生理-循环系统-血管生理

合集下载

生理学完整课件-循环

生理学完整课件-循环

06
循环系统的调节
神经调节
神经调节是循环系统的主要调节方式之一,通过神经系统的调节作用,实现对循环系统的调 控。
交感神经和副交感神经是调节循环系统的主要神经,它们通过释放神经递质来影响心脏和血 管的功能。
交感神经兴奋时,心率加快、心肌收缩力增强、血管收缩等,以增加心输出量和维持血压。 副交感神经兴奋时,则产生相反的效果,使心率减慢、心肌收缩力减弱、血管舒张等,以降 低心输出量和血压。
循环系统的组成
总结词
循环系统由心脏、血管和血液组成。
详细描述
循环系统由心脏、血管和血液组成。心脏是循环系统的核心,负责推动血液流动 ;血管是血液的通道,负责运输血液;血液则含有各种营养成分、氧气和代谢废 物等。
循环系统的基本原理
总结词
循环系统的基本原理是心脏的收缩和舒张,以及血管的扩张和收缩。
详细描述
自身调节
自身调节是指循环系统中的器官和组织通过自身的反馈机制来调节其功能。
例如,当血压升高时,动脉管壁的牵张感受器会感受到压力变化,并通过神经和激 素的调节机制,使血管舒张、心率减慢,从而降低血压。
此外,心脏和血管的内在反馈机制也可以对其功能进行精细调节,以维持循环系统 的稳定。
感谢您的观看
THANKS
VS
详细描述
心率受到自主神经系统、内分泌激素、代 谢产物等多种因素的影响。在生理状态下 ,心率具有一定的变异性,以适应不同的 生理需求和环境变化。维持正常的心率对 于维持正常的血液循环和代谢分类和功能
动脉
静脉
负责将血液从心脏输送到全身各组织,具 有弹性膜和肌肉层,可调节血流量和血压 。
白细胞的主要功能是防御感染和参与免疫反应,例如吞噬病原体、产生抗体和介 导炎症反应等。

《生理学》资料-循环系统b

《生理学》资料-循环系统b
存于大A内,管壁被扩张/大A弹性,形成上升支。
动脉脉搏的波形
下降支: 射血后期,进入A的血量﹤流向外周的血量,
动脉血压↓,形成下降支前段; 心室舒张,主A瓣关闭,血液逆流(降中峡),
倒流的血液弹回,使动脉压稍有上升,形成降 中波;此后,血液不断流向外周,形成较平坦 的后段。
动脉脉搏的波形
上升支: 斜率和幅度受心排血量、射血速度、外周阻力、 大A的可扩张性等因素的影响。
第三节 血管生理
血压形成
动静脉血压
微循环
组织液生成
一、各类血管的结构及功能特点
(founctional parts of blood vessels)
弹性贮器血管(windkessel vessel)
主动脉、肺动脉主干及其大分 支。管壁坚厚,含丰富弹性纤维, 故有弹性和可扩张性。(图)
分配血管(distribution vessel)
在封闭的系统中,各截面的流 量都相等,等于心输出量。
Q = △P/R = (P1 –P2) / R = PA / R
整体内 / 各器官
血流速度(velocity of blood flow) 各类血管的血流速度与总截面积成
反比。
各段血管的血压、血流速度、血管总截面积的关 系示意图
层流(laminar flow) 血管轴心处流速最快,血细胞数目最多。
欧姆定律: Q=△P/R Poiseuille law: Q=△P r4/8L
r对R的影响很大
η: 血液黏滞度
R= 8ηL/ πr4
r: 血管半径
L: 血管长度
半径r是决定血流量的主要因素。
小动脉及微动脉是产生外周阻力的主要部位。
总外周阻力中: 大、中动脉 小、微动脉 毛细血管 静脉

血液循环

血液循环

(2)邻近未兴奋部位细胞膜的兴奋性
心肌细胞的兴奋传导是沿着细胞膜的兴奋扩散 的过程,只有邻近未兴奋部位膜的兴奋性正常,兴奋
才能正常地传导通过。 邻近部位膜兴奋性
处绝对不应期 处相对不应期
Na+通道状态
失活状态 部分失活状态 (0期慢、小)
(二)兴奋性
心肌属于可兴奋组织,具有兴奋性。其兴奋性 高低也可用阈值来衡量。 兴奋性∝1/阈值 1.决定和影响兴性的因素 心肌细胞的兴奋包括两个过程: 当刺激心肌时→从静息电位去极化达到阈电位; 激活Na+通道→从而产生0期去极化→发生动作电位。 凡能影响这两个过程的因素,都可影响心肌的 兴奋性。心肌兴奋性的标志是出现动作电位,可用 刺激阈值判断其兴奋性高低。
3期小结:
慢Ca2+通道失活 + IK 通道通透性↑ ↓ K+外流 ↓ 快速复极化 至RP水平 (3期)
33 期 期 泵 ○ 按任意键显示动画2
4期(恢复期): 因膜内[Na+]和[Ca2+] 升高,而
膜外 [K+] 升高→激活离子泵→泵出 Na+ 和 Ca2+, 泵入 K+→恢复正常离子分布。
心室肌细胞动作电位的构成 去极化 AP上升支
功能:产生和传导心脏自动节律性兴奋
3、根据心肌细胞AP的去极化速度将心肌分为:
快反应细胞:主要由快钠通道激活. 慢反应细胞:主要由慢钙通道激活.
①快反应自律细胞: 0期去极速率快,4期有自动去极化。 ②快反应非自律细胞: 0期去极速率快,4期无自动去极化。 ③慢反应自律细胞: O期去极速率慢, 4期有自动去极化。 ④慢反应非自律细胞: O期去极速率慢,其4期无自动去极化。
(1)、浦肯野细胞动作电位

生理学课件PPT循环系统

生理学课件PPT循环系统

防御保护
促进修复
循环系统中的白细胞和抗体等免疫物质具 有防御保护功能,能够抵御病原体的侵袭 和维持机体的免疫力。
当机体受到损伤时,循环系统能够将血液 中的营养物质和修复因子输送到损伤部位 ,促进组织的修复和再生。
02
心脏生理
心脏结构与功能
心脏位置与形态
心脏位于胸腔中纵隔内,呈倒置 圆锥形,大小约与本人拳头相等
生理学课件PPT循环 系统
• 循环系统概述 • 心脏生理 • 血管生理 • 血液生理 • 循环调节机制 • 常见循环系统疾病及其生理改变
目录
01
循环系统概述
定义与功能
定义
循环系统是由心脏、血管和血液组成的一个封闭的管道系统。
功能
循环系统的主要功能是将氧气和营养物质输送到全身各组织细胞,同时将细胞 代谢产生的二氧化碳和其他废物运走,以维持内环境的相对稳定和细胞的正常 代谢。
当血管两端的压力差增大时,血流量增多;反之,血流量减少

血流量与血管管径的四次方成正比
02
当血管管径增大时,血流量显著增多;反之,血流量显著减少

血流量与血液的粘滞度成反比
03
当血液的粘滞度增高时,血流量减少;反之,血流量增多。
微循环与淋巴循环
微循环的血流通路
迂回通路、直捷通路和动-静脉短路。
微循环的组成
组成及结构
心脏
心脏是循环系统的动力器官,主要由心肌构成,具有自动节律性收缩的能力。心脏内部被 分隔为四个腔室,分别是左心房、左心室、右心房和右心室。
血管
血管是血液流动的管道,分为动脉、静脉和毛细血管三种类型。动脉负责将血液从心脏输 送到全身各部位,静脉负责将血液从全身各部位输送回心脏,毛细血管则连接动脉和静脉 ,是血液与组织细胞进行物质交换的场所。

血液循环 第3节 血管生理

血液循环 第3节 血管生理
(CVP)。正常值:4~12cmH2O(0.4~1.2kpa)。 中心静脉压的高低取决于心脏射血能力和静脉回
心血量之间的关系。在临床上输液时,如果CVP升高, 提示输液过快或心脏射血功能不全;CVP降低,提示输 液不足。
2.外周静脉压
各器官静脉的血压称为外周静脉压
28
3.重力对静脉血压的影响 直立时:由于血液本身
35
3.动-静脉短路: 主要存在于手掌、足底、耳廓等处。
路径:微A →动-静脉吻合支→微V 特点:管壁厚,流速快,一般不开放,完全无 交换作用。 作用:控制皮肤散热量,调节体温。
36
(三)微循环血流的调节
1. 代谢产物的作用:
局部代谢产物↑ → 后微A、毛细血管前括约肌舒张


微循环血流↓
真毛血管开放
的动力取决于组织液和毛细淋巴管中淋巴液之间 的压力差。 (二)淋巴液回流的生理意义
1.回收蛋白质 2.运输脂肪及其它营养物质 3.调节血浆和组织液之间的液体平衡 4.清除组织中红细胞,细菌及其它微粒
↑ቤተ መጻሕፍቲ ባይዱ

真毛细血管关闭
微循环血流↑


后微A、毛细血管前括约肌收缩 ← 局部代谢产物↓
2. 微A、后微A、微V还受交感神经支配
37
(四)血液和组织血液之间物质交换 1.扩散(溶质分子); 2.吞饮(大分子的物质,如蛋白质); 3.滤过和重吸收(组织液的生成)
38
六、组织液的生成
(一)组织液的生成 有效滤过压:毛细血管的滤过力量和重吸收的力量之
指微静脉。舒缩活动影响毛细血管前、后阻力的 比值,改变血管内和组织间隙内的分配。 7.容量血管(capacitance vessel)

动物生理学-循环系统

动物生理学-循环系统

心腔内瓣膜位置及作用总结如表9-1: 表9-1 心瓣膜位置及作用
瓣膜 二尖 瓣 三尖 瓣
主动 脉瓣 肺动 脉瓣
位置 左房 室口 右房 室口
主动 房 防止血液由右心室返回 右心房
防止血液由主动脉返回 左心室 防止血液由肺动脉返回 右心室
(四)心壁的构造 心壁由心内膜、心肌层、心外膜组成。 1.心内膜 是心腔面一层光滑的薄膜,心的瓣膜就是由心内膜折叠而成。 2.心肌层 主要由心肌构成,心室肌比心房肌厚,左心室肌又比右心室肌厚。心房肌 和心室肌均附着于纤维环上,互不传导。 3.心外膜 属浆膜,覆盖于心肌层的表面。同时也是浆膜性心包的脏层。 (五)心的传导系 心的传导系是由特殊分化的心肌细胞组成。主要 作用是产生并传导冲动,以维持心脏的正常节律。 主要包括窦房结、房室结、房室束及其分支。 1.窦房结 是心的正常起搏点,位于上腔静脉入口与右心 房交界处的心外膜深面。 2.房室结 位于冠状窦口上方的心内膜深面。接受窦房结 的控制。 3.房室束及其分支 由房室结发出,在室间隔上部分为左、右束支,最后延为浦肯野纤维,与 心室肌纤维接触,将冲动传递给心室肌。
(六)心的血管(图见上) 1.动脉 营养心的动脉为左、右冠状动脉。 (1)左冠状动脉:起自主动脉根 左侧,从左心耳与肺动脉干之 间穿出,分为两支。 1)前室间支:沿前室间沟下降, 布于室间隔前2/3、左心室前壁 及右心室前壁的少部。 2)旋支:沿冠状沟左行,布于 左心室侧壁、后壁和左心房。 (2)右冠状动脉:起自主动脉根部右侧,从右心耳与肺动脉干之间 穿出,沿冠状沟向右下行,发出后室间支,沿后室间沟下降。右冠 状动脉主要布于室间隔后1/3、右心室、右心房及左心室后壁的少 部。 2.静脉 心的静脉主要有心大静脉、心中静脉和心小静脉,它们先汇入冠 状窦,再经冠状窦口入右心房。

循环系统--生理学

循环系统--生理学

2021/10/10
34
(二)局部性体液调节:增加开放的毛细血管的数量,并 增大毛细血管通透性。只能在产生这些物质的局部发生作 用,调节局部组织的血液循环。 1、激肽:作用是使血管平滑肌舒张。 2、组织胺:使局部毛细血管和微静脉管壁的内皮细胞收 缩,使血管壁通透性增大,促进血浆成分从血管中滤出, 造成局部水肿。 3、前列腺素: 作用是使大多数组织的血管舒张。 4、组织代谢产物:舒血管。对脑血管有较强作用的是二 氧化碳、氢离子,对心肌有较强作用的是腺苷和低氧,对 运动中的骨骼肌有较强作用的是低钾、低氧和高渗透压。
(1)毛细血管血压:血压高则生成多。
肌肉运动、炎症时,微a扩张,毛细血管血压升高;是
右心衰时,V回流受阻,毛细血管血压逆行性升高。 (2)血浆胶体渗透压:渗透压降低则生成多。
某些肾脏疾病时,大量血浆蛋白随尿液排出,血浆胶体
渗透压降低。
(3)淋巴回流:回流受阻则生成多,在受阻部位之前组
织液积聚,呈现水肿。
脉搏的传导速度远较血流速度快,且从主动脉到外周动 脉,传导速度逐渐加快;动脉硬化时,传导速度增快。正 常情况下,主动脉脉搏传导速度为3-5m/s,较小的动脉为
15-35m/s,
2021/10/10
25
(三)静脉血压和静脉血流:
1、静脉血压:血液对静脉管壁的侧压称静脉血压。 由于消耗能量,静脉血压会变的更低,从微静脉到大静
③第三心音:发生于快速充盈期末;是血流突然减慢引 起心室壁和瓣膜发生振动所致。
④第四心音:但在异常有力的心房收缩和左室壁变硬的 情况2下021/,10/10心房收缩使心室进一步扩张,引起振动。 11
(五)心输出量和心力贮备: 1、心输出量:一侧心室收缩时每分钟向动脉血管射出的血量称心 输出量。是衡量心脏功能的基本指标。

动物生理学第五章 血液循环

动物生理学第五章 血液循环

1期:
快Na+通道失活 + 激活Ito通道 K+外流 快速复极化 (1期)
1期
按任意键显示动画2
K+ Na+
Ito 通道: 70 年代认为 Ito 的离子成分为 Cl- , 现在认为Ito 可被 K+通道阻断剂(四乙基胺、 4-氨基吡啶)阻断,Ito的离子成分为K+
2期:
0期去极达-40mV时 已激活慢Ca2+通道 + 激活IK 通道 Ca2+缓慢内流与K+外 流处于平衡状态 缓慢复极化 (2期=平台期)
心 力 衰 竭:当心力贮备用尽而仍不足以适应需要时。
七、心脏的生物电现象及生理特性 1. 心肌细胞的生物电现象
1.1 心肌细胞的类型及特征
根据各类心肌细胞 AP 的 0 期去极化速率和 4 期有 无自动去极化,将心肌分为 ① 快反应自律细胞: 0 期去极速率快, 4 期有 自动去极化 ② 快反应非自律细胞: 0 期去极速率快, 4 期无 自动去极化 ③ 慢反应自律细胞: 0期去极速率慢, 4期有自 动去极化 ④ 慢反应非自律细胞: 0 期去极速率慢 , 其 4 期无 自动去极化
左心室(动脉血) 主动脉和各级动脉分支 全身各器官的毛细血管 右心房
小、中静脉(静脉血)
上、下腔静脉(大静脉)
肺循环(小循环)
血液往返于心和肺之间的途径。其功能是完成气体交换。
右心室(静脉血) 肺动脉及肺内各级分支 肺静脉 肺泡周围的毛细血管网 左心房
肺内各级肺静脉属支(动脉血)
第一节 心脏生理
1.2 非自律性细胞(心室肌细胞)跨膜电位及形成机制
心 室 肌 的 RP 和 AP
1.2.1 心室肌细胞RP和AP的形成机制

血液循环(循环系统的结构、心脏生理、血管生理、心血管系统的调节)

血液循环(循环系统的结构、心脏生理、血管生理、心血管系统的调节)

3、兴奋性
心肌细胞兴奋性的周期性变化:
A绝对不应期(0~-55mv)和 有效不应期(0~-60mv)
B相对不应期(-60~-80mv)
C超常期
4、收缩性
特点:
A依赖Ca2+ B受细胞外液Ca2+影响较大 C功能合胞体,服从“全或无”定律 D不发生强直收缩 E在一定范围内收缩力随前负荷的增加而增大
(心房肌与心室肌没有自律性)
正常起博点和异位起博点 形成原理—舒张期自动除极 窦房结细胞的自律性
2、传导性
A原理:局部电流学说
B特点:功能合胞体
C各组织的传导速度: 心房内传导:结间束、房间束 1.7m/s 房室交界传导: 0.1s延搁 (房室延搁) 心室内传导:浦肯野纤维 4m/s
心房肌 1m/s
2、支配血管的传出神经
A交感缩血管神经(NE,与α1受体结合导致血管收缩;与β2受体结合导致血管
舒张。不同组织交感神经纤维分布的密度是不同的,皮肤最密,冠状血管和脑较少。 因此,交感缩血管神经对脑的影响最小,对皮肤的影响最大;同一器官中,动脉中缩 血管纤维的密度高于静脉,微动脉中密度最高,但是毛细血管前括约肌中分布很少, 结果是引起器官血流阻力增大,血流量减少,毛细血管前、后阻力的比例增大,毛细 血管平均压降低,有利于组织液回流,容量血管收缩,静脉回流量增加。)
B交感舒血管神经(交感胆碱能[ACh]神经纤维,对应的是M 受体,支配的脏
器有骨骼肌、心脏、肺、肾和子宫,平时没有紧张性活动,应激时发挥作用。)
C副交感舒血管神经(ACh,M受体,血管舒张,因只支配脑、肝、生殖器等
器官,对整体血液循环的外周阻力影响很小。)
3、心血管中枢
心血管中枢位于延髓,包括心 血管运动区和心血管抑制区。 延髓心血管中枢接受来自外周 压力感受器发来的信息,来调 节心血管活动以保持稳态。

各系统病理生理学主要讲述

各系统病理生理学主要讲述

各系统病理生理学主要讲述
病理生理学是一门研究疾病发生和发展的科学,主要关注疾病对人体各系统生理功能的影响。

以下是各系统病理生理学的主要内容:
1. 循环系统病理生理学:主要包括心脏病理生理学和血管病理生理学。

心脏病理生理学研究心脏疾病对心脏结构和功能的影响,如心肌梗塞、心肌病等。

血管病理生理学研究血管病变对循环系统的影响,如高血压、动脉粥样硬化等。

2. 呼吸系统病理生理学:研究呼吸系统疾病对呼吸功能的影响,如慢性阻塞性肺疾病、肺癌等。

主要关注气流限制、肺泡损伤和通气血流不匹配等问题。

3. 消化系统病理生理学:研究消化系统疾病对消化功能的影响,如消化道出血、溃疡病等。

关注食物消化、吸收和排泄等生理过程的紊乱。

4. 泌尿系统病理生理学:研究泌尿系统疾病对尿液产生和排泄功能的影响,如肾炎、尿路结石等。

关注肾小球滤过、尿液浓缩和酸碱平衡等生理过程的异常。

5. 神经系统病理生理学:研究神经系统疾病对神经元和神经递质功能的影响,如中风、帕金森病等。

关注神经细胞死亡、突触传递异常和神经电活动紊乱等问题。

6. 免疫系统病理生理学:研究免疫系统疾病对免疫功能的影响,
如自身免疫病、感染等。

关注免疫细胞的活化、抗原识别和免疫反应的紊乱。

7. 内分泌系统病理生理学:研究内分泌系统疾病对激素分泌和调节功能的影响,如糖尿病、甲状腺疾病等。

关注激素合成、分泌和靶器官反应的异常。

以上是各系统病理生理学的主要内容,研究这些内容有助于理解疾病的产生机制和发展规律,并为临床治疗提供指导。

[生理学]循环(血管与调节)总结

[生理学]循环(血管与调节)总结
➢ 反映心功能和V回流量之间的关系。 ➢ 控制补液速和量的指标(如CVP低,常提示输液的量
不足)
中心静脉压与动脉血压变化的意义
CVP ABP

↓ 血容量不足
意义

正常 射血功能良好,血容量不足

↓ 射血功能↓,血容量↑(相对)

正常 容量血管过度收缩,肺循环阻力过高
正常
↓ 射血功能减退或容量血管过度收缩,可能有血容量不足
The distribution of blood within the circulatory system at rest
二、血流量、血流阻力和血压——血流动力学
(一) 血流量与血流速度:
1. 概念: (1)血流量(Q):指单位时间内流经某一血管截面的血量
(容积速度)。 (2)血流速度(V):血液中一个质点在血管内移动的线速
(2)心脏射血和外周阻力:是形成ABP的决定因素。 ① 心脏射血:释放的能量转化为两部分:
➢ 血液动能(占1/3):推动血液流动(克服外周阻力) ➢ 形成势能(压强能,占2/3):形成对血管壁的侧压
(ABP),并扩张大动脉。 ② 外周阻力:小A和微A的血流阻力。
如果未遇到外周阻力,则心脏射血释放的能量——将全 部转化为血液动能(血液流到外周血管,形不成对大A的 侧压(ABP)。
(3)主A与大A的弹性储器作用:
1/3 of SV to capillary, 2/3 in large arteries
2/3 of SV to capillary
∴弹性贮器血管的作用:
① 缓冲心动周期中ABP的波动幅度(缓冲SP——势能贮存, 缓冲DP——势能释放)。
② 使左心室间断的射血——变成动脉内连续的血流。

生理知识点

生理知识点

生理知识点
1. 循环系统:循环系统包括心血管系统和淋巴系统,其主要功能是将营养物质、氧气和激素等输送到身体各个部位,并将代谢产物和二氧化碳等排出体外。

2. 呼吸系统:呼吸系统包括呼吸道和肺部,其主要功能是进行气体交换,将氧气吸入体内并将二氧化碳排出体外。

3. 消化系统:消化系统包括口腔、食管、胃、小肠和大肠等器官,其主要功能是将食物分解成小分子营养物质,并将其吸收到血液中供身体使用。

4. 神经系统:神经系统包括中枢神经系统和周围神经系统,其主要功能是感知和处理外部和内部的信息,并控制和协调身体的各种活动。

5. 内分泌系统:内分泌系统由各种内分泌腺组成,其主要功能是分泌激素,调节身体的生长、发育、代谢和免疫等功能。

6. 泌尿系统:泌尿系统包括肾脏、输尿管、膀胱和尿道等器官,其主要功能是过滤血液中的废物和多余的水分,形成尿液并将其排出体外。

7. 生殖系统:生殖系统包括男性和女性的生殖器官,其主要功能是产生生殖细胞、合成性激素以及进行繁衍后代的过程。

这些只是人体生理的一些基本知识点,实际上人体生理非常复杂,还有很多其他方面的知识值得深入学习。

如果你对特定的生理领域或主题有更具体的问题,我将尽力为你提供更详细的信息。

血管的生理调节

血管的生理调节

血管的生理调节血管是人体循环系统中的重要组成部分,其功能在于输送氧气和养分到身体各个组织和器官,并回收代谢产物。

为了维持血管内部环境的稳定,人体内存在多种生理调节机制,以适应不同的生理状态和环境变化。

本文将探讨血管的生理调节过程。

一、血管舒缩调节血管的舒缩是血管生理调节的核心过程,影响着血液的流动速度和血压。

血管收缩时,血管腔径减小,血液流速增快,血压升高;血管舒张时,血管腔径扩大,血液流速减慢,血压降低。

这一过程主要由神经系统和激素系统共同调控。

1. 神经调节神经系统通过交感神经和副交感神经对血管进行调节。

交感神经释放的肾上腺素能够刺激血管平滑肌收缩,导致血管收缩和血压升高;副交感神经释放的乙酰胆碱则能够促使血管舒张,血压降低。

这种神经调节对血管的舒缩起着重要作用,帮助人体适应生理和环境的变化。

2. 激素调节激素也在血管舒缩中发挥着重要作用。

肾上腺素是一种重要的血管收缩剂,其能够通过对肾上腺素受体的作用,促使血管平滑肌收缩,引起血管收缩和血压升高。

而一些其他激素如一氧化氮、去甲肾上腺素则具有血管舒张作用,能够导致血管扩张和血压降低。

二、血流自动调节除了血管的舒缩调节外,血流自动调节也是维持血管内环境稳定的重要机制。

在某些情况下,人体需要根据血流需求来调节血管阻力,保证各个组织器官获得足够的血液供应。

1. 组织代谢产物调节在组织代谢过程中,会产生一些代谢产物如乳酸、碳酸等,这些代谢产物可以被检测到,并在一定程度上影响血管舒缩。

当代谢产物堆积到一定程度时,会引起血管扩张,增加血流量,从而提供足够的氧和营养物质给组织器官。

2. 血流自动调节机制血管内壁的内皮细胞能够感知血液的流速和压力变化,进而调节血管舒缩。

当血流速度加快时,内皮细胞会释放一氧化氮等物质促进血管扩张;而当血流速度减慢或存在压力下降时,则减少血管扩张物质的释放,血管收缩程度增加,以保持血流量的稳定。

三、局部调节机制血管的局部组织环境也会对血管舒缩产生调节作用。

4-2血液循环-血管生理

4-2血液循环-血管生理

5.交换血管
6.毛细血管后阻力血管 7.容量血管
真毛细血管:物质交换
微静脉:可改变毛细血管血压,从而影响血管内外 体液的分布 静脉:可容纳循环血量的60~70%——血液贮存库
8.短路血管
小动脉→小静脉(A-V平衡)
Page 6
一.血流量、血流阻力和血压
(一)血流量、血流速度
Q=△P/R
注意: ①心输出量改变,可以导致器官和组织供血改变; ②血压改变(A、V压),可以导致器官和组织供血改变; ③器官内血流阻力改变可以改变器官血流量。 ①和②保持相对稳定情况下(生理状态),调整器官和组 织血流量的主要因素是:血管口径(血流阻力) 血流速度:最快——主动脉 最慢——毛细血管
Page 25
⑤呼吸运动:胸腔内的压力为负压(胸内压), 使胸腔内大静脉经常处于扩张状态。吸气时胸内 压加大,有利于静脉回流;呼气时胸内压减小, 静脉回流减小。呼吸运动的这种作用被称为“呼 吸泵”。
静 脉 回 流 增 加
Page 26
四.微循环
微动脉与微静脉之间的血液循环。 (一)微循环的组成:7个部分
Page 29
(三)微循环的特点和调节
调节
神经调节 交感N(+) 代谢产物 堆积 微A和微V 收缩 微循环 血流减少 Cap 血流减少 Cap前括 约肌收缩 代谢产物 消除 Cap前括 约肌舒张 Cap 血流增加 体液调节 (局部代谢产物)
Page 30
(四)Cap内外的物质交换
1.Cap内外的物质交换的方式
(二)静脉血流及其影响因素
1.静脉对血流的阻力:小、约占总阻力的15%;易变。
2.静脉回心血量的影响因素: ①体循环平均充盈压:血量增多或血管收缩→体 循环平均充盈压↑→静脉回心血量↑。 ②心脏收缩力量:心脏收缩力量强→射血时心室 排空较完全→心舒期心室内压较低→心室对心房 和大静脉内血液的抽吸能力较强→静脉回流好。

生理-循环系统-心血管功能的调节

生理-循环系统-心血管功能的调节

一般而言,心脏受交感和迷走双重神经支配, 一般而言,心脏受交感和迷走双重神经支配, 在常态下,两种神经均有紧张性, 在常态下,两种神经均有紧张性,对心脏的作用 是相互拮抗的,但迷走神经的作用大于交感神经 相互拮抗的 迷走神经的作用大于交感神经 的作用 的作用。 的作用。 例: 对照 切断迷走神经 切断交感神经 交感、 交感、迷走神经均切断 心率变化( 心率变化(次/分) 分 75 >75 <75 100(自身节律) (自身节律)
一、神 经 调 节
起源: 脊髓胸段 起源: → 星状神经节颈神经节 → 心脏交感神经丛 换元, 受体) (T1-5) ) (换元, Ach+N受体) 受体 (NE)可被 心肌细胞膜( 心肌细胞膜(β1受体) 心得安阻断 ↓第二信使作用 膜对Ca 膜对 2+通透性增高 , Ca2+内流增加 ↓ ↓ ↓ 窦房结( 心房肌、 窦房结(4 房室交界 心房肌、心室肌 期↑) (0期↑) 期 (兴奋 收缩耦联↑) 兴奋-收缩耦联↑ 兴奋 收缩耦联 ↓ ↓ ↓
1. 延髓心血管中枢 最基本的心血管中枢位于延髓,延髓心血管中枢至少包括以下四 个部位的神经元: 缩血管区:延髓头端腹外侧部 舒血管区:延髓尾端腹外侧部 心抑制区:延髓的疑核、迷走神经背核 传入神经接替站:延髓孤束核 2. 延髓以上的心血管中枢 • • • • 延髓以上的脑干部分 下丘脑 大脑 小脑
静脉回心血量 ↑ ↑ 收缩时↑,舒张时 收缩时 ,舒张时↓ 吸气时↑,呼气时 吸气时 ,呼气时↓ 立→卧↑,卧→立↓ 卧 , 立
(三)微循环的自身调节
局部代谢产物↑ 局部代谢产物↑ 组织胺↑ 组织胺↑,Po2 ↓ 后微A 后微A和毛细血管 前括约肌舒张 前括约肌舒张
真毛细血管关闭 血流量及流速↓ 血流量及流速↓

人体循环系统主要生理活动原理

人体循环系统主要生理活动原理

人体循环系统主要生理活动原理
人体循环系统主要生理活动原理是通过心脏的泵血作用,将氧气和营养物质输送到身体各个组织和器官,并将新陈代谢产生的代谢废物和二氧化碳通过血液循环送回肺部排出体外。

人体循环系统由心脏、血管和血液三部分组成。

心脏是循环系统的泵,通过心肌的收缩和舒张,推动血液循环。

血管包括动脉、静脉和毛细血管,动脉将富含氧气和营养物质的血液从心脏输送到身体各个组织和器官,静脉将含有代谢废物和二氧化碳的血液从身体各部位收集回心脏。

毛细血管是动脉和静脉之间的微小血管,起到血液和组织细胞之间的交换作用。

血液是循环系统的介质,由红细胞、白细胞、血小板和血浆组成。

红细胞主要负责携带氧气和二氧化碳,白细胞参与免疫反应,血小板起到止血作用,血浆输送营养物质和代谢产物。

循环系统的主要生理活动包括心脏的收缩与舒张、血管的收缩与扩张以及血液的输送和交换。

心脏的收缩将氧气和营养物质通过动脉输送到身体各脏器,然后血液通过毛细血管与组织细胞交换氧气和营养物质,同时收集代谢废物和二氧化碳,通过静脉输送回心脏,最后由肺脏将二氧化碳排出体外。

整个循环系统的生理活动是通过自主神经系统的调节来保持平衡。

交感神经系统通过释放肾上腺素和去甲肾上腺素等激素,使心脏收缩和血管收缩,增加心率和血压,以应对应激状态。

副交感神经系统通过释放乙酰胆碱等激素,使心脏舒张和血管扩张,降低心率和血压,以保持平静状态。

总之,人体循环系统通过心脏的泵血作用,将氧气和营养物质输送到身体各组织和器官,并通过血液循环收集和排出代谢废物,维持身体正常的新陈代谢和功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.动脉血压的形成
前提条件:足够的血液充盈 闭合的血流环路 决定因素:心室射血对血流产生的动力; 外周血管口径变化对血流产生的阻力 1)血液对血管系统的充盈(物质基础)
循环系统平均充盈压(mean circulatory filling pressure):
反映循环系统中血液充盈的程度(7mmHg), 其数值高低取决于循环血量与血管容量之间的相对关系
(三)微循环血流量的调节 微动脉(毛细血管前阻力血管)—— 微循环的总闸门 其舒缩活动控制着这一功能单位的血流量 毛细血管前括约肌——微循环的分闸门 其舒缩活动控制着真毛细血管网的血流量 微静脉(毛细血管后阻力血管)——微循环的后闸门 其舒缩活动控制着血液经毛细血管网流入静脉 的血流量 小动脉、微动脉、微静脉、小静脉均受交感肾上 腺素能缩血管神经和体液支配。
(3)骨骼肌的挤压: 肌肉收缩挤压静脉 →静脉血向心脏方向 回流 + 静脉瓣膜的防 止倒流=肌肉泵。 例如: ①长期站立 + 静脉瓣 膜的损伤→下肢静脉 曲张。 ②立正久站 →下肢静 脉回心量→+ 精神紧 张→虚脱。
静脉曲张
(4)呼吸运动:
吸 气 → 胸 廓 ↑ → 胸 内 负 压 ↑ → → 心房 + 大V扩张 肺血管扩张 → → 肺V回流左室→ 心房与V压差↑ → → 左室心输出量→ V回心量↑ → → Bp→ 右室心输出量↑
(1)动脉脉搏的波形(视描记的方法和部位不同而异)
一般包括两个组成部分:
(1)上升支:
影响上升支的斜率和速度因素: 心输出量、射血速度、外周阻 力、大动脉的可扩张性(弹性)
(2)下降支:
分为前段、降中波(降中峡)、后段
下降支的形态可大致反映外周阻力的 高低
五、微循环
定义:指微动脉和微静
脉之间的血液循环。
微A:总闸门
后微A:分闸门 毛细血管前括约肌:分闸门 真毛细血管: 通血毛细血管:
动-静脉吻合支:
微静脉:后闸门
(一)微循环的组成及血流通路 微循环的三条途径: 1)直捷通路(骨骼肌) 微动脉→后微动脉→通血毛细血管→微静脉 血流特点:途径短、血流快、常呈开放状态 生理意义:利于血液快速回流入心。 2)动静脉短路(皮肤和皮下组织,特别是手指、足趾、耳廓等处) 微动脉→动静脉吻合支→微静脉 血流特点:管壁厚、途径最短、血流快、常呈 关闭状态,血流量随环境温度而异。 生理意义:调节体温
第四节
血管生理
一、各类血管的结构和功能特点
弹性贮器血管 (Windkessel vessel )(弹性)——大动脉 缓冲心缩压和维持心舒压 分配血管(distribution
vessel)——动脉(大动脉~小动脉)
运输血液、分配血流的功能 毛细血管前阻力血管(precapillary resistance vessel )(管径)
2.特点:①近心端低,远心端高: ②易受重力影响,∴测量位取平卧位
中心静脉压高低取决于两个因素: 心脏射血能力 ↑ 中心静脉压↓ 静脉回流速度 ↑ 中心静脉压↑ 中心静脉压过低,心输出量减少; 中心静脉压过高,静脉回流减慢。 测量中心静脉压意义: 1.反映静脉回心血量和心脏功能状态 2.控制补液量与补液速度
(二)静脉回流及其影响因素
1.静脉回流
单位时间内的静脉回心血量取决于: • 外周静脉压和中心静脉压之差 • 静脉对血流的阻力。
2.影响静脉回流的因素
(1)循环系统平均充盈压 循环系统平均充盈压↑→静脉回流血量↑ 循环系统平均充盈压↓→静脉回流血量↓ (2)心肌收缩力 心缩力↑→射血分数↑→心室舒张期室内压↓ (右心衰时) 心缩力→→射血分数→→心室舒张期室内压↑ 颈静脉怒张、肝淤 ←静脉回流量→←中心静脉压↑ 血肿大、下肢水肿 静脉回流量↑←抽吸力↑
第四章
血 液 循 环
李勃兴
基础医学院 神经生物学教研室 lihuang@
(一)心音的组成和特点
第一心音 发生时间 等容收缩期初 标 志 心室收缩开始 主要成分 房室瓣关闭音 最佳听诊部位 心尖部 特 点 音调低 持续时间长 间隔时间 S1-S2短 第二心音 等容舒张期初 心室舒张开始 主动脉瓣关闭音 心底部 音调高 持续时间短 S2 — S1长
真毛细血管关闭 血流量及流速↓
真毛细血管开放 血流量及流速↑
后微A和毛细血管 前括约肌收缩
缩血管物质
局部代谢产物↓ 组织胺↓,Po2 ↑
六、组织液和淋巴液
组织液是细胞与血液进行物质交换的中介。
(一)组织液的生成与回流
成分:胶原纤维、透明质酸,呈胶冻状,不能自
由流动,占99%。
可自由流动的液态组织液占1%。 毛细血管壁 (回流)血浆 组织液(生成)
心室收缩 ↓ 射血入主A ↓ 推血(1/3)流动 + 大A扩张(2/3) (动能消耗) (势能贮存) ↓ 收缩压(SP) 3)大动脉弹性贮器作用
心室舒张 大A弹性回缩 (势能释放) 推动血液继续流动
舒张压(DP)
1. 使心室间断的射血变为动脉内持续的血液流动 2. 缓冲血压波动 :缓冲收缩压SP(势能贮存); 维持舒张压DP(势能释放)
→暂时的头晕、昏厥,视物不清。
总结: 影响因素
静脉回心血量
循环系统平均充盈压↑
心肌收缩力↑


骨骼肌的挤压作用
呼吸运动 重力和体位的影响
收缩时↑,舒张时↓
吸气时↑,呼气时↓ 立→卧↑,卧→立↓
动脉脉搏
随着心脏的舒缩,大动脉内的压力发生周期性的 波动,这种压力变化可引起动脉管壁起伏搏动,称之 为动脉脉搏。动脉脉搏所反映的压力变化能以波的形 式由主动脉开始沿动脉管壁向末梢血管传播出去,是 能量传递的表现而非血流速度,其传播速度大于血流 速度。 将压力换能器放在浅表动脉外表的皮肤上,应用 脉搏描记仪可以记录下浅表动脉脉搏的波形,称为脉 搏图。
3.动脉血压的影响因素
A:主动脉 aorta
(1)每搏出量↑→心缩期射入A血量↑→血压↑ ↓ 收缩压↑ 血流速度↑ (明显) ↓ 心舒末期A血量↑(不明显)→ DP↑(不明显) (2)心率↑→心舒期缩短→心舒末期A血量↑→血压↑ ↓ 舒张压↑ 回心血量↓ (明显) ↓ 搏出量↓→收缩压↑(不明显)
有效滤过压= 生成压-回流压 =(毛细血管压+组织液胶体渗透压)
-(血浆胶体渗透压+组织液静水压)
动脉端:(30 + 15)-(25 + 10)= 10 mmHg 静脉端:(12 + 15)-(25 + 10)= - 8 mmHg 有效滤过压>0 →组织液生成(动脉端) 有效滤过压<0 →组织液回流(静脉端)

2. 形成血压的基本因素 • 心室射血 • 外周阻力
三、动脉血压和动脉脉搏
(一)动脉血压 1.动脉血压及正常值(以肱动脉血压为准)
正常值:BP =收缩压 / 舒张压 = 90 ~ 140 /60 ~ 90 mmHg
脉搏压 = 收缩压 - 舒张压
正常值: 4.0~5.3 kPa(30~40mmHg)
与微动脉共同控制毛细血管压
容量血管(capacitance vessel)(易扩张)——静脉(微静脉~ 大静脉) 起贮血库作用(容纳循环血量60-70%) 短路血管 (arteriovenous shunt)
体温调节
二、血管系统中的血流动力学
血流量(blood flow):指单位时间内流过血管某一截面的血量。
平均动脉压 = 舒张压 + 1/3 脉搏压
正常值: 13.3 kPa(100mmHg)
收缩压 Systolic pressure 舒张压 diastolic pressure
ቤተ መጻሕፍቲ ባይዱ
血压测量示意图
高血压: 收缩压(Sp)高于 18.7kPa(140mmHg); 舒张压(Dp)高于 12.0 kPa(90mmHg)。 低血压: 收缩压(Sp)低于 12.0kPa(90mmHg); 舒张压(Dp)低于 6.7kPa(50mmHg)。
3)迂回通路 微动脉→后微动脉→毛细血管前括约肌→ 真毛细血管网→微静脉 血流特点:管壁薄、通透性好、途径长、 血流慢、轮流交替开放。 生理意义:利于物质交换 故迂回通路又称营养通路,是血液与组织液进行物 质交换的主要场所。 (二)微循环的生理特点 1)血压低、 2)血流速度慢、 3)潜在血容量大 4)灌流量易变
(3)外周阻力↑→心舒期血流速度↓→心舒期A血量↑ ↓ ↓ 血压↑ SP↑(不明显) ↓ 舒张压↑(明显) (4)大动脉管壁弹性↓→ 缓冲SP↓ ; 维持DP↓ ↓ ↓ 导致SP↑(明显) DP↓→脉压↑↑ (5)循环血量/血管容积的比例改变 ↓ 体循环平均压↓ →血压(Bp)下降 如: 失血性休克→循环血量↓ →血压↓(显著) 过敏性休克→血管容积↑→回心血量↓→血压↓
小结:动脉血压的影响因素
Sp DP 脉压 Bp
搏出量
(明显)
心率 外周阻力 大A弹性
(明显) (明显) (明显) (明显)
有效血量
四、静脉血压和静脉回心血量
静脉的舒缩可有效地调节回心血量和心输出量。 (一)静脉血压 静脉系统位于毛细血管网与右心房之间,能较 早反映出循环功能的异常。 1)外周静脉压:各器官或肢体的静脉血压 2)中心静脉压:胸腔大静脉或右心房的压力 正常值:0.4~1.2kPa(4~12cmH2O)
若:循环血量>血管容量,则平均充盈压>大气压 ↑ ↓ 或 ↓ 或 ↑ (血管充盈) (血管塌陷) 循环血量<血管容量,则平均充盈压<大气压
2)心脏射血释放能量 心缩期 动能:推动血液流动 势能:形成对血管壁的侧压力,并使血 管壁扩张,成为血液的势能。 心舒期:势能→动能,使血液在血管中持续流动。
血流阻力越大,势能消耗越多。
小(微)动脉、小(微)静脉
改变管径从而改变血流阻力 (约占总的外周阻力47%)
相关文档
最新文档