新湘教版二次函数教案

合集下载

1.2二次函数y=a(x-h)^2的图象与性质(3)-湘教版九年级数学下册教案

1.2二次函数y=a(x-h)^2的图象与性质(3)-湘教版九年级数学下册教案

1.2 二次函数y=a(x-h)^2的图象与性质(3)-湘教版九年级数学下册教案一、学习目标1.掌握二次函数y=a(x-h)^2的图象及其性质。

2.理解二次函数y=a(x-h)^2的变化规律。

3.能够将一些实际问题转化为二次函数的形式,并进行解析。

二、教学重难点1.掌握二次函数y=a(x-h)^2的基本性质,并能够进行简单的变化规律推断。

2.理解如何将实际问题转化为二次函数的形式,并进行解析。

3.理解二次函数图象的不同变化规律。

三、学习内容1. 二次函数y=a(x-h)2的图象与性质二次函数y=a(x-h)2的图象是一个开口向上或向下的抛物线,其中(h, k)为抛物线的顶点。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

此外,当a的绝对值越小,抛物线的开口越接近于水平轴。

2. 二次函数y=a(x-h)2的变化规律在二次函数y=a(x-h)2中,a表示抛物线的开口方向和抛物线的开口大小。

当a>0时,表示抛物线开口向上;当a<0时,表示抛物线开口向下。

同时,a的绝对值越小,抛物线的开口越接近于水平轴。

3. 二次函数应用题利用二次函数的形式解决一些实际问题是数学学科中的重要应用之一。

通过一些具体的例子,可以帮助学生更好地掌握二次函数的理论知识。

例如,一个投射物的高度与时间的关系可以表示为y=-0.5x^2+10x,其中,x表示时间,y表示高度。

四、学习方法在学习过程中,学生可以通过练习题来巩固所学的知识。

同时,老师可以引导学生多思考实际问题的转化过程,并帮助学生掌握二次函数图象的不同变化规律。

五、作业1.练习册P19~P20,1、2、3、4、6、8题。

2.根据实际问题,自己构造1个二次函数,并绘制其图象。

六、教学反思通过本节课的学习,学生可以更好地掌握二次函数y=a(x-h)^2的基本性质,更好地理解二次函数的变化规律,能够将一些实际问题转化为二次函数的形式,并进行解析。

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1

湘教版数学九年级下册1.2《二次函数的图象与性质》教学设计1一. 教材分析湘教版数学九年级下册1.2《二次函数的图象与性质》是本册的重点章节,主要让学生掌握二次函数的图象与性质,为后续学习打下基础。

本节内容主要包括:二次函数的图象、顶点坐标、开口大小、对称轴等概念,以及二次函数的性质。

通过本节内容的学习,学生能更好地理解二次函数的本质,提高解决问题的能力。

二. 学情分析学生在学习本节内容前,已掌握了二次函数的定义、标准式、配方法等基本知识。

但对学生来说,二次函数的图象与性质较为抽象,不易理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,掌握二次函数的图象与性质。

三. 教学目标1.知识与技能:让学生掌握二次函数的图象与性质,能够运用二次函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:二次函数的图象与性质。

2.难点:二次函数的图象与性质的灵活运用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识二次函数的图象与性质。

2.启发式教学法:引导学生观察、操作、思考,发现二次函数的图象与性质。

3.小组合作学习:培养学生团队协作精神,提高解决问题的能力。

六. 教学准备1.教学课件:制作生动、形象的课件,帮助学生理解二次函数的图象与性质。

2.教学素材:准备相关的生活实例,便于引导学生运用二次函数解决实际问题。

3.练习题:设计具有一定难度的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动、几何图形的面积等,引导学生回顾二次函数的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)展示二次函数的图象与性质的课件,让学生直观地了解二次函数的图象与性质。

同时,引导学生观察、思考,发现二次函数的图象与性质之间的关系。

3.操练(10分钟)让学生分组讨论,运用二次函数的图象与性质解决实际问题。

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计一. 教材分析湘教版数学九年级下册1.1《二次函数》是本册教材中的重要内容,主要介绍了二次函数的定义、图像和性质。

通过本节课的学习,学生能够理解二次函数的概念,掌握二次函数的图像特点,了解二次函数的性质,并为后续学习二次方程和二次不等式打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的函数思维。

但二次函数相对于一次函数来说,概念较为抽象,图像和性质的理解也需要一定的空间想象能力。

因此,在教学过程中,需要关注学生的学习困难,引导学生通过观察、操作、思考、交流等方式,逐步理解二次函数的概念和性质。

三. 教学目标1.理解二次函数的定义,掌握二次函数的图像特点;2.了解二次函数的性质,能够运用二次函数解决实际问题;3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.二次函数的定义和图像特点;2.二次函数的性质及其运用。

五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.启发式教学法:引导学生主动思考、探究二次函数的性质;3.小组合作学习:培养学生团队合作精神,提高学生的交流能力;4.动手操作:让学生通过实际操作,加深对二次函数图像和性质的理解。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次函数的图像和性质;2.教学素材:准备一些实际问题,供学生练习和讨论;3.板书设计:设计清晰、简洁的板书,便于学生记录和复习。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线射击、自行车刹车等问题,引导学生思考二次函数的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解二次函数的定义,通过课件展示二次函数的图像,让学生观察和理解二次函数的图像特点。

3.操练(10分钟)让学生通过实际操作,尝试绘制一些简单的二次函数图像,加深对二次函数图像特点的理解。

4.巩固(10分钟)讲解二次函数的性质,引导学生通过思考、交流,总结二次函数的性质。

九年级数学下册 12 二次函数yax2bxc的图象与性质(第5课时)教案 (新版)湘教版 教案

九年级数学下册 12 二次函数yax2bxc的图象与性质(第5课时)教案 (新版)湘教版 教案

二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质某某际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗?学生回答,教师点评: 抛物线y=ax 2+bx+c=224()24b ac b a x a a -++,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a ,y 随x 的增大而增大.探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定? 学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21 =14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l 是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值X围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(某某某某中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④.(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④.【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值X围及函数最值.15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

九年级数学下册 1.2 二次函数y=ax2(a>0)的图象与性质(第1课时)教案 (新版)湘教版

九年级数学下册 1.2 二次函数y=ax2(a>0)的图象与性质(第1课时)教案 (新版)湘教版

1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +-=+是关于x 的二次函数. (1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围. 解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.y=x 2B.y=x-1C. 34y x =D.y=1x 2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC 与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.。

《第1课时 二次函数y=ax2(a>0)的图象与性质》教案 (公开课)2022年湘教版数学

《第1课时 二次函数y=ax2(a>0)的图象与性质》教案 (公开课)2022年湘教版数学

1.2 二次函数的图象与性质第1课时 二次函数y =ax 2(a >0)的图象与性质1.会用描点法画二次函数y =ax 2(a >0)的图象,理解抛物线的概念;(重点)2.掌握形如y =ax 2(a >0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究 探究点一:二次函数y =ax 2(a >0)的图象 y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.描点:(-1,3),(-12,34),(0,0),(12,34),(1,3). 连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如以下图.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见?学练优?本课时练习“课后稳固提升〞第7题探究点二:二次函数y =ax 2(a >0)的性质 点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,那么y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,那么y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,y 随x 的增大而增大,(-3,y 1)关于y 轴的对称点为(3,y 3).又3>2>1,∴y 1>y 3>y 2.方法总结:比拟二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比拟;②图象法;③根据函数的增减性进行比拟,但当要比拟的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比拟. 变式训练:见?学练优?本课时练习“课后稳固提升〞第2题探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值; (2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,那么抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)假设抛物线有最低点,那么抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见?学练优?本课时练习“课堂达标训练〞第9题三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2(a >0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.4.5 一次函数的应用第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图. (1)求a 的值,并求出该户居民上月用水8t 应收的水费; (2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式; (3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨? 解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量. 解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元; (2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t. 方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克? (2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元? 解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克). 答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

九年级数学下册 12 二次函数yax h2的图象与性质(第3课时)教案 (新版)湘教版 教案

九年级数学下册 12 二次函数yax h2的图象与性质(第3课时)教案 (新版)湘教版 教案

第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想. 【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象. 例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(某某某某中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h 决定向左右平移;从中领会数形结合的数学思想.。

九年级数学下册 1_1 二次函数学案 (新版)湘教版

九年级数学下册 1_1 二次函数学案 (新版)湘教版

第1章二次函数1.1 二次函数1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.阅读教材第2至3页,理解二次函数的概念及意义.自学反馈学生独立完成后集体订正①一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a、b、c.②现在我们已学过的函数有一次函数、反比例函数、二次函数,它们的表达式分别是y=ax+b(a、b为常数,且a≠0)、y=kx(k为常数,且k≠0)、y=ax2+bx+c(a、b、c为常数,且a≠0).③下列函数中,不是二次函数的是( D )A.y=1-2x2B.y=(x-1)2-1C.y=12(x+1)(x-1) D.y=(x-2)2-x2④二次函数y=x2+4x中,二次项系数是1,一次项系数是4,常数项是0.⑤一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.解:S表=4πr2⑥n支球队参加比赛,每两队之间进行一场比赛,写出比赛的场次数m与球队数n之间的关系式.解:m=12n2-12n判断二次函数关系要紧扣定义.活动1 小组讨论例1若y=(b-1)x2+3是二次函数,则b≠1.二次项系数不为0.例2 一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x+1)cm的小长方形,剩余部分的面积为y cm2.①写出y与x之间的关系表达式,并指出y是x的什么函数?②当小长方形中x的值分别为2和4时,相应的剩余部分的面积是什么?解:①y=122-2x(x+1),即y=-2x2-2x+144. ∴y是x的二次函数;②当x=2和4时,相应的y的值分别为132和104.几何图形的面积一般需画图分析,相关线段必须先用x的代数式表示出来.活动2 跟踪训练(独立完成后展示学习成果)1.如果函数y=(k+2)x22k 是y关于x的二次函数,则k的值为多少?解:k=2不要忽视k+2≠0.2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是( C )A.正比例函数B.一次函数C.二次函数D.反比例函数3.有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为y=x2+2x+1.4.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(m2)与x(m)的函数关系式为y=-12x 2+15x(不要求写出自变量x 的取值范围).5.已知,函数y=(m+1)x 232m m --+(m-1)x(m 是常数).①m 为何值时,它是二次函数?②m 为何值时,它是一次函数?注意②要分情况讨论.解:①m=4 ②m=-1或m=3172±或m=3212±. 6.如图,在矩形ABCD 中,AB=2 cm ,BC=4 cm ,P 是BC 上的一动点, 动点Q 仅在PC 或其延长线上,且BP=PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP=x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y cm 2,试分别写出0≤x ≤2和2≤x ≤4时,y 与x 之间的函数关系式.解:y=x 2(0≤x ≤2), y=-2x+8(2≤x ≤4).注意按自变量的取值范围写函数关系式.活动3 课堂小结学生试述:这节课你学到了些什么? 欢迎您的下载,资料仅供参考!。

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案

九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案标题:九年级下册《二次函数的图像与性质(1)》(湘教版)数学教案一、教学目标1. 知识与技能:理解并掌握二次函数的基本概念,能够绘制二次函数的图像,并通过观察和分析图像,掌握二次函数的基本性质。

2. 过程与方法:通过观察、讨论、总结等学习活动,培养学生的观察能力、分析能力和归纳能力。

3. 情感态度与价值观:体验从特殊到一般,从具体到抽象的数学思维过程,感受数学的简洁美。

二、教学重点和难点重点:二次函数的基本概念、图像及其基本性质。

难点:理解并掌握二次函数的图像与性质之间的关系。

三、教学准备多媒体设备、黑板、粉笔、学生用书、练习题。

四、教学过程(一) 导入新课教师引导学生回忆一次函数的图像和性质,然后提出问题:“如果一个函数的变量x的最高次数是2,这样的函数我们称之为二次函数,那么它的图像和性质会是什么样的呢?”从而引入新课。

(二) 新课讲解1. 二次函数的基本概念:教师引导学生阅读课本内容,理解二次函数的一般形式y=ax²+bx+c(a≠0),并明确a、b、c的意义。

然后,教师举例说明如何确定二次函数的一般形式。

2. 二次函数的图像:教师利用多媒体展示几个典型的二次函数图像,引导学生观察并总结其特点。

然后,教师讲解如何绘制二次函数的图像,包括确定顶点坐标、对称轴、开口方向等。

3. 二次函数的基本性质:教师引导学生通过观察图像,总结出二次函数的基本性质,如图像是抛物线、开口方向由a决定、顶点位置和函数值最小(最大)等。

(三) 巩固练习教师给出一些二次函数的题目,让学生尝试绘制图像并分析其性质,以巩固所学知识。

(四) 小结教师引导学生回顾本节课的主要内容,总结二次函数的基本概念、图像和性质。

五、作业布置完成课本上的习题,预习下一节的内容。

六、教学反思在教学过程中,要注意引导学生主动参与,鼓励他们积极思考,通过实践操作加深对二次函数的理解。

九年级数学下册课题2.1二次函数教案湘教版【教案】

九年级数学下册课题2.1二次函数教案湘教版【教案】

课题: 2.1 二次函数授课目的:1、从本质情况中让学生经历研究剖析和建立两个变量之间的二次函数关系的过程,进一步体验怎样用数学的方法去描述变量之间的数量关系。

2、理解二次函数的看法,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能依照实诘责题确定自变量的取值范围。

4、会用待定系数法求二次函数的剖析式。

授课重点:二次函数的看法和剖析式授课难点:本节“合作学习”涉及的实诘责题有的较为复杂,要修业生有较强的概括能力。

授课方案:一、创立情境,导入新课问题 1、现有一根 12m长的绳子,用它围成一个矩形,怎样围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题 2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以经过学习俄二次函数的数学模型来解决,今天我们学习“二次函数” (板书课题)二、合作学习,研究新知请用合适的函数剖析式表示以下问题中情况中的两个变量y 与 x 之间的关系:(1)面积 y (cm 2) 与圆的半径x ( Cm )(2)王先生计人银行 2 万元 , 先存一个一年如期,一年后银行将本息自动转存为又一个一年定期, 设一年如期的年存款利率为文x两年后王先生共得本息y 元 ;(3) 拟建中的一个温室的平面图如图, 若是温室外面是一个矩形,周长为12Om,室内通道的尺寸如图 , 设一条边长为x (cm),种植面积为y (m2)111x 3(一)教师组织合作学习活动:1、先个体研究,试一试写出y 与 x 之间的函数剖析式。

2、上述三个问题先易后难,在个体研究的基础上,小组进行合作交流,共同商议。

(1) y = πx2 ( 2)y = 2000(1+x) 2 = 20000x 2+40000x+20000(3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数剖析式拥有哪些共同特色?让学生充分宣告建议,提出各自看法。

湘教版二次函数图像教案(1)

湘教版二次函数图像教案(1)

二次函数的图象与性质(1)教学目标:知识与技能:通过观察、归纳掌握型二次函数图象的特征;过程与方法:经历描点法画函数图象的过程学会合理的推理; 情感态度与价值观:培养学生观察、归纳的思维习惯;教学重点:2ax y =(a ≠0)型二次函数图象特征的归纳;难点:画2ax y =(a ≠0)的图像与归纳图象的特征;教学过程:回忆二次函数的概念;二次函数的类型:①x a y 2=(a ≠0);②x a y 2=+bx (a ≠0);③x a y 2=+c (a ≠0);④ x a y 2=+bx+c (a ≠0); 提问:画函数图象的步骤;(①列表,②描点,③连线。

)学生画二次函数 xy 221=的图象,学生相互对比图象。

1列表:2描点 学生观察点有什么特征;(关于y 轴对称)猜测 xy 221=的图象关于( )对称. 还可看出,y 轴右边描出的各点,当横坐标增大时,纵坐标怎样变化? 师:可以证明上述两个猜测都是正确的,即x y 221=的图象关于y 轴对称;图象在y 轴右边的部分,函数值随自变量取值的增大而增大,简称为“右升”.3连线:(1)对称轴与图象的交点是;(2) 图象的开口向;(3)图象在对称轴左边的部分,函数值随自变量取值的增大而, 简称为;(4)当x= 时,函数值最.学生思考当a>0时,y=a x2的图象性质.类似地,当a>0时,y=a x2的图象也具有上述性质.于是我们在画y=a x2(a>0)的图象时,可以先画出图象在y轴右边的部分,然后利用对称性,画出图象在y轴左边的部分.在画右边部分时,只要“列表、描点、连线”三个步骤就可以了(因为我们知道了图象的性质).例1 画二次函数y=x2的图象:(学生完成)通过学生完成的情况师把学生出现的问题纠正过来。

P27练习:1题学生完成。

小结:y=a x2(a>0)的图象的性质:(1)对称轴与图象的交点是O(0,0);(2)图象的开口向上;(3)图象在对称轴左边的部分,函数值随自变量取值的增大而减小,简称为左降;图象在对称轴右边的部分,函数值随自变量取值的增大而增大,简称为右升。

湘教版数学九年级下册1.1《二次函数》说课稿

湘教版数学九年级下册1.1《二次函数》说课稿
湘教版数学九年级下册1.1《二次函数》说课稿
一.教材分析
湘教版数学九年级下册1.1《二次函数》是整个九年级数学的重要内容,同时也是学生对函数知识的进一步理解和深化。本节内容通过介绍二次函数的定义、性质和图像,使学生掌握二次函数的基本概念,培养学生解决实际问题的能力。
教材从实际问题出发,引入二次函数的概念,然后通过探究二次函数的性质,使学生了解二次函数的图像特征,最后通过实际问题,让学生运用二次函数解决生活中的问题。整个内容既有理论的学习,也有实践的运用,使学生在学习过程中,既能掌握二次函数的基本知识,又能提高解决问题的能力。
j)二次函数的判别式Δ决定了函数与x轴的交点个数。()
k)二次函数的图像具有对称性,对称轴是y轴。()
24.选择题:
l)下列函数中,哪个是二次函数?
A)y=3x^2 B) y=2x+1 C) y=x^3 D) y=5
m)当a<0时,二次函数的图像开口朝()。
B)上B)下C)左D)右
n)抛物线y=2x^2+3x+1的顶点坐标是()。
17.二次函数的增减性:当a>0时,二次函数在(-∞, -b/2a)上递减,在(-b/2a, +∞)上递增;当a<0时,二次函数在(-∞, -b/2a)上递增,在(-b/2a, +∞)上递减。
18.二次函数的零点:二次函数的零点是使得y=0的x值。根据判别式Δ的值,可以判断零点的个数。
19.二次函数的实际应用:二次函数在实际生活中有广泛的应用,如抛物线射击、最优化问题等。
知识点儿整理:
13.二次函数的定义:二次函数是形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数。其中,a、b、c分别是二次项系数、一次项系数和常数项。

湘教版数学九年级下册《1.1 二次函数》教学设计

湘教版数学九年级下册《1.1 二次函数》教学设计

湘教版数学九年级下册《1.1 二次函数》教学设计一. 教材分析湘教版数学九年级下册《1.1 二次函数》是学生在学习了函数、方程等知识后,进一步对函数的性质进行探究。

本节内容主要介绍二次函数的定义、性质及图象。

教材通过生活中的实例引入二次函数的概念,让学生感受数学与实际的联系,提高学习兴趣。

教材内容由浅入深,逐步引导学生掌握二次函数的图象和性质,为后续学习打下基础。

二. 学情分析九年级的学生已经掌握了函数、方程等基本知识,具备一定的逻辑思维能力和抽象思维能力。

但二次函数的内容较为抽象,学生对其理解和运用可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平进行教学。

三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。

2.了解二次函数的图象特征,会绘制二次函数的图象。

3.掌握二次函数的性质,会运用二次函数解决实际问题。

四. 教学重难点1.二次函数的定义和一般形式。

2.二次函数的图象特征和性质。

五. 教学方法1.情境教学法:通过生活中的实例引入二次函数,让学生感受数学与实际的联系。

2.引导发现法:教师引导学生发现二次函数的图象和性质,培养学生的观察能力和发现能力。

3.实践操作法:让学生动手绘制二次函数的图象,提高学生的动手能力。

六. 教学准备1.教学课件:制作二次函数的图象和性质的课件,便于学生直观理解。

2.练习题:准备相应的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如抛物线运动,引出二次函数的概念。

让学生思考:二次函数是如何描述实际问题的?2.呈现(10分钟)呈现二次函数的一般形式,引导学生观察二次函数的图象,了解二次函数的顶点、开口方向等特征。

3.操练(10分钟)让学生动手绘制二次函数的图象,观察图象的变化,体会二次函数的性质。

同时,教师进行讲解,解答学生的疑问。

4.巩固(10分钟)针对所学内容,进行课堂练习,让学生运用二次函数的知识解决问题。

高中数学湘教版必修四教案

高中数学湘教版必修四教案

高中数学湘教版必修四教案教材版本:湘教版
教学内容:二次函数
课时安排:共5课时
教学目标:
1. 理解二次函数的定义和性质
2. 熟练掌握二次函数的图像、基本形态和特征
3. 能够求解二次函数的零点和顶点
4. 能够解决相关的实际问题
教学重点:
1. 二次函数的基本概念和性质
2. 二次函数的图像和性质
3. 二次函数的零点和顶点求解
4. 二次函数在实际问题中的应用
教学难点:
1. 二次函数的图像和性质的理解
2. 二次函数的零点和顶点的求解
3. 实际问题中如何应用二次函数进行求解
教学过程:
第一课时:
1. 教师介绍二次函数的基本概念和性质
2. 学生通过实例理解二次函数的定义和基本形式
第二课时:
1. 教师讲解二次函数的图像和性质
2. 学生练习绘制二次函数的图像并分析其特征
第三课时:
1. 教师讲解二次函数的零点和顶点的求解方法
2. 学生进行相关练习,巩固求解二次函数的零点和顶点的能力
第四课时:
1. 教师引导学生通过实际问题理解二次函数的应用
2. 学生进行相关练习,提高解决实际问题的能力
第五课时:
1. 教师对整个章节进行总结和梳理
2. 学生进行小测验,检验对二次函数的掌握程度
教学反思:本节课程主要围绕二次函数展开,通过理论讲解和实际练习相结合的方式,帮助学生深入理解二次函数的定义和性质,掌握二次函数的基本形态和特征,提高解决二次函数相关问题的能力。

同时,通过实际问题的应用,激发学生学习兴趣,提高学生对数学知识的实际应用能力。

在教学过程中,要注重引导学生思考,培养其分析和解决问题的能力。

九年级下册《1.1二次函数》(湘教版)数学教案

九年级下册《1.1二次函数》(湘教版)数学教案

九年级下册《1.1二次函数》(湘教版)数学教案
标题:九年级下册《1.1二次函数》数学教案
一、教学目标:
1. 理解二次函数的基本概念。

2. 掌握二次函数的一般形式及特殊形式。

3. 能够运用二次函数解决实际问题。

二、教学重点与难点:
1. 教学重点:二次函数的概念和一般形式。

2. 教学难点:理解并掌握二次函数的图像和性质。

三、教学过程:
(一) 导入新课
通过回顾一次函数的相关知识,引出二次函数的概念。

(二) 新知探究
1. 二次函数的概念和表示方法
让学生自行阅读课本,然后引导他们总结二次函数的定义,并用公式表示出来。

2. 二次函数的一般形式和特殊形式
讲解二次函数的一般形式y=ax^2+bx+c(a≠0),并通过实例让学生了解二次函数的三种特殊形式:顶点式、零点式和完全平方式。

(三) 巩固练习
设计一些习题,包括基础题和提高题,帮助学生巩固所学知识。

四、课堂小结
引导学生对本节课的内容进行总结,强化记忆。

五、课后作业
布置适量的课后作业,以检查学生的学习效果。

新湘教版二次函数教案

新湘教版二次函数教案
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.
二、思考探究,获取新知
二次函数的概念及一般形式
在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,
b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.
编写时间2.28执行时间3.2主备人谭桂红执教者谭桂红总序第1个教案
课题
二次函数
共1课时
第1课时
课型
新授
教学目标
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
3.体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.
【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.
四、运用新知,深化理解
五、师生互动,课堂小结
1.师生共同回顾二次函数的有关概念.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.
(1)函数是一次函数;
(2)函数是二次函数.
【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.
解:(1)由 得 ,
∴m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数.
(2)由m2-m≠0得m≠0且m≠1,
∴当m≠0且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(2)(5)是二次函数,其余不是.
【教学说明】判定一个函数是否为二次函数的思路:
1.将函数化为一般形式.
2.自变量的最高次数是2次.
3.若二次项系数中有字母,二次项系数不能为0.
例2讲解教材P3例题.
【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.
例3已知函数y=(m2-m)x2+mx+(m+1)(m是常数),当m为何值时:
重点难点
1.二次函数的概念.
2.在实际问题中,会写简单变量之间的二次函数关系式教学过程.
教学策略
讨论、探究法,引导学生合作学习。
教学活动
课前、课中反思
一、情境导入,初步认识
1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.
二、思考探究,获取新知
二次函数的概念及一般形式
在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,
b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.
Байду номын сангаас作业
1.教材P4第1~3题.
2.完成同步练习册中本课时的练习.
课后反思
本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.
(1)函数是一次函数;
(2)函数是二次函数.
【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.
解:(1)由 得 ,
∴m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数.
(2)由m2-m≠0得m≠0且m≠1,
∴当m≠0且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.
【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.
四、运用新知,深化理解
五、师生互动,课堂小结
1.师生共同回顾二次函数的有关概念.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.
编写时间2.28执行时间3.2主备人谭桂红执教者谭桂红总序第1个教案
课题
二次函数
共1课时
第1课时
课型
新授
教学目标
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
3.体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.
三、典例精析,掌握新知
例1指出下列函数中哪些是二次函数.
(1)y=(x-3)2-x2;(2)y=2x(x-1);(3)y=32x-1;(4)y= ;(5)y=5-x2+x.
【分析】先化为一般形式,右边为整式,依照定义分析.
相关文档
最新文档