2019年八年级数学下册第六章平行四边形知识点归纳(新版)北师大版

合集下载

平行四边形的性质一-北师大版八年级数学下册课件

平行四边形的性质一-北师大版八年级数学下册课件

知识点二:运用平行四边形的性质2计算
【 例2 】四边形ABCD是平行四边形,∠D=120°,∠CAD=32°.则
∠ABC、∠CAB的度数分别为( D )
A.28°,120°
B.120°,28°
C.32°,120°
D.120°,32°
归纳与小结:平行四边形对角 及同旁内角之间的关系。
,平行四边形中应用对边平行寻找内错角,同位角
四、当堂检测: 1.如图1,□ABCD,∠B+∠D=128°,则∠B=_____6_4____度,∠C=___1_1_6_____度. 2.□ABCD中,∠A∶∠D=3∶6,则∠C的度数是( A )
A.60°
B.120° C.90°
D.150°
3.如图2,□ABCD中,AB=2,BC=3,∠B、∠C的平分线分别交AD于E、F,则EF的 长为( D )
02
课堂学习
Life isn't about waiting for the storm to pass. it's about learning to dance
探索平行四边形边、角的性质
归纳小结:①平行四边形的对边
.
几何语言:四边形ABCD为平行四边形

,
.
②平行四边形的对角
.
几何语言:四边形ABCD为平行四边形
巩固练习:
1.ABCD中,若∠A∶∠B=1∶3,那么∠A=___6_0___,∠B=__1_2_0___,∠C=__6_0____,
∠D=__1_2_0___.
2. 在□ABCD中,∠A+∠C=270°,则∠B=__4__5__,∠C=__1_3__5_.
3.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( D)

北师大版数学八年级下册 6.1.2平行四边形的性质课件

北师大版数学八年级下册 6.1.2平行四边形的性质课件

活动探究
探究点一 问题2:如图,□ABCD的对角线AC、BD相交于点O,E F过点O且与AB、CD 分别相交于点E、F,求证:OE=OF. 证明:∵四边形ABCD是平行四边形, ∴BO=DO,AB∥CD. ∴∠ABO=∠CDO. 又∵∠BOE=∠DOF , ∴△BOE≌△DOF. ∴OE=OF.
活动探究
解:∵▱A BCD的对角线AC,BD相交于点O,AC=12,BD=18, ∴AO=12AC=6,BO=12 BD=9. 又∵△AOB的周长l=23, ∴AB=l-(AO+BO) =23-(6+9)=8.
课堂小结
平行四边形的性质 对称性:平行四边形是 中心对称图形,两条对角线的交点是它的对称中心; 边:对边平行且相等; 角:对角相等,邻角互补. 对角线:相互平分
探究点二 问题1:如图, □ABCD的对角线AC、BD相交于点O, ∠ADB=90º,OA=6,0B=3. 求AD和AC的长度. 解:在□ABCD中,对角线AC、BD相交于点O ∴OD=OB=3 ∠ADB=90º 在Rt∆AOD中,
AD = OA2 - OD2 = 62 + 32 = 3 3, AC=2OA=2×6=12 所以,AD和AC的长度分别为 3 3 和12.

11、一个好的教师,是一个懂得心理 学和教 育学的 人。21. 4.3013: 39:1113 :39Apr-2130-A pr-21

12、要记住,你不仅是教课的教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。13:39: 1113:3 9:1113: 39Frida y, April 30, 2021
6.1 平行四边形的性质第源自课时八年级下册-学习目标 1 掌握平行四边形对角线互相平分的性质; 2 利用平行四边形对角线的性质解决有关问题.

北师大版八年级下册数学第六章平行四边形全章教案

北师大版八年级下册数学第六章平行四边形全章教案
2.教学难点
-平行四边形性质的推理:对于初学者来说,理解平行四边形性质背后的推理过程可能存在困难,如对角相等、对角线互相平分等。
-特殊平行四边形的判定:学生可能难以区分矩形、菱形、正方形之间的判定条件,特别是它们之间的关系。
-面积公式的运用:学生在运用面积公式进行计算时,可能会对公式的选择和应用场景产生混淆。
-实际问题的解决:将数学知识应用于实际问题时,学生可能难以找到合适的数学模型,从而无法解决问题。
举例:针对难点内容,教师可以通过以下方法帮助学生突破:
-设计具有启发性的问题,引导学生通过观察、猜想、验证等方式,探索平行四边形的性质。
-使用多媒体教学资源,如动画、图片等,直观地展示特殊平行四边形的判定方法和性质。
3.平行四边形的面积
-平行四边形面积公式
-矩形、菱形、正方形面积公式的推导与应用
4.实际应用
-利用平行四边形的性质解决实际问题
-在实际情境中识别和应用特殊平行四边形
5.探究活动
-探索平行四边形的性质
-体验特殊平行四边形的特征与应用
本章内容旨在帮助学生掌握平行四边形的性质与判定,理解特殊平行四边形之间的关系,并能运用相关知识解决实际问题。通过探究活动,培养学生的观察、分析、推理能力和团队合作精神。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版八年级数学下册 平行四边形的判定定理(提高)知识讲解 含答案解析

北师大版八年级数学下册 平行四边形的判定定理(提高)知识讲解  含答案解析

平行四边形的判定定理(提高)责编:杜少波【学习目标】1.平行四边形的四个判定定理及应用,会应用判定定理判断一个四边形是不是平行四边形.2.会综合应用平行四边形的性质定理和判定定理解决简单的几何问题.【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3. 两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定1、如图,点A、B、C在正方形网格的格点上(小正方形的边长为单位1).(1)在图中确定格点D,并画出以A、B、C、D为顶点的平行四边形.(2)若以C为原点,BC所在直线为x轴,建立直角坐标系,则你确定的点D的坐标是________________.【思路点拨】(1)分为三种情况:以AC为对角线时、以AB为对角线时、以BC为对角线时,画出图形,根据A、B、C的坐标求出即可;(2)在(1)的基础上,把y轴向左平移了一个单位,根据平移性质求出即可.【答案与解析】(1)解:从图中可知A(-3,2),B(-4,0)C(-1,0),以AB为对角线时,得出平行四边形ACBD1,D1的坐标是(-6,2),以AC为对角线时,得出平行四边形ABCD2,D2的坐标是(0,2),以BC为对角线时,得出平行四边形ABD3C,D3的坐标是(-2,-2),(2)解:以C为原点,BC所在直线为x轴,建立直角坐标系,D的坐标是(-1,2),(1,2),(-5,2),故答案为:(-1,2)或(1,2)或(-5,2).【总结升华】本题考查了平行四边形的性质和坐标与图形性质的应用,主要考查学生能否运用平行四边形的性质进行计算,注意:一定要进行分类讨论.举一反三【变式】(2016•呼伦贝尔)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.2、类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1};(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量” {1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗?在图1中画出四边形OABC .②证明四边形OABC 是平行四边形.(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头Q (5,5),最后回到出发点O .请用“平移量”加法算式表示它的航行过程.【思路点拨】(1)本题主要是类比学习,所以关键是由给出的例题中找出解题规律,即前项加前项,后项加后项.(2)根据题中给出的平移量找出各对应点,描出各点,顺次连接即可.(3)根据题中的文字叙述列出式子,根据(1)中的规律计算即可. 【答案与解析】 解:(1){3,1}+{1,2}={4,3};{1,2}+{3,1}={4,3}.(2)①画图最后的位置仍是B .②证明:由①知,A (3,1),B (4,3),C (1,2)∴OC=AB=22125+=,OA=BC=223110+=,∴四边形OABC 是平行四边形.(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【总结升华】本题考查了几何变换中的平移变换,解答本题关键是仔细审题,理解题目给出的信息,对于此类题目同学们不能自己凭空想象着解答,一定要按照题目给出的思路求解,克服思维定势.举一反三:【变式】一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(-2)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移|a|个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移|b|个单位),则把有序数对{a ,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a ,b}+{c ,d}={a+c ,b+d}.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA平移一周.请用“平移量”加法算式表示动点P的平移过程.【答案】解:(1){3,1}+{1,2}={4,3};(2)B点坐标为:(1+2,1+1)=(3,2);C点坐标为:(3-1,2+2)=(2,4);D点坐标为:(2-2,4-1)=(0,3);①如图所示:②D(0,3).(3)点A至点E,向右平移1个单位,向下平移2个单位;点E至点B,向右平移1个单位,向上平移3个单位;点B至点A,向左平移2个单位,向下平移1个单位;故动点P的平移过程可表示为:{1,-2}+{1,3}+{-2,-1}.3、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD 是平行四边形,∴OD=OB ,OA=OC ,∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO ,∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO ≌△EBO (AAS ),∴OF=OE ,∴四边形AECF 是平行四边形.【总结升华】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.类型二、平行四边形的性质定理与判定定理的综合运用4、(2015•河南模拟)如图,△ABC 中AB=AC ,点D 从点B 出发沿射线BA 移动,同时,点E 从点C 出发沿线段AC 的延长线移动,已点知D 、E 移动的速度相同,DE 与直线BC 相交于点F .(1)如图1,当点D 在线段AB 上时,过点D 作AC 的平行线交BC 于点G ,连接CD 、GE ,判定四边形CDGE 的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】解:(1)∵四边形ABCD是平行四边形,∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.5、如图,已知在Y ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA 和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD ,AB ∥CD ,根据两直线平行内错角相等得∠GBE=∠HDF .再由SAS 可证△GBE ≌△HDF ,利用全等的性质,证明∠GEF=∠HFE ,从而得GE ∥HF ,又GE=HF ,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF .又∵AG=CH ,∴BG=DH .又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE ,∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形.举一反三【变式】如图,Y ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩∴△ABE ≌△CDF (AAS ),∴BE=DF ,∴BO-BE=DO-DF ,即:EO=FO,同理:△ABG≌△CDH,∴AG=CH,∴AO-AG=CO-CH,即:GO=OH,∴四边形GEHF是平行四边形.。

北师大版八年级下册第六章:平行四边形专题三【三角形中位线】知识点总结经典例题变式训练(无答案)

北师大版八年级下册第六章:平行四边形专题三【三角形中位线】知识点总结经典例题变式训练(无答案)

第六章 平行四边形三角形的中位线例1:如图,D 、E 、F 分别是△ABC 三边的中点.G 是AE 的中点,BE 与DF 、DG 分别交于P 、Q 两点.求PQ:BE 的值。

例2:如图,在△ABC 中,AC>AB ,M 为BC 的中点.AD 是∠BAC 的平分线,假设CF ⊥AD 交AD的延长线于F.求证:MF1ACAB 。

2例3:如图3,在△ABC 中,AD 是△BAC 的角平分线,M 是BC 的中点,ME ⊥AD 交AC 的延长线于.且 CE1 ACB=2B 。

ECD.求证:∠2∠例4:如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F。

求证:BE1BD。

2挑战自我,勇攀高分稳固根底练1.△ABC周长为16,D、E分别是AB、AC的中点,那么△ADE的周长等于()在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么△PDE面积是△ABC'面积的()A.1B.1C.1D.1 23483.如图,在四边形ABCD中,E、F分别为AC、BD的中点,那么EF与AB+CD的关系是()A.2EFAB CDB.2EFABCDC.2EFABCDD.不确定D CE F A B4.如图,∥,、F 分别是、的中点,且,,那么的长为。

AB CDE BC AD AB=aCD=b EF如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,假设∠DAC=200,∠ACB=600,那么∠FEG=。

如图,△ABC的周长为1,连接△ABC三边的中点构成第二个三角,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为。

7.三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线长。

8.如图,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE。

9.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD。

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

《平行四边形》题型解读6 多边形的内角和与外角和计算题型【知识梳理】1.多边形的内角和公式:(n-2)×180º;2.多边形的外角和会等于360º,它是个定值,与边数无关;3.正多边形的定义:每条边均相等,每个内角均相等的多边形是正多边形;【典型例题】例1.正十边形的每一个内角的度数为_______【解析】:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;例2.一个五边形的内角和为________【解析】:根据正多边形内角和公式:180°×(5﹣2)=540°,一个五边形的内角和是540度,例3.已知一个多边形的内角和是900º,则这个多边形是____边形。

【解析】依多边形内角和公式求解,即(n-2)×180º=900º,解得n=7,∴这个多边形是七边形。

例4. 已知一个多边形的每个内角均是108º,则这个多边形是____边形。

【解析】依平角定义及多边形外角和公式求解,由内角是108º可得它的外角是72º, 360º÷72º=5∴这个多边形是五边形。

例5.若正多边形的一个外角是60°,则该正多边形的内角和为______【解析】:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.例6. 已知一个多边形的内角和等于它的外角和的2倍,则这个多边形是____边形。

【解析】依多边形内角和公式及外角和公式求解,即(n-2)×180º=720º,解得n=6,∴这个多边形是六边形。

例7.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.【解析】:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.例8.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .【解析】:这个正多边形的边数为360°÷60°=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.例9.已知正n 边形的每一个内角为135°,则n= .【解析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多 边形的边数.多边形的外角是:180°﹣135°=45°,n=360°÷45°=8例10.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .【解析】:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°÷30°=12,例11.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【解析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.解:n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.例12.将一个多边形截去一个角后,形成另一个多边形,这个新的多边形内角和为720º,则原多边形的边数为____【解析】一个多边形截去一个角,存在三种情况:①减少一条边;②增加一条边;③边数不变,所以需分三种情况进行讨论.由多边形内角和公式可得:(n-2)×180º=720º,解得n=6,∴新多边形是六边形。

北师大版八年级数学下册第六章平行四边形同步串讲课件

北师大版八年级数学下册第六章平行四边形同步串讲课件

2. 3.
【例2】l1∥l2∥l3 , L1与l2之间的距离为2, l2 与l3之间的距离为3,若点A、B、C分别 在直线l1、l2、l3 上,且AC⊥BC, AC=BC,求AB的长。 l
1
A l2 l3 E C 如图作辅助线BE、AD证明△ADC≌△CEB--------D B
三. 总结 类别 性质 条件:∵ 四边形是平行四边形 两组对边分别平行 两组对边分别相等 一组对边平行且相等 两组对角分别相等 对角线互相平分 结论:∴ 对应边平行且相等 对角相等邻角互补 对角线互相平分
A
E
D
B
F
C
【典例4】□ABCD中,对角线AC、BD相交 于O点,经过O点的直线交AB于E点,交 CD于F点,求证:OE=OF
A D 0 F
E B
C
【典例5】 □ABCD中,F是BC的中点,连 接DF并延长,交AB的延长线于E点。 求证:AB=BE D
F A
C
B
E
第二单元:平行四边形的判定
A
∵OA=OB,OC=OD ∴四边形ABCD 是平行四边形。
【典例1】
在平行四边形ABCD中,周长为24cm, A AD-AB=4cm且 ∠A:∠B=3:1 , 1)求AB的长度 2)求∠C 的度数。
D
解: 1)∵AD+AB=12 AD-AB=4 2) ∵AD∥BC ∴ AB=4cm
B
C
∴ ∠A+ ∠B = 180° ∴ ∠A= 135° (∠B = 45°)
2. 3. 4.
5. 6. 7. 8.
【例1】如图AB∥GH∥CD,AD∥EF∥BC 则图中的平行四边形有( )
A. B. C. D. 7个 8个 9个 10个

第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)

第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)

第18讲平行四边形的判定目标导航1.掌握平行四边形性质与判定定理。

2.会应用平行四边形的性质与判定定理解决相关的几何证明和计算问题.知识精讲知识点01 平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.【知识拓展】(2021秋•芙蓉区校级期末)如图,在▱ABCD中,∠ABC的平分线交AD于E,∠BEA=30°,则∠A的大小为()A.150°B.130°C.120°D.100°【即学即练1】(2022•乐清市一模)如图,在▱ABCD中,AB=BE,∠C=70°,则∠BAE的度数为()A.35°B.45°C.55°D.65°【即学即练2】(2022春•睢宁县月考)▱ABCD的对角线相交于点O,BD=14,AC=10,则BC的长可以是()A.8B.20C.14D.22知识点02 平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.【知识拓展】(2021秋•芝罘区期末)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC 上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t(s),则当以A、M、E、F为顶点的四边形是平行四边形时,t的值是()A.B.3C.3或D.或【即学即练1】(2022春•金华月考)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD【即学即练2】(2022春•渝中区校级月考)在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB∥CD,∠A=∠C B.AB∥CD,AD=BCC.AB=BC,CD=DA D.∠A=∠B,∠C=∠D【即学即练3】(2022春•丹徒区月考)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,M 是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.知识点03 平行四边形的判定与性质平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.【知识拓展】(2021秋•仓山区校级期末)下列条件中,能判定四边形是平行四边形的是()A.一组对边平行B.对角线互相平分C.一组对边相等D.对角线互相垂直【即学即练1】(2021秋•开福区校级期末)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.【即学即练2】(2022春•九龙坡区校级月考)在四边形ABCD中,AC、BD交于点O,AD∥BC,BO=DO.(1)证明:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连接DE.若∠CDE=∠CBD=15°,求∠ABC的度数.【即学即练3】(2021秋•栖霞市期末)在△ABC中,∠C=90°,AC=6,BC=8,若以A,B,C,D为顶点的四边形是平行四边形,则此平行四边形的周长为.【即学即练4】(2021秋•栖霞市期末)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.【即学即练5】(2021秋•栖霞市期末)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.【即学即练6】(2021秋•曲阳县期末)如图所示,△AOD关于直线l进行轴对称变换后得到△BOC,则以下结论中,不一定正确的是(填字母序号)A.∠1=∠2B.∠3=∠4C.l垂直平分AB,且l垂直平分CDD.AC与BD互相平分【即学即练7】(2022春•渝水区校级月考)如图,在▱ABCD中,AB=8cm,AD=12cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止运动).设运动t(s)(其中t>0)时,以P、D、Q、B四点组成的四边形是平行四边形,则t 的所有可能取值为.能力拓展一.选择题(共2小题)1.(2019•湖北自主招生)如图,平行四边形DEFG 内接于△ABC,已知△ADE ,△EFC,△DBG的面积为1,3,1,那么▱DEFG的面积为()A.2B.2C.3D.42.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二.填空题(共2小题)3.(2019•湖北自主招生)如图,直线AB、IL、JK、DC互相平行,直线AD、IJ、LK、BC互相平行,四边形ABCD面积为90,四边形EFGH面积为55,则四边形IJKL面积为.4.(2017•金牛区校级自主招生)如图,点P是▱ABCD内一点,S△P AB=7,S△P AD=4,则S△P AC=.三.解答题(共8小题)5.(2017•市南区校级自主招生)如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若AB=AF,试判断四边形ACFD的形状,并说明理由.6.(2018•西湖区校级自主招生)如果用铁丝围成如图一样的平行四边形,需要用铁丝多少厘米?7.(2020•北碚区自主招生)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE =∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.8.(2019•麻城市校级自主招生)如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD 中点.求证:AP=BC.9.(2019•南岸区自主招生)如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.10.(2018•宝山区校级自主招生)AB∥CD,AB=15,CD=10,AD=3,CB=4,求S四边形ABCD.11.(2018•江岸区校级自主招生)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连接AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.12.(2019•渝中区校级自主招生)如图,平行四边形ABCD中,BD为对角线,点F在AB上,连接DF、CF,且BD=BC,过F点作FE⊥CB交CB的延长线于点E.(1)如图1,当F为AB的中点,∠A=60°,AD=2,求CE;(2)如图2,若∠FDB=2∠FCB,求证:FD=2BE.分层提分题组A 基础过关练一.选择题(共7小题)1.(2021•南岗区校级开学)在▱ABCD中,若∠A=38°,则∠C等于()A.142°B.132°C.38°D.52°2.(2021•唐山一模)证明:平行四边形的对角线互相平分.已知:如图四边形ABCD是平行四边形,对角线AC、BD相交于点O.求证:OA=OC,OB=OD,嘉琪的证明过程如图.证明过程中,应补充的步骤是()A.AB=CD,AD=BC B.AB∥BC,AD=BCC.AB∥CD,AD∥BC D.AB∥CD,AB=CD3.(2021秋•襄都区校级期末)平行四边形ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4.(2022•大渡口区模拟)如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°5.(2021秋•桓台县期末)如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°6.(2022春•洪泽区月考)平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和247.(2021秋•高新区校级期末)如图,点P是平行四边形ABCD边AD上的一点,E,F分别是BP,CP的中点,已知平行四边形ABCD面积为24,那么△PEF的面积为()A.12B.3C.6D.4二.填空题(共4小题)8.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.9.(2022春•泰州月考)已知▱ABCD周长是48cm,AC和BD相交于O,且△AOB的周长比△BOC的周长小4cm,则CD的长是cm.10.(2022春•玉林月考)如图,在平行四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC =4,AC=10,则平行四边形ABCD的面积为.11.(2022春•洪泽区月考)在▱ABCD中,若∠B+∠D=160°,∠C=°.三.解答题(共4小题)12.(2021秋•沂源县期末)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.13.(2022春•泰州月考)如图所示,已知点E,F在▱ABCD的对角线BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)连接AF,CE,求证:四边形AECF是平行四边形.14.(2022春•东台市月考)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.求证:四边形EGFH是平行四边形.15.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.题组B 能力提升练一.选择题(共3小题)1.(2022春•盐都区月考)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.正确的个数是()A.1个B.2个C.3个D.4个2.(2022春•江都区月考)如图,在平行四边形ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E和F,若BE=6,则CF=()A.6B.8C.10D.133.(2021秋•莱州市期末)如图,在▱ABCD中,E是AD边的中点,BE平分∠ABC.若AB=2,则▱ABCD 的周长是()A.11B.12C.13D.14二.填空题(共4小题)4.(2022春•宝应县月考)在四边形ABCD中,分别给出四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.以其中的两个条件能判定四边形ABCD为平行四边形的有种不同的选择.5.(2022春•沭阳县月考)已知在平面直角坐标系中,有点O(0,0)、A(2,2)、B(5,2)、C这四点.以这四点为顶点画平行四边形,则点C的坐标为.6.(2022春•江都区月考)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=18,则△BOC的周长为.7.(2022春•江都区月考)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,2)、(﹣3,﹣4)、(2,﹣4),则顶点D的坐标是.三.解答题(共4小题)8.(2021秋•莱阳市期末)如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.9.(2021秋•东阳市期末)如图,在平行四边形ABCD中,AD=8,AB=12,∠A=60°,点E,G分别在边AB,AD上,且AE=AB,AG=AD,作EF∥AD、GH∥AB,EF与GH交于点O,分别在OF、OH上截取OP=OG,OQ=OE,连结PH、QF交于点I.(1)四边形EBHO的面积四边形GOFD的面积(填“>”、“=”或“<”);(2)比较∠OFQ与∠OHP大小,并说明理由.(3)求四边形OQIP的面积.10.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.11.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.题组C 培优拔尖练一.填空题(共8小题)1.(2021春•贵阳期末)如图所示,点O为▱ABCD内一点,连接BD,OA,OB,OC,OD,已知△BCO的面积为3,△ABO的面积为5,则阴影部分的面积是.2.(2021春•沙坪坝区校级期中)如图,在平行四边形ABCD中,∠A=90°,AD=10,AB=8,点P在边AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交CP于点F,过点M作ME⊥CP于E,则EF=.3.(2021春•永嘉县校级期中)如图所示,在平行四边形ABCD中,AB=3,BC=4,∠B=60°,E是BC 的中点,EF⊥AB于点F,则△DEF的面积为平方单位.4.(2020秋•仓山区校级期末)如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD 的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=.5.(2021春•武汉期末)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AD平分∠CAB交BC于点D,P为直线AB上一动点.以DP、BD为邻边构造平行四边形DPQB,连接CQ,若AC=4.则CQ的最小值为.6.(2021•太原一模)如图,在▱ABCD中,AD=6,对角线BD⊥CD,∠BAD=30°,∠BAD与∠CDB的平分线交于点E,延长DB到点F,使DF=AD,连接EF,则EF的长为.7.(2020春•鹿城区期中)如图在平行四边形ABCD中,∠ABC=60°,AB=4,四条内角平分线围成四边形EFGH面积为,则平行四边形ABCD面积为.8.(2020•青羊区模拟)如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP =60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=.二.解答题(共6小题)9.(2020春•北碚区校级月考)在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.(1)若∠BCN=60°,AE=5,求△ABE的面积;(2)若MA=MN,MC=EA+CN,求证:AB=AE.10.(2020•南海区一模)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.11.(2019秋•沙坪坝区校级期中)如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB 和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,求△BCF的周长;(2)求证:BC=AG+EG.12.(2019春•阿荣旗期末)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC =26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,从运动开始.使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?13.(2019春•萧县期末)如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C 出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.(2018秋•东湖区校级期末)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.。

北师大版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件(第1课时)

北师大版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件(第1课时)
解:∵AC//DE且AB=DE, ∴四边形ABDE是平行四边形. ∵AC//DE且DE=BC, ∴四边形BCDE是平行四边形.
探究新知
例2 如图,在平行四边形ABCD中,E,F分别是AD和BC的中点. 求证:四边形BFDE是平行四边形.
证明:
∵ 四边形ABCD是平行四边形,
∴ AD=CB, AD//BC.
思路:根据平行四边形定义证明
证明四边形两组对边分别平行
通过角之间的关系得到平行
通过三角形全等找到角之 间的关系
通过作辅助线可以构造出全 等三角形
探究新知
已知: 四边形ABCD中,AB=CD,AD=CB.
求证: 四边形ABCD是平行四边形.
证明: 连接BD,
在△ABD和△CDB中,
A
AB=CD,
AD=CB,
探究新知
思考:
将两根同样长的木条AD,BC平行放置,再用木条AB,DC
加固,得到的四边形ABCD是平行四边形.ADB NhomakorabeaC
猜想:一组对边平行且相等的四边形是平行四边形.
探究新知
猜想验证:
如图,在四边形ABCD中,AB ∥CD.求证:四边形ABCD是
平行四边形.
你能想到几种证
连接四边形对角线
明方法?
构造全等三角形
探究新知
(1)窗扇完全打开,张角∠CAB=85°,求 此时窗扇与窗框的夹角∠DFB的度数.
(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距 离(精确到0.1 cm). (参考数据: 3≈1.732, 6 ≈2.449)
解:(1)∵AC=DE=20 cm,AE=CD=10 cm, ∴四边形ACDE是平行四边形,∴AC∥DE,∴∠DFB=∠CAB, ∵∠CAB=85°,∴∠DFB=85°.

北师大版数学八年级下册:6.2《平行四边形的判定》

北师大版数学八年级下册:6.2《平行四边形的判定》

6.2.1平行四边形的判定(1)一.教材分析:6.2.1《平行四边形的判定》是九年义务教育北师大版数学教材八年级下册第六章。

本节课的内容是将来学习菱形、矩形、正方形及梯形等其它数学知识的重要基础,是对全等三角形、平行四边形定义及性质的回顾延伸,对学生的思维能力及逻辑推理能力的培养上有所帮助。

二.学情分析:初二下半学期,学生已经学习了初中阶段的全等三角形的性质判定在内的绝大多数几何概念及定理。

抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。

因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。

三.教法与学法:1.教法:教师启发讲授2.学法:学生探究学习四.教学目标:知识与技能:1、运用类比的方法,通过学生的合作探究,得出平行四边形的三个判定方法。

2、理解平行四边形的判定方法,并学会简单运用。

数学思考:1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力及合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

解决问题:1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。

2、通过对平行四边形三个判定方法的探究,提高学生解决问题的能力。

情感态度与价值观:通过对平行四边形三个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

五.教学重点、难点:重点:探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,需要让学生体验并逐步掌握这种发现数学结论的方法,因此判定定理的探究过程是本节课的重点。

难点:学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理是本节课的难点。

北师大版数学八年级下册期末复习(六) 平行四边形

北师大版数学八年级下册期末复习(六) 平行四边形

期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。

八年级数学下册第六章平行四边形试题(新版)北师大版

八年级数学下册第六章平行四边形试题(新版)北师大版

第六章平行四边形1.平行四边形的性质(1)根据平行四边形对边相等,可知平行四边形相邻两边长之和是平行四边形周长的一半.(2)平行四边形的对角相等,邻角互补,这是根据平行线的性质进行推导得出的,可以用来求角的度数.(3)平行四边形的对角线互相平分,且一条对角线将平行四边形分成两个全等的三角形,两条对角线将平行四边形分成两组全等的三角形,可以应用全等三角形的性质进行解题.【例1】在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长为__________cm.【标准解答】∵在▱ABCD中,AB=6cm,BC=8cm,∴CD=AB=6cm,AD=BC=8cm,∴▱ABCD的周长为6+6+8+8=28(cm).答案:28【例2】在平面直角坐标系中,▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为( )A.(7,2)B.(5,4)C.(1,2)D.(2,1)【标准解答】选C.如图.∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A,B,C的坐标分别是(0,0),(3,0),(4,2),∴顶点D的坐标为(1,2).【例3】如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.【标准解答】∵四边形ABCD是平行四边形,∴AB=CD=3,AD=BC=4,∵EF⊥AB,∴EH⊥DC,∠BFE=90°,∵∠ABC=60°,∴∠HCB=∠B=60°,∴∠FEB=∠CEH=180°-∠B-∠BFE=30°,∵E为BC的中点,∴BE=CE=2,∴CH=BF=1,由勾股定理得:EF=EH=.∴△DEF的面积是EF·DH=2.答案:2【例4】如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.【标准解答】猜想:BE DF.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF在△BCE和△DAF中,∴△BCE≌△DAF.∴BE=DF,∠BEC=∠DFA.∴BE∥DF,故BE DF.【例5】如图,在▱ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=( )A.40°B.50°C.60°D.80°【标准解答】选B.因为∠B=80°,所以∠BAD=100°,又AE平分∠BAD,所以∠BAE=∠DAE=∠BEA=50°,因为CF∥AE,所以∠1=∠BEA=50°.【例6】如图,在四边形ABCD中,AB∥CD,AD∥BC,AC,BD相交于点O.若AC=6,则线段AO的长度等于________.【标准解答】易知四边形ABCD是平行四边形,所以AO=OC=AC=3.答案:3【例7】如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )A.AC⊥BDB.AB=CDC.BO=ODD.∠BAD=∠BCD【标准解答】选A.∵四边形ABCD为平行四边形,∴AB=CD,则选项B正确;又根据平行四边形的对角线互相平分,∴BO=OD,则选项C正确;又∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠BCD=180°,∠BAD+∠ABC=180°,∴∠BAD=∠BCD,则选项D正确;由BO=OD,假设AC⊥BD,又∵OA=OA,∴△ABO≌△ADO,∴AB=AD与已知AB≠AD矛盾,∴AC不垂直BD,则选项A错误.1.已知▱ABCD的周长为32,AB=4,则BC=( )A.4B.12C.24D.282.若平行四边形ABCD的周长为22cm.AC,BD相交于O,△AOD的周长比△AOB的周长小3cm,则AD=________,AB=________.2.平行四边形的判定(1)利用“两组对边分别平行的四边形是平行四边形”来说明【例1】如图,在平行四边形ABCD中,点E是AB的延长线上的一点,且EC∥BD,试说明:四边形BECD 是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥CD,∵EC∥BD,∴四边形BECD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)利用“两组对边分别相等的四边形是平行四边形”来说明【例2】在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB,试说明:四边形AFCE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°,∴∠ADE=∠CBF=60°,又∵AE=AD,CF=CB,∴△AED,△CFB是等边三角形,又在平行四边形ABCD中,AD=BC,DC=AB,∴AE=CF,ED=BF,∴ED+DC=BF+AB,即EC=AF,∴四边形AFCE是平行四边形(两组对边分别相等的四边形是平行四边形)(3)利用“一组对边平行且相等的四边形是平行四边形”来说明【例3】如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.试判断四边形DBCF是怎样的四边形,说明你的理由.【标准解答】四边形DBCF是平行四边形.理由如下:∵△ADE绕点E顺时针旋转180°,得到△CFE,∴△ADE≌△CFE,且A,E,C和D,E,F在一条直线上,∴AD=CF,∠A=∠ECF,∴AB∥CF,又∵D是AB的中点,∴AD=DB=CF,∴四边形DBCF是平行四边形(一组对边平行且相等的四边形为平行四边形).(4)利用“两组对角分别相等的四边形是平行四边形”来说明【例4】如图,已知,在平行四边形ABCD中,∠ABC,∠ADC的平分线分别交CD,AB于点E,F,求证:四边形DFBE是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴∠ABC =∠ADC,∠A=∠C,∵BE,DF分别平分∠ABC,∠ADC,∴∠1=∠3=∠ADC,∠2=∠4=∠ABC,∴∠1=∠2=∠3=∠4,又∵∠DEB=∠4+∠C,∠DFB=∠3+∠A,∠A=∠C,∴∠DEB=∠DFB,∴四边形DFBE是平行四边形(两组对角分别相等的四边形是平行四边形).(5)利用“对角线互相平分的四边形是平行四边形”来说明【例5】如图,平行四边形ABCD的对角线AC和BD交于O,点E,F分别为OB,OD的中点,过O任作一直线分别交AB,CD于点G,H.说明:四边形EHFG是平行四边形.【标准解答】∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠BAO=∠DCO,又∵∠AOG=∠COH,∴△AOG≌△COH.∴OG=OH.又∵E,F分别为OB,OD的中点,∴OE=OF,∴四边形EHFG是平行四边形(对角线互相平分的四边形是平行四边形).1.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.2.已知:如图,在四边形ABCD中,AB∥CD,点E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.3.三角形中位线(1)三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.(2)三角形的中位线定理中说明了三角形中位线与三角形第三边的位置关系与数量关系,为我们证明平行或求线段的长度提供了依据.【例1】如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O,再分别取OA,OB的中点M,N,量得MN=20m,则池塘的宽度AB为__________m.【标准解答】由三角形的中位线定理可知,AB=2MN=40m.答案:40【例2】已知:如图,在△ABC中,DE,DF是△ABC的中位线,连接EF,AD,其交点为O.求证:(1)△CDE≌△DBF.(2)OA=OD.【标准解答】(1)∵DE,DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中∴△CDE≌△DBF(SAS).(2)∵DE,DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD.1.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A,D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为________.2.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为________.4.多边形的有关问题(1)多边形的角度计算①利用多边形内角和公式计算多边形的内角和或边数【例1】一个多边形的内角和是900°,则这个多边形的边数为( )A.6B.7C.8D.9【标准解答】选B.设边数为n,由题意得(n-2)·180°=900°,解得n=7.②利用多边形外角和,计算多边形中各角的度数或边数.【例2】已知一个正多边形的一个内角是120°,则这个多边形的边数是________.【标准解答】外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.答案:六③利用多边形内角和公式和外角和,计算多边形中对角线条数【例3】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是________.【标准解答】由题意可知(n-2)×180°=1260°,解得n=9,所以从一个顶点出发能引9-3=6(条)对角线. 答案:61.正八边形的每个内角为( )A.120°B.135°C.140°D.144°2.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12B.11C.10D.93.如果一个多边形的内角和是其外角和的一半,那么这个多边形是( )A.六边形B.五边形C.四边形D.三角形(2)解决多边形问题的方法①将多边形问题转化为三角形问题解决在解决多边形问题时,如果无法直接应用内角和公式或外角和时,我们可以将多边形通过连接对角线转化成三角形问题解决.【例1】求五边形的内角和.【标准解答1】连接对角线AC,AD,将五边形ABCDE转化成三个三角形:△ABC,△ADC,△ADE,此时五边形ABCDE的内角和=3×180°=540°.【标准解答2】在五边形ABCDE内部任取一点O,连接AO,BO,CO,DO,EO,将五边形ABCDE转化为五个三角形△ABO,△BCO,△DCO,△DEO,△AEO,∴五边形ABCDE的内角和=5×180°-360°=540°.实际上点O的位置也可以放在五边形的任意一条边上,或五边形的外部.②将内角问题转化为外角来解决一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以多边形的边数就可以求出外角的度数,再转化为内角的度数.或者利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【例2】正五边形的每一个内角都等于________°.【标准解答】正五边形的外角是:360÷5=72°,则内角的度数是:180°-72°=108°.答案:1081.正多边形的一个内角为135°,则该多边形的边数为( )A.9B.8C.7D.42.正多边形的一个外角等于20°,则这个正多边形的边数是________.(3)多边形剪去一个角的三种情况①过多边形的一条对角线剪去一个角,则新多边形的边数比原多边形的边数少1.②过多边形的一个顶点剪去一个角,则新多边形的边数与原多边形的边数相同.③不过多边形的顶点剪去一个角,则新多边形的边数比原多边形的边数多1.【例】若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有________条边.【标准解答】设新多边形是n边形,由多边形内角和公式得(n-2)180°=1440°,解得n=10,原多边形边数是10-1=9或10+1=11或10.答案:9,10或11凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.(4)多边形的镶嵌问题判断多边形能否进行平面镶嵌,关键是检验拼接在同一点的各个角的和是否等于360°.若等于360°,则可以镶嵌;若不等于360°,则不能进行镶嵌.【例】下列正多边形中,不能铺满地面的是( )A.正三角形B.正方形C.正六边形D.正七边形【标准解答】选D.A.∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面;B.∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面;C.∵正六边形的内角是120°,3×120°=360°,∴正六边形能铺满地面;D.∵正七边形的内角是,同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )跟踪训练答案解析1.平行四边形的性质【跟踪训练】1.【解析】选B.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.2.【解析】由平行四边形对角线互相平分知BO=OD,故△AOD周长比△AOB的周长小3cm,实际上就是AB-AD=3(cm).由平行四边形的周长为22cm可知AD+AB=11cm,解得AB=7cm,AD=4cm.答案:4cm 7cm2.平行四边形的判定【跟踪训练】1.【解析】∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.答案:BO=DO2.【证明】∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.3.三角形中位线【跟踪训练】1.【解析】由题意得:CE=CB=12,∵点F是AD的中点,FG∥CD,∴FG是△ADC的中位线,所以CG=AC=9,∵点E是AB的中点,∴EG是△ABC的中位线,∴GE=BC=6,∴△CEG的周长为:CE+GE+CG=12+6+9=27.答案:272.【解析】因为A2,B2,C2是△A1B1C1的三边中点,所以△A2B2C2的周长是=8,以此类推△A5B5C5的周长为=1.答案:14.多边形的有关问题(1)多边形的角度计算【跟踪训练】1.【解析】选B.根据多边形的内角和公式,可得正八边形内角和为:(8-2)×180°=1080°,又因为正八边形的每个内角都相等,所以正八边形的每个内角等于1080°÷8=135°. 2.【解析】选A.∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°-150°=30°,∴这个正多边形的边数==12.3.【解析】选D.根据题意,得(n-2)·180°=180°,解得:n=3.(2)解决多边形问题的方法【跟踪训练】1.【解析】选B.∵正多边形的一个内角为135°,∴外角是180°-135°=45°,∵360÷45=8,则这个多边形是八边形.2.【解析】因为外角是20°,360÷20=18,则这个正多边形是18边形.答案:18(3)多边形剪去一个角的三种情况【跟踪训练】【解析】∵六边形剪去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7,5,6三种情况,如图:(4)多边形的镶嵌问题【跟踪训练】【解析】选B.A.正八边形、正三角形内角分别为135°,60°,显然不能构成360°的周角,故不能铺满;B.正方形、正八边形内角分别为90°,135°,由于135×2+90=360,故能铺满;C.正六边形和正八边形内角分别为120°,135°,显然不能构成360°的周角,故不能铺满;D.正八边形、正五边形内角分别为135°,108°,显然不能构成360°的周角,故不能铺满.。

八年级数学下册第六章《平行四边形》知识点归纳北师大版

八年级数学下册第六章《平行四边形》知识点归纳北师大版

八年级数学下册第六章《平行四边形》知识点归纳北师大

八年级数学下册第六章《平行四边形》知识点归纳(北师大版)
一、平行四边形性质
1.定义:两组对边分别平行的四边形叫做平行四边形。

2性质:
(1)平行四边形是中心对称图形,两条对角线的交点是它的对称中心。

(2)平行四边形对边相等;
(3)平行四边形对角相等;
(4)平行四边形对角线互相平分
二、平行四边形判定
1、判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
2、平行线之间的距离:如果两条直线互相平行,则其中一条直线上的任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离。

三、三角形的中位线
第 1 页/ 共 2 页。

新北师大版八年级初二数学下册知识点总结归纳

新北师大版八年级初二数学下册知识点总结归纳

欢迎阅读北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1推论21.推论1推论22.1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角平分线。

性质:角平分线上的点到这个角的两边的距离相等。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变. 如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >. 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc, c b c a < 说明: 比较大小:作差法a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<03.不等式的解:能使不等式成立的未知数的值,叫做不等式的解4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

八年级数学北师大版下册平行四边形判定课件(1)

八年级数学北师大版下册平行四边形判定课件(1)
第六章 平行四边形
2 平行四边形的判定(二)
复习引入:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些? (1)两组对边分别平行的四边形是平行四边形. (2)一组对边平行且相等的四边形是平行四边 形. (3)两组对边分别相等的四边形是平行四边形 .
定理探索:
活动:
回顾小结:
(1)判定一个四边形是平行四边形的方法 有哪几种?
(2)我们是通过什么方法得出平行四边形 的这几种判定方法的,这样的探索过程对 你有什么启示?
(3)平行四边形判定的应用.
布,第2题
B组 课本习题6.4的第3题.
谢谢!
边形是平行四边形
(
)
(4)一组对边平行,一组邻角互补的四边
形是平行四边形
(

随堂练习:
2.如图:AD是ΔABC的边BC边上的中线. (1)画图:延长AD到点E,使DE=AD,连接BE,CE; (2)判断四边形ABEC的形状,并说明理由.
随堂练习:
3.想一想:如图有一块平行四边形玻璃镜片, 不谨慎打掉了一块,但是有两条边是完好的. 同学们想想看,有没有办法把本来的平行四边 形重新画出来?
定理探索:
思考2.2: 以上活动事实,能用文字语言表达吗?
平行四边形判定定理: 对角线互相平分的四边形是平行四边形。
巩固练习:
例1:已知,如图6-13(1),在平行四边形ABCD中, 点E、F在对角线AC上,并且AE=CF. 求证:四边形BFDE是平行四边形吗?
证明: 如图,连接BD. ∵ 四边形ABCD是平行四边形 ∴ OA=OC OB=OD 又∵AE=CF ∴OA-AE=OC-CF ∴OE=OF ∴四边形BFDE是平行四边形

北师大版数学八年级下册知识点归纳

北师大版数学八年级下册知识点归纳

A CB O 图1 图2O A C B D EF北师大版数学八年级下册知识点归纳第一章 三角形的证明1.等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

2.等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。

3.有一个角等于60º的等腰三角形是等边三角形。

4.如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现)5.垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。

(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>6.线段垂直平分线上的点到这一条线段两个端点距离相等。

7.线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

8.三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。

(如图1所示,AO=BO=CO )9.角平分线上的点到角两边的距离相等。

10.角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

角平分线是到角的两边距离相等的所有点的集合。

11.三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

(如图2所示,OD=OE=OF)第二章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平行四边形
一、平行四边形的性质
1、定义:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的对边平行且相等。

(2)平行四边形的邻角互补(3)平行四边形的对角相等(4)平行四边形的对角线互相平分。

二、平行四边形的判定
1、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对边分别相等的四边形是平行四边形
(3)定理2:两条对角线互相平分的四边形是平行四边形
(4)定理3:一组对边平行且相等的四边形是平行四边形
2、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

3、平行四边形的面积:S平行四边形=底×高=ah
三、三角形的中位线
1、概念:连接三角两边中点的线段叫做三角的中位线(共三条中位线)
2、三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半
四、多边形的内角和与外角和
1、多边形的内角和定理:n边形的内角和等于(n-2)·180°;
多边形的外角和定理:任意多边形的外角和等于360°。

2、正多边形的每个内角都等于(n-2)·180°/n
3、中心对称图形:线段、平行四边形、矩形、菱形、正方形,边数为偶数的正多边形
不是中心对称图形:四边形、三角形、梯形、边数为奇数的正多边形等
4、常4、常见的轴对称图形:等腰三角形、等腰梯形、矩形、菱形、正方形
1。

相关文档
最新文档