狄拉克符号(Dirac)
量子力学之狄拉克符系统与表格象
D i r a c 符号系统与表象一、Dirac 符号1. 引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。
2. 态矢量(1). 右矢空间力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。
右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。
例如:(2). 左矢空间右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。
右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。
<p ’ |, <x’ |, <Q n | 组成左矢空间的完备基组,任一左矢量可按其展开,即左矢空间的任一矢量可按左矢空间的完备基矢展开。
(3). 伴矢量<ψ | 和 |ψ>的关系|ψ >按 Q 的左基矢 |Q n > 展开:|ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ...展开系数即相当于 Q 表象中的表示:<ψ| 按 Q 的左基矢 <Q n | 展开:<ψ| = a*1 <Q 1 | + a*2 <Q 2 | + ... + a*n <Q n | + ...展开系数即相当于 Q 表象中的表示:ψ+= (a*1, a*2, ..., a*n , ... )同理 某一左矢量 <φ| 亦可按 Q 的左基矢展开:<φ| = b*1 <Q 1 | + b*2 <Q 2 | +... + b*n <Q n | + ...定义|ψ>和 <φ| 的标积为:*n n nb a ψ=∑。
狄拉克算符
又 因此
n n n n
n n
n
n
n 1
比如 引入算符
dx x x 1
ˆ Pn n n
因为
P n n n n n
m
a
m
m
m am n n m
m
am n nm an n
显然,该算符对任何矢量的运算,相当于把这个矢量投影到基矢 n
n n
kj
i
ˆ H t ˆ F n n
i
ˆ x H x t ˆ F x n x n
(F
j
kj )a j 0
m
k
j
ˆ F j kj j 0
nm
u ( x)u
* n
( x)dx nm
n m nm
这就是薛定格方程的狄拉克符号表示。 定态薛定格方程 在 Q 表象下
ˆ H E
ˆ n H E n
ˆ nHm
m
m E n
ቤተ መጻሕፍቲ ባይዱ
即
H
m
nm
am Ean
六、平均值公式的狄拉克符号表示
在 Q 表象下
* ˆ ˆ F F m m F n n am Fmn an
定一组基矢,即选定表象后,态矢量可以用在这组基矢
上的投影(即矢量的分量)表示,这就是波函数。与数 学中表示一个矢量可以不引入坐标系不用它的分量而直
接用矢量表示相似,在量子力学中表示一个量子态也可
以不引进具体的表象,直接用矢量符号表示。这就是狄 拉克符号(Dirac bracket notation)。
a an
狄克拉函数
狄克拉函数
狄拉克函数(Dirac function),也称为广义函数,是一种在数学和物理学中常用的函数。
它由英国物理学家保罗·狄拉克(Paul Dirac)于20世纪20年代引入并研究。
狄拉克函数通常表示为δ(x),其中x是自变量。
狄拉克函数的定义如下:
1.若x = 0,则δ(x) = +∞;
2.若x ≠ 0,则δ(x) = 0。
即狄拉克函数在x = 0处“集中”成无穷大的脉冲,而在其他点上为零。
需要强调的是,狄拉克函数并不是一个实际的函数,而是一种分布(分布理论中的概念),常用作数学上的工具。
狄拉克函数具有一些非常有用的性质,例如:
1.归一性:∫δ(x)dx = 1。
狄拉克函数的积分在实数轴上等于1。
2.平移性:δ(x - a)表示在x = a处的狄拉克函数。
通过平移函
数,可以表示在不同的位置上的狄拉克脉冲。
3.放大性:δ(ax) = δ(x) / |a|。
通过放大或缩小自变量,可以
改变狄拉克函数脉冲的幅度。
狄拉克函数在物理学中有重要的应用,特别是在量子力学中的波函数描述中。
例如,它可以用于描述粒子位置的位置本征态、粒子间的相互作用等现象。
第8章狄拉克(Dirac)函数
第8章狄拉克(Dirac) 函数1.数理方程的定解问题:uu12.点源:3.连续分布的源所产生的场:注意:238.1 一维函数的定义和性质一、一维函数的定义l线电荷密度总电量4把定义在区间上,满足上述这两个要求的函数称为函数,并记作,即5时, ,所以(6)函数后,位于 处、电量为q 的点电荷的线电荷密度2m 的质点的质量线密度为:说明:1.2.67二、 函数的性质 1f(x)00())()f x x x dx f x δ+∞-∞-=(乘上f (x )f (x ) 挑选性(把f (x )在 )在 时为零,0000())())x x f x x x dx f x x x dx εεδδ+∞+-∞--=-((时,,且时,说明:也可作为函数的定义,f(x)892.(对称性)00与 在积分号下对任一连续函数x )3. )()()()(000x x x f x x x f -=-δδ确切含义:在等式左右两边乘上任意连续函数x 积分相等104.f (x ),均有:0()()()(0)[()]0x x x f x dx xf x x dx xf x δδ∞∞=-∞=-==⎰ f (x )3中令f (x )=x ,则,则只有单根,则k个单根的区间内,。
备忘:有,则11时,有,则1213,把的每个扩大积分区间:14说明:若有重根,则上式不成立。
15三、 函数的几个常用表达式 1.—积分形式(1)(2)第12章证明:在173. —— 极限形式(1) 当 时,令 ,且有在区间的积分值:由函数定义可知:P92, 例4.2.8说明:因为函数并不是给出普通的数值之间的对应关系,所以函数也不象普通的函数那样具有唯一确定的表达式。
19207. 又因为:21四、 函数导数的定义 1.f (x )00()()()f x x x dx f x δ∞-∞''-=-称为 的导数,并记作说明: 函数的导数可按通常的导数公式进行运算222. 函数n 阶导数的定义:f (x )称为 函数的n 阶导数,并记作:23五、函数导数的性质 1是对-x 是偶函数,2f (x )乘上式左边后对x 从 到 积分,得:在积分号下对任意连续函数f (x )的运算性质相同24六、三维函数25 3. 用拉普拉斯算符表示:时, 、代入,保留对r 求的定义得:4. 正交归一完备系 的完备性条件26证明:27。
P(四章第四讲)狄拉克符号课件
n
n
n
( na*nbn n )* *
n
P(四章第四讲)狄拉克符号
波函数归一化
(,)2d3r*d3r1
本征矢的正交归一化
x | x
x|x' (x',x)(xx') ' (-')
p |p ') (p ',p )(p ' p ) qq' (q-q')
n | n
mn(um,un)m n lm |l'm ')(Y l'm ',Y lm )ll' m m '
t
P(四章第四讲)狄拉克符号
定义波函数演化算符:
U ˆ(t,t0)(t0)(t) (1 )
作用于 t 0 时刻的态 (t0 ) 得到t时刻的态 (t )
分析:
(1) Uˆ(t0,t0)I
U ˆ(t0,t0)(t0) (t0),
(2)求它的具体形式
i (t) H ˆ(t)
t
i tU ˆ(t,t0 ) (t0 ) H ˆU ˆ(t,t0 ) (t0 ) P(四章第四讲)狄拉克符号
算符的矩阵
设态矢 经算符 F ˆ 的作用后变成态矢 ,即
Fˆ
|1|nn n
F ˆ n n n
mmF ˆnn n
Fmn mFˆ n
bm Fmnan n
b1 F11 F12
b2
F21
F22
P(四章第四讲)狄拉克符号源自a1 a2Schrödinger方程的矩阵形式
P(四章第四讲)狄拉克符号
态矢量在具体表象中的表示 (x) x (p) p
本征态上的展开系数(投影)
n | n
mathtype狄拉克符号
Mathtype狄拉克符号1. 简介Mathtype是一款常用的数学公式编辑器,可以在Microsoft Office等文档中插入各种数学公式。
其中,狄拉克符号(Dirac notation)是一种特殊的数学表示方法,常用于量子力学和量子信息领域。
本文将详细介绍Mathtype中如何使用狄拉克符号。
2. 狄拉克符号的基本表示狄拉克符号由英国物理学家保罗·狄拉克(Paul Dirac)于20世纪提出,用于描述量子力学中的态和算符。
它采用了右尖括号和左尖括号来表示态矢量和其对应的共轭转置,形如|ψ>和<ψ|。
在Mathtype中,可以通过以下步骤插入狄拉克符号: 1. 打开Mathtype编辑器;2. 在编辑器中选择”Insert”(插入)选项;3. 在弹出菜单中选择”Brackets & Delimiters”(括号与分隔符);4. 在下拉菜单中选择”Angle Brackets”(尖括号);5. 选择右尖括号”<“,并输入需要表示的态矢量或共轭转置;6. 选择左尖括号”>“,并输入需要表示的态矢量或共轭转置。
例如,表示一个态矢量|ψ>,可以使用以下代码:< | ψ >表示其共轭转置<ψ|,可以使用以下代码:< ψ | >3. 狄拉克符号的运算狄拉克符号不仅可以用于表示态矢量和共轭转置,还可以进行运算。
下面介绍几种常见的运算方法。
3.1 内积(Inner Product)内积是狄拉克符号中常用的一种运算,用于计算两个态矢量之间的相似度。
在Mathtype中,可以通过以下步骤插入内积表达式: 1. 打开Mathtype编辑器; 2. 在编辑器中选择”Insert”(插入)选项; 3. 在弹出菜单中选择”Brackets & Delimiters”(括号与分隔符); 4. 在下拉菜单中选择”Angle Brackets”(尖括号); 5. 选择右尖括号”<“,并输入第一个态矢量; 6. 输入一个竖线”|“,用于分隔两个态矢量; 7. 选择左尖括号”>“,并输入第二个态矢量。
狄拉克(Dirac)符号
< n | F | ψ >=< n | ϕ > < n | ϕ >= ∑ < n | F | m >< m | ψ >= ∑ Fnm < m | ψ >
m m
∧
注意 : )式是抽象的算符方程 , ) )式是具体表象中的算符方程, 意: ( 24 24) 程, ( 25 25) , ( 26 26) < m | ψ >, < n | ϕ > 是算符作用前、后的态矢在 {| n >}表象中的分量, Fnm 也是具体表象中 的矩阵元。 1.4.2 连续谱 (1)算符作用在基矢 | λ > 上
(6)
n
这里 < B | A >=< A | B > * 1.2 基矢的狄拉克符号表示 1.2.1 离散谱
| n >, | λ > 仍为抽象的本征矢
力学量完全集的本征函数 {u n } 具有离散的本征值 {Qn }时,对应的本征矢 | 1 >, | 2 >,⋯ | n > 或 | nlm > 等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为 ⎛1⎞ ⎜ ⎟ ⎜0⎟ | 1 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛0⎞ ⎜ ⎟ ⎜1⎟ | 2 >= ⎜ ⎟ 0 ⎜ ⎟ ⎜⋮⎟ ⎝ ⎠ ⎛ 0⎞ ⎜ ⎟ ⎜⋮⎟ | n >= ⎜ 1 ⎟ ← 第 n 行 ⎜ ⎟ ⎜ 0⎟ ⎜⋮⎟ ⎝ ⎠ (8)
∧ ∧
) (29 29) (30 ) 30) ) (31 31)
< λ ′ | ϕ >=< λ ′ | F | ψ >
< λ ′ | ϕ >= ∫ | < λ ′ | F | λ > dλ < λ | ψ >= ∫ Fλ ′λ < λ | ψ > dλ 例如 < x ′ | ϕ >=< x ′ | F | ψ >= ∫ Fx′x < x | ψ > dx 即为 x 表象中方程
量子力学知识:量子力学与狄拉克符号
量子力学知识:量子力学与狄拉克符号这篇文章并不是关于费恩曼讲义书中任何一章的笔记,只是单独的一篇讲狄拉克符号含义和用法的文章。
我在看书的过程中对狄拉克这个简洁又多功能的符号产生过很多疑惑,今天就尝试将这些疑惑和自己找到的答案写出来,希望对其他同学有些许帮助。
如果大家有发现错误也希望可以进行批评指正。
狄拉克符号在量子力学中是一个很神奇的符号,它的外观非常的简洁、洋气,在量子力学中的作用就像路标对开车的作用一样重要,所以受到大量学习量子力学的人的喜爱。
其含义非常简单,最基本的狄拉克符号如下所示<状态2|状态1>狄拉克符号是从右往左看的,<状态2|状态1>表示的是从状态1到状态2的概率幅(关于概率幅的含义可以看我之前的推送量子力学笔记——电子在晶格中的传播)。
状态(state)在量子力学可以用来表示很多信息,比如一个粒子它处于某一位置可以称为处于某一状态,相应的它的特定的动量、角动量等信息都可以描述为状态(因为更多人直接称之为“态”,所以下文会直接简写为态)。
值得注意的是,态是矢量,具有方向性,<态2|为左矢量,|态1>为右矢量。
狄拉克符号还可以有各种“拆卸组装转换”的方法:1、狄拉克符号可以拆分成局部,比如:<态2|,或者|态1>拆分好处一来可以减少字数,二来空缺的那一部分要补充时可以填入任何态,增加使用的灵活性。
2、狄拉克符号还可以连着使用,比如:<态3|态2><态2|态1>表示为态1到态2,然后从态2再到态3的概率幅。
3、狄拉克符号转换前后位置时需要取复数共轭:<态2|态1> = <态1|态2>*(变换的原理会在下文讲到)4、狄拉克符号还可以量化两个状态跳转的过程:<态2|Q|态1>Q的含义为一个算符(operator),意思是态1经过算符变换到态2,这个算符可以是施加外力、旋转、使粒子穿过一个特殊设备、甚至静置一段时间,等等……对比一下同样表示概率幅的波函数,狄拉克符号没有像指数、复数这些复杂的东西,而且可以任意“拆分组装”,所以显得非常友好。
狄拉克算符
( x) anun ( x)
an u ( x) ( x)dx
* n
* Sm um ( x) ( x)dx
n
n x x m dx x x n n n n x x dx S m m x x dx
n
m
mn
mn
七、表象变换的狄拉克符号表示
设表象A、表象B的基矢分别为 m 、 ,则
m m
m
Sm m
m
其中, Sm m 。
在A表象、B表象的表示 am m
有
b
m m
m m
b
S m am
其中, S m
m。
上去,使它变成在基矢 n 方向上的分量。所以此算符称为投影算符。
三、算符的狄拉克符号表示
ˆ F
在 Q 表象下
am m
m
am m
bn n
n
bn n
显然有
ˆ ˆ n n F n F m m
即
bn Fnm am
m
m
ˆ 其中, Fnm n F m
因为
ˆ ˆ ˆ ˆˆ ˆ ( BA ) ( A ) B A B
另一方面
所以
ˆˆ ˆˆ ( BA ) ( BA)
ˆ ˆ ˆˆ (BA) A B
二、标量积和基矢组
1. 标量积
和 的标量积定义为
标量积是一个数,可以在运算中随意移动位置。 显然
c1 1 c2 2 1 c1 2 c2
但右矢和左矢不能叠加。
P四章第四讲狄拉克符号
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号
定义:左矢(bra)、右矢(ket) (源于词:bracket)
A *(rr )Aˆ (rr )drr ( , Aˆ ) Aˆ
t
ih m m Hˆ
t
m Hˆ 1
m Hˆ n n n
ih t am n Hmnan
平均值公式1的矩阵形式
F Fˆ 1 Fˆ 1
m m Fˆ n n mn
am* Fmnan mn
平均值公式2的的矩阵形式
( , ) 2 d 3r * d 3r 1
本征矢的正交归一化
x | x
x | x ' ( x', x ) (x x ') pr | pr ') ( pr ', pr ) ( pr ' pr )
n | n m n (um , un ) mn
量子力学与统计物理
Quantum mechanics and statistical physics
光电信息学院 李小飞
第四章:表象与矩阵力学
第四讲:狄拉克(Dirac)符号
引入:一对奇妙的组合
狄拉克:沉默寡 言,追求精确。
剑桥大学同事 定义了“一个小 时说一个字”为 一个“狄拉克” 单位
海森堡:活泼开 朗,喜唱歌跳舞, 是团队中的开心 果。
F | an |2 fn n n Fˆ n
量子力学教程 第二版 4.5 狄拉克符号.
于是: A n n A
n
(完全性关系)
(上式复数共轭)
()
同样可得 A A n n
所以: n n 1
n
n
Q 的本征矢 n 的封闭性,即插入算符(恒等算符) 此即为力学量 。
' ' 说明: n n 1在 x 表象中的表示为 u 。 x u x x x n n n n
表示为 m ,其正交归一性为: , m ' , m ' ' mm'
4. 封闭性 (a)连续谱情况:任何一态矢 A 在坐标表象中用波函数 x ' , t
描写, x ' , t x ' A 就是刃 A 在 x 表象中的分量。
ˆ 在自身表象中的基矢 x ' x x ' 组成完全系,则 A 由于 x
可按 x
展开,即:
'
A x ' dx ' x ' , t
x t A x
'
用 x 与 A 作标积,得:
x A x x ' dx ' x ' , t x x ' dx ' x ' , t x, t
所以展开系数为:
ˆ 的本 征值为分立谱Q n 1,2, ,本征 刃 Q (b) 分立谱情况: n
ˆ n 具有完全性,可将任意刃矢 A 按 Q A n Cn n 而 m A m n C C
n m n
的本征刃展开,即:
即展开系数 Cn n A ( C ,它表示 A 在基矢 n 上 n A n ) 的投影。
量子力学课件:4.5 狄拉克符号
具体的态矢量: A , , En
③ 左矢与右矢的关系
是A 的A共轭矢量,即它们在同一表象中的 相应分量互为共轭复数
是 的共轭矢量
En 是 En的共轭矢量
2.左矢与右矢的标积
①定义: B A a1b1 a2b2 anbn anbn
n
②复共轭形式: B A A B
③ 正交归一化条件: 设力学量完全集 的F^本征值为Fn ,相应的本征
(1)F^算符
设 B Fˆ A 取 Q 表象:
①设Q具有分立本征谱,则基矢 Qn 或 n
B n n B bn n
n
n
A n n A an n
n
n
n n B Fˆ n n A
n
n
以 m左乘上式 ,再利用 m n mn
m n n B m Fˆ n n A
n
n
m B m Fˆ n n A
a2
0
an
(3)平均值公式
在态下,力学量 的F^ 平均值:
取Q表象:设基矢为 n
F Fˆ
a1*, a2*,
m
mn
F11 F12
F21
F22
m Fˆ n n
a1
a2
am* Fmnan
mn
如:x表象: F x dx x Fˆ x dx x
t
mnan
n
n
m Hˆ n an
i
t
am
n
n
H mn an
a1 H11 H12
i
a2
H 21
H 22
t
an
H
m1
Hm2
a1
a2
H mn
an
狄拉克函数(冲激函数)20160703
+∞
δ
(τ
)
f
⎛ ⎜
τ
⎟⎞d τ
=
1
f (0)
−∞
−∞
⎝−a⎠ −a −a
∫+∞ 1 δ (t) f
−∞ − a
(t )dt
=
1 −a
f
(0)
δ (at) = 1 δ (t) (a < 0)
−a
δ (at) = 1 δ (t)
a
4、卷积性质
f
(t)∗δ (t) =
+∞
∫f −∞
(t −τ )δ (τ )dτ
−∞
−∞
= δ (t)
δ ′(− t) = −δ ′(t)
4、标度变换
δ ′(at) = 1 ⋅ 1 δ ′(t)
aa
δ (k )(at ) =
1 a
1 ⋅ ak
δ (k )(t )
=
∫0+ 0−
f
(t
−τ )δ (τ )dτ
=
f
(t )
任意有界函数与狄拉克函数的卷积就是该函数自身。这一规律在系统分析上体现为:线性时不
变系统的冲激响应(在单位冲激信号下的响应)完全由系统本身的特性所决定,与系统的激
励源无关。
三、单位对偶冲激(冲激偶)
单位冲激函数的一阶导数称为单位对偶冲激函数。
f
(0)dt
=
f (0)
对于有时移的情况
∫+∞
δ
−∞
(t
−
t0
)
⋅
f (t)dt
=
f (t0 )
冲激序列对连续信号抽样结果为
+∞
x(nT ) = x(t)⋅ ∑δ (t − nT )
量子力学中的算符和Dirac符号
二、Dirac符号的引入
• 量子力学的语言是Dirac符号法,它有两个优点: 一是无需采用具体表象来讨论问题; 二是运算简洁。
• Dirac符号法,也称为q数理论,而q数理论核心 内容之一就是表象可以用以坐标为变量的波函数 Ψ (x ,t )来描写, 力学量则以作用在这种波函数上的算符来表示,这是 量子力学中态和力学量的一种具体表述方式。态还可 以用其他变量的函数作为波函数来描写体系的状态。 • 微观粒子体系的状态(量子态)和力学量的具体表示 形式称为表象。
• 线性算符的充分条件:
ˆ [ f ( x) g ( x)] A ˆ f ( x) A ˆ g ( x) A ˆ [cf ( x)] cA ˆ f ( x) A
量子力学的一个基本假设:力学量用线性厄米算符表 示,即,量子力学中表示力学量的算符一定是线性厄 米算符。 利用力学量的算符可以预言在给定状态里测量这一力 学量所得结果的期望值——平均值。 可得到给定状态里该力学量的表象
• 算符的加法满足通常的代数法则; • 算符的乘法满足通常的结合律和分配率,但一般 不满足交换律。 ˆ和B ˆB ˆ ,则称算符 A ˆ =B ˆA ˆ 是可对易的。 如果A
算符的对易
定义算符的对易关系:
ˆ与 B ˆ 满足交换律,那么就称算符可对 • 如果算符 A ˆ ,B ˆ ]= 0 易,即 [A ˆ 和B ˆ 有共同的本征函 ˆ 、 ˆ 相互对易,则 A 若A B 数系; ˆ 和B ˆ 有共同的本征函数系,则A ˆ 相互对 ˆ 和B 若A 易。 如果两个算符之间不对易,则它们不能同时有确 ˆ p和 r 定值。 如 ˆ
a , a , , a ,
* 1 * 2 * n
• 力学量 O的狄拉克符号表示:
P(四章第四讲)狄拉克符号
ˆ (t ), H ˆ ˆ (t )] A 则 d A(t ) 1 [ A dt i t
(4)
上式称为Heisenberg方程。
3)狄拉克(Dirac)绘景与狄拉克方程 也称相互作用绘景(I绘景),他把哈密顿量 分解成两部分(比如:能精确求解的和含微扰的 哈密顿量;也称不含时的和含时的哈密顿量)
展开系数构成坐标矩阵
3、描述量子力学的波函数、算符和定律等在不同表象中虽具有 不同的矩阵形式,却可相互转换(幺正变换)
狄拉克:
要这么复杂吗?我认为量子力学的波函数,算符和定律 等与具体表象无关。
1. 狄拉克(Dirac)符号 定义: 左矢(bra)、右矢(ket) (源于词:bracket)
ˆ (r )dr ( , A ˆ) A ˆ A (r )A
定义波函数演化算符:
ˆ (t , t ) (t ) (t ) U 0 0
分析: ˆ (t , t ) I (1) U 0 0
(1)
作用于 t0 时刻的态 (t0 ) 得到t时刻的态 (t )
ˆ (t , t ) (t ) (t ), U 0 0 0 0
(2)求它的具体形式 ˆ (t ) i (t ) H t ˆ ˆ ˆ (t , t ) (t ) i U (t , t0 ) (t0 ) HU 0 0 t
*量子力学到经典力学的过渡
在海森堡绘景中,只是算符随时间深化,现考察自由粒子的位 置算符随时间的演化
现令t0=0
d 1 1 iHt / 2 iHt / r (t ) [ r (t ), H ] e [ r , p / 2 m]e dt i i p iHt / p iHt / e e m m
狄拉克符号(Dirac)
狄拉克符号(Dirac )1狄拉克符号量子体系状态的描述,前述波动力学和矩阵力学两种方法,其共同特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数可以写成各类力学量的本征函数的线性组合,而展开系数模平方具有力学量概率的含义。
问题:能否不从单一角度描述体系,而用统一的方式全面概括体系的所有性质及概念?狄拉克从数学理论方面,构造了一个抽象的、一般矢量--态矢,并引进了一套“狄拉克符号”,简洁、灵活地描述量子力学体系的状态。
1.1狄拉克符号的引入 1.1.1 态空间任何力学量完全集的本征函数系{})(x u n 作为基矢构成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的一个态矢,有∑=nn n u a ψ (1)n a 即为态矢ψ在基矢n u 上的分量,态矢ψ在所有基矢{}n u 上的分量{}n a 构成了态矢在{}n u 这个表象中的表示(矩阵)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= n a a a 21ψ () ,,,,**2*1n a a a =+ψ (2) 微观体系所有可以实现的状态都与此空间中某个态矢相对应,故称该空间为态空间注意:(1)式中的n u 只是表示某力学量的本征态,而抛开其具体表象;(2)式的右方是ψ的{}n u表象1.1.2 态空间中内积(标积)的定义设态空间中两个任意态矢A ψ与B ψ在同一表象{}n u 中的分量表示各为{}n a 与{}n b ,则两态矢内积的定义为()∑=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+n n n n n B A b a b b b a a a *21**2*1,,,, ψψ (3)注意:A B B Aψψψψ++≠ 1.1.3狄拉克符号的引入态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克认为它们应该分属于两个不同的空间⇒伴随空间 引入符号>,称为右矢 [Ket 矢,Bra 矢(Bracket 括号><)]微观体系的一个量子态ψ用>ψ表示,>ψ的集合构成右矢空间,>ψ在右矢空间中的分量表示可记为矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=> n a a a 21ψ (4)约定:右矢空间的态矢 ,,,B A ψψψ一律用字母 ,,,>>>B A ψψψ表示力学量的本征态矢一律用量子数 ,,,2,1>>>>nlm n ,或连续本征值>λ表示 引入符号 <,称为左矢 微观体系的一个量子态ψ也可用ψ<表示,但在同一表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ (5)ψ<的集合构成左矢空间引入狄拉克符号后,任意两个态矢>>B A ,的内积定义为同一表象下伴随空间中相应分量之积的和∑=++>=<nn n n n b a b a b a A B ***11| (6)这里*||>>=<<B A A B >>λ|,|n 仍为抽象的本征矢1.2 基矢的狄拉克符号表示 1.2.1 离散谱力学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征矢>>>n |,2|,1| 或>nlm |等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 0011| ⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 0102| …… ←⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 010|n 第n 行 (7)(1)基矢具有正交归一性 mn n m δ>=<| (8) (2)展开定理 ∑>>=nn n a ||ψ (9)两边同时左乘|m <得∑∑==><>=<nm mn n nn a a n m a m δψ|| (10)说明展开系数是态矢在基矢上的分量 (3)封闭性 把>=<ψ|n a n 代入>ψ|中得,><>>=∑ψψ|||n n n所以1||=<>∑n n n(11)称为基矢的封闭性 ※狄拉克符号运算中非常重要的关系式 1.2.2 连续谱当力学量本征值构成连续谱λ时,对应的基矢记为{}>λ|(1)正交归一性 )(|λλδλλ'->='< (12) (2)展开定理 ⎰'>'>=λλψλd a || (13) >=<ψλλ|a (14) (3)封闭性 1||=<>⎰λλλd (15)注意: >>>λ|,|,|nlm n 只表示某力学量抽象的本征矢,例如>'x |只表示本征值为x '的力学量x 的本征矢,而具体的基矢形式为:x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p-=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>=<n n ),,(|ϕθψr nlm x nlm >=< px ie p x2/1)2(1|π>=<1.3 态矢在基矢下的形式 1.3.1 离散谱基矢为{}>n |,态矢记为>ψ|或 ,|,|>>B A ,用基矢展开><>>=⋅>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 构成>ψ|在>n |表象中的分量,也可写成⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>=ψψψψ||2|1|21n a a a n (17) 相应的左矢 ∑><<=<nn n |||ψψ (18)()()><><><==<n a a a n |2|1||**2*1ψψψψ (19)1.3.2 连续谱⎰><>>=ψλλλψ|||d (20) 或 ⎰<><=<|||λλλψψd (21)1.3.3 注意:>ψ|只表示一个抽象的态矢,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数1.4 线性厄米算符的作用 1.4.1 离散谱(1)算符作用在基矢上∑∑>>=><>=∧∧nnnm n F m F n n m F ||||| (22)算符矩阵元 >=<∧m F n F nm || (23) (2)算符作用在态矢上(算符方程)>>=∧ϕψ||F (24) 即有 >>=<<∧ϕψ|||n F n (25) 或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψϕ||||| (26)注意:(24)式是抽象的算符方程,(25),(26)式是具体表象中的算符方程,><><ϕψ|,|n m 是算符作用前、后的态矢在{}>n |表象中的分量,nm F 也是具体表象中的矩阵元。
冲激偶函数的积分
冲激偶函数的积分冲激偶函数是信号处理中常用的一种函数,它在某一时刻上突变为一个有限的幅度,其他时刻幅度为零。
我们可以用狄拉克(Dirac)符号来表示冲激偶函数,即δ(t)或者δ(t - t0),其中t0为冲激函数出现的时间。
积分是数学中的一个基本运算,它在分析和数值计算中具有重要的作用。
下面我们将详细讨论冲激偶函数的积分。
冲激偶函数的积分可以通过定义来理解。
对于冲激偶函数δ(t),它的积分是一个符号函数u(t),它等于一个单位阶跃函数,即∫δ(t)dt = u(t) + C其中C为常数。
冲激偶函数的积分具有以下性质:1. 矩性质:冲激偶函数的积分在t = 0的值为1,即∫δ(t)dt |t=0 = 1这个性质可以从定义中得出。
2. 卷积性质:冲激偶函数与任意函数f(t)的卷积等于f(t)在冲激函数处的值,即∫δ(t - t0)f(t)dt = f(t0)这个性质在信号处理中非常常用,可以用来计算信号的输出等。
3. 位移性质:冲激偶函数乘以一个常数a后的积分等于a乘以冲激函数的积分,即∫aδ(t)dt = a∫δ(t)dt = a这个性质说明了冲激函数的积分与常数之间的关系。
冲激偶函数在信号处理中广泛应用,例如在卷积运算和滤波器设计等方面都有重要作用。
在实际应用中,我们常常需要对信号进行分析和处理,而冲激函数的积分是其中一种重要的工具。
通过对冲激函数的积分,我们可以得到信号的频谱、脉冲响应等有用的信息。
在信号处理领域,冲激函数的积分还有一种特殊的应用,即单位阶跃响应函数。
单位阶跃响应函数是冲激函数的积分,它用来描述某个系统对单位阶跃输入信号的响应。
单位阶跃响应函数在系统的稳态响应分析中非常重要,可以用来确定系统的稳定性和频率响应等性质。
总之,冲激偶函数的积分在信号处理中具有重要的意义,它是信号分析和处理的基础。
我们可以通过定义和性质来理解冲激函数的积分,并应用到各种信号处理问题中。
狄雷克雷函数
狄雷克雷函数
狄拉克-狄拉克函数(Dirac-Delta function),通常简称为狄拉克函数(Dirac function),是一种在数学物理中常用的特殊函数。
它由英国物理学家保罗·狄拉克(Paul Dirac)在20世纪提出,用于描述点源或极限情况下的极窄脉冲。
狄拉克函数在数学上是一个广义函数,它在所有实数轴上除了原点外的任何点上都等于零,而在原点上的值为正无穷大,同时满足积分为1的归一化条件。
狄拉克函数在物理学中具有重要的应用,特别是在量子力学中。
它常被用于描述粒子的位置或动量的测量,以及描述波函数的本征态或基态。
狄拉克函数的性质使得它在积分计算和微积分中非常有用,尤其是在处理连续性分布的情况下。
尽管狄拉克函数在数学上不是一个严格定义的函数,但它可以通过一系列近似函数来表示,例如高斯函数或者方形函数序列。
在物理学中,通常使用这些近似函数来处理实际情况。
总之,狄拉克函数是一种在数学和物理学中广泛应用的特殊函数,用于描述点源或极限情况下的极窄脉冲。
它在量子力学等领域起着重要的作用,用于描述粒子位置和动量的测量,以及处理连续性分布的积分计算等。
量子力学之狄拉克符号系统与表象
Dirac符号系统与表象一、Dirac符号1.引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式A来表示一个矢量,而不用具体坐标系中的分量(Ax ,Ay,Az)表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描述方法是由Dirac首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为Dirac 符号。
2.(1).(或基组)(2(3<ψ|按定义有:ψψa)在同一确定表象中,各分量互为复共轭;b)由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c)右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4).本征函数的封闭性a)分立谱展开式:可得:因为|ψ>是任意态矢量,所以:b)连续谱对于连续谱|q>,q取连续值,任一状态|ψ>展开式为:因为|ψ>是任意态矢量,所以:这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q|的作用相当一个算符,它作用在任一态矢|ψ>上,相当于把|ψ>投影到左基矢|Q n >或|q>上,即作用的结果只是留下了该态矢在|Q n >上的分量<Q n |ψ>或<q|ψ>。
故称|Q n ><Q n |和|q><q|为投影算符。
因为|ψ>在X 表象的表示是ψ(x,t),所以显然有:在分立谱下:所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:所以*(')()(')u ⎰。
3.(1X 即Q (2即有:4.到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
狄拉克符号(Dirac )1狄拉克符号量子体系状态的描述,前述波动力学和矩阵力学两种方法,其共同特点是:与体系有关的所有信息都有波函数给出;极为重要的是波函数可以写成各类力学量的本征函数的线性组合,而展开系数模平方具有力学量概率的含义。
问题:能否不从单一角度描述体系,而用统一的方式全面概括体系的所有性质及概念?狄拉克从数学理论方面,构造了一个抽象的、一般矢量--态矢,并引进了一套“狄拉克符号”,简洁、灵活地描述量子力学体系的状态。
1.1狄拉克符号的引入 1.1.1 态空间任何力学量完全集的本征函数系{})(x u n 作为基矢构成希尔伯特空间(以离散谱为例),微观体系的状态波函数ψ作为该空间的一个态矢,有∑=nn n u a ψ (1)n a 即为态矢ψ在基矢n u 上的分量,态矢ψ在所有基矢{}n u 上的分量{}n a 构成了态矢在{}n u 这个表象中的表示(矩阵)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= n a a a 21ψ () ,,,,**2*1n a a a =+ψ (2) 微观体系所有可以实现的状态都与此空间中某个态矢相对应,故称该空间为态空间注意:(1)式中的n u 只是表示某力学量的本征态,而抛开其具体表象;(2)式的右方是ψ的{}n u表象1.1.2 态空间中内积(标积)的定义设态空间中两个任意态矢A ψ与B ψ在同一表象{}n u 中的分量表示各为{}n a 与{}n b ,则两态矢内积的定义为()∑=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+n n n n n B A b a b b b a a a *21**2*1,,,, ψψ (3)注意:A B B Aψψψψ++≠ 1.1.3狄拉克符号的引入态空间中的ψ与+ψ在形式上具有明显的不对称性,狄拉克认为它们应该分属于两个不同的空间⇒伴随空间 引入符号>,称为右矢 [Ket 矢,Bra 矢(Bracket 括号><)]微观体系的一个量子态ψ用>ψ表示,>ψ的集合构成右矢空间,>ψ在右矢空间中的分量表示可记为矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=> n a a a 21ψ (4)约定:右矢空间的态矢 ,,,B A ψψψ一律用字母 ,,,>>>B A ψψψ表示力学量的本征态矢一律用量子数 ,,,2,1>>>>nlm n ,或连续本征值>λ表示 引入符号 <,称为左矢 微观体系的一个量子态ψ也可用ψ<表示,但在同一表象中>ψ与ψ<的分量互为共轭复数(),,,,**2*1n a a a =<ψ (5)ψ<的集合构成左矢空间引入狄拉克符号后,任意两个态矢>>B A ,的内积定义为同一表象下伴随空间中相应分量之积的和∑=++>=<nn n n n b a b a b a A B ***11| (6)这里*||>>=<<B A A B >>λ|,|n 仍为抽象的本征矢1.2 基矢的狄拉克符号表示 1.2.1 离散谱力学量完全集的本征函数{}n u 具有离散的本征值{}n Q 时,对应的本征矢>>>n |,2|,1| 或>nlm |等,构成正交归一化的完全系,可以作为矢量空间的基矢,作为基矢可表示为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 0011| ⎪⎪⎪⎪⎪⎭⎫⎝⎛>= 0102| …… ←⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>= 010|n 第n 行 (7)(1)基矢具有正交归一性 mn n m δ>=<| (8) (2)展开定理 ∑>>=nn n a ||ψ (9)两边同时左乘|m <得∑∑==><>=<nm mn n nn a a n m a m δψ|| (10)说明展开系数是态矢在基矢上的分量 (3)封闭性 把>=<ψ|n a n 代入>ψ|中得,><>>=∑ψψ|||n n n所以1||=<>∑n n n(11)称为基矢的封闭性 ※狄拉克符号运算中非常重要的关系式 1.2.2 连续谱当力学量本征值构成连续谱λ时,对应的基矢记为{}>λ|(1)正交归一性 )(|λλδλλ'->='< (12) (2)展开定理 ⎰'>'>=λλψλd a || (13) >=<ψλλ|a (14) (3)封闭性 1||=<>⎰λλλd (15)注意: >>>λ|,|,|nlm n 只表示某力学量抽象的本征矢,例如>'x |只表示本征值为x '的力学量x 的本征矢,而具体的基矢形式为:x 表象中)()(|x x x u x x '-=>='<δ,动量表象中px ip e x u x p-=>=<2/1)2(1)(|π,同理 )(|x u n x n >=< )(|p u n p n >=< 1|>=<n n ),,(|ϕθψr nlm x nlm >=< px ie p x2/1)2(1|π>=<1.3 态矢在基矢下的形式 1.3.1 离散谱基矢为{}>n |,态矢记为>ψ|或 ,|,|>>B A ,用基矢展开><>>=⋅>=∑ψψψ|||1|n n n(16)展开系数>=<ψ|n a n 构成>ψ|在>n |表象中的分量,也可写成⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛>=ψψψψ||2|1|21n a a a n (17) 相应的左矢 ∑><<=<nn n |||ψψ (18)()()><><><==<n a a a n |2|1||**2*1ψψψψ (19)1.3.2 连续谱⎰><>>=ψλλλψ|||d (20) 或 ⎰<><=<|||λλλψψd (21)1.3.3 注意:>ψ|只表示一个抽象的态矢,只有),(|t x x ψψ>=<为x 表象的波函数;n a n >=<ψ| 为>n |表象的波函数1.4 线性厄米算符的作用 1.4.1 离散谱(1)算符作用在基矢上∑∑>>=><>=∧∧nnnm n F m F n n m F ||||| (22)算符矩阵元 >=<∧m F n F nm || (23) (2)算符作用在态矢上(算符方程)>>=∧ϕψ||F (24) 即有 >>=<<∧ϕψ|||n F n (25) 或 ∑∑><>=><<>=<∧mmnm m F m m F n n ψψϕ||||| (26)注意:(24)式是抽象的算符方程,(25),(26)式是具体表象中的算符方程,><><ϕψ|,|n m 是算符作用前、后的态矢在{}>n |表象中的分量,nm F 也是具体表象中的矩阵元。
1.4.2 连续谱(1)算符作用在基矢>λ|上⎰⎰'>'>='<'>'>='∧∧λλλλλλλλλd F F d F ||||| (27) >'=<∧'λλλλ||F F (28) (2)算符作用在态矢>ψ|上(算符方程)>>=∧ϕψ||F (29)具体表象下 >'>=<'<∧ψλϕλ|||F (30) ⎰⎰><>=<>'<>='<'∧λψλψλλλλϕλλλd F d F |||||| (31)例如 ⎰><>='>=<'<'∧dx x F F x x x x ψψϕ||||即为x 表象中方程 ),(),(),(t x xi x F t x ψϕ∂∂-=∧1.4.3 算符对左矢空间的作用(1)算符对左矢空间的态矢从后向前作用,即∧<F |ψ;>∧ψ|F 的共轭式应该是∧+<F |ψ,若考虑算符的厄米性 ∧∧+=F F 则有∧∧++∧=<=<>F F F ||)|(ψψψ (32)(2)由*||>>=<<B A A B 可得>=<><∧∧A FB B F A ||||*(33)最后列出几个常用的公式>↔<∂∂-∧∧ψψ||),(),(F x t x xi x F><↔ψλλψ|)(x x∑∑>><<>=↔<=nnn n n n x x x u a x ψψψ|||)()(⎰⎰><><>=↔<=ψψψ|||)()(*x dx x n n dx x x u a n n例题1 求证在动量表象中,薛定谔方程>>=∂∂∧ψψ||H ti (34)可变为微分—积分方程⎰'''-+=∂∂p d t p p p U t p p t p t i),()(),(2),(2ϕϕμϕ 式中),(,)()2(1)(),(232t p r d e r U p U r U p H r p iϕπμ⋅=+=⎰⋅-∧是动量表象中的波函数 解:因 ⎰⋅>==<⋅-r d r e p p r p i)()2(1|)(2/3ψπψϕ (35)利用 ⎰='<'>'1||p p d p式(34)可变为⎰⎰'>'<>='<'>'<>=>=<<∂∂'∧∧p d p H p p d p H p H p p ti p pψψψψ||||||| (36) 因 >'<+>'>=<'<∧∧p r U p p p p p H p|)(||2|||2μ(37) 而 >''<'>'<><>='<⎰⎰p r r d r r U r r d r p p r U p||)(|||)(|⎰⎰⎰'-==''-'=⋅'--'⋅'⋅-)()()2(1)()()2(1)(33p p U r d e r U e r d r r r U r d er p p ir p i r p iπδπ (38) 将(38)代入(37)得)()(2|2p p U p p p p H p'-+'->='<∧δμ(39)将(39)与(35)代入(36)得⎰⎰'''-+'''-=∂∂p d p p p U p d p p p p p t i)()()()(2)(2ϕϕδμϕ ⎰'''-+=p d p p p U p p)()()(22ϕϕμ2 关于一维线性谐振子的讨论 2.1 坐标表象一维线性谐振子∧H 算符及其本征函数在坐标表象中为 222212x p H μωμ+=∧∧(40) )(||)(2221x H eN n x x x n x n n n αψψα->=>=<=< (41)∧H 的本征值为 ω ⎪⎭⎫ ⎝⎛+=21n E n ,3,2,1=n (42)由厄米多项式的递推公式可导出对于谐振子在运算中常用关系式[]⎪⎪⎩⎪⎪⎨⎧+++++-=⎥⎦⎤⎢⎣⎡++=+-+-)()2)(1()()12()()1(21)()(21)(21)(222211x n n x n x n n x x x n x n x x n n n n n n n ψψψαψψψαψ (43)[]⎪⎪⎩⎪⎪⎨⎧++++--=⎥⎦⎤⎢⎣⎡+-=+-+-)()2)(1()()12()()1(2)()(21)(2)(2222211x n n x n x n n x dxd x n x n x dx d n n n n n n n ψψψαψψψαψ (44) 2.2 能量表象以)(x n ψ(或>n |)为基矢,为∧H 自身表象 mn n E n H m δ>=<∧|| (45) 对角矩阵 对角元素即为∧H 的本征值 由(43)有⎥⎦⎤⎢⎣⎡>+++>->=1|211|21|n n n n n x α 故⎥⎦⎤⎢⎣⎡>+<++>-<>=<1|211|21||n m n n m n n x m α⎥⎦⎤⎢⎣⎡++=+-1,1,2121n m n m n n δδα(46)由(44)得 ⎪⎪⎭⎫ ⎝⎛>++->-=>'1|211|2|n n n n n α 故⎥⎦⎤⎢⎣⎡>+<+->-<-=>'<->=<∧1|211|2|||n m n n m n i n m i n p m x α⎥⎦⎤⎢⎣⎡+--=+-1,1,212n m n m n n i δδα (47)由(46)(47)写出x p x ,矩阵如下⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0230002302200022021000210x ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0230002302200022021000210αi p x 2.3 动量表象以)(x p ψ(或>p |)为基矢, px ip e x p x2/1)2(1)(|πψ=>=<2.3.1 ∧H 在动量表象的矩阵元>''<'>'<><>='<⎰⎰∞∧∧p x x d x H x dx x p p H p ||||||x d e x x x p dx e x p i px i ''-⎪⎪⎭⎫ ⎝⎛+=''-⎰⎰ )(21221222δμωμπdx x p e x p p i ⎪⎪⎭⎫ ⎝⎛+=⎰'--222)(21221μωμπ⎪⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎪⎭⎫ ⎝⎛=⎰⎰'--'--dx e p dx e p x p p ix p p i)(2222)(22121212 πμωπμ)(21222222p p p p '-⎪⎪⎭⎫ ⎝⎛∂∂-=δμωμ (48) 实际上,动量表象中p p =∧pi x ∂∂= 直接可得上述结果。