金榜2011高考真题分类汇编:考点1集合(新课标地区)
山东省各地市2011年高考数学最新联考试题分类大汇编(1)集合

山东省各地市2011年高考数学最新联考试题分类大汇编第1部分:集合2. (山东省济南市2011年2月高三教学质量调研理科)若集合{}R x x x A ∈≤-=,32,{}2|1,B y y x y R ==-∈,则A B =A. []0,1B.[)0,+∞C. []1,1-D.∅2.C 【解析】{}[]23,1,5A x x x R =-≤∈=-,{}(]2|1,,1B y y x y R ==-∈=-∞,[]1,1A B =- .2. (山东省青岛市2011年3月高考第一次模拟理科)已知全集U R =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,则()U A B ð等于( C )A .{|20}x x x ><或B .{|12}x x <<C . {|12}x x <≤D .{|12}≤≤x x3. (山东省青岛市2011年3月高考第一次模拟文科)已知全集R U =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,则()U B A ð等于( C )A. {|2x x >或0}x <B. {|12}x x <<C. {|12}x x <≤D. {|12}x x ≤≤ 1.(山东省济宁市2011年3月高三第一次模拟文科)2{|60}A x x x =+-=,{|10}B x mx =+=且A B A = ,则m 的取值范围( C )A .⎭⎬⎫⎩⎨⎧-21,31B .110,32⎧⎫--⎨⎬⎩⎭, C .110,32⎧⎫-⎨⎬⎩⎭,D .11,32⎧⎫⎨⎬⎩⎭1.(山东省临沂市2011年3月高三第一次教学质量检测理科)已知1{||3|4},{0,},2x M x x N x x ZM N x -=-<=<∈+ 则= ( B )A .φB .{0}C .{2}D .{|27}x x ≤≤2.(山东省淄博市2011年3月高三下学期模拟考试理科)若全集U =R,集合A ={2|430x x x ++>},B ={3|log (2)1x x -≤},则()UC A B =(D )A .{x |1-<x 或2>x }B .{x |1-<x 或2≥x }C .{x |1-≤x 或2>x }D .{x |1-≤x 或2≥x }2.(山东省淄博市2011年3月高三下学期模拟考试文科)若全集U=R,集合A=。
2011年高考数学试题分类汇编 集合与常用逻辑用语

2011年高考数学试题分类汇编一、集合与常用逻辑用语一、选择题1.(重庆理2)“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】A2.(天津理2)设则“且”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】A3.(浙江理7)若为实数,则“”是的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A4.(四川理5)函数,在点处有定义是在点处连续的A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理1)设是向量,命题“若,则∣∣= ∣∣”的逆命题是A.若,则∣∣∣∣B.若,则∣∣∣∣C.若∣∣∣∣,则D.若∣∣=∣∣,则= -【答案】D6.(陕西理7)设集合M={y|y=x—x|,x∈R},N={x||x—|<,i为虚数单位,x∈R},则M∩N为A.(0,1)B.(0,1] C.[0,1)D.[0,1]【答案】C7.(山东理1)设集合M ={x|},N ={x|1≤x≤3},则M∩N = A.[1,2)B.[1,2] C.(2,3] D.[2,3]【答案】A8.(山东理5)对于函数,“的图象关于y轴对称”是“=是奇函数”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】B9.(全国新课标理10)已知a,b均为单位向量,其夹角为,有下列四个命题其中真命题是(A)(B)(C)(D)【答案】A10.(辽宁理2)已知M,N为集合I的非空真子集,且M,N不相等,若,则(A)M(B)N(C)I(D)【答案】A11.(江西理8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C12.(湖南理2)设集合则“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】A13.(湖北理9)若实数a,b满足且,则称a与b互补,记,那么是a与b互补的A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.即不充分也不必要的条件【答案】C14.(湖北理2)已知,则= A.B.C.D.【答案】A15.(广东理2)已知集合∣为实数,且,为实数,且,则的元素个数为A.0B.1C.2D.3【答案】C16.(福建理1)i是虚数单位,若集合S=,则A.B.C.D.【答案】B17.(福建理2)若a R,则a=2是(a-1)(a-2)=0的A.充分而不必要条件B.必要而不充分条件C.充要条件C.既不充分又不必要条件【答案】A18.(北京理1)已知集合P={x︱x2≤1},M={a}.若P∪M=P,则a的取值范围是A.(-∞, -1] B.[1, +∞)C.[-1,1] D.(-∞,-1] ∪[1,+∞)【答案】C19.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是(A)所有不能被2整除的数都是偶数(B)所有能被2整除的整数都不是偶数(C)存在一个不能被2整除的数都是偶数(D)存在一个能被2整除的数都不是偶数【答案】D20.(广东理8)设S是整数集Z的非空子集,如果有,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,且有有,则下列结论恒成立的是A.中至少有一个关于乘法是封闭的B.中至多有一个关于乘法是封闭的C.中有且只有一个关于乘法是封闭的D.中每一个关于乘法都是封闭的【答案】A二、填空题21.(陕西理12)设,一元二次方程有正数根的充要条件是=【答案】3或422.(安徽理8)设集合则满足且的集合为(A)57 (B)56 (C)49 (D)8【答案】B23.(上海理2)若全集,集合,则。
2011年高考试题分类汇编(集合)

2011年高考试题分类汇编(集合)考点1 集合的基本概念1.(2011·福建卷·理科)i 是虚数单位,若集合{1,0,1}S =-,则A.i S ∈B.2i S ∈C. 3i S ∈D.2S i∈ 考点2 集合的基本关系1.(2011·课标全国卷·文科)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N = ,则P 的子集共有A.2个B.4个C.6个D.8个2.(2011·天津卷·文科)设集合{}|20A x R x =∈->,{}|0B x R x =∈<,{}|(2)0C x R x x =∈->,则“x A B ∈ ”是“x C ∈”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3.(2011·浙江卷·文科)若{1}P x x =<,{1}Q x x =>,则A.P Q ⊆B.Q P ⊆C.R C P Q ⊆D.R Q C P ⊆4.(2011·辽宁卷·理科)已知,M N 为集合I 的非空真子集,且,M N 不相等,若I N C M =∅ ,M N =A. MB. NC.ID.∅5.(2011·安徽卷·理科)设集合{}1,2,3,4,5,6A =,{}4,5,6,7,B =则满足S A ⊆且φ≠B S 的集合S 为A.57B.56C.49D.86.(2011·北京卷·理科)已知集合}{P x x 2=≤1,}{M a =.若P M P =U ,则a 的取值范围是A.(,1]-∞-B. [1,)+∞C. [1,1]-D. (,1][1,)-∞-+∞7.(2011·湖南卷·理科)设集合{}1,2M =,{}2N a =则 “1a =”是“N M ⊆”的A.充分不必要条件B.必要不充分条件C. 充分必要条件D. 既不充分又不必要条件考点3 集合的基本运算考法1 交集1.(2011·福建卷·文科)若集合{}0,1,1M =-,{}0,1,2M =,则M N =A. {}0,1B. {}1,0,1-C. {}0,1,2D. {}1,0,1,2-2.(2011·江苏卷)已知集合{1,1,2,4}A =-,{1,0,2}B =-,则A B = .3.(2011·辽宁卷·文科)已知集合{1}A x x =>,{12}B x x =-<<,则A B = A. {12}x x -<< B. {1}x x >- C. {11}x x -<< D. {12}x x <<4.(2011·山东卷·文科)设集合{(3)(2)0}M x x x =+-<,{13}N x x =≤≤,则=N MA.[)2,1B.[]2,1C. (]3,2D. []3,25.(2011·江西卷·理科)若集合{}1213A x x =-≤+≤,20x B x x -⎧⎫=≤⎨⎬⎩⎭,则 A B = A.{}10x x -≤< B.{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤6.(2011·山东卷·理科)设集合2{60}M x x x =+-<,{13}N x x =≤≤,则 =N MA.[)2,1B.[]2,1C. (]3,2D. []3,27.(2011·广东卷·文理)已知集合{}221, ,A x x y x y R =+=∈且,{}, ,B x y x x y R ==∈且,则A B 的元素个数为 A .0 B.1 C .2 D .38.(2011·山东卷·理科)已知集合{}|349A x R x x =∈++-≤,{|B x R =∈14,(0,)}x t t t=+∈+∞,则集合A B =______. 考法2 补集1.(2011·四川卷·文科)若全集{}1,2,3,4,5M =,{}2,4N =,则M C N =A. ∅B. {}1,3,5C. {}2,4D.{}1,2,3,4,52.(2011·重庆卷·文科)设U R =,{}220M a a a =->,则U C A =A.[0,2]B.(0,2)C.(,0)(2,)-∞+∞D.(,0][2,)-∞+∞3.(2011·北京卷·文科)已知全集R ,集合}{P x x 2=≤1,那么R C P =A.(,1)-∞-B. (1,)+∞C. (1,1)-D.(,1)(1,)-∞-+∞4.(2011·湖北卷·理科)已知{}2log ,1U y y x x ==>,1{,2}P y y x x ==>,则U C P = A. 1[,)2+∞ B. 1(0,)2 C. (0,)+∞ D.1(,0][,)2-∞+∞ 考法3 交、并、补混合运算1.(2011·大纲全国卷·文科)设集合{}1,2,3,4U =,{}1,2,3M =,{}2,3,4N =,则()U C M N =A.{}12,B.{}23,C.{}2,4D.{}1,42. (2011·湖北卷·文科)已知{}1,2,3,4,5,6,7,8U =,{}1,3,5,7A =,{}2,4,5B =, 则()U C A B =A.{}6,8B.{}5,7C.{}4,6,7D.{}1,3,5,6,83.(2011·安徽卷·文科)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T =A.}{,,,1456B. }{,15C. }{4D. }{,,,,123455.(2011·湖南卷·文科)设全集{}1,2,3,4,5U M N == ,{}()2,4U M C N = ,则N =A .{}1,2,3B .{}1,3,5 C.{}1,4,5 D.{}2,3,46.(2011·江西卷·文科)若全集{1,2,3,4,5,6}U =,{2,3}M =,{1,4}N =,则集合{5,6}等于A.M NB.M NC.()()U U C M C ND.()()U U C M C N。
2011-2020年高考数学真题分类汇编 专题01 集合概念与运算(教师版含解析)

专题01集合概念与运算全景展示年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合 1,2,3,5,7,11A , 315|B x x ,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B I ,故A B ∩中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A .2B .3C .4D .6【答案】C 【解析】由题意,A B ∩中的元素满足8y xx y,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A = 22(,)1x y x y │,B =(,)x y y x │,则A ∩B 中元素的个数为A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y 与直线y x 相交于两点 1,1, 1,1 ,则A B ∩中有两个元素,故选B .4.【2018新课标2,理1】已知集合�=�,�2+�2≤3,�∈�,�∈�,则�中元素的个数为()A .9B .8C .5D .4【答案】A 【解析】∵�2+�2≤3,∴�2≤3,∵�∈�,∴�=−1,0,1,当�=−1时,�=−1,0,1;当�=0时,�=−1,0,1;当�=−1时,�=−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B = |,x y x A y A 中元素的个数是A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ;1,0,1,2,1,0,1x y x y ;2,0,1,2,2,1,0x y x y .∴B 中的元素为2,1,0,1,2 共5个,故选C .6.【2013江西,理1】若集合2|10A x R ax ax 中只有一个元素,则a =A .4B .2C .0D .0或4【答案】A 【解析】当0a 时,10 不合,当0a 时,0 ,则4a ,故选A .7.【2012江西,理1】若集合{1,1}A ,{0,2}B ,则集合{|,,}z z x y x A y B 中的元素的个数为()A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y 只能取 1,1,3等3个数值.故共有3个元素,故选C .8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y ,B ={(,)|,x y x y 为实数,且1}x y ,则A B 的元素个数为A .4B .3C .2D .1【答案】C 【解析】由2211x y x y 消去y ,得20x x ,解得0x 或1x ,这时1y 或0y ,即{(0,1),(1,0)}A B ,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合R 25A x x 中的最小整数为_______.【答案】3 【解析】不等式52 x ,即525 x ,73 x ,所以集合}73{ x x A ,所以最小的整数为3 .考点2集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x ,{|11}B x x ,则A .A BÜB .B AÜC .A BD .A B∩【答案】B 【解析】A=(-1,2),故B A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(- ,0)∪(2,+ ),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合 1,2,3A , 2,3B ,则A .A =BB .A B∩C .A BÜD .B AÜ【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ,故A 、B 、C 均错,D 是正确的,选D .4.【2012福建,理1】已知集合{1,2,3,4}M ,{2,2}N ,下列结论成立的是()A .N MB .M N MC .M N N∩D .{2}M N ∩【答案】D 【解析】由M ={1,2,3,4},N ={ 2,2},可知 2∈N ,但是 2 M ,则N M ,故A 错误.∵M N ={1,2,3,4, 2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x ,则()A .P QB .Q PC .R C P QD .R Q C P【答案】D 【解析】{|1}P x x ∴{|1}R C P x x ,又∵{|1}Q x x ,∴R Q C P ,故选D .6.【2011北京,理1】已知集合P =2{|1}x x ,{}M a .若P M P ,则a 的取值范围是A .( ∞, 1]B .[1,+∞)C .[ 1,1]D .( ∞, 1] [1,+∞)【答案】C 【解析】因为P M P ,所以M P ,即a P ,得21a ,解得11a ,所以a 的取值范围是[1,1] .7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(- ,0)∪(2,+ ),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A BB .C BC .D C D .A D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x R ,{|05,}B x x x N ,则满足条件A CB 的集合C 的个数为()A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,2|320,A x x x x R1,2 ,易知|05,1,2,3,4 N B x x x .因为 A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合 3,4的子集个数,即有224 个.故选D .考点3集合间的基本运算【试题分类与归纳】1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个【答案】B 【解析】∵P=M ∩N={1,3},∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x },N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}【答案】C 【解析】因为集合M= |31x x ,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}【答案】A ;【解析】依题意, 1,4,9,16B ,故 1,4A B ∩.5.【2014新课标1,理1】已知集合A={x |2230x x },B={x |-2≤x <2},则A B =A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,) ,∴A B =[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N= 2|320x x x ≤,则M N =()A .{1}B .{2}C .{0,1}D .{1,2}【答案】D 【解析】∵2=32012N x x x x x ,∴M N ∩ 1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x ,N ={|21}x x 则M N ∩()A.)1,2( B .)1,1( C .)3,1(D .)3,2( 【答案】B 【解析】M B ∩(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x ,则A B ∩()A.B .2C .{0}D .{2}【答案】B 【解析】∵ 1,2B ,∴A B ∩ 2.9.【2015新课标2,理1】已知集合21,01,2A {,,},(1)(20B x x x ,则A B ∩()A .1,0A B .0,1C .1,0,1 D .0,1,2【答案】A 【解析】由题意知,)1,2( B ,∴}0,1{ B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ,则集合A B ∩中的元素个数为()(A)5(B)4(C)3(D)2【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D .11.【2015新课标2,文1】已知集合 |12A x x , |03B x x ,则A B ()A .1,3 B .1,0 C .0,2D .2,3【答案】A 【解析】由题知,)3,1( B A ,故选A .12.【2016新课标1,理1】设集合}034|{2x x x A ,}032|{ x x B ,则B A =(A)3(3,2 (B)3(3,2 (C)3(1,2(D)3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23( ,所以B A =3(,3)2,故选D .13.【2016新课标2,理2】已知集合{1,}A 2,3,{|(1)(2)0,}B x x x x Z ,则A B ()(A){1}(B){12},(C){0123},,,(D){10123} ,,,,【答案】C 【解析】由题知B ={0,1},所以A B {0,1,2,3},故选C .14.【2016新课标3,理1】设集合 |(2)(3)0,|0S x x x T x x ,则T S =(A)[2,3](B)(- ,2]U [3,+ )(C)[3,+ )(D)(0,2]U [3,+ )【答案】D 【解析】由题知,),3[]2,( S ,∴T S =(0,2]U [3,+ ),故选D .15.【2016新课标2,文1】已知集合{123}A ,,,2{|9}B x x ,则A B ∩()(A){210123},,,,,(B){21012},,,,(C){123},,(D){12},【答案】D 【解析】由题知,)3,3( B ,∴}2,1{ B A ,故选D .16.【2016新课标1,文1】设集合{1,3,5,7}A ,{|25}B x x ,则A B ∩()(A){1,3}(B){3,5}(C){5,7}(D){1,7}【答案】B 【解析】由题知,}5,3{ B A ,故选B .17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,【答案】C 【解析】由题知,}10,6,2,0{ B C A ,故选C .18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x},则A .{|0}AB x x ∩B .A B RC .{|1}A B x x D .A B∩【答案】A 【解析】由题知,)0,( B ,∴{|0}A B x x ∩,故选A .19.【2017新课标1,文1】已知集合A = |2x x ,B = |320x x ,则()A .A ∩B =3|2x xB .A ∩BC .A B 3|2x xD .A B=R【答案】A20.【2017新课标2,理2】设集合 1,2,4 ,240x x x m .若 1 ∩,则 ()A . 1,3B . 1,0C . 1,3D .1,5【答案】C 【解析】由 1 ∩得1B ,所以3m , 1,3B ,故选C .21.【2017新课标2,文1】设集合 123234A B ,,, ,,, 则A B =()A . 123,4,,B . 123,,C . 234,,D . 134,,【答案】A 【解析】由题意{1,2,3,4}A B ,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为()A .1B .2C .3D .4【答案】B 【解析】由题意可得, 2,4A B ∩,故选B .23.【2018新课标1,理1】已知集合�=��2−�−2>0,则∁��=A .�−1<�<2B .�−1≤�≤2C .�|�<−1∪�|�>2D .�|�≤−1∪�|�≥2【答案】B 【解析】由题知,�=�|�<−1或�>2,∴���=�|−1≤�≤2,故选B .24.【2018新课标3,理1】已知集合�=�|�−1≥0,�=0,1,2,则�∩�=A .0B .1C .1,2D .0,1,2【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C .25.【2018新课标1,文1】已知集合,,则()A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合242{60M x x N x x x ,,则M N =()A . {43x x B . {42x x C .{22x x D .{23x x 【答案】C 【解析】由题意得,42,23M x x N x x ,则22M N x x .故选C .28.【2019新课标1,文2】已知集合 1,2,3,4,5,6,72,3,4,52,3,6,7U A B ,,,则C U B A ∩=()A .1,6B .1,7C .6,7D .1,6,7【答案】C 【解析】由已知得 1,6,7U C A ,所以U B C A {6,7},故选C .29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】由题意得,2,3,1A x x x B x x 或,则1A B x x .故选A .30.【2019新课标2,文1】.已知集合={|1}A x x ,{|2}B x x ,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .【答案】C 【解析】由题知,(1,2)A B ∩,故选C .31.【2019新课标3,理1】已知集合21,0,1,21A B x x , ,则A B ()A . 1,0,1B .0,1C .1,1 D .0,1,2【答案】A 【解析】由题意得,11B x x ,则 1,0,1A B .故选A .32.【2019浙江,1】已知全集 1,0,1,2,3U ,集合 0,1,2A , 1,0,1B ,则U A B ∩ð=A .1 B . 0,1C .1,2,3 D .1,0,1,3 【答案】A 【解析】{1,3}U A ð,{1}U A B ∩ð.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x R ,则()A C B∩ A .2B .2,3C .1,2,3 D .1,2,3,4【答案】D 【解析】由题知, 1,2A C ∩,所以 1,22,3,41,2,3,4A C B ∩ ,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∩N ð M I ,则N M A .MB .NC .ID .【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M .35.【2018天津,理1】设全集为R ,集合{02}A x x ,{1}B x x ≥,则() R I A B ðA .{01}x x ≤B .{01}x x C .{12}x x ≤D .{02}x x 【答案】B 【解析】因为{1}B x x ≥,所以{|1}R B x x ð,因为{02}A x x ,所以() R I A B ð{|01}x x ,故选B .36.【2017山东,理1】设函数24y x的定义域A ,函数ln(1)y x 的定义域为B ,则A B =∩()A .(1,2)B .(1,2]C .(2,1)D .[2,1)【答案】D 【解析】由240x ≥得22x ≤≤,由10x 得1x ,故A B={|22}{|1}{|21}x x x x x x ∩∩≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A ,{2,4}B ,{|15}C x x R ≤≤,则()A B C ∩A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x R ≤≤【答案】B 【解析】(){1246}[15]{124}A B C ∩∩,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x ,{|02}Q x x ,那么P Q =A .(1,2)B .(0,1)C .(1,0)D .(1,2)【答案】A 【解析】由题意可知{|12}P Q x x ,选A .39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x R 则A B =A .(1,1)B .(0,1)C .(1,)D .(0,)【答案】C【解析】集合A 表示函数2x y 的值域,故(0,)A .由210x ,得11x ,故(1,1)B ,所以(1,)A B .故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ,则A B ∩=A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B ,所以{1,4}A B ∩,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x ≥≤,则()R P Q∩ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]【答案】C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q =x x ∩ð,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x ,集合{|13}B x x ,则A B = A .{|13}x x B .{|11}x x C .{|12}x x D .{|23}x x 【答案】A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<< .43.【2015福建,理1】若集合234,,,A i i i i (i 是虚数单位), 1,1B ,则A B ∩等于()A .1 B .1C .1,1 D .【答案】C 【解析】由已知得 ,1,,1A i i ,故A B ∩ 1,1 ,故选C .44.【2015广东,理1】若集合 410M x x x ,410N x x x ,则M N ∩A .1,4B .1,4 C .0D .【答案】D 【解析】由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --=得4x =或1x =,得{1,4}N =.显然 ∩M N .45.【2015陕西,理1】设集合2{|}M x x x ,{|lg 0}N x x ≤,则M NA .[0,1]B .(0,1]C .[0,1)D .(,1]【答案】A 【解析】20,1x x x ,lg 001x x x x ,所以 0,1 ,故选A .46.【2015天津,理1】已知全集 1,2,3,4,5,6,7,8U ,集合 2,3,5,6A ,集合1,3,4,6,7B ,则集合U A B∩ðA . 2,5B . 3,6C . 2,5,6D .2,3,5,6,8【答案】A 【解析】{2,5,8}U B ð,所以{2,5}U A B ∩ð,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{ x y y B x x A x 则B A ∩A .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵ 1,2B ,∴A B 2,故选B .48.【2014浙江,理1】设全集 2| x N x U ,集合5|2 x N x A ,则 A C U A . B .}2{C .}5{D .}5,2{【答案】B 【解析】由题意知{|2}U x N x ≥,{|A x N x ,所以 A C U {|2x N x≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ,则集合()U C A BA .{|0}x xB .{|1}x xC .{|01}x xD .{|01}x x 【答案】D 【解析】由已知得,=0A B x x 或 1x ,故()U C A B {|01}x x ,故选D .50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{ U 的子集,且(){4}U A B ð,{1,2}B ,则U A B∩ðA .{3}B .{4}C .{3,4}D .【答案】A 【解析】由题意 1,2,3A B ,且{1,2}B ,所以A 中必有3,没有4,3,4U C B ,故U A B ∩ð 3.51.【2013陕西,理1】设全集为R ,函数()f x 的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(D .,1)(1,)( 【答案】D 【解析】()f x 的定义域为M =[ 1,1],故R M ð=(,1)(1,) ,选D .52.【2013湖北,理1】已知全集为R ,集合112x A x, 2|680B x x x ,则()R A C B∩A . |0x x B . |24x x ≤≤C . |024x x x 或D .|024x x x 或【答案】C 【解析】 0,A , 2,4B , 0,24,R A C B ∩ .53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ,则集合{5,6}等于A .M NB .M NC . n n C M C ND .n n C M C N 【答案】D 【解析】因为{1,2,3,4}M N ,所以 n n C M C N =()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∩N ð M I ,则N M A .M B .N C .I D .【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M .55.【2017江苏】已知集合{1,2}A ,2{,3B a a },若{1}A B ∩,则实数a 的值为_.【答案】1【解析】由题意1B ,显然1a ,此时234a ,满足题意,故1a .56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B ,则A B ∩()A .{4,1}B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x 解得14x ,所以 |14A x x ,又因为 4,1,3,5B ,所以 1,3A B ∩,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】求解二次不等式240x 可得: 2|2A x x ,求解一次不等式20x a 可得:|2a B x x.由于 |21A B x x ,故:12a ,解得:2a .故选B .58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】因为 3,2,1,0,1,2A x x x Z ,1,1B x x x Z x x 或 1,x x Z ,所以 2,2A B ∩.故选D .59.【2020年高考全国II 卷理数1】已知集合 2,1,0,1,2,3,1,0,1,1,2U A B ,则 U A B ð()A . 2,3B . 2,2,3C . 2,1,0,3D .2,1,0,2,3 【答案】A 【解析】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x ,{|23}Q x x 则P ∩Q =()A .{|12}x x B .{|23}x x C .{|23}x x D .{|14}x x 【答案】B 【解析】由已知易得23P Q x x ∩,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x ,则A B∩A .{1,0,1} B .{0,1}C .{1,1,2} D .{1,2}【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B I I ,故选D .62.【2020年高考山东卷1】设集合{|13}A x x ,{|24}B x x ,则=A B A .{|23}x x B .{|23}x x C .{|14}x x D .{|14}x x 【答案】C 【详解】 1,32,41,4A B U U ,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U ,集合{1,0,1,2},{3,0,2,3}A B ,则 U A B ∩ð()A .{3,3} B .{0,2}C .{1,1} D .{3,2,1,1,3}【答案】C 【解析】由题意结合补集的定义可知: U 2,1,1B ð,则U 1,1A B ∩ð,故选C .64.【2020年高考上海卷1】已知集合 1,2,4,2,4,5A B ,则A B ∩.【答案】 2,4【解析】由交集定义可知 2,4A B ∩,故答案为: 2,4.65.【2020年高考江苏卷1】已知集合 1,0,1,2,0,2,3A B ,则A B ∩.【答案】 0,2【解析】由题知, 0,2A B ∩.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y ∈A },则B 中所含元素的个数为()A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y Z ,{(,)||2,||2,B x y x y ≤≤,}x y Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ,则A B 中元素的个数为()A .77B .49C .45D .30【答案】C 【解析】因为集合22{(,)1,,}A x y x y x y Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B 的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477 个.3.【2013广东,理8】设整数4n ,集合 1,2,3,,X n ,令集合{(,,)|,,S x y z x y z X ,且三条件,,x y z y z x z x y 恰有一个成立},若 ,,x y z 和 ,,z w x 都在S 中,则下列选项正确的是A . ,,y z w S , ,,x y w SB . ,,y z w S , ,,x y w SC . ,,y z w S , ,,x y w SD . ,,y z w S , ,,x y w S【答案】B 【解析】特殊值法,不妨令2,3,4x y z ,1w ,则 ,,3,4,1y z w S ,,,2,3,1x y w S ,故选B .如果利用直接法:因为 ,,x y z S , ,,z w x S ,所以x y z …①,y z x …②,z x y …③三个式子中恰有一个成立;z w x …④,w x z …⑤,x z w …⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z ,于是 ,,y z w S , ,,x y w S ;第二种:①⑥成立,此时x y z w ,于是 ,,y z w S , ,,x y w S ;第三种:②④成立,此时y z w x ,于是 ,,y z w S , ,,x y w S ;第四种:③④成立,此时z w x y ,于是 ,,y z w S , ,,x y w S .综合上述四种情况,可得 ,,y z w S , ,,x y w S .4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b ∈[0]”.其中正确的结论个数是()A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k 丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b =5(n-m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,ki i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p ,11i i p p ,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q ,121j j j q q q ,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】(1)子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列”12100,,,p p p 满足11p ,11i i p p ,1≤i ≤99;∴P 的“特征数列”:1,0,1,0…1,0.所以P =},,{99531a a a a .∵E 的子集Q 的“特征数列”12100,,,q q q 满足11q ,121j j j q q q ,1≤j ≤98,,可知:j =1时,123q q q =1,∵11q ,∴2q =3q =0;同理4q =1=7a =…=32n q .Q 的“特征数列”:1,0,0,1,0,0…1,0,0,1.所以Q =},,,{10097741a a a a a .∴{ Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n .对于集合A中的任意元素12(,,,)n x x x 和12(,,,)n y y y ,记(,)M111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y .(1)当3n 时,若(1,1,0) ,(0,1,1) ,求(,)M 和(,)M 的值;(2)当4n 时,设B 是A 的子集,且满足:对于B 中的任意元素, ,当, 相同时,(,)M 是奇数;当, 不同时,(,)M 是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素, ,(,)0M .写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0) ,(0,1,1) ,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M ,1(,)[(10|10|)(11|11|)(01|01|)]12M .(2)设1234(,,,)x x x x B ,则1234(,)M x x x x .由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M 为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素 , ,均有(,)1M .所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x (1,2,,)k n ,11212{(,,,)|0}n n n S x x x x x x ,则121n A S S S .对于k S (1,2,,1k n )中的不同元素 , ,经验证,(,)1M ≥.所以k S (1,2,,1k n )中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n .取12(,,,)k n k e x x x S 且10k n x x (1,2,,1k n ).令1211(,,,)n n n B e e e S S ,则集合B 的元素个数为1n ,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
2011年高考数学试题分类解析(一)——集合与常用逻辑用语

二 、亮 点 扫 描
1 .集合
合与 逻辑 用语 在 2 1 年 各省 市 的高考题 中 ,仍然 坚持 考查 了 01 集合与逻辑 用语 的 “ 基础性 、普遍 性 、工具 性和学科 性 ”等 基 础 内容 .
2 .在基础 内容 中嵌入重要数 学思想与方法
() 1 集合的基本 运算 .
交并 补是集合 的基本 运算 问题 ,是集合 研究 的主要 问题 与
重点 内容 之一 ,各 省市每 年高考命 题都或多 或少涉及 了集合运
21 年各 省市在集合 与逻 辑用语命题 中,仍重视 在基本 内 0 1 算问题 ,2 1 年部分省市高考试题仍然呈现这一重要特 色亮 点. 0 1 容中嵌人数形结合和分类讨论等重要 思想 方法. 在集合运算 中融 例 1 ()湖南卷・ 1 1( 文 )设全集 U MU = 1 2 3 4 5, = N {, , , , } 人 V n 图和不等式 的解法 ,借助数轴采用 数形结合 的思想 , en 使 Mn CN=/, }则 N=( ) 2 4, .
果 的推 广和研 究 ,凸显 了课程 改革的 气息 ,展 示 了课程 改革 的 入更多 的综 合知识 ,通过解 读试题本 身 ,可以将问题转 化为其
关键词 :集合 与逻辑 用语 ;命题 特 点;亮点扫描 ;典型 错 线的位置 关系融入 集合与逻辑 用语 中 ,其本质 属性却是 反映解
一
、
2 1 年有 许多省市在 高考命题 时对 集合问题进行 了加工润 01
又促进了高考命题 的特色化更新.
1 基础知识 重点考查 .
’
或 V) ^) ”外 ,增 加 了新 普通 高 中数学 课程 只将 集合作 为一种语 言学 习 ,要求学 生 用语 除了原有 的 “ ( 、且 ( 、非 ()
2011高考数学真题考点分类新编:考点1集合(大纲版地区)

考点1 集合一、选择题1.(2011·湖北高考理科·T2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U P=ð A. 1[,)2+∞ B. 10,2⎛⎫ ⎪⎝⎭ C. ()0,+∞ D. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭【思路点拨】先化简集合,再进行集合的运算.【精讲精析】选A. {}U 110,,P=.22U y P y y y y y ⎧⎫⎧⎫=>=<∴≥⎨⎬⎨⎬⎩⎭⎩⎭ð 2.(2011·湖北高考文科·T1)已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则()U AB ⋃=ð A. {}6,8 B.{}5,7 C. {}4,6,7 D.{}1,3,5,6,8【思路点拨】先求A B ⋃,再求()U C A B ⋃.【精讲精析】选A. ∵{}1,2,3,4,5,7A B ⋃=,∴{}()6,8U C A B ⋃=.3.(2011·全国高考文科·T1)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U = (M N )ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【思路点拨】解决本题的关键是掌握集合交并补的计算方法,易求{2,3}M N = , 进而求出其补集为{}1,4.【精讲精析】选D. {2,3},(){1,4}U M N M N =∴= ð.4.(2011·上海高考理科·T2)若全集U R =,集合{1}{|0}A x x x x =≥≤ ,则U C A =【思路点拨】本题考查集合的并集和补集运算知识,此类题的易错点是临界点的取舍. 【精讲精析】{01}A U C x x =<<,全集为U R =,故集合A 的补集应该把临界点0和1去掉.5.(2011·四川高考文科·T1)若全集{}123,4,5M =,,,{}2,4N =,则MN C =( ). (A )∅ (B) {}13,5, (C) {}2,4 (D) {}123,4,5,,【思路点拨】补集的概念.【精讲精析】选B ,在全集M 中剔除集合N 中所含元素.故选B.6. (2011·重庆高考文科·T2)设{}02,2>-==x x x M R U ,则=M C U ( )(A)[]2,0 (B)()2,0 (C)()()+∞⋃∞-,20, (D)(][)+∞⋃∞-,20,【思路点拨】先求出集合M ,再求其补集.【精讲精析】选A.集合{}{}02022<>=>-=x x x x x x M 或,所以[]2,0=M C U .二、填空题7.(2011·上海高考文科·T1)若全集U R =,集合{1}A x x =≥,则U C A =【思路点拨】本题考查集合的并集和补集运算知识,此类题的易错点是临界点的取舍.【精讲精析】全集为U R =,故集合A 的补集应该把临界点1去掉,故U C A ={1}x x <。
2011年高考文科数学试题分类汇编—集合

2011年高考数学试题分类汇编——集合1、(2011安徽文科)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于 (A )}{,,,1456 (B )}{,15 (C ) }{4 (D ) }{,,,,12345 2、(2011北京文科)已知全集U=R ,集合{}21P x x =≤,那么U C P =A. (),1-∞-B. ()1,+∞C. ()1,1-D. ()(),11,-∞-+∞3、(2011福建文科)若集合M={-1,0,1},N={0,1,2}则M ∩N 等于 A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}4、(2011广东文科)已知集合(){,|A x y x y =、为实数,且}221x y +=,(){,|B x y x y =、为实数,且}1x y +=,则A B 的元素个数为( )A .4B .3C .2D .15、(2011湖南文科)设全集{1,2,3,4,5},{2,4},U U M N M C N === 则N =( ) A .{1,2,3} B .{1,3,5} C.{1,4,5} D.{2,3,4} 6(2011江西文科)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 7(2011辽宁文科)已知集合A ={x 1|>x },B ={x 21|<<-x }},则A B =A .{x 21|<<-x }B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x }8(2011全国大纲卷文科)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N ) (A ){}12,(B ){}23,(C ){}2,4 (D ){}1,4 9(011新课标文)已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有( )个 A.2B.4C .6 D810(2011山东文科)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]11(2011四川文科)若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A )∅ (B ){1,3,5} (C ){2,4} (D ){1,2,3,4,5}12(2011重庆文科)设错误!未找到引用源。
2011年各地高考英语单选分类汇总试题12011年各地高考英语单选分类汇总试题1

2011年各地高考英语单选分类汇总试题1(精校版)一、名词与数词(山东)There is a ______ in our office that when it’s somebody’s birthday, they bring in a cake for us all to share.A. traditionB. balanceC. concernD. relationship(四川)13.Always remember put such dangerous things as knives out of children’s近年来国内外游学线路迅速升温化学教案越来越多的家长希望孩子通过游学的方式拓宽眼界试卷试题公开数据显示化学教案A. touchB. sightC. reachD. distance(湖北)21.“Tommy, run! Be quick! The house is on fire!” the mother shouted, with______ elderly in her votes.A . anger B. rudeness C. regret D. panic(湖北)22.Giving up my job to go back to full-time education was s a big________, but now I know it was the best decision I ever made.A. projectB. commitmentC. competitionD. ambition(福建)26. The lack of eco-friendly habits among the public is thought to be a major _____of global climate change.A. resultB. causeC. warningD. reflection(江苏)27.Teachers have to constantly update their knowledge in order to maintain their professional _______.A.consequenceB.independencepetenceD.intelligence(浙江)18. Anyway, I can’t cheat him --- it’s against all my ______.A. emotionsB. principlesC. regulationsD. opinions(江西)31.What’s the_____, in your opinion, of helping him if he doesn’t make an effort to help himself?A.sympathyB.themeC.objectD.point二、动词辨异(全国新课标)34. William found it increasingly difficult to read, for his eyesight was beginning to ______.A. disappearB. fallC. fai lD. damage(天津)6.I a bank account after I made﹩1 000 by doing a part-time job during the summer vacation.A.borrowedB.openedC.enteredD.ordered(安徽)21. As the story______, the truth about the strange figure is slowly discovered.A. beginsB. happensC.endsD.develops(湖北)26.Knowledge and learning are imporantant if we want to be successful but they may also________ our thinking.A. directB. limitC. changeD. improve(湖北)27.The minister said. “We are ready for discussions with any legal parties, but we’ll never_______ with criminals.”A. negotiateB. quarrelC. argueD. consult(湖北)28.Clinical evidence began to__________, suggesting that the new drugs had a wider range of useful activities than had been predicted from experiments in animals.A. operateB. strengthenC. approveD. accumulate(福建)28. I’d prefer to ____my judgment until I find all the evidence.A. showB. expressC. passD. reserve(辽宁)22. What are you doing out of bed, Tom? You're to be asleep. ,A. supposedB. knownC. thoughtD. considered(辽宁)24. You are old enough to your own living.A.winB. gainC. takeD. earn(江苏)28.—Are you still mad at her? —Not really, but I can´t _____ that her remarks hurt me.A.denyB.refuseC.rejectD.decline(全国II)10. Mary, I_____John of his promise to help you.A. toldB. remindedC. warnedD. advised三、动词词组(全国新课标)26. I can ______ the house being untidy, but I hate it if it’s not clean.A. come up withB. put up withC. turn toD. stick to(天津)8.She an old friend of hers yesterday while she was shopping at the department store.A.turned downB.dealt withC.took afterD.came across(安徽)34. If you _____faults but you still want the bicycle, ask the shop assistant to reduce the price.A. come acrossB. care aboutC. look forD. focus upon(山东)25.They are broadening the bridge to_____ the flow of traffic.A. put offB. speed upC. turn onD. work out(四川)7.To get a better grade, you should __________the notes again before the test.A. go overB. get overC. turn overD. take over(四川)14.I often the words I don’t know in the dictionary or on the Internet.A. look upB. look atC. look forD. look into(湖北)29. The government has taken measures to _______ the high prices of daily goods to keep the market stable.A. take downB. bring downC. hand downD. tear down(陕西)25.Some insects________the colour of their surroundings to protect themselves.A. take inB. take offC. take onD. take out(福建)31. Born into a family with three brother, David was ____to value the sense of sharing.A. brought upB. turned downC. looked afterD. held back(辽宁)26. The exam results will be on Friday afternoon.A. put downB. put offC. put upD. put away(江苏)30. —You look upset. What´s the matter?— I had my proposal _______ again.A.turned overB.turned onC.turned offD.turned down(浙江)6. The school isn’t the one I really wanted to go to, but I suppose I’ll just have to ______it,A. make the best ofB. get away fromC. keep an eye onD. catch up with(浙江)12.He decided that he would drive all the way home instead of ____at a hotel for the night .A. putting downB. putting offC. putting onD. putting up(江西)35. You can’t predict everything. Often things don’t ____ as you expect.A.run outB.break outC.work outD. put out.四、动词时态和语态(全国新课标)23. Planning so far ahead ______ no sense –so many things will have changed by next year.A. madeB. is makingC. makesD. has made(全国新课标)24. I wasn’t sure if he was really interested of or if he ______ polite.A. was just beingB. will just beC. had just beenD. would just be(全国新课标)29. When Alice came to, she did not know how long she ______ there.A. had been lyingB. has been lyingC. was lyingD. has lain(北京)21. Experiments of this kind in both the U.S. and Europe well before the Second World War.A. have conductedB. have been conductedC. had conductedD. had been conducted(北京)23.Tom in the library every night over the last three months.A. worksB. workedC. have been workingD. had been working(北京)27. —That must have been a long trip.—Yeah, it us a whole week to get there.A. takesB. has takenC. tookD. was taking(北京)32. —Bob has gone to California.—Oh, can you tell me when he ?A. has leftB. leftC. is leavingD. would leave(上海)31. After getting lost in a storm, a member of the navy team ______ four days later.A. rescuedB. was rescuedC. has rescuedD. had been rescued(上海)34. Did you predict that many students ______ up for the dance competition?A. would signB. signedC. have signedD. had signed(天津)3.In the last few years thousands of films allover the word.A.have producedB. have been producedC. are producingD. are being produced(天津)4.On the next birthday.Ann married for twenty years.A.isB.has beenC.will beD.will have been(重庆)21. That piece of music sounds quite familiar. Who _________the piano upstairs?A. has playedB. playedC. playsD. is playing(重庆)31.Look at the pride on Tom’s face. He to have been praised by the manager just now.A.seemedB.seemsC.had seemedD.is seeming(安徽)26. — What do you think of store shopping in the future?—Personally, I think it will exist along with home shopping but _____.A. will never replaceB. would never replaceC. will never be replacedD. would never be replaced(安徽)27.The factory used 65 percent of the raw materials, the rest of which _____ saved for other purposes.A. isB. areC. wasD. were(安徽)32. —I didn’t ask for the name list. Why ______on my desk?—I put it there just now in case you needed it.A. does it landB. has it landedC. will it landD. had it landed(山东)31.When I got on the bus,I_____I had left my wallet at home.A. was realizingB. realizedC. have realizedD. would realize(山东)35. She was surprised to find the fridge empty; the child _____ everything!A. had been eatingB. had eatenC. have eatenD. have been eating (四川)9. All visitors to this village _________ with kindness.A. treatB. are treatedC. are treatingD. had been treated(四川)19.—What a mistake! —Yes.I his doing it another way, but without success.A. was suggestingB. will suggestC. would suggestD. had suggested(陕西)12.His first novel good reviews since it came out last month.A.receivesB.is receviingC.will receiveD.has received(湖南)22. -----Joan, what ______ in your hand? -----Look! It’s a birthday gift for my grandpa.A. had you heldB. are you holdingC. do you holdD. will you hold(湖南)27. In 1492, Columbus _______ on one of the Bahama Islands, but he mistook it for an island of India.A. landsB. landedC. has landedD. had landed(湖南)30 It Is the most instructive lecture that I ________since I carne to thisA attendedB had attendedC am attending Dhave attended(湖南)34. In the near future, more advances in the robot technology _______ by science.A. are makingB. are madeC. will makeD. will be made(福建)32. Last month, the Japanese government expressed their thanks for the aid they_______ from China.A. receiveB. are receivingC. have receivedD. had received(辽宁)28. I'll go to the library as soon as I finish what IA. was doingB. am doingC. have doneD. had been doing(辽宁)34. By the time Jack returned home from England, his son from college.A. graduatedB. has graduatedC. had been graduatingD. had graduated(江苏)21. I hear you _____ in a pub. What's it like? Well, it's very hard work and I'm always tired,but I don't mind.A. are workingB. will workC. were workingD. will be working(江苏)22. The fact that so many people still smoke in public places ______ that we may need a national wide campaign to raise awareness of the risks of smoking.A. suggestB. suggestsC. suggestedD. suggesting(江苏)23. Tommy is planning to buy a car. I know, by next month, he ______ enough for a used one.A. savesB. savedC. will saveD. will have saved(浙江)15. The manager was worried about the press conference his assistant ______ in his placebut, luckily, everything was going on smoothly.A. gaveB. givesC. was givingD. had given(江西)30.We arrived at work in the morning and found that somebody _____ into the office during the night.A.brokeB. had brokenC.has brokenD.was breaking(全国II)9. If you don't like the drink you______just leave it and try a different one.A. orderedB. are orderingC. will orderD. had ordered五、情态动词和虚拟语气(全国新课标)32. They ______ have arrived at lunchtime but their flight was delayed.A. willB. canC. mustD. should(北京)24.—I don’t really like James. Why did you invite him?—Don’t worry. He come. He said he wasn’t certain what his plans were.A. must notB. need notC. would notD. might not(北京)28. —Where are the children? The dinner’s going to be completely ruined.—I wish they always late.A. weren’tB. hadn’t beenC. wouldn’t beD. wouldn’t have been(北京)30. Maybe if I science, and not literature then, I would be able to give you more help.A. studiedB. would studyC. had studiedD. was studying(上海)28. I ______ worry about my weekend—I always have my plans ready before it comes.A. can’tB. mustn’tC. daren’tD. needn’t(天津)15. I ______ sooner but I didn’t know that they were waiting for me.A. had comeB. was comingC. would comeD. would have come (重庆)25.——Why didn’t you come to Simon’s party last night?—— I want to ,but my mom simply _________ not let me out so late at night.A. couldB. mightC. wouldD. should(四川)20.The police still haven’t found the lost child, but they’re doing all they .A. canB. mayC. mustD. should(陕西)22.I__________through that bitter period without your generous help.A. couldn’t have goneB. didn’t goC. wouldn’t goD. hadn’t gone(陕西)24.—Will you read me a story ,Mummy?--OK.You________have one if you go to bed as soon as possible.A. mightB. mustC. couldD. shall(湖南)28. -----No one _______ be compared with Yao Ming in playing basketball.-----Oh, you are really his big fan.A. canB. needC. mustD. might(福建)25. —Shall I inform him of the change of the schedule right now?—I am afraid you _______,in case he comes late for the meeting.A. willB. mustC. mayD. can(福建)34. —Pity you missed the lecture on nuclear pollution.—I____ it, but I was busy preparing for a job interview.A. attendedB. had attendedC. would attendD. would have attended(辽宁)21. If you __ go, at least wait until the storm is over.A. canB. mayC. mustD. will(江苏)34. —I left my handbag on the train, but luckily someone gave it to a railway official.— How unbelievable to get it back! I mean, someone ______it.A.will have stolenB.might have stolenC.should have stolenD.must have stolen(浙江)11. --- How’s your new babysitter?--- We ______ ask for a better one. All our kids love her so much.A. shouldB. mightC. mustn’tD. couldn’t (江西)23.It _______ be the postman at the door, It’s only six o’clock.A. mustn’tB.can’tC.won’tD.neddn’t(江西)28.We _____John’s name on the race list yesterday but for his recent injuryA.will putB. will have putC. would putD. would have put(全国II)8. If you _____ smoke, please go outside.A. canB. shouldC. mustD. may六、形容词(四川)12.—How are your reccent trip to Sichuan? —I’ve never had one before.A. a pleasantB. a more pleasantC. a trecst pleasantD. the most pleasant(湖北)23.The old engineer’s eyes sti ll shone bright in the wrinkled brown face and his step as he came across the room was________,though slow.A. shakyB. heavyC. casualD. steady(湖北)24.An unhappy childhood may have some negative effects on a person’s characters however, they are not always_________,A. practicalB. avoidableC. permanentD. beneficial(湖北)25,The state-run company is required to make its accountsas_________ as possible for its staff to monitor the use of money.A. transparentB. reasonableC. securerD. format(陕西)17.The new stadium being built for the next Asian Games will be ___the present one.A.as three times big asB. three times as big asC. as big as three timesD. as big three times as(福建)30.Nowedays, there is a increase in children’s creativity,for they are greatly encouraged to drevelop their tilents.A.sharpB.slightC.naturalD.modest(江苏)25. In that school,English is compulsory for all students,but French and Russia are ______.A. specialB. regionalC. optionalD. original(浙江)9. The professor could tell by the _____ look in Maria’s eyes that sh e didn’t understand a single word of his lecture.A. coldB. blankC. innocentD. fresh(浙江)16. My schedule is very ______ right now, but I’ll try to fit you in.A. tightB. shortC. regularD.flexible(江西)24.-----The film is, I have to say, not a bit interexting.------Why? It’s ______ than the films I have ever seen.A. far more interestingB.much less interestingC. no more interestingD.any less interesting(江西)33.She has already tried her best. Please don’t be too ______ about her job.A.specialB.responsibleC.unusualD.parricular(全国II)17.Mr. Stevenson is great to work for----I r eally couldn't ask for a ______ boss.A. betterB. goodC. bestD. still better七、副词(上海)29. When Mom looked back on the early days of their marriage, she wondered how they had managed with ______ money.A. so fewB. such fewC. so littleD. such little(天津)9. The young man couldn’t afford a new car _______, he bought a used one.A. BesidesB. OtherwiseC. InsteadD. Still(安徽)31. _____, I managed to get through the game and the pain was worth it in the end.A. HopefullyB. NormallyC. ThankfullyD. Conveniently(浙江)7.Since people are fond of humor ,it is as welcome in conversation as___else.A. anythingB. somethingC. anywhereD. somewhere(浙江)13. I’ve been writing this report ______ for the last two weeks, but it has to be handed in tomorrow.A. finallyB. immediatelyC. occasionallyD. certainly(江西)27.The haouse was too expensive and too hig._______, I’d grown fond of our little rented house.A.BesidesB.ThereforeC.SomchowD.Otherwise(全国II)12. It’s one thing to enjoy listening to good music, but it is _____ another to play it well yourself.A. quiteB. veryC. ratherD. much八、代词(北京)34.The employment rate has continued to rise in big cities thanks to the efforts of the local governments to increase .A. thenB. thoseC. itD. that (上海)26. To stay awake, he finished a cup of coffee and ordered ______.A. the otherB. otherC. the othersD. another(天津)1. We feel our duty to make our country a better place.A. itB. thisC. thatD. one(重庆)27.——Silly me! I foeget what my luggage looks like.——What do you think of over there?A.the oneB.thisC.itD.that(安徽)22.Surprisingly, Susan’s beautiful hair reached below her kneesand made_____ almost an overcoat for her.A. themB. herC. itselfD. herself(山东)24.The two girls are so alike that strangers find_____ difficult totell one from the other.A. itB. themC. herD. that(四川)3.There is in his words.We should have a try.A. somethingB. anythingC.nothingD.everything(陕西)16.-Would you get me a bar of chocolate from the kitchen,dear? - one?A.OtherB.EveryC.AnotherD.More(湖南)24. I knew that _______ would ever discourage him; he would never giveup wanting to be a director.A. somethingB. anythingC. everythingD. nothing(福建)21. We have various summer camps for your holidays. You can choose_______based on your own interests.A. eitherB. each C .one D. it(辽宁)27.- Would you like tea or coffee? - , thank you. I've justhad some water.A. EitherB. BothC. AnyD. Neither(江西)25..Why don’t you bring _____ to his attention that you are tooill to work on?A. thatB.itC.hisD.him(全国II)11. I got this bicyle for ______: My friend gave it to me whenshe bought a new one.A. everythingB. somethingC. anythingD. nothing九、冠词(全国新课标)33. It is generally accepted that ______ boy must learn tostand up and fight like ______ man.A. a; aB. a; theC. the; theD. a; 不填(重庆)26. In communication, a smile is usually ___________ strong signof a friendly and _______ open attitude.A. the, /B. a, anC. a, /D. the, an(山东)21.Take your time-it’s just_____short distance from hereto_____restaurant.A.不填;theB. a; theC. the; aD.不填;a(四川)18.Dr. Peter Spence, headmaster of the school, told us,fifth of pupils here go on to study at Oxford and Cambridge.A.不填;AB.不填;TheC. the; TheD. a; A(陕西)13.As is know to all, People’s Republic of China isbiggest developing country in the world.A.the ;不填B. 不填;theC. the ;theD. 不填;不填(浙江)2. Experts think that ______recently discovered painting may be______ Picsso.A. the ;不填B. a ;theC. a; 不填D. the; a(江西)22.------It’s said John will be in a job paying over 860,00 _____year------ Right, he will also get paid by _____ week.A. the; theB. a; theC.D.a;a(全国II)16. As he reached ______ front door, Jack saw ______ strange sight.A. the;不填B. a; theC.不填aD. the; a十、介词(北京)35. With new technology, pictures of underwater valleys can be taken color.A. byB. forC. withD. in(上海)25. Graduation is a good time to thank those who have helped you______ the tough years.A. throughB. upC. withD. from(天津)11. He was a good student and scored _________ average in most subjects.A. belowB. ofC. onD. above(重庆)24.Shirley, a real book lover, often brings home many books to read__________ the library.A. inB. forC. byD. from(安徽)25.Sometimes proper answers are not far to seek______ food safety problem.A. inB. toC. onD. after(山东)30. I’m sorry I didn’t phone you, but I’ve been very busy ______ the past couple of weeks.A. beyondB. withC. amongD. over(四川)8.Nick, it’s good for you to read some books __________China before you start your trip there.A. inB. forC. ofD. on(浙江)5. I always wanted to do the job which I’d been trained ______.A. onB. forC. byD. of(全国II)14. This shop will be closed for repairs ______ further notice.A. withB. untilC. forD. at十一、连词(全国新课标)25. —Someone wants you on the phone. —______ nobody knows I am here.A. althoughB. andC. ButD. so(上海)36. If a lot of people say a film is not good, I won’t bother to see it, or I’ll wait ______ it c omes out on DVD.A. whetherB. afterC. thoughD. until(重庆)22. It is still under discussion __________the old bus station should be replaced with a modern hotel or not.A. WhetherB. whenC. whichD. where(安徽)33.His writing is so confusing that it’s difficult to make out _____it is he is trying to express.A. thatB. howC. whoD. what(山东)23.Find ways to praise your children often,_____ you’ll find they will open their hearts to you.A. tillB. orC. andD. but(福建)33.It was April 29,2001 Prince William and Kate Middleton walked into the palace hall of the wedding ceremony.A.thatB.whenC.sinceD.berore(江苏)33.It sounds like something is wrong with the car’s engine. ______, we´d better take it to the garage immediately.A.OtherwiseB.If notC.But for thatD.If so(浙江)4. One Friday, we were packing to leave for a weekend away ______my daughter heard cries for help.A. afterB. whileC. sinceD. when(江西)29.Please call my secretary to arrange a meeting this afternoon, or _____ it is convenient to you.A. wheneverB.howeveC. whicheverD. wherever (全国II)19. It was a nice meal,_______a little expensive.A. thoughB. whetherC. asD. since十二、非谓语动词(全国新课标)27. The next thing we saw was smoke ______ from behind the house.A. roseB. risingC. to riseD. risen(北京)25. It’s important for the figures regularly.A. to be updatedB. to have been updatedC. to updateD. to have updated(北京)33. Sit down, Emma. You will only make yourself more tired, on your feet.A. to keepB. keepingC. having keptD. to have kept(上海)27. It’s no use ______ without taking action.A. complainB. complainingC. being complainedD. to be complained(上海)32. The rare fish, ______ from the cooking pot, has been returned to the sea.A. savedB. savingC. to be savedD. having saved(上海)33. At one point I made up my mind to talk to Uncle Sam. Then I changed my mind, ______ that he could do nothing to help.A. to realizeB. realizedC. realizingD. being realized(上海)40. Today we have chat rooms, text messaging, emailing… but we seem ______ the art of communicating face-to-face.A. losingB. to be losingC. to be lostD. having lost(天津)7. Passeagers are permitted _____ only one piece of hand luggage onto the plane.A.to carryB. carryingC. to be carriedD. being carried(天津)12.______ into English, the sentence was found to have an entirely different word order.A. TranslatingB. TranslatedC. To translateD. Having translated(重庆)29.More TV programs,according to government to officials, will be produced people’s concern over food safety.A.to raiseB.raisingC.to have raisedD. having raised(重庆)33. Michael put up a picture of Yao Ming beside the bed to keep himself ________ of his own dreams.A. remindingB. to remindC. remindedD. renmind(安徽)30.Tom asked the candy makers if they could make the chocolate easier _____ into small pieces.A. breakB. breakingC. brokenD. to break(山东)27.Look over there-there’s a very long, winding path_____up to the house.A. leadingB. leadsC. ledD. to lead(四川)2.Lydia does’t feel like _______ abroad.Her parents are old.A. studyB. studyingC. studiedD.to study(四川)11.Simon made a big bamboo box the little sick bird till it would fly.A. keepB. keptC. keepingD. to keep(四川)16. an important role in a new movie, Andy has a chance to become famous.A. OfferB. OfferingC. OfferedD. To offer(陕西)20.More highways have been built in China,___________it much easierfor people to trave form one place to another.A. makingB. madeC. to makeD. having made(湖南)21 . The ability _____an idea is as important as the idea itselfA expressingB expressedC to expressD to cover(湖南)23. The players _______ from the whole country are expected to bringus honor in this summer game.A. selectingB. to selectC. selectedD. havingselected(湖南)29. Do you wake up every morning _______ energetic and ready to starta new day?A. feelB. to feelC. feelingD. felt(福建)23. Tsinghua University, in 1911,is home to a great numberof outstanding figures.A. foundB. foundingC. foundedD. to be founded(福建)27. The difference in thickness and weight from the earlier versionmakes the iPad2 more comfortable_______.A. heldB. holdingC. be heldD. to hold(辽宁)30. around the fire, the tourists danced with the localpeople.A. GatherB. To gatherC. GatheringD. Tobe gathering(江苏)31.Recently a survey ________ prices of the same goods in two different supermarkets has caused heated debate among citizens.paredparingparesD.being compared(浙江)14. Even the best writers sometimes find themselves ______ for words.A. loseB. lostC. to loseD. having lost(浙江)19. If they win the final tonight, the team are going to tour around the city ______ bytheir enthusiastic supporters.A. being cheeredB. be cheeredC. to be cheeredD. were cheered(江西)32. On receiving a call from his wife _____ she had a fall, Mr Gordon immediately rushed home from office.A. saysB.saidC.sayingD.to say(全国II)15. The island, ______ to the mainland by a bridge, is easy to go to.A. joiningB. to joinC. joinedD. having joined(全国II)18.Sarah pretended to be cheerful, ______nothing about the argument.A. saysB. saidC. to sayD. saying十三、名词性从句(北京)22. Barbara Jones offers to her fans is honesty and happiness.A. WhichB. WhatC. ThatD. Whom(上海)35. There is clear evidence ______ the most difficult feeling of all to interpret is bodily pain.A. whatB. ifC. howD. that(上海)38. The message you intend to convey through words may be the exact opposite of ______ others actually understand.A. whyB. thatC. whichD. what(天津)13. Modern science has given clear evidence ______ smoking can lead to many diseases.A. whatB. whichC. thatD. where(重庆)34. It is not always easy for the public to see _______ use a new invention can be of to human life.A. whoseB. whatC. whichD.that(山东)26.I’m afraid he’s more of a talker than a doer, which is_____ he never finishes anything.A. thatB. whenC. whereD. why(山东)33.We’ve offered her the job, but I don’t know______ she’ll accept it.A. whereB. whatC. whetherD. which(四川)10. Our teachers always tell us to believes in we do and who we are if we want to succeed.A. whyB. howC. whatD. which(陕西)15.I’d like to start my own business –that’s I’d do if I had the money.A.whyB.whenC.whichD.what。
2011年高考数学试题分类汇编——复数、集合与简易逻辑

2011年高考数学试题分类汇编——复数、集合与简易逻辑复数、集合与简易逻辑(1) 设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为(A )2 (B) -2 (C)1-2(D) 12(7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数(B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数是偶数(D )存在一个能被2整除的数不是偶数 (8)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且SB φ≠的集合S 为(A )57 (B )56 (C )49 (D )8(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U S C T 等于(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 1.已知集合2{|1}P x x =≤,{}M a =,若PM P=,则a 的取值范围是A.(,1]-∞- B. [1,)+∞ C. [1,1]-D.(,1]-∞-[1,)+∞2.复数i 212i-=+ A. i B. i - C.43i 55-- D.43i 55-+(1)已知全集U=R ,集合{}21P x x=≤,那么UCP =A. (),1-∞-B. ()1,+∞C. ()1,1-D.()(),11,-∞-+∞1.i是虚数单位,若集合{1,0,1}S =-,则BA .i S ∈B .2iS∈ C .3iS∈ D .2S i∈ 2.若a R∈,则“2a =”是“(1)(2)0a a --=”的A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]。
其中,正确结论个数是 A .1B .2C .3D .41.设复数z 满足(1+i)z=2,其中i 为虚数单位,则Z=A .1+iB .1-iC .2+2iD .2-2i2.已知集合A={ (x ,y)|x ,y 为实数,且122=+y x},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B的元素个数为A .0 B . 1 C .2 D .31.设复数z 满足1iz =,其中i 为虚数单位,则z = ( )A .i -B .iC .1-D .1 2.已知集合(){,|A x y x y=、为实数,且}221x y +=,(){,|B x y x y=、为实数,且}1x y +=,则AB的元素个数为( ) A .4 B .3 C .2 D .1 1.i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i i A.i - B.1-C.iD.1 2.已知{}1,log2>==x x y y U ,⎭⎬⎫⎩⎨⎧>==2,1x xy y P ,则=P CUA. ⎪⎭⎫⎢⎣⎡+∞,21 B.⎪⎭⎫⎝⎛21,0 C.()+∞,0 D.()⎪⎭⎫⎢⎣⎡+∞∞-,210, . 9.若实数b a ,满足0,0≥≥b a ,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补A. 必要而不充分条件 B . 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件1、已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则()UA B ⋃=A. ()()1,2,1,1a b ==-{}6,8B.{}5,7C.{}4,6,7D.{}1,3,5,6,81.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( ) A .1,1a b == B .1,1a b =-= C .1,1a b =-=- D .1,1a b ==-2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 1.设全集{1,2,3,4,5},{2,4},U U MN MC N ===则N =( )A .{1,2,3}B .{1,3,5}C.{1,4,5}D.{2,3,4} 3."1""||1"x x >>是的A .充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分又不必要条件1.已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A3.设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 1. 设ii z 21+=,则复数=_zA. i--2 B.i+-2C.i-2 D.i +22. 若集合}3121|{≤+≤-=x x A ,}02|{≤-=xx x B ,则=B A A.}01|{<≤-x x B. }10|{≤<x x C.}20|{≤≤x xD. }10|{≤≤x x江西文1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( )A.2i -+B.2i +C.12i -D.12i + 2.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N⋃ B.M N⋂ C.()()U U C M C N ⋃D.()()UU CM C N ⋂1.a 为正实数,i 为虚数单位,2=+i i a ,则=a A .2BCD .12.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I∅,则=N MA .MB .NC .ID .∅辽宁文1.已知集合A ={x 1|>x },B ={x 21|<<-x }},则A B = A .{x 21|<<-x } B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x }2.i 为虚数单位,=+++7531111ii i i A .0 B .2i C .i 2- D .4i4.已知命题P :∃n ∈N ,2n >1000,则⌝P 为 A.∀n ∈N ,2n ≤1000B .∀n ∈N ,2n >1000 C.∃n ∈N ,2n ≤1000D .∃n ∈N ,2n <1000(1)复数212i i +-的共轭复数是 (A )35i - (B )35i (C )i - (D )i全国Ⅰ文(1)已知集合2,,4,|A x x x RB x x Z =≤∈=≤∈,则AB =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2| (3)已知复数23(13)i z i +=-,则i =(A)14 (B )12(C )1 (D )2(1)复数1z i =+,z 为z 的共轭复数,则1zz z --=(A)-2i (B)-i (C)i (D)2i (3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A)a >b +1 (B)a >b -1 (C)2a >2b(D)3a >3b(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则()UCM N =(A ){}12, (B ){}23, (C ){}2,4(D ){}1,45. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要【解析】由奇函数定义,容易得选项C正确.山东文(1)设集合M ={x|(x+3)(x-2)<0},N={x|1≤x≤3},则M∩N = A (A)[1,2) (B)[1,2] (C)( 2,3] (D)[2,3](5)已知a,b,c∈R,命题“若a b c++=3,则222++≥3”,的否命题是a b c(A)若a+b+c≠3,则222++<3a b c(B)若a+b+c=3,则222++<3a b c(C)若a+b+c≠3,则222a b c++≥3(D)若222++≥3,则a+b+c=3a b cA上海理2. 若全集U R=,集合{1}{|0}A x x x x =≥≤,则U C A =. {|01}x x <<19.(本大题满分12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,且12z z ⋅是实数,求2z .19、解:1(2)(1)1z i i -+=-⇒12z i=-………………(4分)设22,z a i a R=+∈,则12(2)(2)(22)(4)z z i a i a a i=-+=++-,……(12分)∵12z z R∈,∴242z i=+ ………………(12分)上海文 1、若全集U R=,集合{1}A x x =≥,则U C A ={|1}x x <四川理 2.复数1i i-+= (A )2i - (B )1i 2 (C )0 (D )2i 答案:A解析:21i i i 2ii i-+=--=-,选A .5.函数()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A )充分而不必要的条件 (B )必要而不充分的条件(C )充要条件 (D )既不充分也不必要的条件 答案:A解析:函数()f x 在点0x x =处有定义,但0lim ()x x f x +→与0lim ()x x f x -→都存在且都等于0()f x ;反之,函数()f x 在点x x =处连续,则函数()f x 在点0x x =处有定义,选A .四川文1.若全集{1,2,3,4,5}M =,{2,4}N =,则MN =(A )∅ (B ){1,3,5} (C ){2,4} (D ){1,2,3,4,5}答案:B解析:∵{1,2,3,4,5}M =,则MN ={1,3,5},选B .5.“x =3”是“x 2=9”的(A )充分而不必要的条件 (B )必要而不充分的条件(C )充要条件 (D )既不充分也不必要的条件答案:A解析:若x =3,则x 2=9,反之,若x 2=9,则3x =±,选A .16.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x +1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数; ②指数函数()2xf x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;④在定义域上具有单调性的函数一定是单函数.其中的真命题是_________.(写出所有真命题的编号) 答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件. 天津理1.i 是虚数单位,复数13i 12i-+=+( ). A.1i + B.55i + C.55i -- D.1i -- 【解】()()()()13i 12i 13i 55i1i 12i 12i 12i 5-+--++===+++-.故选A.3.命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是( ).A.若()f x 偶函数,则()f x -是偶函数 B.若()f x 不是奇函数,则()f x -不是奇函数C.若()f x -是奇函数,则()f x 是奇函数D.若()f x -不是奇函数,则()f x 不是奇函数【解】由四种命题的定义,故选B. 9.设集合{}1,A xx a x =-<∈R,{}2,B xx b x =->∈R.若A B⊆,则实数,a b 必满足( ).A.3a b +≤ B3a b +≥ C.3a b -≤ D.3a b -≥【解】集合A 化为{}11,A x a x a x =-<<+∈R ,集合B 化为{}22,B x x b x b x =<->+∈R 或.B Bb+2b-2a-1a+1a+1a-1若A B ⊆,则满足12a b +≤-或12a b -≥+,因此有3a b -≤-或3a b -≥,即3a b -≥.故选D.天津文1.i 是虚数单位,复数3i1i+=-( ). A.12i + B.24i + C.12i -- D.2i -【解】()()()()3i 1i 3i 24i12i 1i 1i 1i 2++++===+--+.故选A. 5.下列命题中,真命题是( ).A.m ∃∈R ,使函数()()2f x x mx x =+∈R 是偶函数 B.m ∃∈R ,使函数()()2f x x mx x =+∈R 是奇函数 C.m ∀∈R ,使函数()()2f x x mx x =+∈R 都是偶函数D.m ∀∈R ,使函数都()()2f x x mx x =+∈R 都是奇函数【解】当0m =时,函数()()2f x x x =∈R 是偶函数,故选A.此外,m ∀∈R ,函数都()()2f x xmx x =+∈R 都不是奇函数,因此排除B,D.若1m =,则函数()()2f x xx x =+∈R 既不是奇函数也不是偶函数.因此排除C.7.设集合{}1,A xx a x =-<∈R,{}15,B x x x =<<∈R .若A B =∅,则实数a 的取值范围是( ).A.{}06a a ≤≤B .{}2,4a a a ≤≥或C .{}0,6a a a ≤≥或D .{}24a a ≤≤ 【解】集合A化为{}11,A x a x a x =-<<+∈R ,又{}15,B x x x =<<∈R因为AB =∅,则11a +≤或15a -≥,即0a ≤或6a ≥.故选C.浙江理2.“6πα=”是“212cos =α”的AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.已知复数iiz --=12,其中i 是虚数单位,则z = ▲ .21017.给定实数集合Q P 、满足}1}{sin ][sin |{22=+=x x x P (其中][x 表示不超过x 的最大整数,][}{x x x -=),}23)4(sin sin |{22=++=πx x x Q ,设P ,Q 分别为集合QP 、的元素个数,则P ,Q 的大小关系为 ▲ . P <Q 浙江文(1)若{1},{1}P x x Q x x =<>,则CA .P Q ⊆B .Q P ⊆C .RC P Q ⊆D .RQ C P ⊆(2)若复数1z i =+,i 为虚数单位,则(1)i z +⋅=AA .13i +B .33i +C .3i-D .3(6)若,a b 为实数,则 “0<ab<1”是“b<a1”的 D A.充分而不必要条件B .必要而不充分条件 C.充分必要条件D .既不充分也不必要条件重庆理(1)复数2341i i i i++=-C(A )1122i -- (B )1122i -+ (C )1122i - (D )1122i + (2)""x <-1是""x 2-1>0的A(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 重庆文(2)设,,则A(A), (B), (C),,(D),,。
2011—2020年十年新课标全国卷高考数学分类汇编——1.集合

2011年—2020年十年新课标全国卷数学分类汇编(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷,共8套全国卷)(附详细答案)编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.本资料是根据全国卷的特点精心编写,百度文库首发,共包含14个专题,分别是:2011年—2020年新课标全国卷数学试题分类汇编1.集合与简易逻辑一、选择题(2020·新高考Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}(2020·全国卷Ⅰ,理2)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4(2020·全国卷Ⅰ,文1)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3} (2020·全国卷Ⅱ,理1)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U C A B = A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}(2020·全国卷Ⅱ,文1)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}(2020·全国卷Ⅲ,理1)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6 (2020·全国卷Ⅲ,文1)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5(2019·全国卷Ⅰ,理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( ) A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<(2019·全国卷Ⅰ,文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则( ) A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,7 (2019·全国卷Ⅱ,理1)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A ∩B =( )A .(,1)-∞B .(2,1)-C .(3,1)--D .(3,)+∞(2019·全国卷Ⅱ,文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( )A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅(2019·全国卷Ⅲ,理1)已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2} (2019·全国卷Ⅲ,文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2 (2018·新课标Ⅰ,理2)已知集合{}02|2>--=x x x A ,则=A C U ( ) A .{}21|<<-x x B. {}21|≤≤-x x C.{}{}2|1|>-<x x x x D. {}{}2|1|≥-≤x x x x (2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12,C .{}0D .{}21012--,,,, (2018·新课标Ⅱ,理2)已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8C .5D .4 (2018·新课标Ⅱ,文2)已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7(2018·新课标Ⅲ,理1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, (2018·新课标Ⅲ,文1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,,(2017,新课标Ⅰ,1)已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( ) A .3{|}2AB x x =< B . A B =∅C .3{|}2A B x x =< D . A B =R (2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( ) A. {}123,4,, B. {}123,, C. {}234,,D. {}134,, (2017·新课标Ⅱ,理2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,5(2017·新课标Ⅲ,文1)已知集合{}1234A =,,,,{}2468B =,,,,则A B 中元素的个数为( ) A .1 B .2C .3D .4 (2017·新课标Ⅲ,1)已知集合A ={}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0(2016,新课标Ⅰ,理1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =( ) A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( (2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7 (2016·新课标Ⅱ,理2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}(2016·新课标Ⅲ,理1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( ) A. []2,3 B. (][),23,-∞+∞ C. [)3,+∞ D. (][)0,23,+∞(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10(2015·新课标Ⅰ,3)设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =AB =(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2(2015·新课标Ⅱ,1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2015·新课标Ⅱ,文1)已知集合,,则A ∪B=( )A. B. C. D.(2014·新课标Ⅰ,1)已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)(2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-(2014·新课标Ⅱ,理1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2} (2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}(2013·新课标Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B(2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2013·新课标Ⅱ,理1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1} (2012·新课标Ⅰ,理1)已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10 (2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ= (2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个(2011·新课标Ⅰ,理10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a b A . P 1,P 4 B .P 1,P 3 C .P 2,P 3 D .P 2,P 4}21|{<<-=x x A }30|{<<=x x B )3,1(-)0,1(-)2,0()3,2(2011年—2020年新课标全国卷数学试题分类汇编1.集合与简易逻辑(解析版)一、选择题(2020·新高考Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】[1,3](2,4)[1,4)A B ==(2020·全国卷Ⅰ,理2)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. (2020·全国卷Ⅰ,文1)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .(2020·全国卷Ⅱ,理1)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U C AB = A .{−2,3} B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3C A B =-.(2020·全国卷Ⅱ,文1)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选:D .(2020·全国卷Ⅲ,理1)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤, 所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.(2020·全国卷Ⅲ,文1)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B(2019·全国卷Ⅰ,理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( ) A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<【答案】C 解析:{}23N x x =-<<,则M N ={}22x x -<<.(2019·全国卷Ⅰ,文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U BC A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7 【答案】C 解析:{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7}, {1U C A ∴=,6,7},则{6,7}U C A B =.(2019·全国卷Ⅱ,理1)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A ∩B =( )A .(,1)-∞B .(2,1)-C .(3,1)--D .(3,)+∞【答案】A 解析:{}23A x x x =<>或,{}1B x x =<,则(),1A B =-∞-.故选A.(2019·全国卷Ⅱ,文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( )A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 解析:由题知,(1,2)A B =-,故选C .(2019·全国卷Ⅲ,理1)已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A 解析:因为{}11B x x =-≤≤,所以{}1,0,1A B =-.(2019·全国卷Ⅲ,文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 解析:因为{}11B x x =-≤≤,所以{}1,0,1A B =-.(2018·新课标Ⅰ,理2)已知集合{}02|2>--=x x x A ,则=A C U ( ) A .{}21|<<-x x B. {}21|≤≤-x x C.{}{}2|1|>-<x x x x D. {}{}2|1|≥-≤x x x x 【答案】B 解析:21022>-<⇒>--x x x x 或,即{}21|>-<=x x x A 或,∴=A C U {}21|≤≤-x x 故选B.(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 【答案】A 解析:{}02A B =,,故选A .(2018·新课标Ⅱ,理2)已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8C .5D .4 【答案】A 解析:① 当1x =-时,101y =-共有三个解;② 当0x =时, 101y =-共有三个解 ③ 当1x =时, 101y =-共有三个解;综上所述:共有9个整数点,分别为()()()()()()()()()-1,1-1,0-1,10-10,00,11-11,01,1、、、,、、、,、、,选A.(2018·新课标Ⅱ,文2)已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 解析:{}{}{}1,3,5,7,2,3,4,53,5A B A B ==⇒= .(2018·新课标Ⅲ,理1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 解析:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.(2018·新课标Ⅲ,文1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 解析:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.(2017,新课标Ⅰ,1)已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A 解析:{}1A x x =<,{}{}310x B x x x =<=<,∴{}0AB x x =<,{}1A B x x =<,选A.(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( ) A .3{|}2A B x x =< B . A B =∅ C .3{|}2A B x x =< D . A B =R 【答案】A 解析:由320x ->得32x <,所以3{|}2A B x x =<,故选A . (2017·新课标Ⅱ,2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 解析:∵ {}1AB =, ∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=,故{}1,3B =,选C.(2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( ) A. {}123,4,, B. {}123,,C. {}234,,D. {}134,, 【答案】A 解析:由题意{1,2,3,4}A B =,故选A .(2017·新课标Ⅲ,1)已知集合A ={}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0 【答案】B 解析 A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.(2017·新课标Ⅲ,文1)已知集合{}1234A =,,,,{}2468B =,,,,则A B 中元素的个数为( ) A .1 B .2 C .3 D .4【答案】B 解析:A B ={}4,2,所以该集合的元素个数为2个.故选B .(2016,新课标Ⅰ,1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =( ) A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23(【答案】D 解析:{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D . (2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{}25B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7【答案】B 解析:把问题切换成离散集运算,{}1,3,5,7A =,{}2,3,4,5B ⊆,所以{}3,5A B =.选B . (2016·新课标Ⅱ,2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}【答案】C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C .(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}【答案】D 解析:由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =,故选D. (2016·新课标Ⅲ,1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( ) A. []2,3 B. (][),23,-∞+∞ C. [)3,+∞ D. (][)0,23,+∞【答案】D 解析:易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞,选D(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10【答案】C 解析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故{0,2,6,10}A C B =,故选C .(2015·新课标Ⅰ,理3)设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =【答案】C 解析:命题p 含有存在性量词(特称命题),是真命题(如3n =时),则其否定(p ⌝)含有全称量词(全称命题),是假命题,故选C ..(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2【答案】D 解析: A ∩B={8,14},故选D .(2015·新课标Ⅱ,理1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}【答案】A 解析:由已知得,故,故选A.(2015·新课标Ⅱ,文1)已知集合,,则A ∪B=( )A. B. C. D.(【答案】A 解析:因为A ={x |-1<x <2},B ={x |0<x <3},所以A ∪B ={x |-1<x <3},故选A.(2014·新课标Ⅰ,1)已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)AB ={}21B x x =-<<}21|{<<-=x x A }30|{<<=x x B )3,1(-)0,1(-)2,0()3,2(【答案】A 解析:∵{|13}A x x x =≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A. (2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-【答案】B 解析:取M , N 中共同的元素的集合是(-1,1),故选B(2014·新课标Ⅱ,1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则M N =( ) A .{1} B .{2}C .{0,1}D .{1,2} 【答案】D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.(2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}【答案】B 解析:把M ={0, 1, 2}中的数,代入等式,经检验x = 2满足. 所以选B.(2013·新课标Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 解析:∵x (x -2)>0,∴x <0或x >2,∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. (2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.(2013·新课标Ⅱ,理1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}【答案】A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩N ={0, 1, 2},故选A.(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1}【答案】C 解析:因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C.(2012·新课标Ⅰ,理1)已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10【答案】D 解析:由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D .(2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ= 【答案】B 解析:因为{|12}A x x =-<<,{|11}B x x =-<<,所以B A ,故选择B .(2012·新课标Ⅱ,1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10【答案】D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有 ( ). A .2个 B .4个 C .6个 D .8个【答案】B 解析:因为{}0,1,2,3,4M =,{}1,3,5N =,所以{}1,3M N =.所以M N 的子集共有224=个. 故选B .(2011·新课标Ⅰ,理10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a b A . P 1,P 4 B .P 1,P 3 C .P 2,P 3 D .P 2,P 4【答案】A 解析:由22||2cos 22cos 1a b ab θθ+=++=+>a b 得2[0,)3πθ⇒∈. 由22||2cos 22cos 1a b ab θθ-=+-=->a b 得(,]3πθπ⇒∈,故选A.1cos 2θ>-1cos 2θ<。
2011届高考数学一轮复习精品题集分类汇编之集合(12页)

集合集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.考纲要求:①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.经典例题:若x∈R,则{3,x,x2-2x}中的元素x应满足什么条件?当堂练习1.下面给出的四类对象中,构成集合的是()A.某班个子较高的同学B.长寿的人C的近似值D.倒数等于它本身的数2下面四个命题正确的是()A.10以内的质数集合是{0,3,5,7} B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程2210-+=的解集是{1,1} D.0与{0}表示同一个集合x x3.下面四个命题:(1)集合N中最小的数是1;(2)若 -a∉Z,则a∈Z;(3)所有的正实数组成集合R+;(4)由很小的数可组成集合A ; 其中正确的命题有( )个A .1B .2C .3D .4 4.下面四个命题: (1)零属于空集; (2)方程x2-3x+5=0的解集是空集;(3)方程x2-6x+9=0的解集是单元集; (4)不等式 2 x-6>0的解集是无限集;其中正确的命题有( )个A .1B .2C .3D .4 5. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0x y <>} B . {(x,y)0,0x y <>}C. {(x,y)0,0x y <>} D. {x,y 且0,0x y <>}6.用符号∈或∉填空:0__________{0}, a__________{a}, π__________Q ,21__________Z ,-1__________R ,0__________N , 0Φ.7.由所有偶数组成的集合可表示为{x x =}.8.用列举法表示集合D={2(,)8,,x y y x x N y N=-+∈∈}为 .9.当a 满足 时, 集合A ={30,x x a x N +-<∈}表示单元集.10.对于集合A ={2,4,6}, 若a ∈A ,则6-a ∈A ,那么a 的值是__________.11.数集{0,1,x2-x}中的x 不能取哪些数值?12.已知集合A ={x ∈N|126x -∈N },试用列举法表示集合A .13.已知集合A={2210,,x ax x a R x R++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则11Aa∈-,证明:(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。
2011年高考数学试题分类汇编大全

一、集合与常用逻辑用语一、选择题1.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理1)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,1) B .(0,1]C .[0,1)D .[0,1]【答案】C7.(山东理1)设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要【答案】B9.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A10.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M(A )M (B )N (C )I(D )∅【答案】A11.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C12.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A13.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C14.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P = A .1[,)2+∞ B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞【答案】A15.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .3【答案】C16.(福建理1)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈ C .3i S ∈D .2S i ∈【答案】B 17.(福建理2)若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件 C .既不充分又不必要条件 【答案】A 18.(北京理1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是 A .(-∞, -1] B .[1, +∞) C .[-1,1]D .(-∞,-1] ∪[1,+∞) 【答案】C 19.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题21.(陕西理12)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠ 的集合S 为 (A )57 (B )56(C )49(D )8【答案】B 23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
2011年—2017年新课标全国卷1理科数学分类汇编——1.集合与常用逻辑用语

2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B= B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.101.集合与常用逻辑用语(解析版)一、选择题【2017,1】已知集合A = {x x < 1}, B = {x 3x < 1},则( )A . AB = {x | x < 0} B . A B = RC . A B = {x | x > 1}D . A B =∅【解析】 A = {x x < 1} , B = {x 3x < 1} = {x x < 0} ,∴ A B = {x x < 0} , A B = {x x < 1} ,故选A【2016,1】设集合 A = {x x 2 - 4x + 3 < 0} , B = {x 2x - 3 > 0} ,则 A B = ()A . (-3,- 3)2B . (-3, 3)2C . (1, 3)2D . ( 3,3)2⎫【解析】 A = {x 1 < x < 3} , B = {x 2x - 3 > 0} = ⎧x x > 3 ⎫ .故A B = ⎧x 3< x < 3 .故选 D . ⎨ 2 ⎬ ⎨ 2 ⎬ ⎩ ⎭ ⎩ ⎭【2015,3】设命题 p : ∃n ∈ N , n 2 > 2n ,则 ⌝p 为()A .∀n ∈ N , n 2 > 2nB .∃n ∈ N , n 2 ≤ 2nC .∀n ∈ N , n 2 ≤ 2nD .∃n ∈ N , n 2 = 2n解析:命题 p 含有存在性量词(特称命题),是真命题(如 n = 3 时),则其否定( ⌝p )含有全称量词(全称命题),是假命题,故选 C ..【2014,1】已知集合 A={ x | x 2- 2x - 3 ≥ 0 },B= {x -2 ≤ x < 2},则 A ⋂ B =()A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【解析】∵ A = {x | x ≤ -1或x ≥ 3},B= {x -2 ≤ x < 2},∴ A ⋂ B = {x -2 ≤ x ≤ 1},选 A.【2013,1】已知集合 A ={x |x 2-2x >0},B ={x |-x <,则()A .A ∩B =B .A ∪B =RC .B ⊆ AD .A ⊆ B解析:∵x (x -2)>0,∴x <0 或 x >2,∴集合 A 与 B 可用图象表示为:由图象可以看出 A ∪B =R ,故选 B.【2012,1】已知集合 A={1,2,3,4,5},B={( x , y )| x ∈ A , y ∈ A , x - y ∈ A },则 B 中包含元 素的个数为( )A .3B .6C .8D .10 【解析】由集合 B 可知, x > y ,因此 B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素 10 个,所以选择 D .。
2011—2020年十年新课标全国卷高考数学分类汇编——1.集合

2011年—2020年十年新课标全国卷数学分类汇编(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷,共8套全国卷)(附详细答案)编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.本资料是根据全国卷的特点精心编写,百度文库首发,共包含14个专题,分别是:2011年—2020年新课标全国卷数学试题分类汇编1.集合与简易逻辑一、选择题(2020·新高考Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}(2020·全国卷Ⅰ,理2)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4(2020·全国卷Ⅰ,文1)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3} (2020·全国卷Ⅱ,理1)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U C A B = A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}(2020·全国卷Ⅱ,文1)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}(2020·全国卷Ⅲ,理1)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6 (2020·全国卷Ⅲ,文1)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5(2019·全国卷Ⅰ,理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( ) A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<(2019·全国卷Ⅰ,文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则( ) A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,7 (2019·全国卷Ⅱ,理1)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A ∩B =( )A .(,1)-∞B .(2,1)-C .(3,1)--D .(3,)+∞(2019·全国卷Ⅱ,文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( )A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅(2019·全国卷Ⅲ,理1)已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2} (2019·全国卷Ⅲ,文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2 (2018·新课标Ⅰ,理2)已知集合{}02|2>--=x x x A ,则=A C U ( ) A .{}21|<<-x x B. {}21|≤≤-x x C.{}{}2|1|>-<x x x x D. {}{}2|1|≥-≤x x x x (2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12,C .{}0D .{}21012--,,,, (2018·新课标Ⅱ,理2)已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8C .5D .4 (2018·新课标Ⅱ,文2)已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7(2018·新课标Ⅲ,理1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, (2018·新课标Ⅲ,文1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,,(2017,新课标Ⅰ,1)已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( ) A .3{|}2AB x x =< B . A B =∅C .3{|}2A B x x =< D . A B =R (2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( ) A. {}123,4,, B. {}123,, C. {}234,,D. {}134,, (2017·新课标Ⅱ,理2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,5(2017·新课标Ⅲ,文1)已知集合{}1234A =,,,,{}2468B =,,,,则A B 中元素的个数为( ) A .1 B .2C .3D .4 (2017·新课标Ⅲ,1)已知集合A ={}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0(2016,新课标Ⅰ,理1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =( ) A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( (2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7 (2016·新课标Ⅱ,理2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}(2016·新课标Ⅲ,理1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( ) A. []2,3 B. (][),23,-∞+∞ C. [)3,+∞ D. (][)0,23,+∞(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10(2015·新课标Ⅰ,3)设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =AB =(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2(2015·新课标Ⅱ,1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2015·新课标Ⅱ,文1)已知集合,,则A ∪B=( )A. B. C. D.(2014·新课标Ⅰ,1)已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)(2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-(2014·新课标Ⅱ,理1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2} (2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}(2013·新课标Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B(2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2013·新课标Ⅱ,理1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1} (2012·新课标Ⅰ,理1)已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10 (2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ= (2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个(2011·新课标Ⅰ,理10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a b A . P 1,P 4 B .P 1,P 3 C .P 2,P 3 D .P 2,P 4}21|{<<-=x x A }30|{<<=x x B )3,1(-)0,1(-)2,0()3,2(2011年—2020年新课标全国卷数学试题分类汇编1.集合与简易逻辑(解析版)一、选择题(2020·新高考Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】[1,3](2,4)[1,4)A B ==(2020·全国卷Ⅰ,理2)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. (2020·全国卷Ⅰ,文1)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3} 【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .(2020·全国卷Ⅱ,理1)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U C AB = A .{−2,3} B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3C A B =-.(2020·全国卷Ⅱ,文1)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选:D .(2020·全国卷Ⅲ,理1)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤, 所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.(2020·全国卷Ⅲ,文1)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B(2019·全国卷Ⅰ,理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =( ) A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<【答案】C 解析:{}23N x x =-<<,则M N ={}22x x -<<.(2019·全国卷Ⅰ,文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U BC A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7 【答案】C 解析:{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7}, {1U C A ∴=,6,7},则{6,7}U C A B =.(2019·全国卷Ⅱ,理1)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A ∩B =( )A .(,1)-∞B .(2,1)-C .(3,1)--D .(3,)+∞【答案】A 解析:{}23A x x x =<>或,{}1B x x =<,则(),1A B =-∞-.故选A.(2019·全国卷Ⅱ,文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( )A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 解析:由题知,(1,2)A B =-,故选C .(2019·全国卷Ⅲ,理1)已知集合{}1,0,1,2A =-,{}2|1B x x =≤,则A B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A 解析:因为{}11B x x =-≤≤,所以{}1,0,1A B =-.(2019·全国卷Ⅲ,文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 解析:因为{}11B x x =-≤≤,所以{}1,0,1A B =-.(2018·新课标Ⅰ,理2)已知集合{}02|2>--=x x x A ,则=A C U ( ) A .{}21|<<-x x B. {}21|≤≤-x x C.{}{}2|1|>-<x x x x D. {}{}2|1|≥-≤x x x x 【答案】B 解析:21022>-<⇒>--x x x x 或,即{}21|>-<=x x x A 或,∴=A C U {}21|≤≤-x x 故选B.(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 【答案】A 解析:{}02A B =,,故选A .(2018·新课标Ⅱ,理2)已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9 B .8C .5D .4 【答案】A 解析:① 当1x =-时,101y =-共有三个解;② 当0x =时, 101y =-共有三个解 ③ 当1x =时, 101y =-共有三个解;综上所述:共有9个整数点,分别为()()()()()()()()()-1,1-1,0-1,10-10,00,11-11,01,1、、、,、、、,、、,选A.(2018·新课标Ⅱ,文2)已知集合{}1,3,5,7A =,{}2,3,4,5B =则AB =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 解析:{}{}{}1,3,5,7,2,3,4,53,5A B A B ==⇒= .(2018·新课标Ⅲ,理1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 解析:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.(2018·新课标Ⅲ,文1)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( ) A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 解析:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.(2017,新课标Ⅰ,1)已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A 解析:{}1A x x =<,{}{}310x B x x x =<=<,∴{}0AB x x =<,{}1A B x x =<,选A.(2017·新课标Ⅰ,文1)已知集合{}2A x x =<,{}320B x x =->,则( ) A .3{|}2A B x x =< B . A B =∅ C .3{|}2A B x x =< D . A B =R 【答案】A 解析:由320x ->得32x <,所以3{|}2A B x x =<,故选A . (2017·新课标Ⅱ,2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C 解析:∵ {}1AB =, ∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=,故{}1,3B =,选C.(2017·新课标Ⅱ,文1)(2017·1)设集合{}{}123234A B ==,,, ,,, 则=A B ( ) A. {}123,4,, B. {}123,,C. {}234,,D. {}134,, 【答案】A 解析:由题意{1,2,3,4}A B =,故选A .(2017·新课标Ⅲ,1)已知集合A ={}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0 【答案】B 解析 A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.(2017·新课标Ⅲ,文1)已知集合{}1234A =,,,,{}2468B =,,,,则A B 中元素的个数为( ) A .1 B .2 C .3 D .4【答案】B 解析:A B ={}4,2,所以该集合的元素个数为2个.故选B .(2016,新课标Ⅰ,1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =( ) A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23(【答案】D 解析:{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D . (2016·新课标Ⅰ,文1)设集合{}1,3,5,7A =,{}25B x x =≤≤,则AB =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7【答案】B 解析:把问题切换成离散集运算,{}1,3,5,7A =,{}2,3,4,5B ⊆,所以{}3,5A B =.选B . (2016·新课标Ⅱ,2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}【答案】C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C .(2016·新课标Ⅱ,文1)已知集合A ={1,2,3},B ={x | x 2 < 9},则( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}【答案】D 解析:由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =,故选D. (2016·新课标Ⅲ,1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( ) A. []2,3 B. (][),23,-∞+∞ C. [)3,+∞ D. (][)0,23,+∞【答案】D 解析:易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞,选D(2016·新课标Ⅲ,文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A C B =( )A .{}4,8B .{}0,2,6C .{}0,2,6,10D .{}0,2,4,6,8,10【答案】C 解析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故{0,2,6,10}A C B =,故选C .(2015·新课标Ⅰ,理3)设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =【答案】C 解析:命题p 含有存在性量词(特称命题),是真命题(如3n =时),则其否定(p ⌝)含有全称量词(全称命题),是假命题,故选C ..(2015·新课标Ⅰ,文1)已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2【答案】D 解析: A ∩B={8,14},故选D .(2015·新课标Ⅱ,理1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}【答案】A 解析:由已知得,故,故选A.(2015·新课标Ⅱ,文1)已知集合,,则A ∪B=( )A. B. C. D.(【答案】A 解析:因为A ={x |-1<x <2},B ={x |0<x <3},所以A ∪B ={x |-1<x <3},故选A.(2014·新课标Ⅰ,1)已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)AB ={}21B x x =-<<}21|{<<-=x x A }30|{<<=x x B )3,1(-)0,1(-)2,0()3,2(【答案】A 解析:∵{|13}A x x x =≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A. (2014·新课标Ⅰ,文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-【答案】B 解析:取M , N 中共同的元素的集合是(-1,1),故选B(2014·新课标Ⅱ,1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则M N =( ) A .{1} B .{2}C .{0,1}D .{1,2} 【答案】D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.(2014·新课标Ⅱ,文1)已知集合A ={-2, 0, 2},B ={x |x 2-x -2=0},则A B =( )A .ΦB .{2}C .{0}D . {-2}【答案】B 解析:把M ={0, 1, 2}中的数,代入等式,经检验x = 2满足. 所以选B.(2013·新课标Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 解析:∵x (x -2)>0,∴x <0或x >2,∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. (2013·新课标Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.(2013·新课标Ⅱ,理1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}【答案】A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩N ={0, 1, 2},故选A.(2013·新课标Ⅱ,文1)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )A .{-2, -2, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1}【答案】C 解析:因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C.(2012·新课标Ⅰ,理1)已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10【答案】D 解析:由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D .(2012·新课标Ⅰ,文1)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ= 【答案】B 解析:因为{|12}A x x =-<<,{|11}B x x =-<<,所以B A ,故选择B .(2012·新课标Ⅱ,1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10【答案】D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·新课标Ⅰ,文1)已知集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =,则P 的子集共有 ( ). A .2个 B .4个 C .6个 D .8个【答案】B 解析:因为{}0,1,2,3,4M =,{}1,3,5N =,所以{}1,3M N =.所以M N 的子集共有224=个. 故选B .(2011·新课标Ⅰ,理10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a b A . P 1,P 4 B .P 1,P 3 C .P 2,P 3 D .P 2,P 4【答案】A 解析:由22||2cos 22cos 1a b ab θθ+=++=+>a b 得2[0,)3πθ⇒∈. 由22||2cos 22cos 1a b ab θθ-=+-=->a b 得(,]3πθπ⇒∈,故选A.1cos 2θ>-1cos 2θ<。
2011年高考数学试题分类考点1 集合

考点1 集合一、选择题1.(2011·福建卷文科·T1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于( )(A){0,1} (B){-1,0,1}(C){0,1,2} (D){-1,0,1,2}【思路点拨】直接取集合M 和集合N 的公共元素,即可得M N . 【精讲精析】选A. {-1,0,1}N {0,1,2}{0,1}.M M N ∴=,=,=2. (2011·福建卷文科·T12)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1]②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a -b∈[0]”.其中,正确结论的个数是( )(A )1 (B )2 (C )3 (D )4【思路点拨】根据题目中所给的“类”的概念,对选项逐个进行判断,从中找出正确的.【精讲精析】选C.对于①:2 01154021=⨯+, 2 011[1],∴∈故①正确;对于②:-35-1+2⨯=(),-3[2]∴∈,故②不正确; 对于③: 整数集Z []50Z ∴=被除,所得余数共分为五类.[][][][]1234,故③正确;对于④:若整数,a b 属于同一类,则1212125,5,5(5)5()5a n k b n k a b n k n k n n n =+=+∴-=+-+=-=,[]0a b ∴-∈,若[0],-55,5a b a b n a b n a b -===+则,即故与被除的余数为同一个数,a b ∴与属于同一类,所以“整数a,b 属于同一类”的充要条件是“a b [0]-∈”,故④正确,∴正确结论的个数是3.3.(2011·新课标全国文科·T1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P MN ===则P 的子集共有( )(A)2个 (B )4个 (C )6个 (D )8个【思路点拨】确定M N 的元素个数n ,子集个数为2n .【精讲精析】选B.由已知得{1,3}P MN ==,∴P 的子集有224=个. 4.(2011·辽宁高考文科·T1)已知集合A={x 1x >},B={x 2x 1-<<},则A B=( )(A ){x -1x 2<<} (B ){x 1-x >} (C ){x 1x 1-<<} (D ){x 1x 2<<}【思路点拨】本题考查集合的定义,集合的运算及解不等式的知识.【精讲精析】选D.解不等式组⎩⎨⎧<<->211x x ,得21<<x . 所以A B={}21<<x x .5.(2011·广东高考文科·T2)已知集合A=22{(x,y)|x,y x y 1}+=为实数,且,B=}1y 为实数且,|),{(=+x y x y x ,则A ⋂B 的元素个数为( )(A )4 (B )3 (C )2 (D )1【思路点拨】通过解方程组求交点坐标,从而得交点个数.【精讲精析】选C.由⎪⎩⎪⎨⎧=+=+1122y x y x 解得⎩⎨⎧==01y x 或⎩⎨⎧==10y x ,即圆122=+y x 与直线1=+y x 交点为(1,0)或(0,1),即B A 的元素个数为两个.故选C.6.(2011·广东高考理科·T2)已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( )(A )0 (B )1 (C )2 (D )3【思路点拨】通过解方程组求得交点坐标.【精讲精析】选C.由⎪⎩⎪⎨⎧==+x y y x 122解得⎪⎪⎩⎪⎪⎨⎧==2222y x 或⎪⎪⎩⎪⎪⎨⎧-=-=2222y x ,即圆122=+y x 与直线x y =交点为(22,22)或(22,22--),即B A 的元素个数为两个.故选C.7.(2011·广东高考理科·T8)设S 是整数集Z 的非空子集,如果S b a ∈∀,有S ab ∈,则称S 关于数的乘法是封闭的. 若V T ,是Z 的两个不相交的非空子集,=V T Z 且T c b a ∈∀,,有T abc ∈;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是( )(A )V T ,中至少有一个关于乘法是封闭的(B )V T ,中至多有一个关于乘法是封闭的(C )V T ,中有且只有一个关于乘法是封闭的(D )V T ,中每一个关于乘法都是封闭的【思路点拨】通过符合题目条件的特例对各选择支进行分析.【精讲精析】选A.若T={偶数},V={奇数}则T 、V 中每一个关于乘法都是封闭的,故B 、C 不正确;若T={非负整数},V={负整数},则T 关于乘法是封闭的,V 关于乘法不封闭,故D 不正确;事实上,T 、V 必有一个含有1,由题目条件知含有1的这个集合一定关于乘法封闭.综合以上分析只有A 正确,故选A.8.(2011·山东高考理科·T1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x <3},则M ∩N =( )(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]【思路点拨】先解二次不等式,求出集合M ,再求N M ⋂【精讲精析】选A.()(){}{}23032<<-=<+-=x x x x x M ,{}21<≤=⋂x x N M .9.(2011·山东高考文科·T1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]【思路点拨】先解一元二次不等式,求出集合M ,再求N M ⋂.【精讲精析】选A.()(){}{}23032<<-=<+-=x x x x x M ,{}21<≤=⋂x x N M .10.(2011·辽宁高考理科·T2)已知N M ,为集合I 的非空真子集,且N M ,不相等,若1,⋂=∅=N M M N 则( ) (A)M (B)N (C) I (D) ∅ 【思路点拨】结合韦恩图,利用子集关系求解.【精讲精析】选A .如图,因为1=∅N M ,所以N M ⊆,所以=MN M . 11.(2011·北京高考理科·T1)已知集合2{|1},{}P x x M a =≤=,若PM P =,则a 的取值范围 是( )(A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞【思路点拨】先化简集合P ,再利用M 为P 的子集,可求出a 的取值范围.【精讲精析】选C.[1,1]P =-.由P M P =,得M P ⊆,所以[1,1]a ∈-.12.(2011·北京高考文科·T1)已知全集U=R,集合2{|1}P x x =≤,那么U P =( )(A)(,1)-∞- (B)(1,)+∞ (C)(1,1)- (D)(,1)(1,)-∞-+∞【思路点拨】先化简集合P ,再利用数轴求P 的补集.IN M【精讲精析】选D.[1,1]P =-,(,1)(1,)U P =-∞-+∞.13.(2011·湖南高考文科T1)设全集U=N M ={1,2,3,4,5},MU N ={2,4},则N=( ) (A ){1,2,3} (B ){1,3,5} (C ){1,4,5} (D ){2,3,4}【思路点拨】本题考查集合的交、并和补运算.【精讲精析】选B. M U N ={2,4},∴N 中一定没元素2和4.假设N ∉1,则U 1N,1M 1M N ∈∉∴∉,∪,与已知条件矛盾,所以1是N 中的元素,同理,3和5也是N 中的元素.14.(2011·江西高考理科·T2)若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( ) (A ){}10x x -≤< (B ){}01x x <≤(C ){}02x x ≤≤ (D ){}01x x ≤≤【思路点拨】先根据整式不等式及分式不等式的解法求出集合A 与B,再求A B ⋂.【精讲精析】选B.由题意得A={}{}x 12x 13x 1x 1,-≤+≤=-≤≤{}x 2B {x 0}x 0x 2x-=≤=<≤{}{}{}A B x 1x 1x 0x 2x 0x 1.==⋂-≤≤⋂<≤<≤所以 15.(2011·江西高考文科·T2)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )(A )M N ∩ (B )M N ∩(C )()()U U M N ∪ (D )()()U U M N ∩【思路点拨】先根据集合的运算求出M 与N 的并集,再求出M 与N 并集的补集,即得.【精讲精析】选D.{}{}{}{}{}()()U U U U =2,31,41,2,3,4()5,6,5,6()..=====M N M N M N M N M N D 由,,得∪,即∪所以∪∩故选 16.(2011·浙江高考理科·T10)设,,a b c 为实数,2()()(),f x x a x bx c =+++2()(1)(1)g x ax cx bx =+++.记集合{()0,},{()0,}S x f x x R T x g x x R ==∈==∈,若,S T 分别为集合,S T 的元素个数,则下列结论不可能的是( )(A )1S = 且 0T = (B )1S = 且 1T =(C )2S = 且 2T = (D )2S = 且 3T =【思路点拨】逐个选项检验讨论.【精讲精析】选D. 若1S =,则其根必为a -,故20x bx c ++=无解或其有两个相同的根亦为a -,当20x bx c ++=无解且0a =时, 0T =,故A可能正确; 当20x bx c ++=有两个相同的根a -时,33()(),()(1)f x x a g x ax =+=+,当0a ≠时, 1T =,故B 可能正确; 若2S =,则20x bx c ++=有两个相同的不等于a -的根,设为m ,则22()()(),()(1)(1)f x x a x m g x ax mx =++=++,当0m ≠时, 2T =故选项C 可能正确;当a -是20x bx c ++=的一个根时,可得20a ab c -+=,此时22211()()10c ab a c b a a a -+⋅-+-+==,即1a -一定是210cx bx ++=的根,故2()(1)(1)0g x ax cx bx =+++=不可能有3个根,故选D. 17.(2011·浙江高考文科·T1)若{1},P x x =<{1}=>-Q x x ,则( )(A )P Q ⊆ (B )Q P ⊆ (C )R P Q ⊆ (D )R Q P ⊆ 【思路点拨】可结合数轴来逐个检验分析.【精讲精析】选C.R P ={1},{1}≥=>-而x x Q x x ,故有R P Q ⊆. 二、填空题18.(2011·天津高考文科·T9)已知集合{}A x R |x 12,Z =∈-<为整数集,则集合A Z ⋂中所有元素的和等于________.【思路点拨】求出集合A 的所有整数元素x.【精讲精析】|x -1|<2-1<x <3得,所以x=0,1,2,故0+1+2=3.【答案】3。
湖北各地市2011年高考数学最新联考试题分类大汇编:1 集合

湖北各地市2011年高考数学最新联考试题分类大汇编第1部分:集合2. (湖北省八市2011年高三年级三月调考文科)设集合,,则“”是“”的(A )A.充分不必要条件B。
必要不充分条件C.充分必要条件D.既不充分也不必要条件1.(湖北省荆州市2011年3月高中毕业班质量检查Ⅱ文科)设全集U=A B⋃,定义:{|,}且,集合A,B分别用圆表示,则A B x x A x B-=∈∉下列图中阴影部分表示A—B的是( C )1.(湖北省荆州市2011年3月高中毕业班质量检查Ⅱ理科)设全集U=A B ⋃,定义:{|,}A B x x A x B -=∈∉且,集合A ,B 分别用圆表示,则下列图中阴影部分表示A —B 的是( C )1.(湖北省黄冈中学等八校2011届高三第二次联考理科)若集合2{|2,},(1,),A x x x x R B m ==-∈=⊆若A B ,则m 的值为 ( A )A .2B .—1C .-1或2D .2或2 1.(湖北省部分重点中学2011届高三第二次联考理科)设集合{1,2},{1,2,3},{2,3,4},()A B C A B C ===则= ( D )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1, 2,3,4}1.(湖北省武汉市2011年2月高中毕业生调研测试理科)若集合,,则=( B )A 。
B 。
C. D. 1.(湖北省黄石二中2011年2月高三年级调研考试理科)若集合{|2,}x M y y x R ==∈,{|1,1}P y y x x ==-≥, 则M P ⋂=( C )A . {|1}y y >B . {|1}y y ≥C . {|0}y y >D . {|0}y y ≥。
江西省各地市2011年高考数学最新联考试题分类大汇编第1部分集合

江西省各地市2011年高考数学最新联考试题分类大汇编第1部分:集合1.(江西省“八校”2011年4月高三联合考试文科)设集合{}23,log P a =,{}Q ,a b =,若{}0=⋂Q P ,则Q=P ( B )A .{}3,0B .{}3,0,1C .{}3,0,2D .{}3,0,1,23.(江西省吉安市2011届高三第二次模拟理科)已知全集为实数集R ,集合131{|0},{|,[]1,8}U x A x C A y y x x x m +=>==∈--集合,则实数m 的值为( A ) A .2 B .-2C .1D .-1 1。
(江西省九江市六校2011年4月高三第三次联考理科)设集合,,则“"是“”的( A ) A 。
充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2。
(江西省九江市六校2011年4月高三第三次联考文科)已知集合{}02|>-=y y A ,集合{}02|2≤-=x x x B ,则B A 等于( A )A 。
),0[+∞B 。
]2,(-∞ C. ),2()2,0[+∞ D 。
R1. (江西省新余市2011年高三第二次模拟文科)已知集合{})9ln(2x y x M -==,{}xy y N -==12,集合N M 为( A ) A.)3,0( B .)3,1( C.)1,3(- D. )3,(-∞ 3.(江西省南昌市2011届高三第一次模拟理科)设集合20{|(3106)0,0}xP x t t dt x =-+=>⎰,则集合P 的非空子集个数是 ( B )A .2B .3C .7D .8w w w.ks5u。
com 高考资源网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1集合一、选择题1.(2011·福建卷文科·T1)若集合M={-1,0,1},N={0,1,2},则M∩N 等于( )(A).{0,1} (B).{-1,0,1}(C).{0,1,2} (D).{-1,0,1,2}【思路点拨】直接取集合M 和集合N 的公共元素,即可得M N .【精讲精析】选A. {-1,0,1}N {0,1,2}{0,1}.M M N ∴ =,=,= 2. (2011·福建卷文科·T12)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4.给出如下四个结论:[来源:学科网]①2 011∈[1]②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a -b∈[0]”.其中,正确结论的个数是( )(A ).1 (B ).2 (C ).3 (D ).4【思路点拨】根据题目中所给的“类”的概念,对逐个选项进行判断,从中找出正确的.【精讲精析】选C. 对于①:201154021=⨯+,2011[1],∴∈故①正确;对于②:-35-1+2⨯=(),-3[2]∴∈,故②不正确; 对于③: 整数集Z []50Z ∴=被除,所得余数共分为五类.[][][][]1234,故③正确;对于④:若整数,a b 属于同一类,则1212125,5,5(5)5()5a n k b n k a b n k n k n n n =+=+∴-=+-+=-=,[]0a b ∴-∈,若[0],-55,5a b a b n a b n a b -===+则,即故与被除的余数为同一个数[来源:学科网]a b ∴与属于同一类,,a b 所以"整数属于同一类"的充要条件是“[]0"a b -∈,故④正确,∴正确结论的个数是3.3.(2011·新课标全国文科·T1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N === 则P 的子集共有( )A .2个 B.4个 C.6个 D.8个【思路点拨】确定M N 的元素个数n ,子集个数为2n .【精讲精析】选 B 由已知得{1,3}P M N = =,∴P 的子集有224=个.[来源:]4.(2011·辽宁高考文科·T1)已知集合A={x 1x >},B={x 2x 1-<<},则A B= (A ) {x 2x 1-<<} (B ){x 1-x >} (C ){x 1x 1-<<} (D ){x 2x 1<<}【思路点拨】本题考察集合的定义,集合的运算及解不等式的知识.【精讲精析】选D ,解不等式组⎩⎨⎧<<->211x x ,得21<<x . 所以A B={}21<<x x ..5.(2011·广东高考文科·T2)已知集合A=22{(x,y)|x,y x y 1}+=为实数且,B=}1y 为实数且,|),{(=+x y x y x 则A ⋂B 的元素个数为( )(A )4 (B )3 (C )2 (D )1【思路点拨】通过解方程组求交点坐标,从而得交点个数.【精讲精析】选C.由⎪⎩⎪⎨⎧=+=+1122y x y x 解得⎩⎨⎧==01y x 或⎩⎨⎧==10y x ,即圆122=+y x 与直线1=+y x 交点为(1,0)或(0,1),即B A 的元素个数为两个.故选C.6.(2011·广东高考理科·T2)已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为A .0B .1C .2D .3【思路点拨】通过解方程组求得交点坐标.【精讲精析】选C.由⎪⎩⎪⎨⎧==+x y y x 122解得⎪⎪⎩⎪⎪⎨⎧==2222y x 或⎪⎪⎩⎪⎪⎨⎧-=-=2222y x ,即圆122=+y x 与直线x y =交点为(22,22)或(22,22--),即B A 的元素个数为两个.故选C.7.(2011·广东高考理科·T8)设S 是整数集Z 的非空子集,如果S b a ∈∀,有S ab ∈,则称S 关于数的乘法是封闭的. 若V T ,是Z 的两个不相交的非空子集,=V T Z 且T c b a ∈∀,,有T abc ∈;V z y x ∈∀,,,有V xyz ∈,则下列结论恒成立的是[来源:学.科.网]A. V T ,中至少有一个关于乘法是封闭的B. V T ,中至多有一个关于乘法是封闭的C. V T ,中有且只有一个关于乘法是封闭的D. V T ,中每一个关于乘法都是封闭的【思路点拨】通过符合题目条件的特例对各选择支进行分析.【精讲精析】选A.若T={偶数},V={奇数}则T 、V 中每一个关于乘法都是封闭的,故B 、C 不正确;若T={非负整数},V={负整数},则T 关于乘法是封闭的,V 关于乘法不封闭,故D 不正确;实事上,T 、V 必有一个含有1,由题目条件知含有1的这个集合一定关于乘法封闭.综合以上分析只有A 正确,故选A.8.(2011·山东高考理科·T1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3] 【思路点拨】先解二次不等式,求出集合M ,再求N M ⋂【精讲精析】选 A.()(){}{}23032<<-=<+-=x x x x x M ,{}21<≤=⋂x x N M [来源:Z#xx#]9.(2011·山东高考文科·T1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]【思路点拨】先解二次不等式,求出集合M ,再求N M ⋂[来源:Z#xx#]【精讲精析】选A.()(){}{}23032<<-=<+-=x x x x x M ,{}21<≤=⋂x x N M10.(2011·辽宁高考理科·T2)已知N M ,为集合I 的非空真子集,且N M ,不相等,若1,⋂=∅= N M M N 则ð(A)M (B)N (C) I (D) ∅【思路点拨】结合韦恩图,利用子集关系求解.【精讲精析】选A ,如图,因为1=∅ N M ð,所以N M ⊆,所以= M N M .11.(2011·北京高考理科·T1)已知集合2{|1},{}P x x M a =≤=,若P M P = ,则a 的取值范围是( )(A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞ [来源:Z_xx_]【思路点拨】先化简集合P ,再利用M 为P 的子集,可求出a 的取值范围.【精讲精析】选C.[1,1]P =-.由P M P = 得,M P ⊆,所以[1,1]a ∈-. I N M12.(2011·北京高考文科·T1)已知全集U=R,集合2{|1}P x x =≤,那么U P ð=( )()(,1)A -∞- ()(1,)B +∞ ()(1,1)C - ()(,1)(1,)D -∞-+∞【思路点拨】先化简集合P ,再利用数轴求P 的补集.【精讲精析】选D.[1,1]P =-.(,1)(1,)U P =-∞-+∞ ð.13.(2011·湖南高考文科T1)设全集U=N M ={1,2,3,4,5},M U N ð={2,4},则N=(A ).{1,2,3} (B ).{1,3,5} (C ).{1,4,5} (D ).{2,3,4}【思路点拨】本题考查集合的交、并和补运算.【精讲精析】选B. M U N ð={2,4},∴N 中一定没元素2和4.假设N ∉1,则U 1N,1M 1M N ∈∉∴∉⋃,ð,与已知条件矛盾,所以1是N 中的元素,同理,3和5也是N 中的元素.14.(2011·江西高考理科·T2)若集合{}1213A x x =-≤+≤,20,x B xx -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= A.{}10x x -≤< B.{}01x x <≤[来源:学#科#网Z#X#X#K] C. {}02x x ≤≤ D. {}01x x ≤≤ 【思路点拨】先根据整式不等式及分式不等式的解法求出集合A 与B,再求A B ⋂.【精讲精析】选B.由题意得A={}{}x 12x 13x 1x 1,-≤+≤=-≤≤{}x 2B x 0x 0x 2x ⎧-⎫=≤=<≤⎨⎬⎩⎭{}{}{}A B x 1x 1x 0x 2x 0x 1.==⋂-≤≤⋂<≤<≤所以 15.(2011·江西高考文科·T2)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于[来源:学|科|网]A .M N ⋃B .M N ⋂C .()()⋃u u C M C ND .()()⋂u uC M C N【思路点拨】先根据集合的运算求出M 与N 的并集,再求出M 与N 并集的补集,即得.【精讲精析】选D.{}{}{}{}{}()()u u =2,31,41,2,3,4()5,6,5,6()..U U M N M N C M N C M N C M C N D =⋃=⋃==⋃=⋂由,得,,即所以故选16.(2011·浙江高考理科·T10)设,,a b c 为实数,2()()(),f x x a x bx c =+++ 2()(1)(1)g x ax cx bx =+++.记集合{()0,},{()0,}S x f x x R T x g x x R ==∈==∈,若,S T 分别为集合,S T 的元素个数,则下列结论不可能的是(A )1S = 且 0T = (B )1S = 且 1T =(C )2S = 且 2T = (D )2S = 且 3T =【思路点拨】逐个选项检验讨论.【精讲精析】选D.解法一:当0===c b a 时,1=s 且 0||=T ;当0a ≠且240b ac -<时,1=s 且1T =;当a =1 ,b=4 ,c=3时, 2=s 且2T =.而选项D不可能.解法二:若1S =,则其根必为a -,故20x bx c ++=无解或其有两个相同的根亦为a -,当20x bx c ++=无解且0a =时, 0T =,故A可能正确; 当20x bx c ++=有两个相同的根a -时, 33()(),()(1)f x x a g x ax =+=+,当0a ≠时, 1T =,故B 可能正确; 若2S =,则20x bx c ++=有两个相同的不等于a -的根,设为m ,则22()()(),()(1)(1)f x x a x m g x ax mx =++=++,当0m ≠时, 2T =故选项C 可能正确;当a -是20x bx c ++=的一个根时,可得20a a b c -+=,此时22211()()10c ab a c b a a a-+⋅-+-+==,即1a -一定是210cx bx ++=的根,故2()(1)(1)0g x ax cx bx =+++=不可能有3个根,故选D.17.(2011·浙江高考文科·T1)若{1},P x x =<{1}Q x x >-,则(A )P Q ⊆ (B )Q P ⊆ (C )R P Q ⊆ð (D )R Q P ⊆ð【思路点拨】可结合数轴来分析逐个检验.[来源:Z 。