【八年级】八年级数学下册2011平均数教案1新人教版
人教版数学八年级下册20.1.1《平均数》说课稿4
人教版数学八年级下册20.1.1《平均数》说课稿4一. 教材分析《平均数》是人教版数学八年级下册第20章的第一节内容,本节主要介绍平均数的定义、性质及其在实际问题中的应用。
平均数是初中数学中的一个重要概念,它在统计学、概率论以及日常生活和工作中都有广泛的应用。
本节课的内容是学生进一步学习数学的基础,也是培养学生解决实际问题能力的重要环节。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的运算,具备了一定的逻辑思维能力和抽象思维能力。
但是,对于平均数的理解还比较模糊,容易将其与算术平均数混淆。
此外,学生对于平均数在实际问题中的应用还不够了解,需要通过实例来加深理解。
三. 说教学目标1.知识与技能目标:理解平均数的定义,掌握平均数的性质,能够计算简单数据的平均数。
2.过程与方法目标:通过合作交流,培养学生的团队协作能力和语言表达能力。
3.情感态度与价值观目标:培养学生运用数学知识解决实际问题的能力,提高学生对数学的兴趣。
四. 说教学重难点1.重点:平均数的定义及其性质。
2.难点:平均数在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实例教学法等。
2.教学手段:多媒体课件、实物模型、数学软件等。
六. 说教学过程1.导入:通过一个实际问题引入平均数的概念,激发学生的兴趣。
2.新课导入:介绍平均数的定义和性质,引导学生通过合作交流来理解平均数的概念。
3.实例分析:通过几个具体的例子,让学生学会计算平均数,并理解平均数在实际问题中的应用。
4.练习与拓展:设计一些练习题,让学生巩固所学知识,并能够灵活运用。
5.总结与反思:让学生回顾本节课所学内容,总结平均数的性质和应用,反思自己在学习过程中的优点和不足。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
主要包括以下几个部分:1.平均数的定义;2.平均数的性质;3.平均数在实际问题中的应用。
八. 说教学评价教学评价主要包括两个方面:一是对学生学习效果的评价,二是对教师教学过程的评价。
八年级数学下册《用计算器求平均数》教案、教学设计
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的算术运算和简单的统计知识。在此基础上,他们对平均数的概念有初步的认识,但可能对平均数的计算方法和在实际问题中的应用还不够熟练。此外,学生对计算器的使用有一定的基础,但操作熟练度有待提高。
2.难点:理解平均数在实际问题中的应用,以及解决实际问题时的数据分析。
(二)教学设想
1.采用情境教学法,让学生在具体情境中感受平均数的实际意义,激发学习兴趣。
-通过生活实例,如班级学生身高、体重等数据的统计分析,引导学生认识平均数的重要性。
-设计有趣的数学游戏或竞赛,让学生在实际操作中体会平均数的应用。
3.应用题:结合生活实际,设计一道涉及平均数的问题,并使用计算器求解。
要求:问题设计合理,解答过程清晰,充分展示平均数在实际问题中的应用。
4.拓展题:研究平均数与其他统计量(如众数、中位数)之间的关系,举例说明它们在不同情境下的适用性。
要求:理解并分析平均数与其他统计量的联系与区别,能结合实际情境进行说明。
-平均数与其他统计量(如众数、中位数)有什么区别和联系?
2.学生在小组内分享自己的观点,互相学习,共同提高。
-鼓励学生积极发言,尊重他人的意见。
-教师巡回指导,参与学生讨论,给予适当的启发和引导。
(四)课堂练习
1.教师设计不同难度的练习题,让学生运用计算器求解平均数。
-基础题:直接给出数据,求解平均数。
4.针对不同学生的作业表现,给予个性化的指导,帮助学生提高。
1.基础题:根据课堂上给出的数据,使用计算器求解平均数,并简要说明平均数在实际问题中的应用。
《平均数》教案
《平均数》教案教案:平均数教学目标:1. 学生能够理解平均数的概念,并能够运用平均数解决实际问题。
2. 学生能够掌握求平均数的方法和步骤。
3. 学生能够在计算平均数时注意数据的合理性和准确性。
教学准备:1. 一段相关的视频或故事,引发学生对平均数的兴趣。
2. 小黑板或白板、彩色粉笔或荧光笔。
教学过程:引入(5分钟)教师播放一个有关平均数的视频或讲述一个有趣的故事,激发学生对于平均数的兴趣,并引出平均数的概念。
导入(10分钟)教师写出几组数字,如:12,15,18,20。
请学生计算这些数字的平均数,并解释平均数的概念。
讲解(15分钟)教师向学生介绍求平均数的方法和步骤:1. 将给定的一组数字相加。
2. 将相加的结果除以数字的个数,得到平均数。
示范(10分钟)教师给学生提供一组数字,如:5,8,10,12,15。
请学生跟着教师的示范,计算这些数字的平均数。
练习(15分钟)1. 学生独立完成一组数字的平均数计算,例如:9,11,13,15,17。
2. 学生互相交换答案,对对方的计算结果进行验证。
拓展(15分钟)教师出示一个实际问题,例如:班级里每个人的身高,如何计算班级的平均身高?请学生尝试解答。
巩固(15分钟)学生解答以下问题,回顾平均数的概念和计算方法:1. 平均数是什么意思?2. 求平均数的步骤是什么?3. 你能给一个求平均数的例子吗?总结(5分钟)教师总结本节课的学习内容,并强调平均数的重要性和应用场景。
鼓励学生在实际生活中运用平均数解决问题。
课后作业:学生完成一份平均数练习题,并写下他们的思路和解决过程。
期望的效果:通过本节课的学习,学生能够理解和掌握平均数的概念和计算方法,培养他们的数学思维和解决实际问题的能力。
八年级数学《平均数》教学设计及反思
教学设计:教学目标:1.知识与能力目标:(1)理解平均数的定义和计算方法;(2)学会解决与平均数相关的实际问题;(3)培养学生判断和分析问题的能力。
2.过程与方法目标:(1)采用情境化教学法,激发学生的学习兴趣;(2)通过小组合作学习,培养学生的合作意识和能力;(3)引导学生反思学习过程,总结学习方法。
教学重难点:1.平均数的计算方法和实际运用;2.将实际问题转化为数学问题的能力。
教学过程:Step 1: 导入新知识 (5分钟)教师使用幻灯片或板书呈现几个有关平均数的实际问题,引起学生的注意,并引发学生思考:什么是平均数?我们平时在生活中为什么会使用平均数?有哪些实际应用场景?Step 2: 探究平均数的定义和计算 (15分钟)教师给出一个简单的例子,如班级同学的身高数据,带领学生思考如何计算平均身高,并引导学生得出平均数的定义和计算方法。
然后教师再给出几组数据,让学生进行计算。
Step 3: 组织小组合作学习 (20分钟)教师将学生分为小组,每个小组成员都有自己的计算任务。
学生可以相互交流讨论,共同解决问题。
每个小组完成后,教师进行评价,鼓励他们讲解自己的计算过程和结果。
Step 4: 解决实际问题 (20分钟)教师给出几个与平均数相关的实际问题,如手机销售量、考试成绩等,让学生分组讨论解决方法,并进行展示。
教师引导学生思考,如何将实际问题转化为数学问题,并运用平均数来解决。
Step 5: 归纳总结 (10分钟)教师引导学生总结平均数的计算方法,以及解决实际问题的过程。
学生通过小组讨论,分享自己的学习心得和方法。
Step 6: 完成作业 (5分钟)教师布置相关的练习题,作为课后作业,以巩固学生的学习成果。
反思:在这次教学中,我尝试了采用情境化教学法,通过实际问题激发学生的学习兴趣,使他们能够主动参与学习。
在小组合作学习中,学生可以相互交流讨论,互相学习。
这样的学习方式培养了学生的合作意识和能力。
新部编人教版八年级下册数学 《平均数(2)》教案
第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
之间有何关系?
面积
=
总耕地面积 人口总数
郊 县
人数(万)
人均耕地面积(公顷)
A
15
0.15
B
7
0.21
C
10
0.18
总耕地
人均耕地
面积
面积
=
人口总数
思考1:总耕地面积
三个郊县耕地面积之和
思考2:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 15+7+10
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。
本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。
二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。
但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。
此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。
三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。
2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。
3.培养学生的运算能力和合作精神,提高学生的数学素养。
四. 教学重难点1.重点:加权平均数的计算方法。
2.难点:对实际问题中权重的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。
2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。
3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。
4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。
2.准备PPT课件,展示平均数和加权平均数的定义和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。
通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。
通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。
同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。
理解平均数的概念教案
本篇文章将为您介绍如何编写一份关于“理解平均数的概念”的教案。
平均数是初中数学中的一个重要知识点,理解这一概念对学生日后其他数学学科的学习以及日常生活中的实际问题都有很大帮助。
一、教学内容(一)学术目标1.了解平均数的概念和计算方法。
2.能够结合实际问题解决平均数相关的数学问题。
3.掌握求一组数的平均数的步骤。
(二)技能目标1.能够熟练解决带有平均数的实际问题。
2.能够灵活使用平均数处理数据。
(三)知识点1.平均数的概念。
2.平均数的计算方法。
3.平均数的应用。
二、教学方法(一)学生中心的教学方法。
(二)启发式的教学方法。
(三)让学生参与解决实际问题的教学方法。
(四)板书法。
三、教学过程(一)导入环节1.引出问题:小明两天的成绩分别为83分和98分,求小明两天成绩的平均分?2.引导学生思考:平均数是什么?如何求平均数?(二)讲解1.平均数的概念:平均数是一组数各数的和除以它们的个数所得的值,是一组数的中心位置指标。
例如:小明两天的成绩分别为83分和98分,求小明两天成绩的平均分?答案:(83+98)÷2=90.5分,小明两天的平均分为90.5分。
2.平均数的计算方法:平均数的计算方法与求和公式相关,平均数=总和÷数量。
3.平均数的应用:平均数在日常生活和各个领域都有广泛应用,如统计学、科学研究、投资分析、法律规划等。
4.平均数的解释与例子:比如:如果一个班级中有30名学生,每个学生的体重分别是40kg、50kg……70kg,这个班级的平均体重就是(40+50+…+70)÷30=60kg。
(三)实践环节1.举例说明如何通过平均数来计算实际问题。
比如:根据房屋成交价求一个区域的平均房价,或者根据市场调查数据计算产品的平均价格。
2.练习题:准备一些练习题让学生反复练习平均数的运算和应用。
3.利用实际数据进行数学计算,让学生加强对平均数的理解。
(四)归纳总结1.回顾本节课所学的知识点。
人教版八年级数学下册:平均数、中位数和众数的应用【精品课件】
(2)甲的平均成绩:
7050% 50 30% 80 20%=6( 6 分)
乙的平均成绩:
9050% 7530% 4520%=76.( 5 分)
丙的平均成绩:
5050% 60 30% 85 20%=6( 0 分)
故录取乙.
6.某地某个月中午12时的气温(单位:℃)如下:
22 31 25 13 18 23 13 28 30 22
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
质量/kg 1.0
1.2
1.5
1.8
2
频数 112
226
323
241
98
(1)出售时这些鸡的平均质量是多少(结果保留小 数点后一位)? 1.5kg
(2)质量在哪个值的鸡最多? 1.5kg (3)中间的质量是多少? 1.5kg
8.下图是交警在一个路口统计的某个时段来往 车辆的车速情况.
22.35mm
4.在一次青年歌手演唱比赛中,评分办法采 用10位评委现场打分,每位选手的最后得 分为去掉最低、最高分后的平均数.已知 10位评委给某位歌手的打分是: 9.5 9.5 9.3 9.8 9.4 8.8 9.6 9.5 9.2 9.6 求这位歌手的最后得分.
9.45分
5.某商场招聘员工一名,现有甲、乙、丙三人 竞聘.通过计算机、语言和商品知识三项测 试,他们各自成绩(百分制)如下表所示.
知识成绩分别占50%,30%,20%计算三名应试者
的平均成绩.从成绩看,应该录取谁?
解: (1)甲的平均成绩:70 2 50 3 80 5 =6(9 分)
235
人教版数学八年级下册20.1.1《平均数》说课稿1
人教版数学八年级下册20.1.1《平均数》说课稿1一. 教材分析《人教版数学八年级下册20.1.1》这一节的内容,是在学生已经掌握了整数、分数和小数的运算基础上,引入平均数的概念。
平均数是数学中的一个基本概念,它在生活中有着广泛的应用,如统计、测量、判别等方面。
本节课的内容,旨在让学生理解平均数的含义,掌握求平均数的方法,并能灵活运用平均数解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对运算有一定的了解,但是对平均数的理解可能仅停留在表面,不能深入理解其内涵。
因此,在教学过程中,需要引导学生从实际问题中抽象出平均数的概念,通过操作、思考、交流等活动,深入理解平均数的含义。
三. 说教学目标1.知识与技能目标:让学生理解平均数的含义,掌握求平均数的方法,能灵活运用平均数解决实际问题。
2.过程与方法目标:通过学生的自主探究、合作交流,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。
2.难点:对平均数的深刻理解,能灵活运用平均数解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等。
2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过生活中的实例,引出平均数的概念,激发学生的学习兴趣。
2.自主探究:让学生通过小组合作,探讨求平均数的方法,培养学生自主学习的能力。
3.课堂讲解:讲解平均数的含义和求法,引导学生深入理解平均数。
4.案例分析:分析实际问题,运用平均数解决实际问题,巩固所学知识。
5.课堂练习:设计有针对性的练习题,让学生巩固所学知识,提高解决问题的能力。
6.总结提升:对本节课的内容进行总结,强化学生对平均数的理解。
七. 说板书设计板书设计要简洁明了,突出重点。
可以设计如下板书:1.含义:……2.求法:……3.应用:……八. 说教学评价教学评价主要从学生的学习效果、解决问题的能力、合作交流等方面进行。
人教版初中数学八年级下册教案《平均数》
人教版初中数学八年级下册教案《平均数》一. 教材分析平均数是初中数学中的一个重要概念,它反映了数据集中的趋势。
在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在小学阶段已经接触过平均数的概念,但对平均数的理解和计算方法可能还不够深入。
他们对平均数有一定的认识,但缺乏对平均数性质和应用的理解。
此外,学生可能对平均数的计算公式记忆不牢,需要通过练习来巩固。
三. 教学目标1.理解平均数的定义和性质,掌握平均数的计算方法。
2.能够运用平均数解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和团队合作能力。
四. 教学重难点1.重点:平均数的定义、性质和计算方法。
2.难点:平均数的性质和应用。
五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在实际情境中理解和掌握平均数。
2.练习法:通过大量的练习,巩固学生对平均数的理解和计算方法。
3.小组合作学习:让学生在小组内讨论和解决问题,培养学生的团队合作能力。
六. 教学准备1.教材和教辅资料。
2.实例和练习题。
3.投影仪和黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:“某班有30名学生,他们的身高分别为160cm、165cm、170cm等,请计算该班学生的平均身高。
”让学生思考和讨论如何计算平均身高,引出平均数的概念。
2.呈现(15分钟)介绍平均数的定义和性质,通过实例和讲解让学生理解和掌握平均数的概念。
强调平均数的性质,例如:平均数是一组数据的集中趋势,受到极端值的影响等。
3.操练(15分钟)让学生进行大量的练习,巩固对平均数的理解和计算方法。
可以设置不同难度级别的题目,让学生根据自己的能力选择练习。
4.巩固(10分钟)通过小组合作学习,让学生在小组内讨论和解决问题。
人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。
人教版初中数学八年级下册教学设计《平均数》
人教版初中数学八年级下册教学设计《平均数》一. 教材分析人教版初中数学八年级下册的教学内容是《平均数》,本节课的主要内容是让学生掌握平均数的定义、性质和求法,能够运用平均数解决实际问题。
教材通过生活中的实例引入平均数的概念,让学生体会数学与生活的联系,培养学生的应用意识。
二. 学情分析学生在八年级上册已经学习了统计学的一些基本概念,如数据、众数、中位数等,对统计学有一定的了解。
但是,对于平均数的定义和求法还不够清楚,需要通过本节课的学习来加深理解。
此外,学生对于解决实际问题的能力还需提高。
三. 教学目标1.知识与技能:理解平均数的定义,掌握求平均数的方法,能够运用平均数解决实际问题。
2.过程与方法:通过实例引入平均数的概念,培养学生的抽象思维能力;通过小组合作探究,提高学生的合作能力和解决问题的能力。
3.情感态度与价值观:体会数学与生活的联系,培养学生的应用意识。
四. 教学重难点1.重点:平均数的定义和求法。
2.难点:理解平均数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例引入平均数的概念,让学生感受数学与生活的联系。
2.小组合作探究法:引导学生分组讨论,共同探索平均数的求法,培养学生的合作能力。
3.实践教学法:让学生通过解决实际问题,运用平均数的方法,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示。
2.实例材料:收集一些与生活相关的数据,用于引入和巩固平均数的概念。
3.练习题:准备一些有关平均数的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的数据,如班级同学的体重、身高等,引导学生思考:如何描述这些数据的“平均”水平?从而引入平均数的概念。
2.呈现(10分钟)讲解平均数的定义,让学生理解平均数是所有数据的总和除以数据的个数。
通过实例演示,让学生掌握平均数的求法。
3.操练(10分钟)让学生分组讨论,共同探究平均数的求法。
人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计
20.1.1 平均数(第2课时)教学设计
一、教材分析:
1、地位作用:这节课时学生在第一课时学习了平均数的基础上,对平均数的进一步深入拓展,通过本节课的学习,让学生平均数的运算由一般的加权平均数扩大到特殊的加权平均数的运算,为统计知识的学习奠定良好的基础。
2、教学目标:
(1)、熟练掌握平均数的计算方法;
(2)、运用加权平均数进行有关计算.
(3)、数学思考:通过实践,培养学生的计算、归纳能力.
3、教学重、难点
教学重点:①探究加权平均数的运算方法;②运用加权平均数的运算性质解决问题.
教学难点:探究加权平均数的运算方法.
突破难点的方法:通过加权平均数的运算,让学生归纳加权平均数的运算方法.
二、教学准备:多媒体课件、导学案
三、教学过程
k个数的加权平均数,其中。
八年级下册数学教案配新人教版
八年级下册数学教案配新人教版八年级下册数学教案配新人教版【篇1】一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.2、会求一组数据的极差.二、重点、难点和难点的突破方法1、重点:会求一组数据的极差.2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海2月下旬和同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,和上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级下册数学教案配新人教版【篇2】教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L 的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________2.轴对称的三个重要性质___________________________________________________________________________________________________________________二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
人教版数学八年级下册20.1.1《平均数》说课稿
人教版数学八年级下册20.1.1《平均数》说课稿一. 教材分析《平均数》是人教版数学八年级下册第20章第1节的内容。
本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。
教材通过丰富的实例,引导学生认识平均数,探究平均数的性质,培养学生运用平均数解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,具备了一定的逻辑思维和运算能力。
但他们对平均数的理解可能仅停留在表面,对其性质和求法不够了解。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解平均数,提高他们运用平均数解决实际问题的能力。
三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的性质和求法,能运用平均数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探究平均数的性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,使他们认识到数学在生活中的重要作用。
四. 说教学重难点1.重点:平均数的定义、性质和求法。
2.难点:平均数的性质和求法,以及运用平均数解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何求解平均数,激发学生的学习兴趣。
2.探究平均数的定义:让学生观察、分析实例,引导学生发现平均数的性质,总结出平均数的定义。
3.讲解平均数的性质:通过实例和数学推理,讲解平均数的性质,让学生加深对平均数的理解。
4.学习平均数的求法:引导学生运用公式法和列举法求解平均数,巩固所学知识。
5.应用拓展:让学生运用平均数解决实际问题,提高他们运用数学知识解决问题的能力。
6.总结:对本节课的内容进行总结,强调平均数在实际生活中的重要作用。
七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。
初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案
初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。
人教版八年级下册2011平均数课件(共15张PPT)
当所考察的对象很多,或者对考察对象带 有破坏性时,我们该如何求取平均数?
在统计中我们常常通过用样本估计总体的 方法来获得对总体的认识.因此,我们可以用样 本的平均数来估计总体的平均数.
例3 某灯泡厂为测量一批灯泡的使用寿命, 从中随机抽查了50只灯泡.它们的使用寿命如表 所示.这批灯泡的平均使用寿命是多少?
145
解:
x 150 6 16010 170 20 180 4 6 10 20 4
165.5(cm)
答:该班学生平均身高为165.5cm.
3.为了检查一批零件的质量,从中随机抽取10件, 测得它们的长度(单位:mm)如下: 22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35 根据以上数据,估计这批零件的平均长度.
解:根据以上数据,得
x =22.36 2 22.353 22.34+22.33+22.32+22.37+22.38
10
= 22.351
即样本平均数为 22.351
答:这批零件的平均长度大约是22.351mm.
x 800 5 120010 160012 200017 24006
1672,
50 用全面调查的方法考
察这批灯泡的平均使
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
某次数学测试成绩统计如图,试根据统计图中 的信息,求这次测试的平均成绩.
解:x 10 55 20 65 25 75 20 85 595 =73.7(5 分)
均年龄(保留一位小数)?
人教初中数学八年级下册20-1-1平均数教学设计
人教初中数学八年级下册20-1-1平均数教学设计一. 教材分析平均数是初中数学八年级下册第20-1-1节的内容,本节内容是在学生已经掌握了算术平均数、几何平均数和调和平均数的基础上进行学习的。
平均数在实际生活中应用非常广泛,如平均分、平均工资等。
通过本节的学习,让学生了解平均数的性质和求法,提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了算术平均数、几何平均数和调和平均数的相关知识,但对于平均数的应用和解决实际问题可能还不够熟练。
因此,在教学过程中,需要关注学生的学习情况,引导学生将所学知识应用于实际问题中,提高学生的应用能力。
三. 教学目标1.知识与技能:让学生掌握平均数的性质和求法,能够解决实际问题。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:平均数的性质和求法,以及如何解决实际问题。
2.教学难点:如何引导学生将平均数应用于实际问题中,提高学生的解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例引入平均数的概念,让学生感受数学与生活的紧密联系。
2.小组合作学习:引导学生分组讨论,培养学生的合作意识和解决问题的能力。
3.问题驱动法:提出实际问题,引导学生运用平均数知识解决问题,提高学生的应用能力。
六. 教学准备1.教学素材:准备相关的实际问题,如平均分、平均工资等。
2.教学工具:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例,如平均分一份食物,引入平均数的概念,让学生感受数学与生活的紧密联系。
2.呈现(10分钟)呈现一些实际问题,如平均工资、平均成绩等,让学生尝试用平均数知识解决问题。
3.操练(10分钟)学生分组讨论,共同解决实际问题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成一些有关平均数的练习题,检验自己对于平均数的理解和掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】八年级
第二十章 数据的分析 科目
数学 主备人 年级 八 时间 课题 第二十章 数据的分析
§20.1 平均数(一)
课时 一课时 教学目标 1、使学生理解数据的权和加权平均数的概念 2、使学生掌握加权平均数的计算方法 3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:
描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
教材分析 教学重点:会求加权平均数
教学难点:对“权”的理解
教法提示
启发式教学
教学过程设计(含作业安排)
复习: 数据2、3、4、1、2的平均数是________,这个平均数叫做_________
平均数.
日常生活中,我们常用平均数表示一组数据的“平均水平”
概念一: 一般地,对于n 个数x1,x2,…,xn ,我们把 叫做这n 个数的算术平均数,简称平均数.
引入新课:
计算某蓝球队11个队员的平均年龄:
年龄(岁)
26
28 29 30 31
相应队员数 1 3 1 4 2 (26+3×28+29+4×30+2×31)÷11 ≈29.2(岁)
上面的平均数29.2称为5个数26、28、29、30、31的加权平均数,1、3、1、4、2分别为5个数据的权
概念2:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…w n 则:
叫做这n 个数的加权平均数.
数据的权能够反映的数据的相对“重要程度”
思考:某市三个郊县的人数及人均耕地面积如下表:
n x x x x n +⋅⋅⋅++=21
)(18.03
18.021.015.0公顷=++郊县
人数/万 人均耕地面积/公顷 A
15 0.15 B
7 0.21 C 10 0.18
问:这个市三个郊县的人均耕地面积是多少?(精确到0.01公顷) 小明求得这个市三个郊县的人均耕地面积为
你认为小明的做法有道理吗?为什么? 练习:见课件。
三、讲解例题
例1、一家公司对甲、乙二名应聘者进行了听、说、读、写的英语水平测试,他们的成绩如下表所示:
应试者
听 说 读 写 甲
85
83 78 75
乙
73
80 85 82 (1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写按照3:3:2:2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写按照2:2:3:3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁? 总结:
在实际问题中,一组数据里的各个数据的“重要程度”未必相同。
因而,在计算这组数据时,往往给每个数据一个“权”。
如例一(1)中听、说、读、写的权分别是3,3,2,2
(2)中听、说、读、写的权分别是2,2,3,3导致最终录取结果的不同。
例2 一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制)。
进入决赛的前两名选手的单项成绩如下表所示:
选手
演讲内容 演讲能力 演讲效果 A
85 95 95 B 95 85 95
请决出两人的名次。
课堂练习:教材
四、课堂小结。
应该是 17.010
7151018.0721.01515.0≈++⨯+⨯+⨯
此文档是由网络收集并进行重新排版整理.word可编辑版本!。