高三数学导数的概念及运算

合集下载

高三数学考点-导数的概念及运算

高三数学考点-导数的概念及运算

第三章 导数及其应用1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义.3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数. ①常见的基本初等函数的导数公式: (C )′=0(C 为常数); (x n )′=nx n -1(n ∈N +); (sin x )′=cos x; (cos x )′=-sin x ; (e x )′=e x;(a x )′=a x ln a (a >0,且a ≠1);(ln x )′=1x ;(log a x )′=1x log a e(a >0,且a ≠1).②常用的导数运算法则: 法则1:[u (x )±v (x )]′=u ′(x )±v ′(x ). 法则2:[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ).法则3:⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 7.会用导数解决实际问题.8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 9.了解微积分基本定理的含义.3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx就叫函数y =f (x )从x 0到x 0+Δx 之间的平均变化率,即Δy Δx =f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′|0|x x =,即f ′(x 0)=0lim →∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx .(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆x f (x +Δx )-f (x )Δx .(3)用定义求函数y =f (x )在点x 0处导数的方法 ①求函数的增量Δy = ;②求平均变化率ΔyΔx= ;③取极限,得导数f ′(x 0)=0lim →∆x ΔyΔx .2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 . 3.基本初等函数的导数公式(1)c ′=(c 为常数), (x α)′=(α∈Q *); (2)(sin x )′=____________, (cos x )′=____________; (3)(ln x )′=____________, (log a x )′=____________; (4)(e x )′=____________, (a x )′=____________. 4.导数运算法则(1)[f (x )±g (x )]′=__________________. (2)[f (x )g (x )]′=____________________;当g (x )=c (c 为常数)时,即[cf (x )]′=____________. (3)⎣⎢⎡⎦⎥⎤f (x )g (x ) ′=___________________ (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为______________.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠1.(1)可导 f ′(x 0)(3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0) 3.(1)0 αxα-1(2)cos x -sin x (3)1x 1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解:因为y ′=a -1x +1,所以切线的斜率为a -1=2,解得a =3.故选D .(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)解:对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x(x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以P 的坐标为(1,1).故选A .(2015·陕西)函数y =x e x 在其极值点处的切线方程为( ) A .y =e x B .y =(1+e)xC .y =1eD .y =-1e解:记y =f (x )=x e x ,则f ′(x )=(1+x )e x ,令f ′(x )=0,得x =-1,此时f (-1)=-1e.故函数y =x e x 在其极值点处的切线方程为y =-1e .故选D .(2016·天津)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 解:f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3.故填3.(教材习题改编)若函数f (x )=x 2+2x -3,则曲线y =f (x )在点P (2,5)处的切线的斜率是________. 解:f ′(x )=2x +2,f ′(2)=6.故填6.类型一 导数的概念用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 解法一:Δy =f (x +Δx )-f (x )=(x +Δx )2-2(x +Δx )-1-(x 2-2x -1) =x 2+2x ·Δx +Δx 2-2x -2Δx -1-x 2+2x +1 =(2x -2)Δx +Δx 2,所以0lim →∆x Δy Δx =0lim →∆x (2x -2)Δx +Δx 2Δx=0lim →∆x [(2x -2)+Δx ]=2x -2.所以函数f (x )=x 2-2x -1在x =1处的导数为 f ′(x )|x =1=2×1-2=0.解法二:Δy =f (1+Δx )-f (1)=(1+Δx )2-2(1+Δx )-1-(12-2×1-1) =1+2Δx +Δx 2-2-2Δx -1+2=Δx 2,所以0lim →∆x Δy Δx =0lim →∆x Δx 2Δx =0lim →∆x Δx =0.故f ′(x )|x =1=0.【点拨】利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx,再化简平均变化率,最后判断当Δx →0时,ΔyΔx 无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s 时的高度h (t )=5t 3+30t 2+45t +4(单位:m). (1)求航天飞机在第1 s 内的平均速度;(2)用定义方法求航天飞机在第1 s 末的瞬时速度. 解:(1)航天飞机在第1 s 内的平均速度为 h (1)-h (0)1=5+30+45+4-41=80 m/s.(2)航天飞机第1 s 末高度的平均变化率为h (1+Δt )-h (1)Δt=5(1+Δt )3+30(1+Δt )2+45(1+Δt )+4-84Δt=5Δt 3+45Δt 2+120ΔtΔt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120, 所以航天飞机在第1 s 末的瞬时速度为120 m/s.类型二 求导运算求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x +e ;(4)y =ln xx 2+1;(5)y =ln(2x -5).解:(1)因为y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′ =(3x )′e x +3x (e x )′-(2x )′ =3x e x ln3+3x e x -2x ln2 =(ln3+1)(3e)x -2x ln2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.【点拨】求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有: (1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导.求下列函数的导数: (1)y =e x cos x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =ln x ex ;(4)y =ln 1+2x ;(5)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2;解:(1)y ′=(e x )′cos x +e x (cos x )′=e x (cos x -sin x ). (2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x3.(3)y ′=(ln x )′e x -(e x )′ln x (e x )2=1x e x -e x ln x (e x )2=1x -ln x e x =1-x ln x x e x .(4)y =ln 1+2x =12ln(1+2x ),所以y ′=12·11+2x (1+2x )′=12·11+2x ·2=11+2x.(5)因为y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin4x .所以y ′=-12sin4x -12x ·4cos4x =-12sin4x -2x cos4x .类型三 导数的几何意义(2016·广州模拟)f (x )=2x+3x 的图象在点(1,f (1))处的切线方程为________.解:f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.故填x -y +4=0. 【点拨】曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤: ①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.(2016·广州模拟)曲线y =14x 2过点⎝⎛⎭⎫4,74 的切线方程为________. 解:设所求切线与曲线相切于点P ⎝⎛⎭⎫x 0,14x 20.易知y ′=12x ,则y ′|x =x 0=12x 0.故74-14x 204-x 0= 12x 0,整理得x 20-8x 0 + 7 = 0,解得x 0=7或x 0=1,所以点P ⎝⎛⎭⎫7,494或P ⎝⎛⎭⎫1,14,由两点式得切线方程为14x -4y -49=0或2x -4y -1=0.故填14x -4y -49=0或2x -4y -1=0.(2016·兰州诊断)已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .-3 D.12解:y ′=x 2-3x ,令y ′=-12,得x 2+x -6=0,解得x =2或x =-3(舍去),所以所求切点的横坐标为2.故选B .【点拨】求切点坐标问题,一般通过解方程或方程组求得,要注意其取值范围.(2016·无锡一模)曲线y =x -1x(x >0)上点P (x 0,y 0)处的切线分别与x 轴,y 轴交于点A ,B ,O 是坐标原点,若△OAB 的面积为13,则点P 的坐标为________.解:由题意可得y 0=x 0-1x 0,x 0>0,因为y ′=1+1x2,所以过点P 的切线的斜率为1+1x 20,则切线的方程为y -x 0+1x 0=⎝⎛⎭⎫1+1x 20(x -x 0), 令x =0得y =-2x 0,令y =0得x =2x 01+x 20,所以△OAB 的面积S =12·2x 0·2x 01+x 20=13,解得x 0=5(舍去负根),所以点P 的坐标为⎝⎛⎭⎫5,455. 故填⎝⎛⎭⎫5,455.(2016·柳州模拟)曲线g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b =( )A.72B.52C.32D.12解:g ′(x )=3x 2+5x +3x ,则g ′(1)=11,又g (1)=72+b ,故曲线y =g (x )在x =1处的切线方程为y -⎝⎛⎭⎫72+b =11(x -1),由该切线过点(0,-5),得b =52.故选B .【点拨】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 解:设切点坐标为(x 0,y 0),对曲线方程求导得y ′=1x +a ,故切线方程为y -ln(x 0+a )=1x 0+a (x -x 0),即y =1x 0+ax -x 0x 0+a +ln(x 0+a ),据题意得1x 0+a =1且-x 0x 0+a +ln(x 0+a )=1,解得x 0=-1,a =2.故选B .1.“函数在点x 0处的导数”“导函数”“导数”的区别与联系 (1)函数在点x 0处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值. 2.函数y =f (x )在x =x 0处的导数f ′(x 0)的两种常用求法 (1)利用导数的定义,即求0lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)求导函数在x 0处的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.关于用导数求曲线的切线问题(1)圆是一种特殊的封闭曲线,注意圆的切线的定义并不适用于一般的曲线.(2)求曲线在某一点处的切线方程,这里的某一点即是切点,求解步骤为先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.(3)求过某点的曲线的切线方程,这里的某点可能是切点(点在曲线上的情形),也可能不是切点,即便点在曲线上,切线也不一定唯一.1.(2016·郑州一检)曲线f (x )=e x sin x 在点(0,f (0))处的切线斜率为( )A .0B .-1C .1 D.22解:f ′(x )=e x sin x +e x cos x ,所以k =f ′(0)=1.故选C .2.P 0(x 0,y 0)是曲线y =3ln x +x +k (k ∈R )上的一点,曲线在点P 0处的切线方程为4x -y -1=0,则实数k 的值为( )A .2B .-2C .-1D .-4解:y ′=3x +1,令其等于4得x =1,代入切线方程得y =3,即切点坐标为(1,3),代入曲线方程得3=1+k ,k =2.故选A .3.(2016·淄博质检)已知f ′(x )是函数f (x )的导函数,如果f ′(x )是二次函数,f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点处的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3B.⎣⎡⎭⎫π3,π2C.⎝⎛⎦⎤π2,2π3D.⎣⎡⎭⎫π3,π解:依题意得f ′(x )≥3,即曲线y =f (x )在任意一点处的切线斜率不小于3,故其倾斜角的取值范围是⎣⎡⎭⎫π3,π2.故选B .4.(2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3)解:f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上.故选C .5.(2017·石家庄调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为( )A .eB .-e C.1e D .-1e解:y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .故选C .6.(2016·郑州二测)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解:l 与y 轴交点为(0,2),可知曲线y =f (x )在x =3处切线的斜率k 等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0.故选B . 7.(2016·江西师大附中三模)如图所示,直线l 是曲线y =f (x )在x =4处的切线,则f (4)+f ′(4)的值为________.解:由图可知f (4)=5,f ′(4)的几何意义是曲线y =f (x )在x =4处切线的斜率,故f ′(4)=5-34-0=12,故f (4)+f ′(4)=5.5.故填5.5.8.已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解:由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x =m -1e 有解,故只要m -1e >0,即m >1e即可.故填⎝⎛⎭⎫1e ,+∞. 9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线方程. 解:设切点坐标为(x 0,y 0),因为f ′(x 0)=3x 20-4=-1,所以x 0=±1. 所以切点为(1,1)或(-1,7). 切线方程为x +y -2=0或x +y -6=0.10.(2017·长沙调研)已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围.解:(1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝⎛⎭⎫2,53,斜率k =-1, 所以所求切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,又因为α∈[0,π),所以α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.11.已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)y ′=x 2,设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)因为y ′=x 2,且P (2,4)在曲线y =13x 3+43上,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4. 所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,又因为切线的斜率k =y ′|x =x 0=x 20, 所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43. 因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0.(2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解:设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1.故选A .。

新高三数学导数知识点总结

新高三数学导数知识点总结

新高三数学导数知识点总结高三数学导数知识点总结导数是高中数学中非常重要的一个概念,它在微积分中起着至关重要的作用。

在高三学习数学的过程中,导数是一个必需掌握的知识点。

本文将对高三数学导数知识点进行总结和归纳,帮助同学们更好地掌握该知识。

一、导数的定义及基本性质导数的定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得增量Δx时,相应的函数增量Δy=f(x0+Δx)-f(x0),若极限lim (Δx→0) [Δy/Δx] 存在,那么称该极限为函数y=f(x)在点x0处的导数,记作f'(x0),即f'(x0)=lim (Δx→0) [Δy/Δx]。

导数具有以下基本性质:1. 可导性:如果函数f(x)在某点x0处存在导数f'(x0),那么称函数f(x)在点x0处可导。

2. 可导性与连续性的关系:如果函数f(x)在某点x0处可导,则函数f(x)在点x0处一定连续。

3. 常数函数导数为零:对于常数c,有f'(x)=0。

4. 导数的四则运算法则:设函数u(x)和v(x)都在点x处可导,那么有:(1) (u ± v)' = u' ± v';(2) (cu)' = cu',其中c为常数;(3) (uv)' = u'v + uv';(4) 当v(x)≠0时,(u/v)'= (u'v - uv')/v^2。

二、常见函数的导数公式1. 幂函数的导数:设f(x) = x^n,其中n为正整数,则有f'(x) = nx^(n-1)。

特殊情况:当n=1时,f'(x) = 1。

2. 指数函数的导数:设f(x)=e^x,则有f'(x) = e^x。

3. 对数函数的导数:设f(x) = ln(x),则有f'(x) = 1/x。

4. 三角函数的导数:(1) 设f(x) = sin(x),则有f'(x) = cos(x)。

3.1导数的概念及运算

3.1导数的概念及运算

科 目数学 年级 高三 备课人 高三数学组 第 课时 3.1导数的概念及运算考纲定位 能识记基本初等函数的导数公式;能理解导数的几何意义;会求简单的函数及一些复合函数的导数.【考点整合】1、导数的概念(1)一般地,函数()y f x =在0x x =处的导数是 ;(2)函数()y f x =在0x x =处的导数的几何意义是 ; 函数()y f x =在00(,())P x f x 处的切线方程是 .2、导数公式:(1)=C ' (2)()=n x ' (3)(sin )=x ' (4)(cos )=x '(5)()=x e ' (6)()=x a ' (7)(ln )=x ' (8)(log )=a x '(9)[()()]=f x g x '± (10)[()()]=f x g x '∙(11)()[]=()f xg x ' (12)(),(),=x y f g x y μμ'==则3、判断下列语句的真假性:(1)若函数()y f x =在1x =-处的导数为1,则()y f x =在(1,(1))P f --处的切线的斜率为-1;( )(2)若函数()y f x =在(1,(1))P f --处的切线的倾斜角为45°,则(1)1f '-=;( )(3)函数2y x =在点(1,1)的切线的斜率为1.( )(4)函数2y x =在点(1,1)的切线的斜率为2.( )4、函数2y x =在点(1,1)的切线方程为【典型例题】一、求简单函数的导数1、求下列函数的导数:(1)232y x x =- (2)2log y x = (3)1x y e =- (4)sin y x x =+(5)cos3x y = (6)1y x =- (7)33log y x x =+ (8)ln y x x =(9)sin x y x=(10)99(1)y x =+ (11)2x y e -= (12)sin(25)y x =+(13)22ln 1x y x =+ (14)2sin()x x y a e =+二、求函数的切线方程2、已知曲线232y x x =-,则(1)曲线在点1x =处的切线方程为 ;(2)曲线在点(1,0)P 处的切线方程为 .3、已知sin ()x f x x=,则其在点(,0)P π处的切线方程为 ;三、高考真题演练4、(2010 全国)曲线2x y x =+在点(1,1)--处的切线方程是( ) A.21y x =+ B.21y x =- C. 23y x =-- D. 22y x =--5、(2012 广东)曲线33y x x =-+在点(1,3)处的切线方程为 .【作业】《胜券在握》P24页 第1,2,3题【课后反思】。

高三数学导数的概念与运算

高三数学导数的概念与运算
1 (ln x )' x
1 (log a x)' log a e ; ; x
; (a )' a ln a 。
x x
(e )' e
x
x
5.导数的四则运算法则:
[u( x) v( x)] u ( x) v ( x)
' ' '
[u( x)v( x)] u '( x)v( x) u( x)v '( x)
; / 筑志棋牌游戏网
zth51awb
房肯煎药了,她去找刘晨寂。问准刘晨寂所在,她去找他。听说刘晨寂年少,而她也是云英未嫁大姑娘,虽然立意一辈子伺候 老太太,再不嫁人,也真打心里把自己不当姑娘看了,毕竟要避嫌,只遣婆子去传话,自己在门外,窗缝间扫着一眼,亏素来 自诩老沉狠辣,也登时心跳如捣:那少年明眸皓齿,身着布衣,头发像墨檀木一样黑,用条普普通通的青带子束在后面,刚把 好脉,步至桌前举墨笔,正巧一束阳光从窗里进来,照在他脸上,细细的茸毛,他回过头去看那传话的婆子,一边举起手来遮 了遮眼睛,指尖微微的红晕。这才叫布衣红颜!宝音定定神。奇也怪也!她为何觉得他这样眼熟,不但见过,而且似亲密相处 过的?实在没有因由!屋里,那传话婆子请刘大夫先留外院不要走,表 的痰盒来端给刘大夫看看,刘大夫要拟什么方子,尽 管说,若凶险极了须诊脉,给刘大夫告个罪,请刘大夫蒙上眼,入内院隔帘给表 诊。刘晨寂答应了。听他应声,宝音心底就 安定些,又嘱了丫头婆子们,刘大夫要写出什么方子来,只要不是摆明了毒药,管老大夫怎么说,就用刘大夫的方子!如果表 真的病危了,就是毒药也听刘大夫的!表面上,老大夫治过一段时间,没起色,还不如试刘大夫,这是她的道理。背地里…… 见了刘晨寂,听了他的声音,她就是想相信他,这真是可怪。踌躇疑惑着,宝音又走了几处,绕了一绕,从与嘉颜议帐的屋子 窗下过,听嘉颜似在里头生了气。嘉颜一向性子沉着,能发重话,不知出了什么大事?宝音奇着,赶紧往门前绕,却一个大丫 头又拦了她,先道乏,后问:“宝音姐姐,你看这一件是二老爷房里要的,我这般拿去还使得么?”宝音将那东西也看了一眼: 是个花鸟镶翠靶镜,镜把儿原断过一次,又用宝相花饰精巧鎏合,顿时“噫”一声:“二#奶#奶的?我不是拣点出一副新的, 怎又拿这旧的修补了给二#奶#奶!”那大丫头笑道:“是二#奶#奶说,何必又用新的,就叫将旧的补补,还于她去。”这般亏 苦,无非要在老太太跟前留下会持家的好印象,宝音心头敞亮,赞叹一句道:“二#奶#奶如此克俭,咱们作奴婢的却不能哑着。 我回老太太去,总也不能给二#奶#奶用补旧的!”大丫头含笑而去。宝音加快步子拾阶上去,有个腿快的家人媳妇赶到门边把 那半疏半透的蒙绣纱湘帘子打起来,笑道:“宝音姑娘!可巧儿您回来了,有个九层玲珑塔形的托盘儿找不着了,姑娘您还有 印象吗?”这媳妇名下数目一向不清,教了几次,记帐还是糊涂,有些有意装傻、从中贪墨的嫌疑,宝音正想捉她呢,拧起眉 毛道:“都问我,自个儿就不用查帐了?若我死了,你们更问谁去?”媳妇腮帮子明显抽了两抽。宝音自己接了帘子进屋来, 问嘉颜道:“怎么了?”嘉颜

高数导数讲解

高数导数讲解

高数导数讲解导数(Derivative)是微积分中的重要概念,它描述了函数在某一点附近的变化率。

在高等数学中,导数广泛应用于函数极值、曲线的切线斜率、速度和加速度等问题的研究中。

首先,我们需要明白什么是函数。

函数是定义在某个区间上的数学关系,它对每一个输入值都对应一个输出值。

导数则是函数在某一点处切线的斜率,或者说函数在这一点附近的变化率。

导数的定义可以通过极限来描述。

假设函数y=f(x)在点x0处有一个增量Δx,那么函数y也会有一个增量Δy。

导数就是Δy与Δx的商的极限,即lim(Δx→0) Δy/Δx。

如果这个极限存在,我们就说函数在点x0处可导,并且这个极限值就是f'(x0)。

此外,我们还可以定义左导数和右导数。

左导数是lim(x→x0-) Δy/Δx,右导数是lim(x→x0+) Δy/Δx。

如果左导数和右导数都存在且相等,那么函数在点x0处可导。

在高等数学中,可导是比连续更强的条件。

一个函数在某点可导意味着它在该点不仅有定义,而且其极限值与函数值相等。

同时,函数的可导性与其连续性有着密切的联系。

一个函数在某点连续不一定可导,但可导一定连续。

此外,导数还有一些重要的性质和运算规则。

例如,导数具有线性性质,即(uv)'=u'v+uv';复合函数的导数等于被复合函数的导数乘以复合函数的求导数的结果;反函数的导数等于直接函数导数的倒数等等。

这些性质和运算规则为我们解决实际问题提供了重要的数学工具。

总之,高数中的导数是微积分的重要组成部分,它涉及到许多实际应用问题的解决。

通过理解导数的定义、性质和运算规则,我们可以更好地理解和应用这个概念,解决实际应用中的问题。

专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处

新高三数学导数知识点归纳

新高三数学导数知识点归纳

新高三数学导数知识点归纳导数是高等数学中的重要概念,是微积分中的基础内容。

在高三数学学习中,导数知识点是必学的内容之一。

本文将对新高三数学导数知识点进行归纳和总结,帮助同学们更好地掌握这一知识。

一、导数的定义导数是函数在某一点上的变化率,用数学符号表示为f'(x),读作"f关于x的导数",也可以读作"f的导数"。

导数的定义如下:若函数f(x)在点x处有极限lim┬(△x→0)⁡〖(f(x+△x)-f(x) )/△x=lim┬(△x→0)⁡(△f(x)/△x=f'(x)〗其中Δf(x)表示函数f(x)在点x处的增量,Δx表示自变量的增量。

二、常用函数的导数1. 常数函数的导数:对于常数函数f(x)=c (c为常数),其导数为0,即f'(x)=0。

2. 幂函数的导数:对于幂函数f(x)=x^n (n为正整数),其导数为f'(x)=n*x^(n-1)。

3. 指数函数的导数:对于指数函数f(x)=a^x (a>0,a≠1),其导数为f'(x)=a^x*lna。

4. 对数函数的导数:对于对数函数f(x)=logₐx (a>0,a≠1),其导数为f'(x)=1/(x*lna)。

5. 三角函数的导数:常见的三角函数(sin、cos、tan等)的导数如下:sinx的导数为cosx;cosx的导数为-sinx;tanx的导数为sec^2x。

三、导数的运算法则1. 基本运算法则:(1)常数的导数为0;(2)导数的线性性,即导数与常数的乘积等于常数乘以导数。

2. 加减法法则:(1)两个函数的和(差)的导数等于两个函数的导数的和(差);(2)即(f(x)±g(x))' = f'(x)±g'(x)。

3. 乘积法则:(1)两个函数的乘积的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数;(2)即(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。

高中数学:导数总结

高中数学:导数总结

高中数学:导数总结高中数学:导数总结十、导数:一、导数的概念:(1)函数yf(x)在点x0处可导:函数yf(x)在x0到x0x之间的平均变化率,即yxf(x0x)f(x0)x;如果当x0时,yx有极限,则称函数yf(x)在点x0处可导。

(2)函数yf(x)在开区间(a,b)内可导:如果函数yf(x)在开区间(a,b)内每一点处都可导,则称函数yf(x)在开区间(a,b)内可导;(3)函数yf(x)在点x0的导数:如果函数yf(x)在点x0处可导,那么极限lim导数(或yxyxz0叫做函数yf(x)在点x0的f”(x0)变化率),记作:或y”|xx0;即f”(x0)limx0limf(x0x)f(x0)xx0(4)函数yf(x)在开区间(a,b)内的导函数(导数):如果函数yf(x)在开区间(a,b)内可导,那么对于开区间(a,b)的每一个确定的值x0都对应着一个确定的导数f”(x0),这样在开区间(a,b)内构成一个新的函数,我们把这新函数叫做函数yf(x)在开区间(a,b)内的导函数(简称导数),记yxf(xx)f(x)xf”(x)或y”;即:f”(x)y”limx0limx0(5)导数的几何意义:函数yf(x)在点x0处的导数f”(x0),就是曲线yf(x)在点P(x0,f(x0))处的切线的斜率k,即ktanf”(x0);(6)导数在物理中的运用:函数ss(t)在点t0处的导数s”(t0),就是当物体的运动方程为ss(t)时,物体运动在时刻t0的瞬时速度v,即vs”(t0);物体运动在时刻t0的加速度as”“(t0);二、几种常见函数的导数:C”0(C为常数);(xn)”nxn1三、函数的和、差、积、商的导数:(1)和(差)的导数:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即(uv)”u”v”容易推广到有限个函数的情形:(uvw)”u”v”w”(2)积的导数:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:(uv)”u”vuv”容易推出:(Cu)”Cu”(C为常数):常数与函数的积的导数等于这个常数乘以函数的导数;四、导数的运用:(1)函数的单调性:①设函数yf(x)在某个区间内可导,如果f”(x)0,则f(x)为增函数;如果f”(x)0,则f(x)为减函数。

高三数学导数

高三数学导数
第7讲 导 数
高考要点回扣
1.导数的概念及运算
(1)定义
f′(x)= lim Δx→0
ΔΔyx=Δlixm→0
f(x+Δx)-f(x)
Δx
.
(2)几何意义
曲线 y=f(x)在 P(x0,f(x0))处的切线的斜率为 k=
f′(x0)(其中 f′(x0)为 y=f(x)在 x0 处的导数).
(3)求导数的方法 ①基本导数公式:c′=0 (c 为常数);(xm)′=mxm-1 (m∈Q);(sin x)′=cos x;(cos x)′=-sin x;(ex)′=
②求单调区间时,首先要确定定义域,然后再根据 f′(x)>0(或 f′(x)<0)解出在定义域内相应的 x 的范围; ③在证明不等式时,首先要构造函数和确定定义域,其 次运用求导的方法来证明. (3)求可导函数的极值与最值 ①求可导函数极值的步骤 求导数 f′(x)→求方程 f′(x)=0 的根→检验 f′(x)在方 程根左右值的符号,求出极值(若左正右负,则 f(x)在这 个根处取极大值;若左负右正,则 f(x)在这个根处取极 小值). ②求可导函数在[a,b]上的最值的步骤
求 f (x)在(a,b)内的极值→求 f(a)、f(b)的值→比较 f(a)、
f(b)的值和极值的大小.
; / 书法培训机构加盟 硬笔书法培训加盟 练字加盟几大品牌 书法加盟品灿烂的微笑。用一柄水果刀雕刻南极。文体自选,不少于 火箭的发明硬是说外国人受到中国古代龙箭的启发,却完全靠我自己。是物质而更是精神的,… 你毫不犹豫地甩开从田埂上带来的泥气,林肯:可能有这个意思吧。专门关押那些被打倒的人。一些用语,有快乐,我相信, 位置曾让你产生无限的感慨…强者创造机遇,无所顾忌地与之同路前行的朋友,这六角形的花是怎样被严寒催开的?重新获

高三导数知识点总结

高三导数知识点总结

高三导数知识点总结导数是数学中的重要概念,在高三数学学习中起着至关重要的作用。

本文将就高三导数知识点进行总结,帮助同学们复习和加深理解。

一、导数的定义导数描述了函数在某一点的变化率,可以用极限的概念来定义。

对于函数f(x),在x点的导数可以表示为:$f'(x) = \lim_{{\Delta x \to 0}} \frac{{f(x+\Delta x) -f(x)}}{{\Delta x}}$在实际计算中,我们也可以利用导数的基本公式进行求解。

二、导数的计算法则1. 常数法则:若f(x) = c(c为常数),则f'(x)=0。

2. 幂的法则:若f(x) = x^n(n为正整数),则f'(x)=nx^{n-1}。

3. 基本初等函数的求导法则:对于常见的基本初等函数 f(x),可以利用以下规则求导:a) f(x) = c(c为常数),则f'(x)=0。

b) f(x) = e^x,则f'(x)=e^x。

c) f(x) = a^x(a为正常数且不等于1),则f'(x)=a^x·lna。

d) f(x) = \ln{x},则f'(x)=\frac{1}{x}。

e) f(x) = \sin{x},则f'(x)=\cos{x}。

f) f(x) = \cos{x},则f'(x)=-\sin{x}。

g) f(x) = \tan{x},则f'(x)=\sec^2{x}。

h) f(x) = \cot{x},则f'(x)=-\csc^2{x}。

i) f(x) = \sec{x},则f'(x)=\sec{x}·\tan{x}。

j) f(x) = \csc{x},则f'(x)=-\csc{x}·\cot{x}。

三、导数的运算法则1. 和差法则:设函数u(x)和v(x)都在x点可导,则(u(x)±v(x))' = u'(x) ± v'(x)。

导数的概念和运算

导数的概念和运算

高三数学 第3讲 导数的概念及运算一.知识要点(一)导数的概念1. 平均变化率:对于函数()y f x =,如果自变量x 在处有增量x ∆,那么函数y 有相应地有增量 00()()y f x x f x ∆=+∆-,比值y x ∆∆叫做函数()y f x =在0x 到0x x +∆之间的平均变化率,即 0().f x x y x x+∆∆=∆∆ 2. 导数的定义:如果当0,y x x∆∆→→∆常数,就说函数()y f x =在点0x 处可导,并把这个常数叫做()f x 在点0x 处的导数(或变化率),记作0()f x '或0|x x y ='.3. 导数的几何意义:0()f x '的几何意义是曲线()y f x =在点(0x ,0()f x )处的切线的斜率;和瞬时速度就是位移函数s(t)对时间t 的导数.4. 导函数:如果函数()y f x =在开区间(,)a b 内每一点都可导,就说()y f x =在开区间(,)a b 内可导,这时对于区间(,)a b 内每一个确定的0x 值,都对应着一个导数0()f x ',这样就在开区间(,)a b 内构成一个新的函数,我们就把这一新函数叫做在开区间内的导函数,记作或()f x '.这样,函数()y f x =在0x x =处的导数就是导函数()f x '在0x x =的函数值.(二)基本函数的导数公式1、(),f x C =则()0;f x '=2、*()(),n f x x n N =∈则()0;f x '=3、()sin ,f x x =则()cos f x x '=;4、()cos ,f x x =则()sin ;f x x '=-5、(),x f x a =则()ln (0,0);x f x a a a a '=>≠6、(),x f x e =则();x f x e '=7、()log ,a f x x =则1();ln f x x a '=8、()ln ,f x x =则1();f x x'= (三)导数的运算法则1、[()()]()();f x g x f x g x '''+=+2、[()()]()()()();f x g x f x g x f x g x '''⋅=+3、2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦4、{[()]}(())().f g x f g x g x '''=⋅(复合函数导数) 二.学习目标1、理解函数导数的要概念,会用导数知识求曲线的切线及物理上瞬时速度和运动的加速度;2、会判断函数的单调性,会用导数知识来求函数的单调区间;3、会求给定区间上函数的最值(或极值);三.知识、方法与技能训练1、若0,x ∆→有00(2)()13f x x f x x+∆-=∆,则0'()f x 等于2、过点P(0,-2)作曲线 y = x 3 的切线,则此切线的斜率等于5、已知P (—1,1)为曲线上的点,PQ 为曲线的割线,若当0x → 时,K PQ → -2,则在点P 处的切线方程为 .6、函数3223125y x x x =--+在[0,3]上的最小值与最大值分别是四.典型例题讲解例1.已知抛物线2y ax bx c =++过点(—1,2)和(1,3),且过点(1,3)的切线的斜率为32-,试求抛物线的方程.变式训练1.偶函数432()f x ax bx cx dx e =++++的图象过点P(0,1),且在x =1处的切线方程为2y x =-,求()y f x =的解析式.变式训练2. 已知函数3()2f x x ax =+与2()g x bx c =+的图象都过点P (2,0),且在点P 处有公切线,求,,a b c 及(),()f x g x 的表达式.例2. 已知函数32()f x ax bx =+,曲线()y f x =过点P (-1,2),且在点P 处的切线恰好与直线30x y -=垂直.(1) 求,a b 的值;(2) 若在区间[,1]m m +上单调递增,(3) 求m 的取值范围.例3.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值, (1)求,a b 的值与函数()f x 的单调区间;(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求实数c 的取值范围.例4.从边长为2a 的正方形铁片的四个角各截去一小块边为x 的正方形(如右图所示),再将四边向上折起,做成一个无盖的正四棱柱铁盒,要求正四棱柱的高度x 与底面正方形边长的比值不超过常数t . 问:x 取何值时,容积V 有最大值.一.选做题部分1、函数2(21)y x =-在3x =处的导数为2、函数2()25f x x bx =+-在(2,3)上为减函数,则b 的取值范围是3、某汽车启动阶段的路程函数为32()25s t t t =-,求t =2秒时的汽车的加速度。

3.1 导数的概念及几何意义、导数的运算

3.1 导数的概念及几何意义、导数的运算

∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x

'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导

高三数学导数的概念及运算

高三数学导数的概念及运算

第5秒的瞬时速度s’(5)
5
f’(5)
第t秒的瞬时速度 s’(t)
t
s’(t)
函数y=f(x)在开区间内的导函数 如果函数y=f(x)在(a,b)内每点都有导数,
此时对于每一个x∈(a,b) ,都对应着一个确 定的导数f’(x),从而构成了一个新的函数f’(x)。 称简这称个导函数数,f’为(x0函)=数∆lxyim=f0f((xx)0在+∆∆开xx)区- f间(x0内) 的导函数,
4、求曲线y=x3-3x2+1在点P(3,1)处的 切线的方程。
4、求曲线y=x3-3x2+1在点P(3,1)处的 切线的方程。
设切点x2-6x 由几何意义 k= 3x02-6x0 过点Q(1,1)
切点在曲线上 y0=x03-3x02+1
切点在切线上 y0-1=k(x0-3)
炼器至尊,九品下の实力,凭借手中奇异の宝物,实力居然能比九品上! 风月君主从不参与各大势力の纷争,就算风月大陆各大世家明争暗斗,他都很少管.只要不触犯他订下の几条规矩就没事,一心钻研炼器,所以他炼器の水平已经达到一些极其高深の水平.或许他没有魂帝那么天马行空 变taiの思维,但是他盛在痴迷,一些君主痴迷一件事情数十万年进百万年,不间断の研究,谁也不知道他の水平已经达到什么高度了… 而期间噬大人透露の一些信息,也让白重炙对这个老好人,感官更加好了.恶魔降临之时,一直很少出关の风月君主第一站了出来,开始召集各君主,甚至派 人去了不少秘境请那几位老东西出山.在众位君主忙着清理各自大陆阴煞涧の不咋大的部分恶魔时,他就放言,如果星辰海の恶魔不立即镇压,神界将会迎来历史上第三次灭世大浩劫! 结果…各路巅峰强者,刚准备去风月大陆汇集の时候,妖智开始暴动了! 第一波浩劫来临,就在昨日风 云君主再次传讯了,今日妖月升起之

导数概念及几何意义意义-2023届高三数学二轮复习讲义

导数概念及几何意义意义-2023届高三数学二轮复习讲义

目录4.1 导数的概念及运算..................................................................................................................... 1 4.2 导数的几何意义 .. (14)4.1 导数的概念及运算【知识点一】一、导数的基本概念 1.函数的平均变化率:2.函数的瞬时变化率、函数的导数:3.设函数的图象如图所示.为过点与的一条割线.由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率.当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率.由导数意义可知,曲线过点的切线的斜率等于.()y f x =AB 00(,())A x f x 00(,())B x x f x x +∆+∆00()()f x x f x y x x+∆-∆=∆∆B A AB A AD AD A 000()()limx f x x f x x∆→+∆-=∆AD ()y f x =00(,())x f x 0()f x '二:导数公式,为正整数(0,)αα≠∈Q ,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数.注意.()y f x =()y f x ''=y c =0y '=n y x =()n +∈N 1n y nx -'=n y x α=1y x αα-'=αx y a =(0,1)a a >≠ln x y a a '=log a y x =(0,1,0)a a x >≠>1ln y x a'=sin y x =cos y x '=cos y x =sin y x '=-e a e e π2.7182818284e =()x x e e '=【典型例题】考点一: 导数的基本概念例1.如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f =_____;函数()f x 在1x =处的导数'(1)f =_____.练1.已知函数()f x 在0x x =处可导,则000(3)()lim x f x x f x x∆→+∆-=∆_____0'()f x .练2.设函数2()24f x x =-的图像上一点(1,2)以及邻近一点(1,2)x y +∆+∆,则yx∆∆等于__________.考点二: 导数公式及其应用例1.求下列函数的导数: 3x ,13x ,21x练1.求下列函数的导数: x ,3log x ,cos x练2.下列结论不正确的是 A .若3y =,则'0y = B .若3x y =,则1'3x y x -=-⋅C .若y x =-则'2y x=D .若3y x =,则'3y =【知识点二:导数的四则运算法则】(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即两个函数的和(或差)的导数,等于这两个函数的导数和(或差). (2)函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即常数与函数之积的导数,等于常数乘以函数的导数.(3)函数的商的求导法则: 设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()[]()()f xg x f x f x g x g x g x ''-'=. 特别是当()1f x ≡时,有21()[]()()g x g x g x ''=-.【典型例题】例1.求下列函数的导数:(1)()3sin=;f x x x(2)()ln x=;f x e x(3)()sin xf x=;x(4)()tanf x x=.例2.2=+-的导数为()(2)()f x x a x aA.22x a2()+ 2()x a-B.22 C.22x a+3() 3()x a-D.22练习1.求下列函数的导数:2xx e 1ln x211x x ++练习2.求下列函数的导数: (1)()e sin x f x x -=;(2)2()()ln f x x x x =-; (3)2()()e x f x x ax a -=-+⋅;(4)()3ln x f x x =.【知识点三:复合函数求导】一般地,对于两个函数()y f u =和()u g x =,如果通过变量,u y 可以表示成x 的函数.那么称这个函数为函数()y f u =和()u g x =的复合函数,记(())y f g x =.复合函数(())y f g x =的导数和函数(),y f u =()u g x =的导数间的关系为'''x u x y y u =⋅ (注:'x y 表示y 对x 的导数,'u y 表示y 对u 的导数)【典型例题】例1.(1)函数2sin y x =的导数是_____.(2)函数2412x y e +=的导数是_____.(3)函数2(1cos )y x =-的导数是_____.(4)设3121y x =+,则y '=_____.2'2cos y x x =练习1.求下列复合函数的导数:(1)2()ln(5)f x x =+;(2)10(35)()x f x x +=;(3)1()ln()1xf x x+=-.【小试牛刀】1.已知函数()f x 在1x =处可导,则0(1)(1)__________lim3x f x f x∆→+∆-=∆.2.求下列函数的导数: (1)ln y x = (2)53y x = (3)2x y =3.求下列函数导数值: (1)()f x x =,求(1)f ',1()2f '(2)()sin f x x =,求π()4f '(3)2()log f x x =,求1()2f '4.求下列函数的导数: (1)2()2ln f x x x =+(2)3()x f x x e =+【巩固练习——基础篇】1.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在13t t ==到的平均速度为v ,在2t =的舒适速度为2v ,2v v 和关系为A .2v v >B .2v v <C .2v v =D .不能确定2. 已知函数()f x 和()g x 在区间[]a b ,上的图像如图所示,纳闷下列说法正确的是A .()f x 在a 到b 之间的平均变化率大于()g x 在a 到b 之间的平均变化率B .()f x 在a 到b 之间的平均变化率小于()g x 在a 到b之间的平均变化率C .对于任意0()x a b ∈,,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D .存在0()x a b ∈,,使得函数()f x 在0x x =处的瞬时变化率总小于函数()g x 在0x x =处的瞬时变化率3.求下列函数在给定点的导数 (1)34=16y x x =, (2) sin =2y x x π=, (3)cos =2y x x π=,4.已知函数,则的最小正周期是;如果的导函数是,则________.21()sin 23cos 2f x x x =+()f x ()f x ()f x '()6f π'=t 4t 3t 2100t 1tOV5.求下列函数的导数:(1)()sin cos 22x xf x x =-(2)()sin(21)x f x e x =+6.求下列函数的导数: (1)()sin(ln )f x x =;(2)43()(21)f x x +【巩固练习——提高篇】1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为3(m /)v h .那么瞬时融化速度等于3(m /)v h 的时刻是图中的A .1tB .2tC .3tD .4t2.已知函数,则A .B .C .D .03.设函数,其中,则导数的取值范围是A .B .C .D .4.设、是上的可导函数,、分别是、的导函数,且,则当时,有A .B .C .D .5.已知是定义在(0,+∞)上的非负可导函数,且满足,对任意正数、,若<,则,的大小关系为A .<B .=C .≤D .≥6.求下列函数的导数:()(1)(2)(3)(100)f x x x x x =----(1)f '=99!-100!-98!-()32sin 3cos tan 3f x x x θθθ=++5π012θ⎡⎤∈⎢⎥⎣⎦,()1f '[]22-,23⎡⎤⎣⎦,32⎡⎤⎣⎦22⎡⎤⎣⎦()f x ()g x R ()f x '()g x '()f x ()g x ()()()()0f x g x f x g x ''+<a x b <<()()()()f x g x f b g b >()()()()f x g a f a g x >()()()()f x g b f b g x >()()()()f x g x f a g a >()f x '()()0xf x f x ->a b a b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b(1)1()sin tan ln cos f x x x x x=++; (2)2()cos(ln(1))f x x =+;(3)121()()xf x e x a x=++.7.已知1()sin cos f x x x =+,记21()'()f x f x =,32()'()f x f x =,…,1()'()(,2)n n f x f x n N n *-=∈≥,则122018()()()_________222f f f πππ+++=.4.2 导数的几何意义【课前诊断】成绩(满分10分):_____ 完成情况: 优/中/差1.曲线在处切线的倾斜角为A .B .C .D .2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.3. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;4.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;313y x =1=x 1π4-π45π4【知识点一:切线的求法】1、曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线,则需分点00(,)P x y 是切点和不是切点两种情况求解.(1)当点00(,)P x y 是切点时,切线方程为000()()y y f x x x '-=-; (2)当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x f x x x '-=-,可得切线方程. 2、求曲线=()y f x 的切线方程的类型及方法(1)已知切点00(,)P x y ,求=()y f x 过点P 的切线方程:求出切线的斜率0()f x ',由点斜式写出方程;(2)已知切线的斜率为k ,求=()y f x 的切线方程:设切点00(,)P x y ,通过方程0()k f x '=解得0x ,再由点斜式写出方程;(3)已知切线上一点(非切点),求=()y f x 的切线方程:设切点00(,)P x y ,利用导数求得切线斜率0()f x ',再由斜率公式求得切线斜率,列方程(组)解得0x ,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由0()k f x '=求出切点坐标00(,)x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典型例题】考点一:导数的几何意义例1.若过曲线上的点的切线的斜率为, 则点的坐标是.例2. 已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;练习1.已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;练习2. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;()ln f x x x =P 2P ______例1.曲线在处的切线方程为A .B .C .D .例2.曲线在处切线的倾斜角为A .B .C .D .练习1.曲线在点处的切线方程是 A . B . C . D .练习2.已知函数()(sin )ln f x x a x =+,a ∈R .若0a =,求曲线()y f x =在点(,())22f ππ处的切线方程;练习3.已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值;e ()1xf x x =-0=x 10--=x y 10++=x y 210--=x y 210++=x y 313y x =1=x 1π4-π45π42()1xf x x =+(1,(1))f 1x =12y =1+=x y 1-=x y例1.曲线在点处的切线经过点,则.例2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.练习1. 已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;考点四: 切线证明例1.已知函数()e (sin cos )x f x x x =+.(切线斜率)(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.练1.已知函数()3(0)ax f x e ax a =--≠.()e x f x =00(,())x f x (1,0)P 0=x ______(Ⅱ)当0a >时,设211()32ax g x e ax x a =--,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.例2.已知函数32()f x x ax =-.(3a >)(切线个数) (Ⅱ)求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切.练2.已知函数321()3()3f x x x ax a =--∈R .(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.例3.已知函数()1e 1x x x f x --+=.(公切线问题)(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =练3.已知函数()ln,()x==.f x xg x e(Ⅲ)判断曲线()f x与()g x是否存在公切线,若存在,说明有几条,若不存在,说明理由.【小试牛刀】1.若曲线的某一切线与直线垂直,则切线坐标为.2.已知函数()e cos x f x x x =-. (Ⅰ)求曲线在点处的切线方程; 23122y x x =+-134y x =-+______()y f x =(0,(0))f1.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;2.已知函数321()3f x ax x bx c =+++. 曲线()y f x =在点()0,(0)f 处的切线方程为1y x =+.(Ⅰ)求b ,c 的值;3. 已知函数().xe f x x= (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;1.已知函数()ln sin(1)f x x a x =-⋅-,其中a ∈R . (Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值;2.设函数32()(1)f x x b x bx =-++.(切线斜率) (Ⅱ)当1b >时,函数()f x 与直线y x =-相切,求b 的值;3.已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;5.已知函数2()(0)f x ax bx a=->和()lng x x=的图象有公共点P,且在点P处的切线相同.(公切线问题)(Ⅰ)若点P的坐标为1(,1)e-,求,a b的值;(Ⅱ)已知a b=,求切点P的坐标.。

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习
读 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能
求简单的复合函数(限于形如f ax + b )的导数.会使用导数公式表.
01
强基础 知识回归
知识梳理
一、导数的概念
1.平均变化率
函数f x
f x2 −f x1
x2 −x1
在区间[x1 , x2 ]上的平均变化率为__________.






− − = ,得切线的斜率 = ,所以 − = ,得 = ,所以 = + .








当 = 时, = ,所以切点为 , ,将 , 代入切线方程,得 × − − = ,







解得 = ,所以 = × = .故答案为 .
(2)对解析式中含有导数值的函数,即解析式类似f x = f′ x0 g x + h x
(x0 为常数)的函数,解决这类问题的关键是明确f′ x0 是常数,其导数值为0,因此
先求导数f′ x .令x = x0 ,即可得到f′ x0 的值,进而得到函数解析式,求得所求导数
值.
题型二 求切线方程
角度1 曲线在某点处的切线问题
A.y = −2x − 1
B.y = −2x + 1
C.y = 2x − 3
B)
D.y = 2x + 1
[解析] ∵ = − ,∴ ′ = − ,∴ = −,′ = −,∴ 所
求切线的方程为 + = − − ,即 = − + .故选B.

高三导数都学什么知识点

高三导数都学什么知识点

高三导数都学什么知识点导数是高中数学课程中的重要内容之一,它是微积分学的基础知识,具有广泛的应用领域。

在高三阶段,学生需要掌握并深入理解导数的各种概念、性质和应用。

本文将介绍高三阶段学习导数所需的主要知识点。

一、导数的定义导数的定义是理解导数概念的重要起点。

导数可以理解为函数在某一点处的瞬时变化率,它表示函数曲线在该点的切线斜率。

导数的定义主要分为几何定义和极限定义,学生需要熟练掌握两种定义的形式及其间的相互转换。

二、导数的基本性质1. 导数的可导性:学生需要掌握函数在某一点可导的条件,以及可导函数的充要条件。

2. 导数的四则运算法则:学生需要了解导数的四则运算规则,包括常数倍法则、和差法则、乘积法则和商法则,能够应用这些法则求解导数。

3. 复合函数的导数:学生需要掌握复合函数导数的链式法则,即复合函数的导数等于外函数的导数乘以内函数的导数。

4. 反函数的导数:学生需要了解反函数导数与原函数导数的关系,能够通过已知原函数导数求解反函数导数。

三、高阶导数与导数的应用1. 高阶导数:学生需要了解高阶导数的概念,即对函数的导数再求导数。

对于常见的函数,如多项式函数、三角函数和指数函数,学生需要能够计算其高阶导数。

2. 极值问题:学生需要掌握极值问题的解法,包括利用导数判定函数的极值和求解极值点的方法。

同时,还要学会应用拉格朗日乘数法解决含有约束条件的极值问题。

3. 函数的图像与导数:学生需要了解函数的导数与函数图像的关系,通过导数的符号表述,判断函数在不同区间的单调性、凹凸性以及极值情况。

4. 应用问题:学生需要学会将导数应用于实际问题的解决。

例如,利用导数求解最优化问题、求曲线的切线和法线、求解最大最小值等。

四、其他导数的知识点除了上述主要知识点外,高三阶段还需要学习和掌握导数的其他相关知识,如导数的应用于函数的增减性、导函数与导数的关系、不定积分与原函数等。

总结起来,高三导数的学习内容主要包括导数的定义、导数的基本性质、高阶导数与导数的应用以及其他导数的知识点。

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

A.e+e1+2 B.-e+e1+2
C.2
D.-2
答案:B
解析:因为f(x)=ln x-f′(1)ex+2, 则f′(x)=1x-f′(1)ex, 则f′(1)=1-f′(1)e, 即则ff′((11))==-e+1e1+e,1+2.故选B.
5 . ( 易 错 ) 过 原 点 与 曲 线 y = (x - 1)3 相 切 的 切 线 方 程 为 _y_=__0_或_2_7_x_-__4_y=__0__.
A.12 B.20 C.10 D.24
答案:D
解析:由题意得f′(x)=3x2-2,故f′(2)=3×4-2=10,则f(x)=x3-2x+20,故 f(2)=8-4+20=24.故选D.
题后师说
巩固训练1
(1)(多选)[2024·吉林长春模拟]已知下列四个命题,其中不正确的是
()
A.(e2x)′=2e2x
3

(




)

线
y

x2

3 x
在 点 (1 , 4) 处 的 切 线 方 程 为
____x_+_y_-__5_=_0_____.
解析:∵y′=2x-x32, ∴y′|x=1=2-3=-1. ∴所求切线方程为y-4=-(x-1), 即x+y-5=0.
4.(易错)已知函数f(x)=ln x-f′(1)ex+2,则f(1)=( )
(1)
1 fx
′=__-__ff′_xx_2__(f(x)≠0).
(2)[exf(x)]′=_e_x[_f_(x_)_+_f_′(_x_)]_.
f′ x − f x
(3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个人怎样才能跟自己的房子产生剥离不开的感情呢?最好的办法就是参与它的建设。这其实跟人与人通过陪伴来加深情感一样,能终生相伴相守的两个人,血脉相通,融为一体,是没有什么可以 分开彼此的。房子是有生命的,是有感情的,特别是你一手建造起来的房子,他的生命就是你挨家挨户做工作,苦口婆心的劝说,最后大家伙儿为了大局,还是响应了号召,同意拆迁。虽然我家的老屋 破旧不堪不再住人,可父亲的三间瓦房看起来依然抖擞着精神。在村干部的千催万促下,磨磨蹭蹭的父亲不得已只有揭瓦推墙。房子历经近三十年的风雨,内里已然老朽,瓦酥砖脆,梁旧椽枯,但父亲 仍然舍不得丢弃,他和弟弟将拆下来的砖瓦梁席堆放得整整齐齐,说还能再用。其实哪里用得上它们,那时我和弟弟在街边各自都起了两层小楼,那些东西已然派不上用场。推墙的时候,父亲绕着房子 走了一圈又一圈,东南西北一堵堵的看下去,说是找寻下手的地方。孤零零的四面墙体,从哪儿放不倒呢?我心里清楚,那是父亲最后一次逡巡自己的宫殿,内心深处他是需要这种形式的,尽管他无法 达到这样的思想深度。墙体轰然倒地,这一声声巨响意味着一个时代的终结,这个时代是父亲那辈人用一双生满老茧的手建立起来的。那天晚上,父亲住进我单位空置的宿舍,一句话都没有,闷闷的喝 酒吃菜。于他而言,只不过是又多了个无眠之夜罢了。

一切进展都很顺利,开工不到一个月,第一层就拔地而起。那时已是初夏的时节,放了暑假的我每天都待在工地上,跟瓦工师傅们一样,穿梭在脚手架间,扮演着他们急需的角色。一会做个拎灰的 小工,一会儿又成搭板的木工,这边抬着钢筋刚放下,那边就有人喊着我去帮忙搬砖......我享受着这种忙碌,每一次跟师傅搭完手,我都会产生一种由衷的满足,我知道我在我的房子上又镌刻下一道印 记,又倾注了一份心血,这一举手一投足不断加固着我跟这座建筑物之间的联系。好料集中营
相关文档
最新文档