)(1,4),(2,1),(2,5)--【巩固提高】8.根据斜率k 与倾斜角α的关系,在直角坐标系中画出图像:(注意α用弧度制表示)9.(1)已知直线的倾斜角为α,且0135α︒≤≤,写出该直线斜率k 的取值范围; (2)若直线l 的斜率k 满足11k -≤≤,写出直线倾斜角α的度数的取值范围(选做)10.解决下面两个问题:(简述理由)(1)已知直线的斜率k ,则该直线的一个方向向量d是多少?(2)已知直线的一个方向向量(,)d u v =,该直线的倾斜角α及斜率k 是分别是多少?【温故知新】11.复习第五章《三角比》中关于三角函数线的内容,在左图中作角45,60,120的正切线,并在右图中,利用正切线作过原点且斜率分别为2-和0.5的直线.kO α【课堂例题答案】例1.1233,4,5k kk ==-=例2.见右1图 【课堂练习答案】 1.(1)0,0kα== (2)120k α== (3)1,2k απ=-=-2.见右2图3.答案不唯一(1)(2,6)B ;(2)(4,7)B -4.当090α≤<时,斜率随着倾斜角的增大而增大;当90180α<<时,斜率随着倾斜角的增大而增大. 【知识再现答案】1.最小正角,0,0180α≤<2.2121y y x x --,不存在3.不与x 轴垂直时,tan k α=【习题答案】 1.0 2.B ;(2)1-;(3)arctan 2π- 4.见右图5.(1)1,135k α=-=;(2)1503k α=-= ;(3),arctan k απ=-=-6.答案不唯一,(1)(1,5)B --;(2)(0,6)B ;(3)(1B 7.(1)三点不共线,理由:52752032--≠--;(2)8.如右图.9.(1)(,1][0,)k ∈-∞-+∞ (2)045α≤≤或135180α≤<提示:利用第8题的图像10.(1)(1,)d k =提示:根据斜率定义,设0000(,),(1,)P x y Q x y k ++在直线上,则(1,)d PQ k ==(2)当0u =时,90,k α=不存在(趋向于无穷);当0u ≠时,vk u=,再根据uv 符号分为两类:①0uv ≥时,arctan v u α=;②0uv <时,απ=+xyPQO。

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A .23B .32C .-23D .-32答案:C解析:k =0-23-0 =-23 .2.直线x + 3 y +1=0的倾斜角是( )A .π6B .π3C .23 πD .56 π答案:D解析:由x + 3 y +1=0,得y =-33 x -33 ,∴直线的斜率k =-33 ,其倾斜角为56 π.3.已知直线l 过点P(-2,5),且斜率为-34 ,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A解析:由点斜式得y -5=-34 (x +2),即:3x +4y -14=0.4.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3 ”是“k> 3 ”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:∵当π2 <α<π时,k<0,∴α>π3 D ⇒/k> 3 ; 当k> 3 时,π3 <α<π2 ,∴k> 3 ⇒π3 <α<π2 ,∴α>π3是k> 3 的必要不充分条件. 5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( )A . 3 x -y +1=0B . 3 x -y - 3 =0C . 3 x +y - 3 =0D . 3 x +y + 3 =0答案:D解析:由于倾斜角为120°,故斜率k =- 3 .又直线过点(-1,0),由点斜式可知y =- 3 (x +1),即: 3 x +y + 3 =0.6.经过点P(1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =0答案:D解析:若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P(1,2)在直线上,∴1+2=m ,∴m =3,即:x +y =3.7.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab>0,bc<0B .ab>0,bc>0C .ab<0,bc>0D .ab<0,bc<0答案:A解析:ax +by +c =0可化为y =-a b x -c b ,又直线过一、二、四象限,∴-a b<0且-c b>0,即ab>0,bc<0. 8.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B .⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π C .⎣⎡⎦⎤0,π4 D .⎣⎡⎦⎤0,π4 ∪⎝⎛⎭⎫π2,π 答案:B解析:设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π .9.已知点A(2,3),B(-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A .⎣⎡⎦⎤34,2B .⎝⎛⎦⎤-∞,34 ∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]答案:B解析:直线kx -y +1-k =0恒过P(1,1),k PA =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34 ∪[2,+∞).二、填空题10.若A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.答案:4解析:由题意得k AC =k BC ,∴5-36-4 =5-a 6-5,得a =4. 11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.答案:45°解析:y′=3x 2-2,当x =1时,该曲线的导函数值为1,∴k =1,其倾斜角为45°.12.过点M(-2,m),N(m ,4)的直线的斜率为1,则m =________.答案:1解析:由题意得,4-m m +2=1,得m =1.。

高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版,含解析)

高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版,含解析)

直线的倾斜角与斜率、直线的方程基础练一、选择题1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B. 3 C .-3D .-332.[2021·秦皇岛模拟]倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=03.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2 4.[2021·河南安阳模拟]若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( )A .1±2或0B.2-52或0C.2±52D.2+52或05.[2021·湖南衡阳八中月考]已知直线l 的倾斜角为θ且过点(3,1),其中sin ⎝⎛⎭⎫θ-π2=12,则直线l 的方程为( )A.3x -y -2=0B.3x +y -4=0 C .x -3y =0D.3x +3y -6=0 6.[2021·安徽四校联考]直线l 经过点(1,3)且与两坐标轴的正半轴围成的三角形面积为6,则直线l 的方程是( )A .3x +y -6=0B .3x -y =0C .x +3y -10=0D .x -3y +8=07.一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <08.直线Ax +By -1=0在y 轴上的截距是-1,而且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .A =3,B =1B .A =-3,B =-1C .A =3,B =-1D .A =-3,B =19.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π310.经过点(0,-1)且与直线2x +3y -4=0平行的直线方程为( ) A .2x +3y +3=0B .2x +3y -3=0 C .2x +3y +2=0D .3x -2y -2=0二、填空题11.若三点A (2,3),B (3,2),C ⎝⎛⎭⎫12,m 共线,则实数m =________. 12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.13.[2021·贵州遵义四中月考]过点(2,3)且在两坐标轴上的截距互为相反数的直线方程为________.14.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________. 能力练15.[2021·湖北孝感调研]已知点A (2,-3),B (-3,-2),直线l 的方程为-kx +y +k -1=0,且与线段AB 相交,则直线l 的斜率k 的取值范围为( )A .k ≥34或k ≤-4 B.k ≥34或k ≤-14C .-4≤k ≤34D.34≤k ≤416.[2021·山西大同重点中学模拟]数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点A (4,0),B (0,2),且AC =BC ,则△ABC 的欧拉线方程为( )A .x -2y +3=0B .2x +y -3=0C .x -2y -3=0D .2x -y -3=0 17.[2021·百所名校单元示范卷]直线l 经过A (2,1),B (1,m 2),m ∈R 两点,那么直线l 的倾斜角α的取值范围为________.参考答案:1.解析:设直线l 的斜率为k ,则k =-sin30°cos150°=33.故选A.答案:A2.解析:由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.故选D.答案:D3.解析:由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2,∴y =-3.故选B. 答案:B4.解析:∵平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线, ∴k AB =k AC , 即a 2+a 2-1=a 3+a 3-1,即a (a 2-2a -1)=0, 解得a =0或a =1±2.故选A. 答案:A5.解析:∵sin ⎝⎛⎭⎫θ-π2=12,∴cos θ=-12,θ=2π3,则tan θ=-3,直线的方程为y -1=-3(x -3),即3x +y -4=0,故选B.答案:B6.解析:解法一 设直线l 的斜率为k (k <0),则直线l 的方程为y -3=k (x -1).x =0时,y =3-k ;y =0时,x =1-3k .所以直线与坐标轴所围成的三角形的面积S =12×(3-k )⎝⎛⎭⎫1-3k =6,整理得k 2+6k +9=0,解得k =-3,所以直线l 的方程为y -3=-3(x -1),即3x +y -6=0,故选A.解法二 依题意,设直线方程为x a +y b =1(a >0,b >0),则可得1a +3b =1且ab =12,解得a=2,b =6,则直线l 的方程为x 2+y6=1,即3x +y -6=0,故选A.答案:A7.解析:因为y =-m n x +1n 的图象同时经过第一、三、四象限,故-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.故选B.答案:B8.解析:将直线Ax +By -1=0化成斜截式y =-A B x +1B.∵1B=-1,∴B =-1,故排除A ,D. 又直线3x -y =33的倾斜角α=π3,∴直线Ax +By -1=0的倾斜角为2α=2π3,∴斜率-A B =tan 2π3=-3,∴A =-3,故选B. 答案:B9.解析:直线2x cos α-y -3=0的斜率k =2cos α.由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2cos α∈[1,3].设直线的倾斜角为θ,则0≤θ<π,tan θ∈[1,3].所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.故选B. 答案:B10.解析:∵直线2x +3y -4=0的斜率为-23,与直线2x +3y -4=0平行的直线的斜率也为-23,∴经过点(0,-1)且斜率为-23的直线,其斜截式方程为y =-23x -1,整理得2x +3y +3=0,故选A.答案:A11.解析:由题意得k AB =2-33-2=-1,k AC =m -312-2.∵A ,B ,C 三点共线,∴k AB =k AC , ∴m -312-2=-1,解得m =92. 答案:9212.解析:如图,因为k AP =1-02-1=1, k BP =3-00-1=-3, 所以k ∈(-∞,-3]∪[1,+∞). 答案:(-∞,-3]∪[1,+∞)13.解析:当直线过原点时,直线斜率为3-02-0=32,故直线方程为y =32x ,即3x -2y =0.当直线不过原点时,设直线方程为x a +y-a=1,把(2,3)代入可得a =-1,故直线的方程为x -y+1=0.综上,所求直线方程为3x -2y =0或x -y +1=0.答案:3x -2y =0或x -y +1=014.解析:设所求直线的方程为x a +yb =1,∵A (-2,2)在直线上,∴-2a +2b=1 ①又因为直线与坐标轴围成的面积为1, ∴12|a |·|b |=1 ② 由①②得(1)⎩⎪⎨⎪⎧ a -b =1ab =2或(2)⎩⎪⎨⎪⎧a -b =-1ab =-2由(1)得⎩⎪⎨⎪⎧ a =2b =1或⎩⎪⎨⎪⎧a =-1b =-2,方程组(2)无解,故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=0 15.解析:直线l 的方程-kx +y +k -1=0可化为k (1-x )+y -1=0,∴直线l 过定点P (1,1),且与线段AB 相交,如图所示.直线P A 的斜率k P A =-3-12-1=-4,直线PB 的斜率k PB =-2-1-3-1=34,则k ≤-4或k ≥34.故选A.答案:A16.解析:∵线段AB 的中点为M (2,1),k AB =-12,∴线段AB 的垂直平分线方程为y -1=2(x -2),即2x -y -3=0,∵AC =BC ,∴△ABC 的外心,重心,垂心都位于线段AB 的垂直平分线上,∴△ABC 的欧拉线方程为2x -y -3=0,故选D.答案:D17.解析:直线l 的斜率存在且k l =m 2-11-2=1-m 2≤1,又直线l 的倾斜角为α,则有tan α≤1,即tan α<0或0≤tan α≤1,根据正切函数在⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π上的图象,可得π2<α<π或0≤α≤π4,即倾斜角α的取值范围为⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π. 答案:⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π。

直线的倾斜角和斜率及直线方程试题及答案

直线的倾斜角和斜率及直线方程试题及答案

直线的倾斜角和斜率及直线方程练习1、在下列四个命题中,正确的共有( )(1)坐标平面内的任何一条直线均有倾斜角和斜率(2)直线的倾斜角的取值范围是[]π,0(3)若一条直线的斜率为αtan ,则此直线的倾斜角为α (4)若一条直线的倾斜角为α,则此直线的斜率为αtan A .0个 B .1个 C .2个 D .3个2、若两直线21,l l 的倾斜角分别为21,αα,则下列四个命题中正确的是( )A .若21αα<,则两直线的斜率:21k k <B . 若21αα=,则两直线的斜率:21k k =C . 若两直线的斜率:21k k <,则21αα<D .若两直线的斜率:21k k =,则21αα=3、已知直线l 的倾斜角的正弦值是53,在x 轴上的截距为2-,则l 的方程是( ) A .0653=+-y x B .0643=+-y xC .0643=+-y x 或0643=++y xD .0653=+-y x 或0653=++y x 4、过两点)1,1(-和)9,3(的直线在x 轴上的截距为( ) A .23-B .32- C .52D .25、若直线0=++c by ax 在第一、二、三象限,则( )A .0,0>>bc abB .0,0<>bc abC .0,0><bc abD .0,0<<bc ab 6、已知)3,4(),2,1(N M 直线l 过点)1,2(-P 且与线段MN 相交,那么直线l 的斜率k 的取值范围是( ) A .[]2,3- B .⎥⎦⎤⎢⎣⎡-21,31 C .(][)+∞⋃-∞-,23, D .⎪⎭⎫⎢⎣⎡+∞⋃⎥⎦⎤ ⎝⎛-∞-,2131,7、直线022=+-k y x 与两坐标轴所围成的三角形面积不大于1,那么( ) A .1-≥k B .1≤k C .11≤≤-k 且0≠k D .1-≤k 或1≥k8、已知直线01=-+by ax 在y 轴上的截距为1-,且它的倾斜角是直线033=--y x 的倾斜角的2倍,则( )A .1,3==b aB .1,3-==b aC .1,3=-=b aD .1,3-=-=b a9、若直线l 与两条直线07,1=--=y x y 分别交于P 、Q 两点,线段PQ 的中点 坐标为)1,1(-,则l 的方程是( )A .0523=--y xB .0532=--y xC .0132=++y xD .0123=-+y x 10、若直线05)4()252(22=+--+-m y m x m m 的倾斜角为4π,则m 的值( ) A .2或3 B .2或31- C .31- D .3 11、直线x tan7π+y =0的倾斜角是( ) A.-7π B.7π C.7π5 D .7π612、直线αcos x +3y +2=0的倾斜角范围是( )A.[6π,2π)∪(2π,6π5] B.[0,6π]∪[6π5,π) C.[0,6π5] D.[6π,6π5]13、设直线ax+by+c=0的倾斜角为α,且sin α+cos α=0,则a 、b 满足( )A.a+b=1B.a -b=1C.a+b=0D.a -b=0 14、如图,直线321,,l l l 的斜率分别为321,,k k k ,则( ) A .321k k k << B .213k k k << C .123k k k << D .231k k k <<15、如图,直线aax y 1-=的图象可能是( )16、直线043=+-k y x 在两坐标轴上的截距之和为2,则实数k 的值为 17、点)3,1(-P 在直线l 上的射影为)1,1(-Q ,则直线l 的方程为 18、求过点)2,5(A ,且在两坐标轴上的截距互为相反数的直线l 的方程19、直线l 经过点)3,4(-P 与x 轴、y 轴分别交于A 、B 两点,且|AP|:|PB|=3:5,求直线l 的方程20、已知直线l的斜率为6,且被两坐标轴所截得的线段长为37,求直线l的方程.21、已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直线方程.22、在直线方程y=kx+b中,当x∈[-3,4]时,y∈[-8,13],求此直线方程直线的倾斜角和斜率及直线方程练习答案1、A2、D3、C4、A5、D6、C (提示:PN l k k ≥或PM l k k ≤)7、C8、D9、C 10、D 11、解析:k =-tan7π=tan (π-7π)=tan 7π6且7π6∈[0,π)答案:D 12、解析:设直线的倾斜角为θ,则tan θ=-31αcos .又-1≤cos α≤1,∴-33≤tan θ≤33.∴θ∈[0,6π]∪[6π5,π).答案:B 13、解析:0°≤α<180°,又sin α+cos α=0,α=135°,∴a -b =0.答案:D14、D 15、A 16、24- 17、032=--y x18、提示:分在两坐标轴上的截距为零和不为零两种情况进行讨论19、解:由题意可知,直线l 的斜率存在,设为k ,点A 、B 的坐标分别为),0(),0,(b a ,故有(1)当0>k 时,点P 在线段AB 上,这时有53=→→PBAP ,所以有 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=-5315335314b a ,解得8,532=-=b a ,这时直线l 的方程是:03245=+-y x (2)当0<k 时,点P 在线段BA 的延长线上,这时有53-=→→PBAP,所以有 531533,5314--=-=-ba,所以解得2,58-=-=b a ,这时直线l 的方程是:0845=-+y x ,所以所求直线的方程是03245=+-y x 或0845=-+y x20、解法一:设所求直线l 的方程为y =kx +b .∵k =6,∴方程为y =6x +b .令x =0,∴y =b ,与y 轴的交点为(0,b );令y =0,∴x =-6b,与x 轴的交点为(-6b ,0).根据勾股定理得(-6b)2+b 2=37,∴b =±6.因此直线l 的方程为y =6x ±6.21、剖析:利用点斜式或直线与方程的概念进行解答.解:∵P (2,3)在已知直线上, 2a 1+3b 1+1=0, 2a 2+3b 2+1=0. ∴2(a 1-a 2)+3(b 1-b 2)=0,即2121a a b b --=-32.∴所求直线方程为y -b 1=-32(x -a 1).∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.评述:此解法运用了整体代入的思想,方法巧妙.思考讨论依“两点确定一直线”,那么你又有新的解法吗? 提示: 由 2a 1+3b 1+1=0, 2a 2+3b 2+1=0,知Q 1、Q 2在直线2x +3y +1=0上.22、解:当x 的区间的左端点与y 的区间的左端点对应,x 的区间的右端点与y 的区间的右端点对应时,得-3k +b =-8, k =3,4k +b =13 b =1 ∴直线方程为y =3x +1.当x 的区间的左端点与y 的区间的右端点对应,x 的区间右端点与y 的区间的左端点对应时,得-3k +b =13, k =-34k +b =-8, b =4.∴所求的直线方程为y =-3x +4.∴得解得。

直线的倾斜角和斜率(经典练习及答案详解)

直线的倾斜角和斜率(经典练习及答案详解)

直线的倾斜角和斜率1.若直线过点(1,2),(2,2+3),则此直线的倾斜角是( )A .30°B .45°C .60°D .90°【答案】C 【解析】利用斜率公式k =3=tan α,可求倾斜角为60°.2.(2021年合肥月考)若直线l 经过原点和点A (-2,-2),则它的斜率为( )A .-1B .1C .1或-1D .0【答案】B 【解析】根据两点表示的斜率公式得k =y 2-y 1x 2-x 1=-2-0-2-0=1. 3.(2021年中山月考)若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点共线,则m 的值为( )A .12B .-12C .-2D .2【答案】A 【解析】因为A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m ,三点共线,所以k AB =k BC ,所以-2-33-(-2)=m +212-3,解得m =12. 4.若三点A (-1,-2),B (4,8),C (5,x )在同一条直线上,则实数x 的值为( )A .10B .-10C .5D .-5【答案】A 【解析】由三点在同一直线上,则可得k AB =k BC ,由斜率计算公式可知8-(-2)4-(-1)=x -85-4,解得x =10. 5.(2021年清远模拟)已知A (3,5),B (5,7),直线l 的斜率是直线AB 斜率的3倍,则直线l 的倾斜角为________.【答案】60° 【解析】设直线l 的斜率为k ,则k =3k AB =3×7-55-3= 3.所以直线l 的倾斜角为60°.6.设P 为x 轴上的一点,A (-3,8),B (2,14),若P A 的斜率是PB 的斜率的两倍,则点P 的坐标为________.【答案】(-5,0) 【解析】设P (x,0)为满足题意的点,则k P A =8-3-x ,k PB =142-x ,于是8-3-x =2×142-x,解得x =-5. 7.直线l 的一个方向向量d =(3,3),则直线l 的倾斜角是________,直线l 斜率是________.【答案】π6 33 【解析】由d =(3,3)=3⎝ ⎛⎭⎪⎫1,33,设c =⎝⎛⎭⎪⎫1,33,则d ∥c .由向量d =(3,3)是直线l 的一个方向向量,则c =⎝⎛⎭⎪⎫1,33也为直线l 的一个方向向量.故直线l 的斜率为33,所以倾斜角为π6.8.以下叙述中:(1)任何一条直线都有倾斜角,也有斜率;(2)平行于x 轴的直线的倾斜角是0°或180°;(3)直线的斜率范围是(-∞,+∞);(4)过原点的直线,斜率越大越靠近x 轴;(5)两条直线的斜率相等,则它们的倾斜角相等;(6)两条直线的倾斜角相等,则它们的斜率相等.其中正确的序号是________.【答案】(3)(5) 【解析】(1)倾斜角为90°的直线没有斜率;(2)直线的倾斜角取值范围是0°≤α<180°;(4)过原点的直线斜率的绝对值越大,其对应的直线越靠近y 轴;(6)倾斜角为90°的直线没有斜率.9.已知点A (1,2),在坐标轴上求一点P 使直线P A 的倾斜角为60°. 解:(1)当点P 在x 轴上时,设点P (a,0),因为A (1,2),所以k P A =0-2a -1=-2a -1. 又因为直线P A 的倾斜角为60°,所以tan 60°=-2a -1,解得a =1-233. 所以点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0. (2)当点P 在y 轴上时,设点P (0,b ). 同理可得b =2-3, 所以点P 的坐标为(0,2-3).10.已知交于点M (8,6)的四条直线l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,又知l 2过点N (5,3),求这四条直线的倾斜角.解:因为k 2=k MN =6-38-5=1, 所以l 2的倾斜角为45°.又l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,故这四条直线的倾斜角分别为22.5°,45°,67.5°,90°.B 级——能力提升练11.直线l 过点M (-1,2),且与以P (-2,-3),Q (4,0)为端点的线段PQ 相交,则l 的斜率的取值范围是( )A .⎣⎢⎡⎦⎥⎤-25,5B .⎣⎢⎡⎭⎪⎫-25,0∪(0,5] C .⎣⎢⎡⎭⎪⎫-25,12∪⎝ ⎛⎦⎥⎤12,5 D .⎝ ⎛⎦⎥⎤-∞,-25∪[5,+∞) 【答案】D 【解析】当l 的斜率为正时,因为其倾斜角均大于或等于直线MP 的倾斜角,故其斜率不小于k MP =5;当l 的斜率为负时,因为其倾斜角均小于或等于直线MQ 的倾斜角,故其斜率不大于k MQ=-25.12.(多选)在下列四个命题中,错误的有( )A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π)C .若一条直线的斜率为tan α,则此直线的倾斜角为αD .若一条直线的倾斜角为α,则此直线的斜率为tan α【答案】ACD 【解析】对于A ,当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在,A 错误;对于B ,直线倾斜角的取值范围是[0,π),B 正确;对于C ,一条直线的斜率为tan α,此直线的倾斜角不一定为α,如y =x 的斜率为tan 5π4,它的倾斜角为π4,C 错误;对于D ,一条直线的倾斜角为α时,它的斜率为tan α或不存在,D 错误.故选ACD .13.已知三点A (1-a ,-5),B (a,2a ),C (0,-a )共线,则a =________.【答案】2 【解析】①当过A ,B ,C 三点的直线斜率不存在时,即1-a =a =0,无解.②当过A ,B ,C 三点的直线斜率存在时,即k AB=2a-(-5)a-(1-a)=k BC=-a-2a0-a,即2a+52a-1=3,解得a=2.综上可知,当A,B,C三点共线时,a的值为2.14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________.【答案】0【解析】由于正三角形的内角都为60°,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为60°,则斜率为tan 60°=3,则边AC所在直线的倾斜角为120°,斜率为tan 120°=-3,所以AC,AB所在直线的斜率之和为3+(-3)=0.15.已知两点A(-3,4),B(3,2),过点C(2,-1)的直线l与线段AB有公共点,求直线l的斜率k的取值范围.解:如图,依题意,直线l由直线CB开始按逆时针方向旋转至直线CA止,其间直线l与线段AB都有公共点.直线CB的斜率为k CB=-1-22-3=3,直线CA的斜率k CA=-1-42-(-3)=-1.直线l由直线CB开始按逆时针方向旋转时,直线l的斜率逐渐增大,直至当直线l与x轴垂直时,倾斜角为90°,此时斜率不存在.继续旋转直线l,其斜率由负无穷大开始增大,直至直线CA终止,所以直线l的斜率取值范围是(-∞,-1]∪[3,+∞).16.已知直线l过点P(3,4),且与以A(-1,0),B(2,1)为端点的线段AB有公共点,求l的斜率k的取值范围.解:如图,当k 变化时,直线l 绕点P 旋转,当l 由P A 旋转到PB 时,l 与线段AB 有公共点,即k 由k P A 增加到k PB ,∵k P A =4-03-(-1)=1,k PB =4-13-2=3, ∴要使l 与线段AB 有公共点,斜率k 的取值范围为[1,3].C 级——探究创新练17.已知直线AB 过点A (3,-5),B (0,-9),倾斜角为α.(1)若直线CD 的倾斜角为2α,则斜率k CD =________;(2)若直线EF 的倾斜角为α2,则斜率k EF =________.【答案】-247 12 【解析】由题意,得tan α=-5+93-0=43. (1)若直线CD 的倾斜角为2α,则斜率k CD =tan 2α=2tan α1-tan 2α=2×431-169=-247.(2)由α∈[0,π),α2∈⎣⎢⎡⎭⎪⎫0,π2,故设k EF =k (k >0), 则2k 1-k 2=43,∴k =12. 18.若经过点A (1-t,1+t )和点B (3,2t )的直线的倾斜角α不是锐角,求实数t 的取值范围.解:因为直线的倾斜角α不是锐角,所以α=0°或α=90°或α是钝角.当α=0°时,1+t=2t,得t=1;当α=90°时,1-t=3,得t=-2;当α是钝角时,直线的斜率小于0,即2t-(1+t)3-(1-t)<0,得t-1t+2<0,解得-2<t<1.综上所述,实数t的取值范围为[-2,1].。

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析

高二数学直线的倾斜角与斜率试题答案及解析1.过点、的直线的斜率为______________.【答案】2.【解析】由斜率公式得:.【考点】直线的斜率公式.2.过点P和Q的直线斜率为1,那么的值为()A.1B.4C.1或3D.1或4【答案】【解析】根据,有,可得.【考点】斜率计算.3.若图中直线,,的斜率分别为,,,则()A.<<B.<<C.<<D.<<【答案】B【解析】由于的倾斜角都是锐角,且直线的倾斜角大于直线的倾斜角,可得,而直线的倾斜角为钝角,所以,由此可得结论:,故选答案B.【考点】直线的倾斜角与斜率.4.直线l的倾斜角为,且,则直线l的斜率是( )A.B.C.或D.或【答案】C【解析】由已知中直线的倾斜角为a,且sina=,分倾斜角a为锐角和钝角两种情况分类讨论,根据同角三角函数关系,求出a的余弦值和正切值,即可得到直线的斜率,由已知中直线的倾斜角为a,且sina=,当a为锐角时,cosa=,tana=;当a为钝角时,cosa=-,tana=-;即直线的斜率是±,选C.【考点】直线的斜率.5.已知直线经过点,求分别满足下列条件的直线方程:(1)倾斜角的正弦为;(2)与两坐标轴的正半轴围成的三角形面积为4.【答案】(1)或;(2)【解析】(1)因为直线过定点,故只需求其斜率即可,由已知,根据同角三角函数基本关系式,求,再用直线点斜式方程;(2)直线与与两坐标轴的正半轴围成的三角形面积与直线在坐标轴的截距有关,所以可设直线的截距式方程,由面积为4,可得关于的方程,又直线过定点,代入得关于,联立可求.试题解析:(1)设直线的倾斜角为,,由得,,当时,由点斜式方程得:即;当时,由点斜式方程得:即,综上:直线方程为或;(2)设直线在轴上的截距为,可设直线方程为,由题意得得,,即:.【考点】1、直线的点斜式方程;2、直线的截距式方程.6.若直线经过、两点,则直线的倾斜角是()A.135°B.120°C.60°D.45°【答案】C【解析】因为,所以直线的倾斜角是60°。

直线的倾斜角与斜率练习及答案

直线的倾斜角与斜率练习及答案

直线的倾斜角与斜率练习及答案1.设点A(2,-3)和B(-3,-2),直线l与线段AB相交且过点P(11,3),则l的斜率k的取值范围是什么?答案:B。

-4≤k≤3或k≤-42.直线l经过原点和点(-1,1),则它的倾斜角是多少?答案:C。

π/43.斜率为2的直线过(3,5),(a,7),(-1,b)三点,则a,b的值是什么?答案:A。

a=4,b=-34.直线l过点A(1,2),且不过第四象限,那么直线l的斜率的取值范围是什么?答案:C。

(-∞,1) U (1,∞)5.若直线x+5y+C=0的倾斜角为α,则α等于多少?答案:D。

不存在6.直线答案:B。

B=-B'且C=-5BB'7.满足以下条件的l1与l2,其中l1∥l2的是什么?1)l1的斜率为2,l2过点A(1,2),B(4,8);2)l1经过点P(3,3),Q(-5,3),l2平行于x轴,但不经过P,Q两点;3)l1经过点M(-1,5),N(-5,-2),l2经过点R(-4,3),S(0,-3);答案:C。

(1) (3)8.已知三点(2,-2),(4,3)和(5,k)在同一条直线上,则k的值是多少?答案:k=79.已知两点A(x,-2)和B(3,1),并且直线AB的斜率为1/2,则x等于多少?答案:x=7/210.若直线答案:a=-211.在y轴上有一点m,它与点(-3,1)连成的直线的倾斜角为120°,则点m的坐标为多少?答案:m的坐标为(-3,-3)12.已知:直线l1斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1∥l2,则x,y的值分别为多少?答案:x=4,y=113.直线l1经过点A(a,2)和B(-5,6),l2经过点C(3,5)和D(-1,1),若l1∥l2,则a的值为多少?答案:a=11/2经过点(2,3),且垂直于x轴,若存在,求m的值.第14题:证明四边形MNPQ是矩形,已知其顶点为M(1,1),N(3,0),P(4,-1),Q(2,2)。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值范围是( )[,1] B.[ ,0)∪(0,1] C.[-1, ] D.(-∞, ]∪[1,+∞)【答案】D【解析】画出图象,看M点的变化范围.可知直线CM应该在AC与BC间变化,且,,故有选D.【考点】直线的斜率的计算.2.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.3.如图,直线经过二、三、四象限,的倾斜角为,斜率为k,则().A.B.C.D.【答案】B【解析】因为直线过二、三、四象限,所以直线的倾斜角为钝角,斜率;,则.【考点】直线的斜率、倾斜角.4.过点和点的直线的倾斜角是( )A.B.C.D.【答案】B【解析】根据斜率的计算式可知,则,所以.【考点】斜率的计算.5.如右图所示,直线的斜率分别为则()A.B.C.D.【答案】C【解析】由图可知,,所以,故选C.【考点】直线的斜率.6.直线经过两点,那么直线的倾斜角的取值范围()A.B.C.D.【答案】D【解析】解:设直线的倾斜角为,则有:,又因为:所以,或故选D【考点】直线的斜率与倾斜角.7.已知直线上两点的坐标分别为,且直线与直线垂直,则的值为()A.B.C.D.【答案】B【解析】因为直线的斜率为,直线的斜率为,由这两条直线垂直可得即,解得,故选B.【考点】1.直线的倾斜角与斜率;2.两直线垂直的判定与性质.8.给定三点A(0,1),B(,0),C(3,2),直线经过B、C两点,且垂直AB,则的值为________.【答案】1或2【解析】根据B和C的坐标求出直线l的斜率,根据A和B的坐标求出直线AB的斜率,根据两直线垂直时斜率乘积为-1列出关于a的方程,求出方程的解即可得到a的值解:由题意知AB⊥BC,则•化简得a2-3a+2=0即(a-1)(a-2)=0,解得a=1或2.故答案为:1或2【考点】直线方程的斜率点评:此题考查学生会根据两点坐标求出过两点的直线方程的斜率,掌握两直线垂直时斜率的关系,是一道综合题.9.过,两点的直线的斜率为()A.B.C.D.【答案】A【解析】由两点坐标求得斜率【考点】两点求斜率点评:直线过两点,则斜率为10.直线x-y+1=0的倾斜角为 ( )A.B.C.D.【答案】B【解析】直线变形为,斜率为【考点】直线的斜率倾斜角点评:直线中斜率为,倾斜角为则11.直线的倾斜角是()A.B.C.D.不存在【答案】C【解析】直接利用直线的斜率与倾斜角的关系,求出直线的倾斜角即可.解:因为直线x=2的斜率不存在,所以直线的倾斜角为故答案为C【考点】直线的斜率与倾斜角点评:本题考查直线的斜率与倾斜角的关系,注意直线的斜率是否存在是解题的关键,考查基本知识掌握的熟练程度.12.直线的倾斜角与其在轴上的截距分别是 ( )A.B.C.D.【答案】D【解析】因为k=-1,所以倾斜角为1350。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角的大小是()A.B.C.D.【答案】A【解析】直线设直线的倾斜角为,则又故答案选A.【考点】直线的一般式方程;直线的倾斜角2.直线的倾斜角为()A.B.C.D.【答案】D【解析】设已知直线的倾科角为,由已知得故选D.【考点】直线倾斜角.3.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.【答案】C【解析】根据直线斜率的计算式有,解得.【考点】直线斜率的计算式.4.直线的倾斜角和斜率分别是()A.,不存在B.C.D.,不存在【答案】A【解析】是垂直于x轴的一条直线,故斜率不存在,倾斜角为【考点】直线的倾斜角与斜率的概念5.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.6.已知直线过点且与线段相交,那么直线的斜率的取值范围是()A.B.C.D.【答案】A【解析】,,由直线逆时针旋转到的过程中,斜率的变化由2开始变大,直线的倾斜角过,由增大到-3,故选A.【考点】直线的斜率7.过点且倾斜角为的直线方程为()A.B.C.D.【答案】A【解析】依题意可知斜率,根据直线方程的点斜式可写出直线方程:即,故选A.【考点】1.直线的倾斜角与斜率;2.直线的方程.8.已知直线上两点的坐标分别为,且直线与直线垂直,则的值为()A.B.C.D.【答案】B【解析】因为直线的斜率为,直线的斜率为,由这两条直线垂直可得即,解得,故选B.【考点】1.直线的倾斜角与斜率;2.两直线垂直的判定与性质.9.若,,三点共线,则.【答案】【解析】直线BC方程为,将点A的坐标代入得,所以,也可以用求解.【考点】直线的斜率.10.直线的倾斜角为( )A.B.C.D.【答案】B【解析】根据题意,由于直线的方程可知,该直线的斜率为,因此可知该直线的倾斜角为=60°,选B.【考点】直线的倾斜角点评:主要是考查了直线的倾斜角的求解,属于基础题。

(完整版)直线倾斜角与斜率经典例题(有答案精品)

(完整版)直线倾斜角与斜率经典例题(有答案精品)

直线的倾斜角与斜率(20131125)讲义类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;【变式】直线的倾斜角的范围是( )A.B.C.D.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.【变式1】如图,直线的斜率分别为,则( )A.B.C.D.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.【变式1】过两点,的直线的倾斜角为,求的值.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【变式2】已知,,三点,求点,使直线,且.【变式3】若直线与直线互相垂直,则实数=__________.直线的倾斜角与斜率(20131125)作业姓名成绩题组一直线的倾斜角1.已知直线l过点(m,1),(m+1,tanα+1),则()A.α一定是直线l的倾斜角B.α一定不是直线l的倾斜角C.α不一定是直线l的倾斜角D.180°-α一定是直线l的倾斜角2.如图,直线l经过二、三、四象限,l的倾斜角为α,斜率为k,则()A.k sinα>0B.k cosα>0 C.k sinα≤0D.k cosα≤0题组二直线的斜率及应用3.12312<k3,则下列说法中一定正确的是()A.k1k2=-1 B.k2k3=-1 C.k1<0 D.k2≥04.已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________.5.已知两点A(-1,-5),B(3,-2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是________.题组三两条直线的平行与垂直6已知两条直线l1:ax+by2bm是直线l1∥l2的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为()A.5 B.4 C.2 D.18.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( ) A.23 B .-23 C.13 D .-139.设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.10.若关于x 的方程|x -________.11.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.直线的倾斜角与斜率(20131125)讲义答案类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析:∵,∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线的倾斜角的范围是A.B.C.D.【答案】B解析:由直线,所以直线的斜率为.设直线的倾斜角为,则.又因为,即,所以.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.思路点拨:本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,∴k AB=tan150°=k AC=tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.举一反三:【变式1】如图,直线的斜率分别为,则( )A.B.C.D.【答案】由题意,,则本题选题意图:对倾斜角变化时,如何变化的定性分析理解.∴选B.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨:解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.总结升华:本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,,为锐角;当时,,为钝角.举一反三:【变式1】过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或.经检验不适合,舍去.故.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.【答案】,.即当时,,两点的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.思路点拨:如果过点AB,BC的斜率相等,那么A,B,C三点共线.解析:∵A、B、C三点在一条直线上,∴k AB=k AC.总结升华:斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.举一反三:【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【答案】经过,两点直线的斜率.经过,两点的直线的斜率.所以,,三点在同一条直线上.【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.【答案】由已知,得;.因为,,三点都在斜率为2的直线上,所以,.解得,.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.思路点拨:证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后再证明平行四边形的一个角为直角.解析:边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,边所在直线的斜率.,,,,即四边形为平行四边形.又,,即四边形为矩形.总结升华:证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.举一反三:【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【答案】由题意得边所在直线的斜率.边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,则;.所以四边形为平行四边形,又因为,,即平行四边形为矩形.已知,,三点,求点,使直线,且.【答案】设点的坐标为,由已知得直线的斜率;直线的斜率;直线的斜率;直线的斜率.由,且得解得,.所以,点的坐标是.【变式3】(2011浙江12)若直线与直线互相垂直,则实数=__________.【答案】因为直线与直线互相垂直,所以,所以.直线的倾斜角与斜率(20131125)作业答案姓名 成绩题组一 直线的倾斜角1.已知直线l 过点(m,1),(m +1, ( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角解析:设θ为直线l 的倾斜角,则tan θ=tan α+1-1m +1-m=tan α, ∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α.答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则 ( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0解析:显然k <0,π2<α<π, ∴cos α<0,∴k cos α>0.答案:B题组二 直线的斜率及应用3.12312<k 3,则下列说法中一定正确的是 ( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0解析:结合图形知,k 1<0.答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2. 答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________. 解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13. 答案:136.(2009·陕西八校模拟)12+p =0,则an =bm 是直线l 1∥l 2的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件.答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a, ∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”). 答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( )A.23 B .-23 C.13 D .-13解析:曲线y =x 3在点P (1,1)处的切线斜率为3,所以a b =-13. 答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上,∴直线l 2的方程为y =2(x +1),即2x -y +2=0.答案:2x -y +2=0题组四 直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4, k PB =6-2-1-(-5)=1, ∴直线PB 的倾斜角为π4, 从而直线l 的倾斜角的范围是[π4,3π4]. 答案:[π4,3π4] 12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP .∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5), ∴1=2x -5,∴x =7, 即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1.又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角和斜率
基础卷
一.选择题:
1.下列命题中,正确的命题是
(A )直线的倾斜角为α,则此直线的斜率为tan α
(B )直线的斜率为tan α,则此直线的倾斜角为α
(C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率
(D )直线的斜率为0,则此直线的倾斜角为0或π
2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为
(A )3 (B )-3 (C )33 (D )-3
3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是
(A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4
3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为
(A )4π (B )54π (C )4π或54
π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5
4,则直线l 的斜率为 (A )43 (B )34 (C )-43 (D )-3
4 二.填空题:
7.经过A (a , b )和B (3a , 3b )(a ≠0)两点的直线的斜率k = ,倾斜角α= .
9.已知点P (3 2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为 .
10.若经过点A (1-t , 1+t )和点B (3, 2t )的直线的倾斜角为钝角,则实数t 的取值范围是 .
提高卷
一.选择题: 1.已知,A (-3, 1)、B (2, -4),则直线AB 上方向向量AB u u u r 的坐标是
(A )(-5, 5) (B )(-1, -3) (C )(5, -5) (D )(-3, -1)
二.填空题:
6.若直线k 的斜率满足-3<k <3
3,则该直线的倾斜角α的范围是 . 7.若直线l 的倾斜角是连接P (3, -5), Q (0, -9)两点的直线的倾斜角的2倍,则直线l 的斜率为 .
8.已知直线l 1和l 2关于直线y =x 对称,若直线l 1的斜率为3,则直线l 2的斜率为 ;倾斜角为 .
9.已知M (2, -3), N (-3,-2),直线l 过点P (1, 1),且与线段MN 相交,则直线l 的斜率k 的取值范围是 .
三.解答题:
三.解答题:
11.求经过两点A (2, -1)和B (a , -2)的直线l 的倾斜角。

12.已知{a n }是等差数列,d 是公差且不为零,它的前n 项和为S n ,设集合A ={(a n , n S n
)| n ∈N },若以A 中的元素作为点的坐标,这些点都在同一直线上,求这条直线的斜率。

综合练习卷
一.选择题:
1.下列命题正确的是
(A )若直线的斜率存在,则必有倾斜角α与它对应
(B )若直线的倾斜角存在,则必有斜率与它对应
(C )直线的斜率为k ,则这条直线的倾斜角为arctan k
(D )直线的倾斜角为α,则这条直线的斜率为tan α
2.过点M (-2, a ), N (a , 4)的直线的斜率为-21,则a 等于 (A )-8 (B )10 (C )2 (D )4
3.过点A (2, b )和点B (3, -2)的直线的倾斜角为4
3π,则b 的值是 (A )-1 (B )1 (C )-5 (D )5
4.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,

(A )k 1<k 2<k 3 (B )k 3<k 1<k 2
(C )k 3<k 2<k 1 (D )k 1<k 3<k 2
5.已知点M (cos α, sin α), N (cos β, sin β),若直线MN 的
倾斜角为θ,0<α<π<β<2π, 则θ等于
(A )21(π+α+β) (B )2
1(α+β) (C )21(α+β-π) (D )2
1(β-α) 二.填空题:
7.已知三点A (2, -3), B (4, 3), C (5, 2
m )在同一直线上,则m 的值为 . 8.已知y 轴上的点B 与点A (-3, 1)连线所成直线的倾斜角为120°,则点B 的坐标为 .
9.若α为直线的倾斜角,则sin(4
π-α)的取值范围是 10.已知A (-2, 3), B (3, 2),过点P (0, -2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是 .
三.解答题:
11.求经过两点A (2, -1)和B (a , -2)的直线l 的倾斜角。

12.已知{a n }是等差数列,d 是公差且不为零,它的前n 项和为S n ,设集合A ={(a n , n S n
)| n ∈N },若以A 中的元素作为点的坐标,这些点都在同一直线上,求这条直线的斜率。

参考答案。

相关文档
最新文档