2016文科立体几何

合集下载

2016-2017年高考真题解答题专项训练:立体几何(文科)教师版

2016-2017年高考真题解答题专项训练:立体几何(文科)教师版

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版1.在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(Ⅰ)已知AB=BC ,AE=EC .求证:AC ⊥FB ;(Ⅱ)已知G,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(Ⅰ)证明:见解析;(Ⅱ)见解析 【解析】试题分析:(Ⅰ)根据BD EF //,知EF 与BD 确定一个平面,连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF ,证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在CEF △,CFB △中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC .试题解析:(Ⅰ)证明:因BD EF //,所以EF 与BD 确定平面BDEF .连接DE ,因为,AE EC D =为AC 的中点,所以AC DE ⊥,同理可得AC BD ⊥. 又D DE BD = ,所以⊥AC 平面BDEF , 因为⊂FB 平面BDEF ,所以FB AC ⊥. (Ⅱ)设FC 的中点为I ,连HI GI ,.在CEF △中,因为G 是CE 的中点,所以EF GI //, 又DB EF //,所以DB GI //.在CFB △中,因为H 是FB 的中点,所以BC HI //,又I HI GI = ,所以平面//GHI 平面ABC , 因为⊂GH 平面GHI ,所以//GH 平面ABC . 【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.2.如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .(Ⅰ)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (Ⅱ)证明:平面PAB ⊥平面PBD .【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版) 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】试题分析:本题考查线面平行、线线平行、线线垂直、线面垂直等基础知识,考查空间想象能力、分析问题的能力、计算能力.第(Ⅰ)问,先证明线线平行,再利用线面平行的判定定理证明线面平行;第(Ⅱ)问,先由线面垂直得到线线垂直,再利用线面垂直的判定定理得到BD ⊥平面PAB ,最后利用面面垂直的判定定理证明面面垂直. 试题解析:(Ⅰ)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC,BC=12AD ,所以BC ∥AM, 且BC=AM. 所以四边形AMCB 是平行四边形,从而CM ∥AB. 又AB ⊂平面PAB,CM ⊄平面PAB, 所以CM ∥平面PAB.(说明:取棱PD 的中点N,则所找的点可以是直线MN 上任意一点)(Ⅱ)由已知,PA⊥AB, PA⊥CD,因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以PA⊥平面ABCD. 从而PA⊥BD.因为AD∥BC,BC=12 AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD 平面PBD,所以平面PAB⊥平面PBD.【考点】线面平行、线线平行、线线垂直、线面垂直【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过平面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分.证明面面垂直时,先证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪些线面垂直,确定要证哪些线线垂直,切忌不加思考,随便写.视频3.如图,在三棱台ABC–DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(浙江卷精编版)【答案】(1)证明详见解析;(2【解析】试题分析:本题主要考查空间点、线、面位置关系,线面角等基础知识,同时考查空间想象能力和运算求解能力.试题解析:(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD .【考点】空间点、线、面位置关系、线面角.【方法点睛】解题时一定要注意直线与平面所成的角的范围,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.视频4.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证:FG 平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ; (Ⅲ)求直线EF 与平面BED 所成角的正弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(天津卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平面几何知识,如本题构造一个平行四边形:取的中点为,可证四边形是平行四边形,从而得出;(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平面几何的知识,如本题可由余弦定理解出90ADB ∠=°,即;(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点作于点,则平面,从而直线与平面所成角即为.再结合三角形可求得正弦值. 试题解析:(Ⅰ)证明:取中点,连接,在BCD 中,因为是中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.(Ⅱ)证明:在ABD 中, 1,2,60AD AB BAD ==∠=°,由余弦定理可得,进而得90ADB ∠=°,即,又因为平面平面平面,平面平面,所以平面.又因为平面,所以,平面平面.(Ⅲ)解:因为,所以直线与平面所成的角即为直线与平面所成的角.过点作于点,连接,又平面平面,由(Ⅱ)知平面,所以直线与平面所成的角即为.在ADE 中,,由余弦定理得,所以,因此,,在Rt AHB 中,,所以,直线EF 与平面所成角的正弦值为.【考点】直线与平面平行和垂直、平面与平面垂直、直线与平面所成的角 【名师点睛】垂直、平行关系的证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.视频 5.如图,在四棱锥中,平面, ,AB DC DC AC ⊥.(Ⅰ)求证: DC PAC ⊥平面; (Ⅱ)求证: PAB PAC ⊥平面平面;(Ⅲ)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由. 【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)存在.理由见解析.【解析】试题分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(Ⅲ)取PB 中点F ,连结EF ,则F//E PA ,根据线面平行的判定定理证明//PA 平面C F E .试题解析:(Ⅰ)因为平面,所以C DC P ⊥. 又因为DC C ⊥A , 所以DC ⊥平面C PA .(Ⅱ)因为//DC AB , DC C ⊥A , 所以C AB ⊥A . 因为平面,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(Ⅲ)棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结EF , C E , CF . 又因为E 为AB 的中点, 所以F//E PA .又因为PA ⊄平面C F E , 所以//PA 平面C F E .【考点】空间线面平行、垂直的判定定理与性质定理;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.视频-D中,PA⊥平面ABCD,AD BC,6.如图,四棱锥P ABC==,M为线段AD上一点,2PA BCAB AD AC===,43=,NAM MD为PC的中点.(Ⅰ)证明MN平面PAB;-的体积.(Ⅱ)求四面体N BCM【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【答案】(Ⅰ)见解析;(Ⅱ).3【解析】试题分析:(Ⅰ)取PB的中点T,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MN AT,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM的高,即点N到底面的距离为棱PA的一半,由此可顺利求得结果.试题解析:(Ⅰ)由已知得,取的中点T,连接,由N为中点知,.又,故平行且等于,四边形AMNT 为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)因为平面, N 为的中点,所以N 到平面的距离为.取的中点,连结.由得,.由得到的距离为,故142BCMS=⨯=.所以四面体的体积132N BCM BCM PA V S -=⨯⨯=【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.视频7.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H ,将DEF ∆沿EF 折起到'D EF ∆的位置.(Ⅰ)证明: 'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ===='D ABCFE -的体积. 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】试题分析:(1)由已知得, ,AC BD AD CD ⊥=, AE CF = ⇒AE CFAD CD= ⇒ //AC EF ⇒,EF HD EF HD ⊥⊥' ⇒ AC HD ⊥';(2)由//EF AC ⇒ 14OH AE DO AD ==,由5,6A B A C == ⇒4DO BO ===⇒1,3OH D H DH '===⇒(222219OD OH D H +=+'==' ⇒ OD OH '⊥,可证OD '⊥平面ABC .又由EF DH AC DO =得92EF = ⇒五边形ABCFE 的面积1682S =⨯⨯19693224-⨯⨯= ⇒以五棱锥D ABCEF '-体积16934V =⨯⨯. 试题解析: (1)由已知得, ,AC BD AD CD ⊥=, 又由AE CF =得AE CFAD CD=,故//AC EF , 由此得,EF HD EF HD ⊥⊥',所以AC HD ⊥'. (2)由//EF AC 得14OH AE DO AD ==,由5,6AB AC ==得4DO BO ===,所以1,3OH D H DH '===,于是(222219OD OH D H +=+'==',故OD OH '⊥,由(1)知AC HD ⊥',又,AC BD BD HD H ⊥⋂'=, 所以AC ⊥平面BHD ',于是AC OD ⊥',又由,OD OH AC OH O ⊥'⋂=,所以, OD '⊥平面ABC .又由EF DH AC DO =得92EF =. 五边形ABCFE 的面积119696832224S =⨯⨯-⨯⨯=.所以五棱锥D ABCEF '-体积16934V =⨯⨯=. 考点:1、线线垂直;2、锥体的体积.视频8.如图,已知正三棱锥P-ABC 的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G.(Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)作图见解析,体积为43. 【解析】试题分析:证明.AB PG ⊥由PA PB =可得G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.根据正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE ==在等腰直角三角形EFP 中,可得 2.EF PF ==四面体PDEF 的体积114222.323V =⨯⨯⨯⨯=试题解析:(Ⅰ)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥, PB PC ⊥,又E FP B,所以E F P A E F P ⊥⊥,,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影. 连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(Ⅰ)知, G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB , DE ⊥平面PAB ,所以D EP C,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF == 所以四面体PDEF 的体积114222.323V =⨯⨯⨯⨯= 【考点】线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.视频9.如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积.【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【答案】(1)证明见解析;(2)证明见解析;(3)【解析】试题分析:(Ⅰ)要证明线线垂直,一般转化为证明线面垂直;(Ⅱ)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(Ⅲ)由即可求解.试题解析:(I)因为,,所以平面,又因为平面,所以.(II)因为,为中点,所以,由(I)知,,所以平面.所以平面平面.(III)因为平面,平面平面,所以.因为为的中点,所以,.由(I)知,平面,所以平面.所以三棱锥的体积.【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.10.(2017·北京高考)由四棱柱ABCD­A1B1C1D1截去三棱锥C1­B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(1)见解析(2)见解析【解析】试题分析:(1)取11B D 中点1O ,由平几知识可得四边形11AOCO 为平行四边形,即得11//AO O C ,再根据线面平行判定定理得1//AO 平面11B CD (2)由平几知识可得EM BD ⊥,再根据1A E ⊥面ABCD ,得1,A E B D ⊥即得111A E B D ⊥ 再根据线面垂直判定定理得11B D ⊥平面1,A EM ,即得平面1A EM ⊥平面11B CD试题解析:证明:(1)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A BC D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11AOCO 为平行四边形,所以11//AO O C , 又1O C ⊂平面11B CD , 1AO ⊄平面11B CD , 所以1//AO 平面11B CD (2)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD , BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥, 又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD ,所以 平面1A EM ⊥平面11B CD11.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(I)证明:CE∥平面PAB;(II)求直线CE与平面PBC所成角的正弦值【来源】2017年全国普通高等学校招生统一考试数学(浙江卷精编版)【答案】(I)见解析;(II【解析】试题分析:本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。

2016年高考分类汇编:立体几何(物超所值)

2016年高考分类汇编:立体几何(物超所值)

2016年高考数学理试题分类汇编立体几何一、选择题1、(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()111 ,A. B. C. D. 16 3 22、(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为(A)(B)1 2(C) — + n3 6 (D) 1 + n63、(2016年全国I高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是号,则它的表面积是(A) 17n ( B) 18n ( C) 20 n(D) 28 n4、(2016年全国I高考)平面a过正方体顶点A, a//平面CB1D1,川平面ABCD =成角的正弦值为(A )仝2(D)5、(2016年全国II高考)视图,则该几何体的表面积为(A) 20 n ( B) 24 n (C) 28 n ( D) 32 n6、(2016年全国III高考)如图,网格纸上小正方形的边长为现画出的是某多面体的三视图,则该多面体的表面积为(A) 18 36,5 (B) 54 18.5 (C 90 (D) 817、( 2016年全国III高考)在封闭的直三棱柱ABC - ABC内有一个体积为V的球,若AB 丄BC ,AB = 6,BC = 8,AA = 3,贝y V的最大值是ABCD -A1BGD1中,底面ABCD的边长为3, BD1与底面2所成角的大小为arctan3,则该正四棱柱的高等于2、(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是3、(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.4、(2016年全国II高考)―:是两个平面,m,n是两条直线,有下列四个命题:(1)如果m _ n,m _〉,n// :,那么〉—:.(2)如果m _ : , n / / :,那么m _ n .(3)如果〉/ / :,m 二圧,那么m / / :.(4)如果m//n,〉//:,那么m与〉所成的角和n与:所成的角相等* “ —■—-*r~■ ■ 11 1玉I一L __ : __ I(A) 4 n9兀(B)2(C) 6n(D)32 二3二、填空题1、(2016年上海高考)如图,在正四棱柱憾视图其中正确的命题有..(填写所有正确命题的编号)D解答题B(2) (3) 2 3£AC(1) (2016年上海高考)将边长为求直线PB 与平面PCD 所成角的正弦值1的正方形AAOQ (及其内部)在棱PA 上是否存在点 M ,使得BM / /平面PCD ?若存在,求AB =1,AD =2,AC =CD *5(I )已知 G,H 分别为EC , FB 的中点,求证: GH //平面 ABCPAD —平面 ABCD , PA _ PD , PA = PD , AB _ AD 求证:PD _平面PAB(2016年山东高考)在如图所示的圆台中,AC 是下底面圆O 的直径EF 是上底面圆0'的直径,FB 是圆台的一条母线的OQ 旋转一周形成圆柱, 如图1、( 2016年北京高考) 如图,在四棱锥 P - ABCD 中,平面1 _(II )已知 EF=FB=—AC=2>/3 AB=BC.求二面角 F —BC —A 的余弦值2 ,AP 的值;若不存在,说明理由5、 (2016年浙江高考)某几何体的三视图如图所示 (单位:cm ) 则该几何体的表面积是cm 2,体积是 cm 3.6、 ( 2016年浙江高考)如图,在厶ABC 中,AB=BC=2,/ ABC=120° 若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA 则四面体PBCD 的体积的最大值是2 兀AC 长为§二,AB 长为3,其中6、B 1与C 在平面AAOO 的同侧。

2016数学高考热点集训 -立体几何(文科)

2016数学高考热点集训 -立体几何(文科)
热点集训四文 2016年新课标高考· 大一轮复习讲义
高考大题冲关
人教A数学
热点集训四文 2016年新课标高考· 大一轮复习讲义
(文)立体几何的热点问题
立体几何是历年高考必考的热点,试题难度中等,命题的
热点主要有空间线面位置关系的证明和空间角的求解;试题背
景有折叠问题,探索性问题等,考查了学生的空间想象能力、 逻辑思维能力以及转化与化归思想的应用能力.
人教A数学
热点集训四文 2016年新课标高考· 大一轮复习讲义
题型一
空间位置关系的证明与空间角的求解
[典例赏析1] (2014· 湖南高考 ) 如图,已知二
面 角 α-MN-β 的 大 小 为 60° , 菱 形
ABCD 在 面 β 内 , A , B 两 点 在 棱 MN 上,∠ BAD =60°, E 是AB 的中点, DO⊥面α,垂足为O. (1)证明:AB⊥平面ODE; (2)求异面直线BC与OD所成角的余弦值.
(1)证明:EF∥平面PAB; (2)若二面角P-AD-B为60°,
人教A数学
热点集训四文 2016年新课标高考· 大一轮复习讲义
①证明:平面PBC⊥平面ABCD;
②求直线EF与平面PBC所成角的正弦值.
解析:如图: (1)证明:取 PB 中点 M,连接 MF,AM. 因为 F 为 PC 中点, 故 MF∥BC 1 且 MF=2BC.
人教A数学
热点集训四文 2016年新课标高考· 大一轮复习讲义
(1)证明:DE∥平面 BCF; (2)证明:CF⊥平面 ABF; 2 (3)当 AD=3时,求三棱锥 FDEG 的体积 VFDEG.
人教A数学
热点集训四文 2016年新课标高考· 大一轮复习讲义

2016全国文数立体几何高考试题—老师专用(3)

2016全国文数立体几何高考试题—老师专用(3)

2016全国文科数学立体几何高考试题—老师专用(3)1.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.2.【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为( )(A B )2(C D )13【答案】A 【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.3.【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是() (A)直线AA 1 (B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 1【答案】D考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.4.【2016高考浙江文数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则() A.m ∥l B.m ∥n C.n ⊥l D.m ⊥n【答案】C试题分析:由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C .考点:线面位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.5. 【2016年大连市高三双基测试卷】已知互不重合的直线,a b ,互不重合的平面,αβ,给出下列四个命题,错.误.的命题是() (A )若a //α,a //β,b αβ= ,则a //b (B)若βα⊥,a α⊥,β⊥b ,则b a ⊥(C)若βα⊥,γα⊥,a =γβ ,则a α⊥ (D)若α//β,a //α,则a //β【答案】D4.6.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.7.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.8. 【2016高考新课标Ⅲ文数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+B)54+C)90(D)81【答案】B试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S=⨯⨯+⨯⨯+⨯⨯=+,故选B.2362332354考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.9.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B )1+π33(C )1+π36(D )1+π6【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.10.[2016高考新课标Ⅲ文数]在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.11.【2016高考浙江文数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3. 【答案】80;40.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题, 一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与 体积公式计算该几何体的表面积与体积.12.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积.【答案】3考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以侧视图俯视图及各种组合体的三视图.13.【2016高考北京文数】某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2试题分析:四棱柱高为1,底面为等腰梯形,面积为13(12)122⨯+⨯=,因此体积为3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.14.【2016高考新课标1文数】(本题满分12分)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【答案】(I )见解析(II )作图见解析,体积为43PABD CG E所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.15.[2016高考新课标Ⅲ文数]如图,四棱锥P ABC -中,PA ⊥平面A B C D ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求四面体N BCM -的体积.【答案】(Ⅰ)见解析;.(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S ,所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分 考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.16.【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.17.【2016高考山东文数】(本小题满分12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.考点:1.平行关系;2.垂直关系.【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.本题能较好的考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.18.【2016高考天津文数】(本小题满分13分)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.I FE HGBDC A试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平几知识,如本题构造一个平行四边形:取BD 的中点为O ,可证四边形OGFE 是平行四边形,从而得出OE FG //(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平几条件,如本题可由余弦定理解出090=∠ADB ,即AD BD ⊥(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点A 作DE AH ⊥于点H ,则⊥AH 平面BED ,从而直线AB 与平面BED 所成角即为ABH ∠.再结合三角形可求得正弦值试题解析:(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在BC D ∆中,因为G 是BC 的中点,所以DC OG //且121==DC OG ,又因为DC AB AB EF //,//,所以OG EF //且OG EF = ,即四边形OGFE 是平行四边形,所以OE FG //,又⊄FG 平面BED ,⊂OE 平面BED ,所以//FG 平面BED .考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.19.【2016高考浙江文数】(本题满分15分)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.考点:空间点、线、面位置关系、线面角.【方法点睛】解题时一定要注意直线与平面所成的角的范围,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.20.【2016高考四川文科】(12分)如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==. (I )在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(II )证明:平面PAB ⊥平面PBD.【答案】(Ⅰ)取棱AD 的中点M ,证明详见解析;(Ⅱ)证明详见解析. (I )取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD‖BC,BC =12AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB .又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)DCB AP考点:线面平行、线线平行、线线垂直、线面垂直.【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.。

2016年数学立体几何高考试题及答案

2016年数学立体几何高考试题及答案

2016年数学立体几何高考试题及答案1.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.2如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.4如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.解答:解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S△PCF•EG=.5如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解答:解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.6如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.解答:证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.7如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.8如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O 为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.解答:解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为9三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.解答:(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO=,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BC=PB=,CD=∴cos∠COD=.1111AD上一点,且AP=a3,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.2.如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B 到平面PCD 的距离;4.如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ; 若不存在,说明理由.5.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.6.如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°(1)求证:PC⊥BC(2)求点A到平面PBC的距离.1. 223a∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD=PQ,∴B1D1∥PQ,又B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ,∴PQPM=PDAP=2,即PQ=2PM,又△APM∽△ADP,∴PMBD=APAD=13,∴PM=13BD,又BD =2a ,∴PQ =223a .2.[答案] 22 ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(2)过A 作AF ⊥PD ,垂足为F .在Rt PAD 中,PA =2,AD =BC =4,PD =42+22=25,AF ·PD =PA ·AD ,∴AF =2×425=455,即点B 到平面PCD 的距离为455.4.[解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP ,∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合.取PO 的中点N ,连结EN 并延长交PB 于F ,∵EA =1,PO =2,∴NO =1, 又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB ,∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时即可. 5. (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B , ∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1, 又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1, 即CF ⊥平面EFB 1,且CF =BF =2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF=13×12·EF ·B 1F ·CF =13×12×3×6×2=1.6.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°知,BC ⊥DC ,∵PD ∩DC =D ,∴BC ⊥平面PDC ,∴BC ⊥PC . (2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1,∴V P -ABC =13S △ABC ·PD =13,∵PD⊥平面ABCD,∴PD⊥DC,∵PD=DC=1,∴PC=2,∵PC⊥BC,BC=1,∴S△PBC=12PC·BC=22,∵V A-PBC=V P-ABC,∴13S△PBC·h=13,∴h=2,∴点A到平面PBC的距离为 2.。

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版

2016---2017年高考真题解答题专项训练:立体几何(文科)教师版1.在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(Ⅰ)已知AB=BC ,AE=EC .求证:AC ⊥FB ;(Ⅱ)已知G,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(Ⅰ)证明:见解析;(Ⅱ)见解析 【解析】试题分析:(Ⅰ)根据BD EF //,知EF 与BD 确定一个平面,连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF ,证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在C E F △,CFB △中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC .试题解析:(Ⅰ)证明:因BD EF //,所以EF 与BD 确定平面BDEF .连接DE ,因为,AE EC D =为AC 的中点,所以AC DE ⊥,同理可得AC BD ⊥. 又D DE BD = ,所以⊥AC 平面BDEF , 因为⊂FB 平面BDEF ,所以FB AC ⊥. (Ⅱ)设FC 的中点为I ,连HI GI ,.在CEF △中,因为G 是CE 的中点,所以EF GI //, 又DB EF //,所以DB GI //.在CFB △中,因为H 是FB 的中点,所以BC HI //,又I HI GI = ,所以平面//GHI 平面ABC , 因为⊂GH 平面GHI ,所以//GH 平面ABC . 【考点】平行关系,垂直关系【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用已知的直线与直线、直线与平面、平面与平面的位置关系,通过严密推理,给出规范的证明.本题能较好地考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.2.如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD .(Ⅰ)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (Ⅱ)证明:平面PAB ⊥平面PBD .【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版) 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】试题分析:本题考查线面平行、线线平行、线线垂直、线面垂直等基础知识,考查空间想象能力、分析问题的能力、计算能力.第(Ⅰ)问,先证明线线平行,再利用线面平行的判定定理证明线面平行;第(Ⅱ)问,先由线面垂直得到线线垂直,再利用线面垂直的判定定理得到BD ⊥平面PAB ,最后利用面面垂直的判定定理证明面面垂直. 试题解析:(Ⅰ)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC,BC=12AD ,所以BC ∥AM, 且BC=AM. 所以四边形AMCB 是平行四边形,从而CM ∥AB. 又AB ⊂平面PAB,CM ⊄平面PAB, 所以CM ∥平面PAB.(说明:取棱PD 的中点N,则所找的点可以是直线MN 上任意一点)(Ⅱ)由已知,PA⊥AB, PA⊥CD,因为AD∥BC,BC=12AD,所以直线AB与CD相交,所以PA⊥平面ABCD. 从而PA⊥BD.因为AD∥BC,BC=12 AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又BD 平面PBD,所以平面PAB⊥平面PBD.【考点】线面平行、线线平行、线线垂直、线面垂直【名师点睛】本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过平面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分.证明面面垂直时,先证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪些线面垂直,确定要证哪些线线垂直,切忌不加思考,随便写.视频3.如图,在三棱台ABC–DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(浙江卷精编版)【答案】(1)证明详见解析;(2【解析】试题分析:本题主要考查空间点、线、面位置关系,线面角等基础知识,同时考查空间想象能力和运算求解能力.试题解析:(Ⅰ)延长,,AD BE CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此, BF AC ⊥.又因为//EF BC , 1BE EF FC ===, 2BC =,所以BCK 为等边三角形,且F 为CK 的中点,则BF CK ⊥所以BF ⊥平面ACFD .(Ⅱ)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角.在Rt BFD 中, 32BF DF ==,得cos 7BDF ∠=.所以,直线BD 与平面ACFD .【考点】空间点、线、面位置关系、线面角.【方法点睛】解题时一定要注意直线与平面所成的角的范围,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.视频4.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证:FG 平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ; (Ⅲ)求直线EF 与平面BED 所成角的正弦值.【来源】2016年全国普通高等学校招生统一考试文科数学(天津卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平面几何知识,如本题构造一个平行四边形:取的中点为,可证四边形是平行四边形,从而得出;(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平面几何的知识,如本题可由余弦定理解出90ADB ∠=°,即;(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点作于点,则平面,从而直线与平面所成角即为.再结合三角形可求得正弦值. 试题解析:(Ⅰ)证明:取中点,连接,在BCD 中,因为是中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.(Ⅱ)证明:在ABD 中, 1,2,60AD AB BAD ==∠=°,由余弦定理可得,进而得90ADB ∠=°,即,又因为平面平面平面,平面平面,所以平面.又因为平面,所以,平面平面.(Ⅲ)解:因为,所以直线与平面所成的角即为直线与平面所成的角.过点作于点,连接,又平面平面,由(Ⅱ)知平面,所以直线与平面所成的角即为.在ADE 中,,由余弦定理得,所以,因此,,在Rt AHB 中,,所以,直线EF 与平面所成角的正弦值为.【考点】直线与平面平行和垂直、平面与平面垂直、直线与平面所成的角 【名师点睛】垂直、平行关系的证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.视频 5.如图,在四棱锥中,平面, ,AB DC DC AC ⊥.(Ⅰ)求证: DC PAC ⊥平面; (Ⅱ)求证: PAB PAC ⊥平面平面;(Ⅲ)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由. 【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)存在.理由见解析.【解析】试题分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(Ⅲ)取PB 中点F ,连结EF ,则F//E PA ,根据线面平行的判定定理证明//PA 平面C F E .试题解析:(Ⅰ)因为平面,所以C DC P ⊥. 又因为DC C ⊥A , 所以DC ⊥平面C PA .(Ⅱ)因为//DC AB , DC C ⊥A , 所以C AB ⊥A . 因为平面,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(Ⅲ)棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结EF , C E , CF . 又因为E 为AB 的中点, 所以F//E PA .又因为PA ⊄平面C F E , 所以//PA 平面C F E .【考点】空间线面平行、垂直的判定定理与性质定理;空间想象能力,推理论证能力 【名师点睛】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.视频6.如图,四棱锥P ABC -D 中, PA ⊥平面ABCD , AD BC , 3AB AD AC ===,4PA BC ==, M 为线段AD 上一点, 2AM MD =, N 为PC 的中点.(Ⅰ)证明MN 平面PAB ; (Ⅱ)求四面体N BCM -的体积.【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【答案】(Ⅰ)见解析;(Ⅱ)【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM 的高,即点N 到底面的距离为棱PA 的一半,由此可顺利求得结果.试题解析:(Ⅰ)由已知得,取的中点T ,连接,由N 为中点知,.又,故平行且等于,四边形AMNT 为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)因为平面, N 为的中点,所以N 到平面的距离为.取的中点,连结.由得,.由得到的距离为,故145252BCMS=⨯⨯=. 所以四面体的体积14532N BCM BCM PA V S -=⨯⨯=. 【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.视频7.如图,菱形ABCD 的对角线AC 与BD 交于点O ,点,E F 分别在,AD CD 上,,AE CF EF =交BD 于点H ,将DEF ∆沿EF 折起到'D EF ∆的位置.(Ⅰ)证明: 'AC HD ⊥;(Ⅱ)若55,6,,'4AB AC AE OD ===='D ABCFE -的体积. 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】试题分析:(1)由已知得, ,AC BD AD CD ⊥=, AE CF = ⇒AE CFAD CD= ⇒ //AC EF ⇒,EF HD EF HD ⊥⊥' ⇒ AC HD ⊥';(2)由//EF AC ⇒ 14OH AE DO AD ==,由5,6A B A C == ⇒4DO BO ===⇒1,3OH D H DH '===⇒(222219OD OH D H +=+'==' ⇒ OD OH '⊥,可证OD '⊥平面ABC .又由EF DH AC DO =得92EF = ⇒五边形ABCFE 的面积1682S =⨯⨯19693224-⨯⨯= ⇒以五棱锥D ABCEF '-体积16934V =⨯⨯. 试题解析: (1)由已知得, ,AC BD AD CD ⊥=, 又由AE CF =得AE CFAD CD=,故//AC EF , 由此得,EF HD EF HD ⊥⊥',所以AC HD ⊥'. (2)由//EF AC 得14OH AE DO AD ==,由5,6AB AC ==得4DO BO ===,所以1,3OH D H DH '===,于是(222219OD OH D H +=+'==',故OD OH '⊥,由(1)知AC HD ⊥',又,AC BD BD HD H ⊥⋂'=, 所以AC ⊥平面BHD ',于是AC OD ⊥',又由,OD OH AC OH O ⊥'⋂=,所以, OD '⊥平面ABC .又由EF DH AC DO =得92EF =. 五边形ABCFE 的面积119696832224S =⨯⨯-⨯⨯=.所以五棱锥D ABCEF '-体积16934V =⨯⨯=. 考点:1、线线垂直;2、锥体的体积.视频8.如图,已知正三棱锥P-ABC 的侧面是直角三角形,PA=6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连结PE 并延长交AB 于点G.(Ⅰ)证明:G 是AB 的中点;(Ⅱ)在图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版) 【答案】(Ⅰ)见解析;(Ⅱ)作图见解析,体积为43. 【解析】试题分析:证明.AB PG ⊥由PA PB =可得G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.根据正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE ==在等腰直角三角形EFP 中,可得 2.EF PF ==四面体PDEF 的体积114222.323V =⨯⨯⨯⨯=试题解析:(Ⅰ)因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得, PA PB =,从而G 是AB 的中点.(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F , F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥, PB PC ⊥,又E FP B,所以EF PA EF PC ⊥⊥,,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(Ⅰ)知, G 是AB 的中点,所以D 在CG 上,故2.3CD CG =由题设可得PC ⊥平面PAB , DE ⊥平面PAB ,所以D EP C,因此21,.33PE PG DE PC ==由已知,正三棱锥的侧面是直角三角形且6PA =,可得2,DE PE == 在等腰直角三角形EFP 中,可得 2.EF PF == 所以四面体PDEF 的体积114222.323V =⨯⨯⨯⨯= 【考点】线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.视频9.如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积.【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版) 【答案】(1)证明见解析;(2)证明见解析;(3)【解析】试题分析:(Ⅰ)要证明线线垂直,一般转化为证明线面垂直;(Ⅱ)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(Ⅲ)由即可求解. 试题解析:(I )因为 , ,所以 平面 , 又因为 平面 ,所以 .(II )因为 , 为 中点,所以 , 由(I )知, ,所以 平面 . 所以平面 平面 .(III )因为 平面 ,平面 平面 , 所以 .因为 为 的中点,所以, . 由(I )知, 平面 ,所以 平面 . 所以三棱锥 的体积.【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.10.(2017·北京高考)由四棱柱ABCD ­A 1B 1C 1D 1截去三棱锥C 1­B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版) 【答案】(1)见解析(2)见解析【解析】试题分析:(1)取11B D 中点1O ,由平几知识可得四边形11AOCO 为平行四边形,即得11//AO O C ,再根据线面平行判定定理得1//AO 平面11B CD (2)由平几知识可得EM BD ⊥,再根据1A E ⊥面ABCD ,得1,A E B D ⊥即得111A E B D ⊥ 再根据线面垂直判定定理得11B D ⊥平面1,A EM ,即得平面1A EM ⊥平面11B CD试题解析:证明:(1)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A BC D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11AOCO 为平行四边形,所以11//AO O C , 又1O C ⊂平面11B CD , 1AO ⊄平面11B CD , 所以1//AO 平面11B CD (2)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD , BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥, 又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD ,所以 平面1A EM ⊥平面11B CD11.如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E 为PD 的中点. (I )证明:CE∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值【来源】2017年全国普通高等学校招生统一考试数学(浙江卷精编版)【答案】(I )见解析;(II 【解析】试题分析:本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。

高考复习 立体几何大题第一问精练(文科)

高考复习  立体几何大题第一问精练(文科)

高考复习 立体几何大题第一问精练题型1 线线平行、垂直1.(2016新课标Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD , 折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.2.(2015新课标Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由).解 (1)交线围成的正方形EHGF 如图:题型2 线面平行3.(2017新课标Ⅱ卷)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=21AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD.4.(2016新课标Ⅲ卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB.解析 (Ⅰ)由已知得AM=32AD=2.取BP 的中点T ,连结AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=21BC=2.(3分) 又AD ∥BC ,故TN ∥AM ,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(6分)5.(2016四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =21AD.(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD.(1)解 取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM.所以四边形AMCB 是平行四边形,所以CM ∥AB. 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)6.(2014新课标Ⅱ卷)如图,四棱锥PABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB∥平面AEC.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.题型3 线面垂直7.(2017新课标Ⅲ卷)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD.[解析] (1)证明:取AC中点O,连OD,OB,∵AD=CD,O为AC中点,∴AC⊥OD,又∵△ABC是等边三角形,∴AC⊥OB,又∵OB∩OD=O,∴AC⊥平面OBD,BD 平面OBD,∴AC⊥BD;8.(2018新课标Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC.(1)证明:∵AB=BC=22,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;9.(2015广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD .解 (1)因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA.(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD.10.(2016北京卷)如图,在四棱锥PABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC.(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC.又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC.(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC.11.(2014山东卷)如图,四棱锥PABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =21AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC.证明 (1)设AC ∩BE =O ,连接OF ,EC.由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,所以在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP、AC⊂平面PAC,所以BE⊥平面PAC.12.(2016新课标Ⅰ卷)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点.解:(Ⅰ)证明:∵P−ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;题型4 面面垂直13.(2018新课标Ⅲ卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.14.(2018新课标Ⅰ卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC.解:(1)证明:∵在平行四边形ABCM 中,∠ACM=90°,∴AB ⊥AC ,又AB ⊥DA .且AD ∩AB=A ,∴AB ⊥面ADC ,∴AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;15.(2017新课标Ⅰ卷)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD .(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD16.(2015新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED.解 (1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.所以AC ⊥平面BED ,又AC ⊂平面AEC ,所以平面AEC ⊥平面BED.17.(2015湖南卷)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.。

2016立体几何高考题及答案【最新资料】

2016立体几何高考题及答案【最新资料】

2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

2016年全国卷文数(新课标2)立体几何

2016年全国卷文数(新课标2)立体几何

2016年全国卷文数(新课标2)立体几何4.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()π C. 8π D. 4πA. 12πB. 323【答案】A【解析】【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为√4+4+4=2√3,即为球的直径,所以半径为√3,所以球的表面积为4π⋅(√3)2=12π.故选:A.7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. 20πB. 24πC. 28πD. 32π【答案】C【解析】【分析】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2√3,∴在轴截面中圆锥的母线长是√12+4=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π,∴空间组合体的表面积是28π,故选C.19.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(Ⅰ)证明:AC⊥HD′;(Ⅱ)若AB=5,AC=6,AE=54,OD′=2√2,求五棱锥D′−ABCFE体积.【答案】(Ⅰ)证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,∴EF//AC,且EF⊥BD将△DEF沿EF折到△D′EF的位置,则D′H⊥EF,∵EF//AC,∴AC⊥HD′;(Ⅱ)若AB=5,AC=6,则AO=3,B0=OD=4,∵AE=54,AD=AB=5,∴DE=5−54=154,∵EF//AC,∴DEAD =EHAO=DHOD=1545=34,∴EH=94,EF=2EH=92,DH=3,OH=4−3=1,∵HD′=DH=3,OD′=2√2,∴满足HD′2=OD′2+OH2,则△OHD′为直角三角形,且OD′⊥OH,又OD′⊥AC,AC∩OH=O,即OD′⊥底面ABCD,即OD′是五棱锥D′−ABCFE的高.底面五边形的面积S=12×AC⋅OB+(EF+AC)⋅OH2=12×6×4+(92+6)×12=12+214=694,则五棱锥D′−ABCFE体积V=13S⋅OD′=13×694×2√2=23√22.【解析】(1)根据直线平行的性质以菱形对角线垂直的性质进行证明即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD′是五棱锥D′−ABCFE的高,即可得到结论.本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.本题的难点在于证明OD′是五棱锥D′−ABCFE的高.考查学生的运算和推理能力.。

2016年高考立体几何汇编(含答案)

2016年高考立体几何汇编(含答案)

2016年高考立体几何汇编一、选择题1、(2016年山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B )12+π33 (C )12+π36 (D )21+π6 【答案】c2、(2016年上海高考)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( ) (A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D3、(2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B4、(2016年全国I 卷高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A5、(2016年全国I 卷高考)如平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α= 平面,11ABB A n α= 平面,则m ,n 所成角的正弦值为 (A )32(B )22(C )33(D )13【答案】A6、(2016年全国II 卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C7、(2016年全国III 卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(C)90 (D)81 +(B)54185【答案】B8、(2016年浙江高考)已知互相垂直的平面αβ,交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n【答案】C二、填空题1、(2016年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.22、(2016年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积。

浙江省2016届高三数学(文)专题复习检测专题四立体几何

浙江省2016届高三数学(文)专题复习检测专题四立体几何

专题四 立体几何真题体验·引领卷一、选择题1.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.152.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛D .66斛3.(2015·安徽高考)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.(2015·福建高考)若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.(2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π6.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8二、填空题7.(2015·江苏高考)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.8.(2015·重庆高考改编)某几何体的三视图如图所示,则该几何体的体积为________.9.(2015·四川高考)如图所示,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为________.三、解答题10.(2015·浙江高考)在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.11.(2014·天津高考)如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=2,AD=2,P A=PD=5,E,F分别是棱AD,PC的中点.(1)证明:EF∥平面P AB;(2)若二面角P-AD-B为60°,①证明:平面PBC⊥平面ABCD;②求直线EF与平面PBC所成角的正弦值.12.(2015·天津高考)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.专题四立体几何经典模拟·演练卷一、选择题1.(2015·济宁模拟)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2015·潍坊三模)一个几何体的三视图如图所示,其中侧视图为直角三角形,则该几何体的体积为( )A.423B.823C.1623D .16 23.(2015·诸暨中学模拟)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) A.64 B.104 C.22D.324.(2015·河北质检)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.92B.32 C .3D .25.(2015·吉林实验中学模拟)已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为( ) A.33π B.32π C.3πD .23π6.(2015·宁波联考)如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( ) A .DC 1⊥D 1PB .平面D 1A 1P ⊥平面A 1APC .∠APD 1的最大值为90° D .AP +PD 1的最小值为2+ 2二、填空题7.(2015·金华模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为棱DD 1上的点,F 为AB 的中点,则三棱锥B 1-BFE 的体积为________.8.(2015·保定调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.9.(2015·杭州模拟)在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥平面ABCD ,AB =PD =a ,点E 为侧棱PC 的中点,又作DF ⊥PB 交PB 于点F ,则PB 与平面EFD 所成角为________.三、解答题10.(2015·杭州模拟)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =BC =2,AD =CD =7,P A =3,∠ABC =120°,G 为线段PC 上的点.(1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值; (3)若G 满足PC ⊥平面BGD ,求PGGC 的值.11.(2015·浙江名校联考)如图1,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起,使二面角A-BD-C的余弦值等于33(如图2).(1)求AC;(2)证明:AC⊥平面BCD;(3)求直线AC与平面ABD所成角的正弦值.12.(2015·温州中学二模)如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.专题四 立体几何专题过关·提升卷 第Ⅰ卷(选择题)一、选择题1.(2015·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3D.403 cm 32.设a ,b 是两条直线,α,β表示两个平面,如果a ⊂α,α∥β,那么“b ⊥β”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.(2015·山东高考)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3D .2π4.(2015·北京高考)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5C.2+2 5 D.55.(2015·北京朝阳区质检)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2),若S1,S2,S3分别表示三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S1=S2且S3≠S1C.S1=S3且S3≠S2D.S2=S3且S1≠S36.(2015·杭州中学模拟)一个四棱锥的三视图如图所示,下列说法中正确的是()A.最长棱的棱长为 6B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形7.(2015·嘉兴模拟)在长方体ABCD-A1B1C1D1中,A1A=AB=2,若棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是()A.[1,2) B.(1,2]C.(0,1] D.(0,2)8.某市博物馆邀请央视《一槌定音》专家鉴宝,其中一藏友持有的“和田玉”的三视图如图所示,若将和田玉切割、打磨、雕刻成“和田玉球”,则该“玉雕球”的最大表面积是()A .4πB .16πC .36πD .64π 第Ⅱ卷(非选择题)二、填空题9.(2015·舟山中学模拟)如图,在矩形ABCD 中,AB =32,BC =2,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A -BCD 的正视图和俯视图如图所示,则三棱锥A -BCD 侧视图的面积为________.10.如图所示,ABC -A 1B 1C 1是直三棱柱,AC ⊥CB ,点D 1、F 1分别是A 1B 1、A 1C 1的中点.若BC =CA =CC 1,则BD 1与CF 1所成角的正弦值是________.11.(2015·杭州二中调研)在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,AC =BC =1,P A =3,则该三棱锥外接球的表面积为________.12.(2014·山东高考)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.13.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则AM 的长为________.14.(2015·天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.15.将边长为1的正方形ABCD 沿对角线AC 折起后,使得平面ADC ⊥平面ABC ,在折起后的三棱锥D -ABC 中,给出下列四个命题:①AC ⊥BD ;②侧棱DB 与平面ABC 成45°的角;③△BCD 是等边三角形;④三棱锥的体积V D -ABC =26.那么正确的命题是________(填上所有正确命题的序号).三、解答题16.如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2. (1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.17.(2015·湖南高考)如图,直三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点. (1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F -AEC 的体积.18.(2015·嘉兴联考)如图,三棱台A 1B 1C 1-ABC 中,侧棱CC 1⊥底面ABC ,∠ACB =90°,B 1C 1=AC =a ,BC =3a ,CC 1与AB 1所成的角为45°,P 为线段BC 上一点,且CP =a .(1)求证:直线BB 1⊥平面AB 1C ;(2)求直线AP 与平面AA 1B 1B 所成角的正弦值.19.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.20.(2015·天津高考)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点. (1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.专题四 立体几何真题体验·引领卷1.D [如图,由题意知,该几何体是正方体ABCD -A1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为16∶56=1∶5.]2.B [由题意知,米堆的底面半径R =163(尺),则米堆体积V =13×14πR 2·h =13×14×3×⎝ ⎛⎭⎪⎫1632×5≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).] 3.D [A 中α∥β或α与β相交,A 错;B 中直线m 与n 的位置关系:相交、平行或异面,B 错;C 中,在α内存在直线l 平行α与β的交线,从而l ∥β.因此C 不正确;选项D 中,假设m ,n 垂直于同一平面,则m ∥n 与m 、n 不平行矛盾,因此m ,n 不能垂直于同一平面,D 正确.]4.B [当l ∥α时,由于m ⊥平面α.∴m ⊥l .则必要性成立.但l ⊥m 时,由于m ⊥α,则l ⊂α或l ∥α,故充分性不成立.故“l ⊥m ”是“l ∥α”的必要不充分条件.]5.C [设点C 到平面OAB 的距离为h ,球O 的半径为R (如图所示). 由∠AOB =90°,得S △AOB =12R 2,要使V O -ABC =13·S △AOB ·h 最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R . 故V O -ABC =16R 3=36,则R =6. 所以S 球=4πR 2=4π×62=144π.]6.B [由三视图知,该几何体由半个圆柱和半球体构成,由题设得12(πr 2+4πr 2)+2r ·2r +12·2πr ·2r +12πr 2=16+20π.解之得r =2.]7.7 [设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=43π×52+8π×22,解之得r =7.]8.13+π [由三视图知,该几何体为一个三棱锥与一个半圆柱构成的组合体,其中半圆柱的底面半径为1,高为2;三棱锥的底面为斜边为2的等腰直角三角形,高为1.则V 三棱锥=13×12×2×1×1=13,V 半圆柱=12π×12×2=π.故所求几何体的体积V=V 三棱锥+V 半圆柱=13+π.]9.25 [以A 为原点,建立如图所示的空间直角坐标系(如图). 设AB =2,则A (0,0,0),E (1,0,0),F (2,1,0). 设点M (0,y ,2)(0≤y ≤2).于是EM →=(-1,y ,2),AF →=(2,1,0).∴cos θ=|cos 〈EM →,AF →〉|=2-y5·5+y 2.又t =2-y5·5+y 2在y ∈[0,2]上是减函数.∴当y =0时,t 有最大值25,即cos θ的最大值为25.] 10.(1)证明 设E 为BC 的中点,连接A 1E ,AE .由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE , 因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .连接DE ,由D ,E 分别为B 1C 1,BC 的中点,得 DE ∥B 1B 且DE =B 1B , 从而DE ∥A 1A 且DE =A 1A ,所以AA 1DE 为平行四边形.于是A 1D ∥AE . 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC . (2)解 作A 1F ⊥DE ,垂足为F ,连接BF . 因为A 1E ⊥平面ABC ,所以BC ⊥A 1E . 因为BC ⊥AE ,所以BC ⊥平面AA 1DE . 所以BC ⊥A 1F .又A 1F ⊥平面BB 1C 1C ,所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角. 由AB =AC =2,∠CAB =90°,得EA =EB = 2. 由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =14. 由DE =BB 1=4.DA 1=EA =2,∠DA 1E =90°,得A1F=72.所以sin ∠A1BF=78.11.(1)证明如图,取PB中点M,连接MF,AM.因为F为PC中点,故MF∥BC且MF=12BC.由已知有BC∥AD,BC=AD.又由于E为AD中点,因而MF∥AE且MF=AE,故四边形AMFE为平行四边形,所以EF∥AM.又AM⊂平面P AB,而EF⊄平面P AB,所以EF∥平面P AB.(2)①证明连接PE,BE.因为P A=PD,BA=BD,而E为AD中点,故PE⊥AD,BE⊥AD,所以∠PEB为二面角P-AD-B的平面角.在△P AD中,由P A=PD=5,AD=2,可解得PE=2.在△ABD中,由BA=BD=2,AD=2,可解得BE=1.在△PEB中,PE=2,BE=1,∠PEB=60°,由余弦定理,可解得PB=3,从而∠PBE=90°,即BE⊥PB.又BC∥AD,BE⊥AD,从而BE⊥BC,因此BE⊥平面PBC.又BE⊂平面ABCD,所以,平面PBC⊥平面ABCD.②解连接BF.由①知,BE⊥平面PBC,所以∠EFB为直线EF与平面PBC所成的角.由PB=3及已知,得∠ABP为直角.而MB=12PB=32,可得AM=112.故EF=112.又BE=1,故在直角三角形EBF中,sin ∠EFB=BEEF=21111.所以,直线EF与平面PBC所成角的正弦值为211 11.12.(1)证明如图,连接A1B,在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,BA1⊂平面A1B1BA,所以EF∥平面A1B1BA.(2)证明因为AB=AC,E为BC中点,所以AE⊥BC,因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又因为BC∩BB1=B,所以AE⊥平面BCB 1,又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)解 取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A 且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角. 在△ABC 中,可得AE =2, 所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1, 所以A 1M ∥AB ,A 1M =AB , 又由AB ⊥BB 1,有A 1M ⊥BB 1.在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,所以∠A 1B 1N =30°.所以,直线A 1B 1与平面BCB 1所成的角为30°.经典模拟·演练卷1.B [当m ⊥β,m ⊂α时,α⊥β,必要性成立.但α⊥β,m ⊂α,则m ⊂β或m ∥β或m 与β相交.因此“α⊥β”是“m ⊥β”的必要不充分条件.]2.C [由三视图知,该几何体为三棱锥(如图). 其中AO ⊥底面BCD ,且OD ⊥BC . ∵AO =22,S △BCD =12×42×22=8.所以几何体的体积V =13·OA ·S △BCD =13×22×8=1623.]3.A [如图所示,设点E 为棱A 1C 1的中点,连接AE ,B 1E . 在正三棱柱ABC -A 1B 1C 1中,B 1E ⊥平面ACC 1A 1, ∴∠B 1AE 为直线AB 1与侧面ACC 1A 1所成的角,记为α. 设三棱柱的棱长为a ,则B 1E =32a ,AB 1=2a .∴sin α=B1EAB1=32a2a=64.]4.C[由三视图知,该几何体是底面为直角梯形的四棱锥.∵S底=12(1+2)×2=3.∴几何体的体积V=13x·S底=3,即13x·3=3.因此x=3.]5.B[如图,平面ABEF⊥平面EFDC,AF⊥EF,∴AF⊥平面ECDF,将三棱锥A-FEC补成正方体ABC′D′-FECD.依题意,其棱长为1,外接球的半径R=3 2,∴外接球的体积V=43πR3=43π·⎝⎛⎭⎪⎫323=32π.]6.C[由DC1⊥平面A1BCD1知DC1⊥D1P,∴A正确.∵D1A1⊥平面ABB1A1,且A1D1⊂平面D1A1P,∴平面D1A1P⊥平面A1AP,因此B正确.当0<A1P<22时,∠APD1为钝角,∴C错.将面AA1B与面A1BCD1沿面对角线A1B展开成平面图形时,线段A1D为AP+PD1的最小值.在△AA1D1中,A1D1=A1A=1,∠AA1D1=135°.由余弦定理,AD21=12+12-2×1×1cos 135°=2+ 2.∴AP+PD1的最小值AD1=2+2,因此D正确.]7.112[∵V三棱锥B1-BFE=V三棱锥E-BB1F,又S△BB1F=12·BB1·BF=14,且点E到底面BB1F的距离h=1.∴V三棱锥B1-BFE=13·h·S△BB1F=112.]8.(16+213)π[由三视图知,该几何体是由一个底面半径为2,高为3的圆柱挖去一个同底等高的圆锥所得的组合体. 则S 圆柱侧=2π×2×3=12π.S 圆柱下底=π×22=4π. S 圆锥侧=12×2π×2×13=213π.故几何体的表面积S =12π+4π+213π=(16+213)π.] 9.90° [建立如图所示的空间直角坐标系D -xyz ,D 为坐标原点,则P (0,0,a ),B (a ,a ,0),PB →=(a ,a ,-a ), 又DE →=⎝ ⎛⎭⎪⎫0,a 2,a 2,PB →·DE →=0+a 22-a 22=0,所以PB ⊥DE .又DF ⊥PB ,且DF ∩DE =D , ∴PB ⊥平面DEF .故直线PB 与平面DEF 所成的角为90°.] 10.(1)证明 设点O 为AC ,BD 的交点.由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线. ∴O 为AC 的中点,BD ⊥AC .又P A ⊥平面ABCD ,BD ⊂平面ABCD , ∴P A ⊥BD . ∴BD ⊥平面APC .(2)解 连接OG .由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD 是DG 与平面APC 所成的角.在△ABC 中,AC =AB 2+BC 2-2AB ·BC ·cos ∠ABC =2 3. ∴OC =12AC = 3.在直角△OCD 中,OD =CD 2-OC 2=2. 又OG =12P A =32,在直角△OGD 中,tan ∠OGD =OD OG =4 33. ∴DG 与平面APC 所成的角的正切值为4 33. (3)解 连接OG .∵PC ⊥平面BGD ,OG ⊂平面BGD ,∴PC ⊥OG .在Rt △P AC 中,PC =P A 2+AC 2=15. ∴GC =AC ·OC PC =2 155. 从而PG =3 155,所以PG GC =32.11.(1)解 取BD 的中点E ,连接AE ,CE , 由AB =AD ,CB =CD , 得AE ⊥BD ,CE ⊥BD .∴∠AEC 就是二面角A -BD -C 的平面角, ∴cos ∠AEC =33.在△ACE 中,AE =6,CE =2,AC 2=AE 2+CE 2-2AE ·CE ·cos ∠AEC =6+2-2×6×2×33=4, ∴AC =2.(2)证明 ∵AB =AD =BD =22,AC =BC =CD =2, ∴AC 2+BC 2=AB 2,AC 2+CD 2=AD 2, ∴∠ACB =∠ACD =90°, ∴AC ⊥BC ,AC ⊥CD ,又BC ∩CD =C ,∴AC ⊥平面BCD . (3)解 设点C 到平面ABD 的距离为h , ∴V C -ABD =V A -BCD ,∴13×12×22×22×sin 60°×h =13×12×2×2×2,∴h =233,于是AC 与平面ABD 所成角θ的正弦值sin θ=h AC =33. 12.解 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以,BE ⊥DC .(2)向量BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量.则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎨⎧-x +2y =0,x -2z =0.不妨令y =1, 可得n =(2,1,1)为平面PBD 的一个法向量,于是有cos 〈n ,BE →〉=n ·BE→|n |·|BE →|=26×2=33. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010. 易知,二面角F -AB -P 是锐角,所以其余弦值为31010.专题过关·提升卷1.C [该几何体为正方体与正四棱锥的组合体,∴体积V =23+13×22×2=323(cm 3).]2.A [若b ⊥β,α∥β,则b ⊥α,又a ⊂α,∴a ⊥b ,但a ⊥b ,a ⊂α,α∥β时,得不到b ⊥β.∴“b ⊥β”是“a ⊥b ”的充分不必要条件.]3.C [如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=5π3.]4.C [该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,AE =5,BD =CD =5,S 表=S △BCD +S △ACD +S △ABD +S △ABC=12×2×2+12×1×5×2+12×2×5=2+2 5.]5.D [由图可知S 2=S 3=2,S 1=2,所以S 1≠S 3.]6.D [由三视图知,该四棱锥的直观图如图所示,其中P A ⊥平面ABCD ,平面ABCD 为直角梯形.则最长棱PB =22+22=22,A 错,B 错.棱锥中的四个侧面中:由P A ⊥底面ABCD ,知△P AB ,△P AD 为直角三角形.又DC ⊥AD ,P A ⊥DC ,知DC ⊥平面P AD ,则DC ⊥PD ,从而△PDC 为直角三角形.又PD =5,DC =1,所以PC =12+(5)2= 6.在梯形ABCD 中,易求BC =2,故PB 2=PC 2+BC 2,△PBC 为直角三角形.]7.C [如图,以D 为原点,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则D 1(0,0,2),C (0,2,0),设P (x ,y ,0)(x >0,0<y <2),则1D P =(x ,y ,-2),PC →=(-x ,2-y ,0).由D 1P ⊥PC ,得1D P ·PC →=-x 2+y (2-y )=0,∴x =2y -y 2(0<y <2),所以0<x ≤1.]8.B [由三视图知,“和田玉”为直三棱柱,底面是直角三角形,高为12,如图所示.其中AC =6,BC =8,BC ⊥AC ,则AB =10,若使“玉雕球”的半径最大,则该球与直三棱柱的三个侧面都相切.∴球半径r =6+8-102=2,则S 球=4πr 2=16π.]9.1825 [由正视图及俯视图知,在三棱锥A -BCD 中,平面ABD ⊥平面BCD (如图所示),因此三棱锥的侧视图为等腰直角三角形.在△ABD 中,AB =32,AD =BC =2.∴BD =AB 2+BC 2=52. 因此AA ′=AB ·AD BD =32×252=65.所以等腰直角三角形的腰长为65.故侧视图的面积为12×⎝ ⎛⎭⎪⎫652=1825.]10.66 [如图所示,建立以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.设BC =CA =CC 1=2,则B (0,2,0)、D 1(1,1,2)、F 1(1,0,2). 则1BD =(1,-1,2),1CF =(1,0,2),∴cos 〈1BD ,1CF 〉= =530=306. 设BD 1与CF1所成的角为α.11.5π [如图所示,将三棱锥P -ABC 补成长方体ADBC -PD ′B ′C ′.则三棱锥P -ABC 的外接球就是长方体的外接球. ∴2R =P A 2+AC 2+AD 2=5,故外接球的表面积S 球=4πR 2=5π.]12.14 [分别过E ,C 向平面P AB 作高h 1,h 2,由E 为PC 的中点得h 1h 2=12,由D 为PB 的中点得S △ABD =12S △ABP ,所以V 1∶V 2=⎝ ⎛⎭⎪⎫13S △ABD ·h 1∶⎝ ⎛⎭⎪⎫13S △ABP ·h 2=14.]13.6 [如图所示为多面体MN -ABCD ,作MH ⊥AB 交AB 于H .由侧视图可知MH =12+22= 5.根据正视图知MN =2,AB =4,且正视图为等腰梯形.∴AH =4-22=1,从而AM =AH 2+MH 2= 6.]14.8π3 [由三视图知,该几何体是由两个圆锥和一个圆柱构成的组合体,且圆锥的底面分别与圆柱的两个底面重合.∵圆柱的底面圆的半径R =1,高h =2,且圆锥的高h ′=1.∴V 圆柱=πR 2·h =2π,V 圆锥=13πR 2h ′=π3. 因此该几何体的体积V =V 圆柱+2V 圆锥=8π3.]15.①②③ [取AC 的中点O ,连接OB ,OD ,则OD ⊥AC ,OB ⊥AC .OD ∩OB =O ,AC ⊥平面OBD ,从而AC ⊥BD ,①正确.又平面ADC ⊥平面ABC ,DO ⊥AC ,所以DO ⊥平面ABC ,因此DO ⊥OB ,且∠OBD 为棱BD 与底面ABC 所成的角.由OB =OD ,知∠OBD =45°,所以②正确,从而BD =2·OB =1,故BC =CD =BD =1,因此△BCD 是等边三角形,命题③正确.根据DO ⊥平面ABC .得V 三棱锥D -ABC =13·S △ABC ·OD =212,∴④错误.]16.(1)证明 如图,连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)解在直角梯形BCDE中,由BD=BC=2,DC=2.得BD⊥BC,又平面ABC⊥平面BCDE,所以BD⊥平面ABC.如图,作EF∥BD,与CB的延长线交于F,连接AF,则EF⊥平面ABC. 所以∠EAF是直线AE与平面ABC所成的角.在Rt△BEF中,由EB=1,∠EBF=π4,得EF=22,BF=22;在Rt△ACF中,由AC=2,CF=322,得AF=262.在Rt△AEF中,由EF=22,AF=262,得tan ∠EAF=13 13.所以,直线AE与平面ABC所成的角的正切值是13 13.17.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.(2)解设AB中点为M,连接CM,则CM⊥AB,由平面A1ABB1⊥平面ABC且平面A1ABB1∩平面ABC=AB知,CM⊥面A1ABB1,∴∠CA1M即为直线A1C与平面A1ABB1所成的角.∴∠CA1M=45°,易知CM=32×2=3,在等腰Rt△CMA中,AM=CM=3,在Rt△A1AM中,A1A=A1M2-AM2= 2.∴FC=12A1A=22,又S △AEC =12×34×4=32,∴V 三棱锥F -AEC =13×32×22=612.18.(1)证明 连接B 1P ,则B 1P ∥CC 1,∴∠PB 1A =45°,且B 1P ⊥底面ABC ,∴B 1P =AP =2a ,∴BB 21+AB 21=10a 2=AB 2,∴BB 1⊥AB 1.又AC ⊥BC ,AC ⊥CC 1,∴AC ⊥平面BB 1C 1C ,∴BB 1⊥AC ,∴直线BB 1⊥平面AB 1C .(2)解 过P 作PD ⊥AB 于D ,连接B 1D ,再过P 作PQ ⊥B 1D 于Q ,连接AQ .∵B 1P ⊥底面ABC ,∴AB ⊥平面PDB 1,∴PQ ⊥平面AA 1B 1B ,∴直线AQ 是直线AP 在平面AA 1B 1B 上的射影,∴∠P AQ 即为直线AP 与平面AA 1B 1B 所成的角.在Rt △PDB 1中,B 1P =2a ,DP =105a ,则PQ =33a ,∴直线AP 与平面AA 1B 1B 所成角的正弦值为66.19.解 如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎨⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277, 从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1CEC 1的正弦值为217.(3)AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →| =2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13, ∴AM →=⎝ ⎛⎭⎪⎫13,43,13,所以AM = 2.20.解 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝ ⎛⎭⎪⎫1,12,1,N (1,-2,1). (1)证明 依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=⎝ ⎛⎭⎪⎫0,-52,0,由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0),设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量,则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎨⎧x 1-2y 1+2z 1=0,2x 1=0. 不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎨⎧y 2+2z 2=0,2x 2=0 不妨设z 2=1,可得n 2=(0,-2,1).因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010, 于是sin 〈n 1,n 2〉=1-⎝ ⎛⎭⎪⎫-10102=31010. 所以,二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E (0,λ,2),从而NE →=(-1,λ+2,1),又n =(0,0,1)是平面ABCD 的一个法向量,故|cos 〈NE →,n 〉|=|NE →·n ||NE →|·|n |=1(-1)2+(λ+2)2+12=13. 整理得λ2+4λ-3=0,解得λ=-2±7,又因为λ∈[0,1],所以λ=7-2,所以,线段A 1E 的长为7-2.。

2016年高考总复习数学(文科)配通课件:专题4 立体几何

2016年高考总复习数学(文科)配通课件:专题4 立体几何
专题四
立体几何
题型 1 三视图与表面积、体积 三视图是高考的新增考点,经常以一道客观题的形式出现, 有时也和其他知识综合作为解答题出现,2007 年与 2009 年两 次涉及解答题.解题的关键还是要将三视图转化为简单几何体, 或者其直观图.
例 1:(2014 年陕西)已知四面体 ABCD(如图4-1)及其三视
过点 E 作 EF⊥AB,垂足为 F,连接 PF, ∵PE⊥平面 ABCD,AB⊂平面 ABCD,∴AB⊥PE.
∵EF⊂平面 PEF,PE⊂平面 PEF,EF∩PE=E,
∴AB⊥平面 PEF.
∵PF⊂平面 PEF,∴AB⊥PF.
依题意,得 EF=AD=2.
在 Rt△PEF 中,PF= PE2+EF2=3. 1 ∴△PAB 的面积 S= ×AB×PF=6. 2 ∴四棱锥 PABCD 的侧面 PAB 的面积为 6.
【互动探究】
2.(2014 年广东汕头一模)已知某几何体(如图 5-7)与它的 三视图(如图 4-8),其中俯视图为正三角形,其他两个视图是矩
形.已知点 D 是这个几何体的棱 A1C1 的中点. (1)求出该几何体的体积; (2)求证:直线 BC1∥平面 AB1D;
(3)求证:平面 AB1D⊥平面 AA1D.
【规律方法】解决此类问题的一般步骤为: ①将三视图转化为简单几何体,或者其直观图.应遵循“长
对正、高平齐、宽相等”的原则,即“正、俯视图一样长,正、
侧视图一样高,俯、侧视图一样宽”;
②利用相关的体积(或面积)公式进行运算;
③利用相关定理进行平行或垂直的证明.
【互动探究】
1.(2013 年广东广州二模)如图 4-3,已知四棱锥 P-ABCD
的正视图是一个底边长为 4、腰长为 3 的等腰三角形,如图 4-4 所示的分别是四棱锥 P-ABCD 的侧视图和俯视图. (1)求证:AD⊥PC; (2)求四棱锥 P-ABCD 的侧面 PAB 的面积.

2016全国卷高考文科数学模拟试题汇编--空间立体几何

2016全国卷高考文科数学模拟试题汇编--空间立体几何

2016全国卷高考文科数学模拟试题汇编—空间立体几何 2016-2-1教学内容一,三视图与几何体的表面积体积1.[2015·正三棱柱ABC ­A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A ­B 1DC 1的体积为________.2. 已知一个正方体的所有顶点都在一个球面上,若球的体积为9π2, 则正方体的棱长为3 一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为__________.4已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在AB ,CC 1上移动,且EF +GH =12,则四面体EFGH 的体积的最大值为________.5 某四面体的三视图均为直角三角形,如图12­9所示,则该四面体的表面积为( )A .72+242B .96+242C .126D .646三棱锥P ­ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P ­ABC 的体积等于________.7一块石材表示的几何体的三视图如图12­10所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1 B .2C .3 D .48 球面上有四个点P ,A ,B ,C ,若PA ,PB ,PC 两两互相垂直,且PA =PB =PC =1,则该球的表面积是________.9 若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为 二 (1)点线面的位置关系(2)线线角 线面角 面面角 点面距离1.]已知m ,n 表示两条不同直线,α表示平面,若m ⊥α,n ⊂α,则m 与n 的位置关系为________. 2. 如图13­1所示,直三棱柱ABC ­A 1B 1C 1中,D 是AB 的中点.则BC 1与平面A 1CD 的位置关系②是________.3.如图13­2所示,三棱柱ABC ­A 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1,则A 1C 与CC 1的位置关系③是______ 4. 图13­3所示,三棱锥A ­BCD 中,AB ⊥平面BCD ,CD ⊥BD ,则CD 与平面ABD 的位置关系④是5. 若三棱锥C 1­A 1EB 1的体积为3,则异面直线AC 与C 1E 所成的角⑤为 ________.6 (1设m ,n 是两条不同的直线,α,β是两个不同的平面( )A .若m ⊥n ,n ∥α,则m ⊥αB .若m ∥β,β⊥α则m ⊥αC .若m ⊥β,n ⊥β,n ⊥α则m ⊥αD .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 7下列命题为真命题的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行8 (1)已知直线a ,b 异面, 给出以下命题:①一定存在平行于a 的平面α,使得b ⊥α;②一定存在平行于a 的平面α,使得b ∥α;③一定存在平行于a 的平面α,使得b ⊂α;④一定存在无数个平行于a 的平面α与b 交于一定点.其中真命题的序号是( )A .①④B .②③C .①②③D .②③④9已知E ,F ,G ,H 是空间四点,条件甲:E ,F ,G ,H 四点不共面,条件乙:直线EF 和GH 不相交,则甲是乙成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10 如图13­5所示,四棱锥P ­ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点. 求证:AP ∥平面BEF11如图13­6所示,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,FE=2AD,点G为AC的中点.求证:EG∥平面ABF.12 如图13­7所示,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥平面ABCD;(2)平面BEF⊥平面PCD.13 如图13­8所示,在三棱柱ABC­A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,BA=2,BC=1,BCC1=π3.(1)求证:C1B⊥平面ABC;(2)试在棱CC1(不包含端点C,C1)上确定一点E,使得EA⊥EB1.14 如图13­9所示,四棱锥P­ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P­ABD的体积V=34,求A到平面PBC的距离.15 如图13­10所示,在斜三棱柱ABC­A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.16空间中,若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题为真命题的是A.若a∥α,b∥α,则a∥b B.若a∥α,a∥β,则α∥βC.若a⊥α,b⊥α,则a∥b D.若α⊥β,α⊥γ,则β∥γ17如图所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=18已知一个四棱锥的三视图和直观图如图所示,且俯视图中∠DAB=60°,直观图中E为侧棱PD的中点.(1)求证:PB∥平面AEC.(2)若F为侧棱PA上的一点,且PFFA=λ,则当λ为何值时,PA⊥平面BDF?并求此时几何体F­BDC的体积19在三棱柱ABC­A1B1C1中,AB⊥平面BB1C1C,已知BC=1,∠BCC1=π3,AB=CC1=2.(1)求证:C1B⊥平面ABC;(2)设E是CC1的中点,求A E和平面ABC1所成角的正弦值.20如图所示,四棱锥P­ABCD的底面为正方形,AC∩BD=O,PO⊥平面ABCD,PA=AB,E,F,G分别是PO,AD,AB的中点.(1)求证:PC⊥平面EFG;(2)若AB=1,求三棱锥O­EFG的高.。

2016届(新课标)高考数学(文)大一轮复习精品讲义:第七章立体几何Word版含答案

2016届(新课标)高考数学(文)大一轮复习精品讲义:第七章立体几何Word版含答案

第七章立体几何第一节空间几何体的结构特征及三视图与直观图对应学生用书P99基础盘查一空间几何体的结构特征(一)循纲忆知认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(二)小题查验1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2) 有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用一个平面去截一个球,截面是一个圆面()答案:(1)×(2)×(3)√2.(人教A版教材习题改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH ∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱基础盘查二空间几何体的三视图(一)循纲忆知1.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型.2.会用平行投影与中心投影两种方法画出简单空间图形的三视图,了解空间图形的不同表示形式.3.会画出某些建筑物的三视图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)正方体、球、圆锥各自的三视图中,三视图均相同()(2)圆锥的俯视图是一个圆()(3)圆台的正视图和侧视图是两个全等的等腰梯形()答案:(1)×(2)√(3)√2.(北师大版教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③基础盘查三空间几何体的直观图(一)循纲忆知1.会用斜二测画法画出几何体的直观图.2.会用平行投影与中心投影画出简单空间图形的直观图.了解空间图形的不同表示形式.3.会画某些建筑物的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(二)小题查验1.判断正误(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°()(2)斜二测画法中,平行于x 轴y 轴的线段平行性不变,且长度也不变( )(3)斜二测画法中,原图形中的平行垂直关系在直观图中不变( )答案:(1)× (2)× (3)×2.(2015·东北三校第一次联考)利用斜二测画法可以得到:①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②对应学生用书P100考点一 空间几何体的结构特征(基础送分型考点——自主练透)[必备知识]1.多面体的结构特征(1)棱柱⎩⎪⎨⎪⎧ 底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等(2)棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形 (3)棱台 棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分.2.旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其一条直角边旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(4)球可以由半圆面或圆面绕直径旋转得到.[提醒](1)认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时,易忽视定义,可借助于几何模型强化对空间几何体的结构特征的认识.(2)台体可以看成是由锥体截得的,但一定强调截面与底面平行.[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.2.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.图1易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图23.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③四棱锥的四个侧面都可以是直角三角形;④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠P AB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④[类题通法]解决与空间几何体结构特征有关问题的技巧(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点二空间几何体的三视图(重点保分型考点——师生共研)[必备知识](1)空间几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;③看不到的线画虚线.[提醒]若相邻两物体的表面相交,则表面的交线是它们的分界线,在三视图中,要注意实、虚线的区别.[典题例析]1.(2014·江西高考)一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.2.(2014·新课标全国卷Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B将三视图还原为几何体即可.如图,几何体为三棱柱.[类题通法]1.对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图.2.由三视图还原几何体时,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.[演练冲关]1.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A形成的投影,应为虚线,故答案为C.2.如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为()解析:选C由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.考点三空间几何体的直观图(重点保分型考点——师生共研)[必备知识]1.在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.[典题例析](2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[类题通法]用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.[演练冲关]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为() A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.对应B本课时跟踪检测(四十)一、选择题1.(2014·福建高考)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析:选A圆柱的正视图是矩形,则该几何体不可能是圆柱.2.(2015·青岛模拟)将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()解析:选C长方体的侧面与底面垂直,所以俯视图是C.3.(2015·烟台一模)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2C.3 D.4解析:选D观察三视图,可得直观图如图所示.该三棱锥A-BCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.4.(2015·淄博一模)把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为( )A.22 B.12 C.24 D.14解析:选D 由正视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为22,所以侧视图的面积为S =12×22×22=14,选D. 5.(2015·武昌调研)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是( )解析:选D 易知该三棱锥的底面是直角边分别为1和2的直角三角形,注意到侧视图是从左往右看得到的图形,结合B 、D 选项知,D 选项中侧视图方向错误,故选D.6.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正(主)视图与侧(左)视图的面积的比值为( ) A.12B .1C .2D .不确定,与点P 的位置有关解析:选B 如题图所示,设正方体的棱长为a ,则三棱锥P -ABC 的正(主)视图与侧(左)视图都是三角形,且面积都是12a 2,故选B. 二、填空题7.(2015·西城区期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 38.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.解析:由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′, ∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=24 2. 答案:24 29.(2015·昆明、玉溪统考)如图,三棱锥V -ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V -ABC 的底面边长为a ,侧面VAC 边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33. 答案:3310.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD -A 1B 1C 1D 1中的四面体A -CB 1D 1;②错误,反例如图所示,底面△ABC 为等边三角形,可令AB =VB =VC =BC =AC ,则△VBC 为等边三角形,△VAB 和△VCA 均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面.答案:①三、解答题11.已知:图①是截去一个角的长方体,试按图示的方向画出其三视图;图②是某几何体的三视图,试说明该几何体的构成.解:图①几何体的三视图为:图②所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.12.如图,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,P A=PD2+AD2=(62)2+62=6 3 cm.第二节空间几何体的表面积与体积对应学生用书P101基础盘查一柱体、锥体、台体的表面积(一)循纲忆知了解柱体、锥体、台体的表面积的计算公式.(二)小题查验1.判断正误(1)几何体的表面积就是其侧面积与底面积的和()(2)几何体的侧面积是指各个侧面积之和()答案:(1)√(2)√2.(人教A版教材例题改编)已知棱长为a,各面均为等边三角形的四面体S-ABC,它的表面积为________.解析:过S作SD⊥BC,∵BC=a,∴SD=3 2a∴S△SBC=34a2,∴表面积S=4×34a2=3a2.答案:3a23.(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12基础盘查二 柱体、锥体、台体的体积 (一)循纲忆知了解柱体、锥体、台体的体积的计算公式. (二)小题查验 1.判断正误(1)等底面面积且等高的两个同类几何体的体积相等( ) (2)在三棱锥P -ABC 中,V P -ABC =V A -PBC =V B -P AC =V C -P AB ( ) 答案:(1)√ (2)√2.(人教B 版教材例题改编)如图,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,则棱锥C -A ′DD ′的体积与剩余部分的体积之比为________.答案:1∶53.(2015·海淀高三练习)已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:43基础盘查三 球的表面积与体积 (一)循纲忆知了解球的表面积与体积的计算公式. (二)小题查验 1.判断正误(1)球的表面是曲面,不能展开在一平面上,故没有展开图( )(2)正方体的内切球中其直径与棱长相等( ) 答案:(1)√ (2)√2.(人教A 版教材例题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶13.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R ,则2R =22+22+22=23,所以该几何体的表面积为4πR 2=4π(3)2=12π.答案:12π对应学生用书P102考点一 空间几何体的表面积(基础送分型考点——自主练透)[必备知识]当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl =r r'←−−−S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl[提醒] 组合体的表面积应注意重合部分的处理.[题组练透]1.(2014·陕西高考)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.2.(2014·安徽高考)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18解析:选A 由三视图可知该几何体的直观图如图所示,其是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分,其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.3.已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析:由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S =π×1+π×9+π×(1+3)×(23)2+22=26π.答案:26π[类题通法]求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.考点二 空间几何体的体积(重点保分型考点——师生共研)[必备知识]1.柱体V 柱体=Sh ;V 圆柱=πr 2h . 2.锥体V 锥体=13Sh ;V 圆锥=13πr 2h .3.台体V 台体=13(S +SS ′+S ′)h ;V 圆台=13πh (r 2+rr ′+r ′2).[提醒](1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题需注意几何体还原的准确性及数据的准确性.[典题例析]1.(2014·辽宁高考)某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析:选B 直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π.2.(2014·山东高考)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面P AB 的距离为h ,三角形P AB 的面积为S ,则V 2=13Sh ,V 1=V E -ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:14[类题通法]1.计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.[演练冲关]1.(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为( )A .8π+16B .8π-16C .8π+8D .16π-8解析:选B 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.2.(2015·苏州测试)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,点E ,F 分别在AA 1,CC 1上,且AE =34AA 1,CF =13CC 1,点A ,C 到BD 的距离之比为3∶2,则三棱锥E -BCD 和F -ABD 的体积比V E -BCDV F -ABD=________.解析:由题意可知点A ,C 到BD 的距离之比为3∶2,所以S △BCD S △ABD =23,又直四棱柱ABCD -A 1B 1C 1D 1中,AE =34AA 1,CF =13CC 1,所以AE CF =94,于是V E -BCDV F -ABD=13S △BCD ·AE 13S △ABD ·CF =23×94=32. 答案:32考点三 与球有关的切、接问题(常考常新型考点——多角探明)[必备知识]1.球的表面积公式:S =4πR 2; 球的体积公式V =43πR 32.与球有关的切、接问题中常见的组合:(1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1-AB 1D 1的外接球的球心和正方体ABCD -A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a . ②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长).[多角探明]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:(1)正四面体的内切球; (2)直三棱柱的外接球; (3)正(长)方体的外接球; (4)四棱锥的外接球.角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2D.22解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R 为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A. [类题通法]“切”“接”问题的处理规律 1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.对应A 本课时跟踪检测(四十一)一、选择题1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3C .25πD.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π.2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2πD.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D.3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B. 3 C .2 6D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3.4.(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB = 2.。

2016年全国卷文数(新课标3)立体几何

2016年全国卷文数(新课标3)立体几何

2016年全国卷文数(新课标3)立体几何10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B. C. 90 D. 81【答案】B【解析】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:,侧面的面积为:,故棱柱的表面积为:.故选:B.由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.11.在封闭的直三棱柱内有一个体积为V的球,若,,,,则V的最大值是A. B. C. D.【答案】B【解析】解:,,,.故三角形ABC的内切圆半径,又由,故直三棱柱的内切球半径为,此时V的最大值,故选:B.根据已知可得直三棱柱的内切球半径为,代入球的体积公式,可得答案.本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.19.如图,四棱锥中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.Ⅰ证明平面PAB;Ⅱ求四面体的体积.【答案】证明:Ⅰ取BC中点E,连结EN,EM,为PC的中点,是的中位线,又,,,,M为线段AD上一点,,,四边形ABEM是平行四边形,,平面平面PAB,平面NEM,平面PAB.解:Ⅱ取AC中点F,连结NF,是的中位线,,,又面ABCD,面ABCD,如图,延长BC至G,使得,连结GM,,四边形AGCM是平行四边形,,又,,的高,,四面体的体积.【解析】Ⅰ取BC中点E,连结EN,EM,得NE是的中位线,推导出四边形ABEM是平行四边形,由此能证明平面PAB.Ⅱ取AC中点F,连结NF,NF是的中位线,推导出面ABCD,延长BC至G,使得,连结GM,则四边形AGCM是平行四边形,由此能求出四面体的体积.本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何讲义
(2015新课标2卷)19. (12分)如图,长方体1111ABCD A BC D -中AB =16,BC =10,18AA =,点E ,F 分别在
1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.
F
E D 1
C 1
B 1
A 1
D C
B
A
(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值.
(2015新课标1卷)(18)(12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD. (Ⅰ)证明:平面AEC ⊥平面BED ;
(Ⅱ)若∠ABC=120°,AE ⊥EC ,三棱锥E —ACD 的体积为
3
6
,求该三棱锥的侧面积
(2014新课标2卷)(18)(12分)如图,四凌锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点。

(Ⅰ)证明://PB 平面AEC ;
(Ⅱ)设置1AP =,AD =P ABD -的体
积4
V =,求A 到平面PBD 的距离。

(2014新课标1卷)19(12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.
(1)证明:;1AB C B ⊥
(2)若1AB AC ⊥,,1,601==∠BC CBB
求三棱柱111C B A ABC -的高.
(2013新课标2卷)(18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,。

(Ⅰ)证明:1//BC 平面11ACD ;
(Ⅱ)设12AA AC CB ===
,AB =求三棱锥1C A DE -的体积。

(2013新课标1卷) (19)(12分)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,︒=∠601BAA . (Ⅰ)证明:C A AB 1⊥;
(Ⅱ)若,2==CB AB 61=C A ,求三棱柱111C B A ABC -的体积
1
A A
B
C
1
C 1
B 1
A
(2012新课标卷)(19)(12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,
D 是棱AA
1的中点
(I)证明:平面BDC 1⊥平面BDC
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

(2011新课标卷)(18)(12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形。

60,2,DAB AB AD PD ∠==⊥ 底面ABCD 。

(I )证明:PA BD ⊥
(II )设1PD AD ==,求棱锥D PBC -的高。

(2010新课标卷)(18)(12分)如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ;
(Ⅱ)若AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

相关文档
最新文档