椭圆_双曲线_抛物线考试_测试题
椭圆双曲线抛物线大题训练题(含答案)
![椭圆双曲线抛物线大题训练题(含答案)](https://img.taocdn.com/s3/m/bc18f1a05727a5e9856a61f1.png)
椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。
(1)求椭圆C的方程。
(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。
若存在,求出点E的坐标;若不存在,请说明理由。
3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。
中职数学 椭圆、双曲线、抛物线测试卷(含答案)
![中职数学 椭圆、双曲线、抛物线测试卷(含答案)](https://img.taocdn.com/s3/m/563f660b5ef7ba0d4b733b95.png)
数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。
在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。
椭圆、双曲线抛物线综合练习题及答案.
![椭圆、双曲线抛物线综合练习题及答案.](https://img.taocdn.com/s3/m/f623fcce227916888586d7d7.png)
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
椭圆,双曲线,抛物线练习题及答案
![椭圆,双曲线,抛物线练习题及答案](https://img.taocdn.com/s3/m/01435d396d85ec3a87c24028915f804d2b1687f6.png)
椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。
$2b^2/a$ B。
$b^2/a$ C。
$b/a$ D。
$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。
椭圆双曲线抛物线大题及答案
![椭圆双曲线抛物线大题及答案](https://img.taocdn.com/s3/m/0c453b60a4e9856a561252d380eb6294dd882290.png)
椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。
这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。
下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。
一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。
1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。
又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。
代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。
又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。
代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。
1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。
椭圆、双曲线练习题
![椭圆、双曲线练习题](https://img.taocdn.com/s3/m/9fd57538856a561253d36fc1.png)
椭圆、双曲线练习题平面,点,轨迹,曲线,方程,直线,斜率,圆,圆心,半径,弦,椭圆,双曲线,抛物线,焦点,准线,离心率,坐标。
1( 尺规作图:已知一椭圆的长轴两端点和椭圆上其他任意一点,求作其准线。
2(已知F1,F2是椭圆 x~2/100+y~2/64=1 的两个焦点,P是椭圆上的任一点,且角F1PF2=60度,求三角形F1PF2的面积。
3(已知椭圆 x^2/a^2+y^2/b^2=1 和椭圆上一个定点 P(m,n) 椭圆上又有另两点 A,B 满足 PA垂直于PB。
求证:直线AB过一定点。
4(求中心在坐标原点,坐标轴为对称轴过点a(4,1)且与直线x+4y—10=0有且只有一个公共点的椭圆方程。
5(设A1,A2分别为椭圆x^2/a^2+y^2/b^2,1在x轴上的两个端点。
P为椭圆上一动点,F为椭圆的右焦点。
画出椭圆的右准线,分别连接A1-P,A2-P,延长后与准线的焦点分别为MN。
求角MFN的度数。
6(椭圆E的中心在原点O,焦点在x轴上,高心率e=根号下(2/3),过点C(-1,0)的直线L交椭圆于A,B两点,且CA向量=λBC向量(λ?2).(1).若λ为常数,直线L的斜率为K(K不为0),写出?OAB的面积S关于K的表达试f(K) (2).若λ为常数,当S最大时,求椭圆E的方程7(在椭圆x~2/25+y~2/9=1上一点p,使它到左焦点的距离是它到右焦点距离的2倍.8(在椭圆 x~2/45 + y~2/20 上求一点,使它与两焦点的连线互相垂直。
9(过椭圆X~2/a~2+Y~2/b~2=1[0<b<a]中心的直线与椭圆交于A,B两点,右焦点为F(c,0),则三角形ABF2的最大面积是( )。
A abB acC bcD b~210(直线y=x-1和椭圆x^2/m+y^2/(m-1)=1(m大于1)交于A、B,以AB为直径的圆过椭圆的焦点F,求实数m的值。
2( 11(一个长轴为2a,短轴为2b的椭圆,在第一象限内滚动,并始终与X轴,Y轴都相切。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题
![高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题](https://img.taocdn.com/s3/m/cae052e577eeaeaad1f34693daef5ef7ba0d1202.png)
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
高考数学总复习 椭圆、双曲线、抛物线单元测试题
![高考数学总复习 椭圆、双曲线、抛物线单元测试题](https://img.taocdn.com/s3/m/7b0e1d5a7fd5360cba1adbde.png)
高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。
中职拓展模块椭圆、双曲线-抛物线试题
![中职拓展模块椭圆、双曲线-抛物线试题](https://img.taocdn.com/s3/m/b356c45903d8ce2f0166233f.png)
中职拓展模块椭圆、双曲线、抛物线测试题(时间:60分钟 总分:100分)得分:_________一、单选题(本大题共10小题,每小题4分,共40分)1、 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( ) A (0, +∞) B (0, 2) C (1, +∞) D (0,1)2、抛物线28y x =的准线方程是 ( )A :x=2B :x=-4C :y=-2D : y=-43、焦点为1(5,0)F -、2(5,0)F ,实轴长是6的双曲线的方程是( )A 、221169x y -= B 、221916x y -= C 、221169y x -= D 、22196x y -= 4、若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .45、双曲线的渐近线方程是 ( ) A : 2y x =± B : 0.5y x =± C : 2y x =- D : 0.5y x = 6、一动圆圆心在抛物线y x 82-=上,且动圆恒与直线y =2相切,则动圆必过定点( ) A 、(4,0) B 、(0,–4) C 、(2,0) D 、(0,–2)7、过抛物线焦点任作一弦,以这弦为直径作圆,这圆与抛物线的准线的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不确定8、等轴双曲线的离心率是 ( )A 、1BC 、1/2D 、不确定9、椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.1010、曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) A.焦距相等 B.离心率相等 C.焦点相同 D.不能确定二、填空题(本大题共4小题,每小题4分,共16分)11. 双曲线221259x y -=的实虚轴长分别是 ,顶点坐标是 ,焦点坐标是 ,渐近线方程是 ,离心率是 。
椭圆双曲线抛物线综合测试题
![椭圆双曲线抛物线综合测试题](https://img.taocdn.com/s3/m/bd092ce86529647d27285260.png)
椭圆、双曲线、抛物线综合测试题一 选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1设双曲线2212y x m -=的一个焦点为(0,2)-,则双曲线的离心率为( ).A B 2 C D2椭圆221167x y +=的左、右焦点分别为12,F F ,一直线经过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为( )A 32B 16C 8D 43 两个正数a 、b 的等差中项是52,,则椭圆22221x y a b +=的离心率为( )AB C D 4设1F 、2F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且31||PF =42||PF , 则12PF F ∆的面积为( )A B C 24 D 485 P 是双曲线22916x y -=1的右支上一点,M 、N 分别是圆22(5)1x y ++=和22(5)x y -+=4上的点,则||||PM PN -的最大值为( )A 6B 7C 8D 96已知抛物线24x y =上的动点P 在x 轴上的射影为点M ,点(3,2)A ,则||||PA PM +的最小值为( )A1 B 2- C 1 D 27 一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为( ) A 圆 B 椭圆 C 双曲线 D 抛物线8若双曲线22221(0,0)x y a b a b-=>>的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )ABCD 29抛物线2y x =上到直线20x y -=距离最近的点的坐标( )A 35,24⎛⎫⎪⎝⎭ B (1,1) C 39,24⎛⎫⎪⎝⎭D (2,4) 10已知c 是椭圆22221x y a b +=(0)a b >>的半焦距,则b ca+的取值围( )A (1,)+∞ B)+∞ CD11方程2mx ny +=0与22mx ny +=1(0,0,)m n m n >>≠表示的曲线在同一坐标系中图象可能是( )12若AB 是抛物线22(0)y px p =>的动弦,且||(2)AB a a p =>,则AB 的中点M 到y 轴的最近距离是( ) A12a B 12p C 1122a p + D 12a -12p 二 填空题(本大题共4个小题,每小题5分,共20分.把答案填写在题中横线上) 13 设1F 、2F 分别是双曲线的左、右焦点,P 是双曲线上一点,且12F PF ∠=60o,12PF F S ∆=2,则双曲线方程的标准方程为 .14 已知椭圆221x y m n +=与双曲线221x y p q -=(,,,,)m n p q R m n +∈>,有共同的焦点1F 、2F ,点P 是双曲线与椭圆的一个交点,则12||||PF PF •= .15 已知抛物线22(0)x py p =>上一点A (0,4)到其焦点的距离为174,则p = . 16已知双曲线2222x y a -=1(a >的两条渐近线的夹角为3π,则双曲线的离心率为 .三 解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的双曲线的标准方程:BCDA⑴ 焦点在x 轴上,虚轴长为12,离心率为54; ⑵ 顶点间的距离为6,渐近线方程为32y x =±.18.(12分)在平面直角坐标系中,已知两点(3,0)A -及(3,0)B .动点Q 到点A 的距离为10,线段BQ 的垂直平分线交AQ 于点P . ⑴求||||PA PB +的值; ⑵写出点P 的轨迹方程.19.(12分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,过右焦点2F 且与x 轴垂直的直线l 与椭圆相交,其中一个交点为M .⑴求椭圆的方程;⑵设椭圆的一个顶点为(0,)B b -,直线2BF 交椭圆于另一点N ,求1F BN ∆的面积.20.(12分)已知抛物线方程24x y =,过点(,4)P t -作抛物线的两条切线PA 、PB ,切点为A 、B .⑴求证:直线AB 过定点(0,4);⑵求OAB ∆(O 为坐标原点)面积的最小值.21 .(12分)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且1||PF =3|2|PF .⑴求双曲线离心率e 的取值围,并写出e 取得最大值时,双曲线的渐近线方程;⑵若点P 的坐标为,且12PF PF •=0,求双曲线方程.22.(12分)已知O 为坐标原点,点F 、T 、M 、1P 满足OF =(1,0),(1,)OT t =-,FM MT =,1PM ⊥FT ,1PT ∥OF . ⑴求当t 变化时,点1P 的轨迹方程;⑵若2P 是轨迹上不同于1P 的另一点,且存在非零实数λ使得12FP FP λ=,求证:1211||||FP FP +=1.参考答案1A 提示:根据题意得222c a b =+=2m +=4,∴m =2,∴c e a===.故选A .2B 提示:2ABF ∆的周长=12||||AF AF ++12||||BF BF +=4a =16.故选B .3C 提示:根据题意得56a b ab +=⎧⎨=⎩,解得a =3,b =2,∴c ,∴ce a =4C 提示:∵P 是双曲线上的一点,且31||PF =42||PF ,1||PF -2||PF =2,解得1||PF =8,2||PF =6,又12||F F =2c =10,∴12PF F ∆是直角三角形,12PF F S ∆=1862⨯⨯=24.故选C .5 D 提示:由于两圆心恰为双曲线的焦点,||PM ≤1||PF +1,||PN ≥2||PF 2-,∴||||PM PN -≤1||PF +1—(2||PF 2-) =1||PF —2||PF +3=2a +3=9.6A 提示:设d 为点P 到准线1y =-的距离,F 为抛物线的焦点,由抛物线的定义及数形结合得,||||PA PM +=d -1+||PA =||PA +||PF -1≥||AF -1.故选A . 7C 提示:设圆221x y +=的圆心为(0,0)O ,半径为1,圆228120x y x +++=的圆心为1(4,0)O -,O '为动圆的圆心,r 为动圆的半径,则1||||O O O O ''-=(2)(1)r r +-+=1,所以根据双曲线的定义可知.故选C .2题图8C 提示:设其中一个焦点为(,0)F c ,一条渐近线方程为by x a=,根据题意得||b c 2a ,化简得2b a =,∴ e =c a故选C .9 B 提示:设2(,)P x x 为抛物线2y x =上任意一点,则点P 到直线的距离为2d =2,∴当1x =时,距离最小,即点P (1,1).故选B .10 D 提示:由于22222b c b c bc a a +++⎛⎫= ⎪⎝⎭≤22222b c b c a +++=2,则b c a +, 又b c a +>,则b ca+>1.故选D . 11 C 提示:椭圆与抛物线开口向左.12 D 提示:设11(,)A x y ,22(,)B x y ,结合抛物线的定义和相关性质,则AB 的中点M 到y 轴的距离为122x x +=||||222p pAF BF -+-=||||2AF BF p +-,显然当AB 过焦点时,其值最小,即为12a -12p .故选D .二 填空题13221412x y -= 提示:设双曲线方程为22221x y a b -=,∵2c e a ==,∴2c a =.∵12PF F S ∆=,∴1||PF ×2||PF =48.()22c =21||PF +22||PF -21||PF 2||PF 12cos F PF ∠,解得216c =,∴2a =4,2b =12.14 m p - 提示:根据题意得1212||||||||PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得1||PF =,2||PF =12||||PF PF •=m p -.1512 提示:利用抛物线的定义可知4()2p --=174,p =12.16=,a =c =c e a==.三 解答题17解:⑴因为焦点在x 轴上,设双曲线的标准方程为22221(0,0)x y a b a b-=>>,∴22221254a b c b c a ⎧⎪+=⎪=⎨⎪⎪=⎩,解得 8a =,6b =,10c =,∴双曲线的标准方程为2216436x y -=. ⑵设以32y x =±为渐近线的双曲线的标准方程为2249x y λ-=, ① 当0λ>时,,解得94λ=,此时所求的双曲线的标准方程为2218194x y -=; ② 当0λ<时,,解得1λ=-,此时所求的双曲线的标准方程为22194y x -=. 18解:⑴ 因为线段BQ 的垂直平分线交AQ 于点P ,∴||PB =||PQ , ∴||||PA PB +=||PA +||PQ =||AQ =10;⑵由⑴知||||PA PB +=10(常数),又||||PA PB +=10>6=||AB ,∴点P 的轨迹是中心在原点,以,A B 为焦点,长轴在x 轴上的椭圆,其中210,26a c ==,所以椭圆的轨迹方程为2212516x y +=. 19解:⑴∵l ⊥x轴,∴2F ,根据题意得22222112a ba b ⎧+=⎪⎨⎪-=⎩,解得2242a b ⎧=⎨=⎩, ∴所求椭圆的方程为:22142x y +=.⑵由⑴可知(0,B ,∴直线2BF的方程为y x =22142y x x y ⎧=⎪⎨+=⎪⎩,解得点N的纵坐标为3,∴1F BN S ∆=12F F N S ∆+12F BF S ∆=123⨯⨯=83. 20解:⑴设切点11(,)A x y ,22(,)B x y ,又12y x '=, 则切线PA 的方程为:1111()2y y x x x -=-,即1112y x x y =-;切线PB 的方程为:2221()2y y x x x -=-,即2212y x x y =-,又因为点(,4)P t -是切线PA 、PB 的交点,∴ 11142x t y -=-, 22142x t y -=-,∴过A 、B 两点的直线方程为142tx y -=-,即1402tx y -+=,∴直线AB 过定点(0,4).⑵ 由214024tx y x y ⎧-+=⎪⎨⎪=⎩,解得2216x tx --=0,∴122x x t +=,1216x x =-.∴OAB S ∆=1214||2x x ⨯⨯-16. 当且仅当0t =时,OAB ∆(O 为坐标原点)面积的最小值21解:⑴∵1||PF -2||PF =2a ,1||PF =3|2|PF ,∴1||PF =3a ,2||PF =a , 由题意得1||PF +2||PF ≥12||F F ,∴4a ≥2c ,∴ca≤2,又因为1e >,∴双曲线离心率e 的取值围为(1,2].故双曲线离心率的最大值为2.⑵∵12PF PF •=0,∴21||PF +22||PF =24c ,即22104a c =,即2232b a =, 又因为点P 在双曲线上,∴22160902525a b -=1,∴2216060a a -=1, 解得 24a =,26b =,∴所求双曲线方程为;2222x y a b-=1.22解⑴设1P (,)x y ,则由FM MT =得点M 是线段FT 中点,∴(0,)2tM ,则1PM =(,)2t x y --,又因为FT =(2,)t -,1PT =(1,)x t y ---,∵ 1PM ⊥FT , ∴ 2()02tx t y +-=, ① ∵ 1PT ∥OF ,∴ (1)0()1x t y --•--•=0,即 t y = ② 由 ①和②消去参数得 24y x =.⑵证明:易知(1,0)F 是抛物线24y x =的焦点,由12FP FP λ=,得F 、1P 、2P 三点共线,即1P 2P 为过焦点F 的弦.①当1P 2P 垂直于x 轴时,结论显然成立;② 当1P 2P 不垂直于x 轴时,设111(,)P x y ,222(,)P x y ,直线1P 2P 的方程为(1)y k x =-,∴24y kx k y x=-⎧⎨=⎩,整理得22222(2)0k x k x k -++=,∴12x x +=2224k k +,12x x =1, ∴1211||||FP FP +=121111x x +++=1212122()1x x x x x x +++++=1.。
椭圆、双曲线测试含答案
![椭圆、双曲线测试含答案](https://img.taocdn.com/s3/m/0825ea93690203d8ce2f0066f5335a8102d2668d.png)
椭圆、双曲线测试(含答案)一、单选题1.已知双曲线C 与椭圆E :221925x y +=有共同的焦点,它们的离心率之和为145,则双曲线 C 的标准方程为 A .221124x y -=B .221412x y -=C .221412y x -=D .221124y x -=【答案】C 【解析】 【分析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案. 【详解】由椭圆221925x y +=,得225a =,29b =, 则22216c a b =-=,∴双曲线与椭圆的焦点坐标为()10,4F -,()20,4F , ∴椭圆的离心率为45,则双曲线的离心率为144255-=. 设双曲线的实半轴长为m ,则42m=,得2m =, 则虚半轴长224223n -= ∴双曲线的方程是221412y x -=. 故选C . 【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题. 2.已知椭圆22143x y +=,F 是椭圆的左焦点,P 是椭圆上一点,若椭圆内一点A (1,1),则PA PF +的最小值为( ) A .3B 10C 152D 51【答案】A 【解析】【分析】由椭圆定义把PF 转化为P 到右焦点的距离,然后由平面上到两定点的距离之差最小的性质可得. 【详解】设椭圆的右焦点为2F (1,0),21AF =,22||||||4||4||||PA PF PA PF PA PF +=+-=+-, 又2||||PA PF -≤2||AF ,222||||||||AF PA PF AF --≤≤,当2P A F ,,三点共线时取等号,||||PA PF +的最小值为3(取最小值时P 是射线2F A 与椭圆的交点), 故选:A.3.“01t <<”是“曲线2211x y t t+=-表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】根据曲线表示椭圆,可求得t 的范围,根据充分、必要条件的定义,即可得答案. 【详解】因为曲线2211x y t t+=-为椭圆, 所以0101t t t t>⎧⎪->⎨⎪≠-⎩,解得01t <<且12t ≠,所以“01t <<”是“01t <<且12t ≠”的必要而不充分条件. 故选:B4.已知1F 、2F 是椭圆C :22221x ya b+=(0a b >>)的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥.若12PF F △的面积为9,则b =( )A .2B .3C .4D .5【答案】B 【解析】 【分析】根据12PF F △的面积以及该三角形为直角三角形可得1218PF PF ⋅=,22212||||4PF PF c +=,然后结合12||||2PF PF a +=,简单计算即可.【详解】依题意有12||||2PF PF a +=,所以2121222|||||2||4|PF PF PF PF a +⋅+=又12PF PF ⊥,1212192PF F S PF PF =⋅=△,所以1218PF PF ⋅=, 又22212||||4PF PF c +=,可得224364c a +=,即229a c -=,则3b =, 故选:B.5.如图,椭圆的中心在坐标原点,O 顶点分别是1212,,,A A B B ,焦点分别为12,F F ,延长12B F 与22A B 交于Р点,若12B PA ∠为钝角,则此椭圆的离心率的取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫⎪⎪⎝⎭【答案】D 【解析】 【分析】由题意,12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角,从而有22210B A F B ⋅<,结合222b a c =-即可求椭圆离心率的取值范围.【详解】解:由题意,设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则22(,)B A a b =-,21(,)F B c b =--,因为12B PA ∠就是22B A 与21F B 的夹角,所以22B A 与21F B 的夹角为钝角, 所以22210B A F B ⋅<,即20ac b -+<,又222b a c =-,所以220a ac c --<,两边同时除以2a ,得210e e --<,即210e e +->,解得e e >,又01e <<,1e <<,所以椭圆离心率的取值范围为⎫⎪⎪⎝⎭,故选:D . 二、填空题6.与双曲线221x y -=有相同的渐近线,且过点(1,2)的双曲线的标准方程为_________.【答案】22133y x -=【解析】 【分析】根据给定条件,设出所求双曲线的方程,利用待定系数法求解作答. 【详解】依题意,设双曲线方程为:22(0)x y λλ-=≠,于是得22123λ=-=-,则有223x y -=-,所以双曲线的标准方程为22133y x -=.故答案为:22133y x -=7.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.【答案】【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得; 【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴21n si F PF ∠==1218122PF F S =⨯⨯=△.故答案为:8.已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为________. 【答案】9 【解析】 【分析】根据椭圆的定义可得126MF MF +=,结合基本不等式即可求得12MF MF ⋅的最大值. 【详解】 ∴M 在椭圆C 上 ∴12236MF MF +=⨯=∴根据基本不等式可得126MF MF +=≥129MF MF ⋅≤,当且仅当123MF MF ==时取等号.故答案为:9.9.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB的中点,则直线l 的方程是__________. 【答案】220x y +-= 【解析】 【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--, ∴直线AB 的方程为11(1)22y x -=--, 即220x y +-=.由于P 在椭圆内,故成立. 故答案为:220x y +-=. 三、解答题10.已知定点(1,0)F ,动点(,)(0)P x y x ≥到点F 的距离比它到y 轴的距离大1. (1)求动点P 的轨迹方程;(2)过(1,2)Q 的直线1l ,2l 分别与点P 的轨迹相交于点M ,N (均异于点Q ),记直线1l ,2l 的斜率分别为1k ,2k ,若120k k +=,求证:直线MN 的斜率为定值.【答案】(1)24y x =; (2)证明见解析. 【解析】 【分析】(1||1x =+,整理即可得轨迹方程.(2)根据题设令11(,)M x y 、22(,)N x y ,1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,联立抛物线方程求,M N 的坐标,再应用两点式求MN k 即可证结论. (1)||1x =+,则22(||)y x x =+,又0x ≥, ∴24y x =,故动点P 的轨迹方程为24y x =. (2)由题设,令1l 为2(1)y k x -=-,2l 为2(1)y k x -=--,1l 联立抛物线,可得:22222(22)(2)0k x k k x k --++-=,若11(,)M x y ,22(,)N x y ,∴212()k x k -=,则142y k =-,同理可得222()k x k +=,则242y k=--,∴2121818MNy yk k x x k--===--,为定值.11.已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F且离心率为(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长.【答案】(1)2213x y +=;(2【解析】 【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=,1234x x ⋅=,∴||MN ==12.双曲线221124x y -=,1F 、2F 为其左右焦点,C 是以2F 为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足12F M MP =,求M 的轨迹方程. 【答案】(1)22(4)16x y -+= (2)22464()39x y -+=【解析】 【分析】(1)由双曲线的右焦点作为圆心,以半焦距为半径的圆,可以直接写出圆的标准方程即可.(2)求解轨迹方程求谁设谁,设(,)M x y ,00)(P x y ,用点M 的坐标表示点P 的坐标,带入方程即可得到答案. (1)由已知得212a =,24b=,故4c =,所以1(4,0)F -、2(4,0)F , 因为C 是以2F 为圆心且过原点的圆,故圆心为(4,0),半径为4, 所以C 的轨迹方程为22(4)16x y -+=; (2)设动点(,)M x y ,00)(P x y ,, 则1(4,)F M x y =+,00(,)MP x x y y =--,由12F M MP =,得(4x +,0)2(y x x =-,0)y y -, 即0042()2()x x x y y y +=-⎧⎨=-⎩,解得0034232x x y y +⎧=⎪⎪⎨⎪=⎪⎩,因为点P 在C 上,所以2200(4)16x y -+=, 代入得22343(4)()1622x y+-+=, 化简得22464()39x y -+=.13.已知双曲线2214x y -=,P 是双曲线上一点.(1)求证:点P 到双曲线两条渐近线的距离的乘积是一个定值.(2)已知点(3,0)A ,求PA 的最小值. 【答案】(1)证明见解析【解析】 【分析】(1)根据题意求得11(,)P x y 到两条渐近线的距离分别为1d =2d =得到22112154d d x y -⋅=,结合双曲线的定义,即可求解.(2)设P 的坐标为(,)x y ,求得2225124(3)()455PA x y x =-+=-+,结合2x ≥,即可求解. (1)证明:设11(,)P x y 是双曲线2214x y -=上的任意一点,则221144x y -=, 该双曲线的两条渐近线方程分别为20x y -=和20x y +=,点11(,)P x y 到两条渐近线的距离分别为1d =和2d =则2211124554y x d d -⋅===, 所以点P 到双曲线的两条渐近线的距离的乘积是一个常数. (2)解:设P 的坐标为(,)x y ,则()()22222251243314455x PA x y x x ⎛⎫=-+=-+-=-+ ⎪⎝⎭,因为2x ≥,所以当125x =时,2PA 的最小值为45,即PA。
椭圆、双曲线测试题(含答案)
![椭圆、双曲线测试题(含答案)](https://img.taocdn.com/s3/m/a1722585970590c69ec3d5bbfd0a79563c1ed4c9.png)
椭圆、双曲线测试题(含答案)章末综合测评(二):圆锥曲线与方程本次测评共分为一、二两大题,时间为120分钟,满分150分。
一、选择题1.椭圆 $x^2+my^2=1$ 的焦点在 $y$ 轴上,长轴长是短轴长的两倍,则 $m$ 的值是()A。
1.B。
2.C。
4.D。
11/4解析:由题意可得 $2=2\times2$,解得 $m=11/4$。
故选D。
2.下列双曲线中,渐近线方程为 $y=\pm2x$ 的是()A。
$x^2-4y=1$。
B。
$4x^2-y=1$。
C。
$x^2-2y=1$。
D。
$2x^2-y=1$解析:由渐近线方程为 $y=\pm2x$,可得 $2=\pm x$,所以双曲线的标准方程可以为 $x^2/4-y^2/1=1$ 或 $-x^2/4+y^2/1=1$,舍去 C。
故选 A。
3.若双曲线 $a^2-b^2=1$ 的一条渐近线经过点 $(3,-4)$,则此双曲线的离心率为()A。
$\sqrt{3}/5$。
B。
$4/3$。
C。
$\sqrt{5}/3$。
D。
$3/2\sqrt{2}$解析:由双曲线的渐近线过点 $(3,-4)$,知 $a=3$,又$b^2=c^2-a^2=16-9=7$,故$e=\sqrt{1+b^2/a^2}=\sqrt{16/9+7/9}=\sqrt{23}/3$,故选 D。
4.平面内有定点 $A$、$B$ 及动点 $P$,设命题甲是“$|PA|+|PB|$ 是定值”,命题乙是“点 $P$ 的轨迹是以 $A$、$B$ 为焦点的椭圆”,那么甲是乙的()A。
充分不必要条件。
B。
必要不充分条件。
C。
充要条件。
D。
既不充分也不必要条件解析:点 $P$ 在线段 $AB$ 上时,$|PA|+|PB|$ 是定值,但点 $P$ 的轨迹不一定是椭圆,反之成立,故选 B。
5.已知动圆 $E$ 与圆 $A$:$(x+4)^2+y^2=2$ 外切,与圆$B$:$(x-4)^2+y^2=2$ 内切,则动圆圆心 $E$ 的轨迹方程是()A。
椭圆、双曲线、抛物线习题(有答案)
![椭圆、双曲线、抛物线习题(有答案)](https://img.taocdn.com/s3/m/908ef4348e9951e79a892745.png)
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
椭圆双曲线抛物线基础测试题(100分钟)
![椭圆双曲线抛物线基础测试题(100分钟)](https://img.taocdn.com/s3/m/c0aa17026c85ec3a87c2c5ae.png)
椭圆、双曲线、抛物线基础测试题1椭圆、双曲线、抛物线基础测试题时间:100分钟 满分:100分 班级 姓名 成绩一.选择题(下列各题中只有一个正确答案,每小题4分共24分)1. 到两点F 1 (0, 3 )、F 2 (0, -3 ) 的距离之和等于10的动点M 的轨迹方程是 ( ) ( A )14522=+y x ( B ) 15422=+y x ( C ) 1162522=+y x ( D ) 1251622=+y x 2. 双曲线4x 2 - 3y 2 = 12的共轭双曲线是 ( ) ( A ) 4y 2 - 3x 2 = 12 ( B ) 3x 2 - 4y 2 = 12 ( C ) 3y 2 - 4x 2 = 12 ( D ) 4x 2 - 3y 2 = 123. 顶点在原点、坐标轴为对称轴,经过点P( 1, -2 )的抛物线方程是 ( ) ( A ) y 2 = 4x ( B ) x 2 =21-y ( C ) y 2 = 4x, x 2 = 4y ( D ) y 2 = 4x, x 2 =21-y 4. 若椭圆15922=+xy ,则9等于 ( ) ( A ) 两焦点间的距离 ( B ) 一焦点到长轴一端点的距离 ( C ) 两准线间的距离 ( D ) 椭圆上一点到准线的距离5. 当曲线1422=-+ky k x 表示焦点在x 轴上的双曲线时,则 ( ) ( A ) k > 0 ( B ) k > 4 ( C ) 0 < k < 4 ( D ) k > 4或k < 06. 双曲线的两条准线把连接两焦点的线段三等分,则双曲线的离心率是 ( ) ( A )3 ( B ) 3 ( C )33 ( D ) 33± 二.填空题(每空4分,共24分)1. 抛物线x 2 = 4y + 8的焦点坐标是 .2. 离心率为2的双曲线的渐近线的夹角等于 .3. 经过两点M(3, 0 )、N( 0, -2 )的椭圆的标准方程是 .4. 若椭圆的一焦点到短轴两端点的连线垂直,则椭圆的离心率是 .5. AB 是过椭圆x 2 + 2y 2 = 4焦点F 1的弦,它与另一焦点F 2所连成三角形的周长等于 .6. 当抛物线y 2 = 4x 上一点P 到焦点F 和点A( 2, 2 )的距离之和最小时,点P 的坐标是三.解答题(5道题,共52分)1、已知双曲线的一渐近线方程是x +2y = 0, 且过点M(-6, 4 ),求双曲线的标准方程. (10分)2、求直线y = 2x + 1与抛物线x 2 - y = 1相交所得的弦长. (共10分)3、一抛物线以双曲线 191622=y x + 的右顶点为顶点,左焦点为焦点,求此抛物线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆 双曲线 抛物线 测试题
姓名_______ 分数________
一、选择题 (每小题3分 共36分)
1、在椭圆标准方程中,,a b c 三者的关系是( )
A 、222a b c +=
B 、222b c a +=
C 、222a c b +=
D 、以上都不对
2、曲线221(6)106x y m m m +=<--与曲线22
1(59)59x
y
m m m +=<<--的( )
A.焦距相等
B.离心率相等
C.焦点相同
D.准线相同
3、到点(-3,0)与点(3,0)距离之和为10的点的轨迹方程是( ) 11625x 22=+y A 、 1925x 2
2=+y B 、
C 、1251622=+y x
D 、12592
2=+y x
4、双曲线与椭圆1522
=+y x 共焦点,且一条渐近线方程是03=-y x ,则双曲线方程为(
)
A .132
2=-x y B .1322
=-x y C .132
2=-y x D .1322
=-y x
5、已知两点1(5,0)F -、2(5,0)F ,实轴长是6的双曲线的方程是( )
A 、221169x y -=
B 、221916x y -=
C 、221169y x -=
D 、22
196x y -=
6、以椭圆22
1259x y +=的焦点为焦点,离心率椭圆2e =的双曲线的标准方程是( )
A 、221612x y -=
B 、221614x y -=
C 、22144x y -=
D 、22
1412x y -=
7、抛物线24x y =-的准线方程是( )
A 、1
8x = B 、x =1 C 、y =-2 D 、y =1
8、抛物线22(0)y px p =>,则p 表示焦点F ( )
A 、到准线的距离
B 、到准线距离的一半
C 、到准线距离的两倍
D 、到y 轴的距离
9、设方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )
A 、(0,1)
B 、(0,2)
C 、),0(+∞
D 、()+∞,1
10、抛物线210y x =的焦点到准线的距离是( )
A 、10
B 、5
C 、2.5
D 、20
11、若抛物线2
2y px =的焦点与椭圆22
162
x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4
12、已知椭圆19
162
2=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若PF 1⊥PF 2,则21F PF ∆的面积是( )
A 、36
B 、18
C 、9
D 、16
二、填空题(每题5分 共25分) 13. 双曲线22
1259
x y -=的实虚轴长分别是 ,顶点坐标是 ,焦点坐标是 ,渐近线方程是 ,离心率是 。
14、抛物线210y x =的焦点坐标是 ,准线方程是 。
15、双曲线2222
1124x y m m -=+- 的焦距是 。
16、双曲线22
1169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△
ABF 2的周长是 。
17、抛物线的焦点为双曲线22
1169x y -=的左焦点,顶点在双曲线的中心,则抛物线方程为 ___________________。
三、解答题(每小题12分 共39分)
1、.(1).已知椭圆004251622=+y x ,求它的焦点坐标、顶点坐标和离心率。
(4分)
(2).椭圆5k -522=y x 的一个焦点是(0,2),求k (3分)
2、求中心在坐标原点,对称轴为坐标轴且经过点(3,-2),的抛物线方程。
(8分)
3.求过点(3,-2)且与14
92
2=+y x 有相同焦点的椭圆方程。
(10分)
4.(1)求直线21-=x y 被椭圆4422=+y x 截得的弦长|AB|,
(2)求出三角形ABF 2的面积。
(14分)。