矩阵与数值分析-大连理工大学-计算机科学计算 课后答案
大连理工大学《矩阵与数值分析》2005-2009年真题答案
大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。
大连理工大学-矩阵与数值分析第一章上
–对C的类型系统改进和扩充(更安全)
–支持面向对象
C++保持与C兼容(快速普及) C++不是纯粹的面向对象的语言
33
1.2 程序的编译过程
34
1.3 C++的词法记号
关键字 各种常量 操作符 标识符 分隔符
35
1.4 C++程序的结构
#include <iostream.h> int main() { cout<<”this is the start of something wonderful!”; cout<<endl; cout<<”And now we can say even more!”; return 0; }
Sub1
Sub2
….
Subn
各子流程实现----函数化 Func1 Func2 …. Funcn
根据系统的流程组建软件,通过函数的调用实现
17
面向对象思想
问题域 (Domain) 以问题域中的事物为中心思考问题 Object1 Object2
….
Objectn
对象归类----抽象化 Class1 Class2 …. Classn
返回类型
{ 函数体; }
50
函数名(形式参数1, 形式参数2,。。。,形式参数
3.2 参数的传递
值调用
#include <iostream.h> double Volume(double radius,double height); int main() { double v; v=Volume(3.0,3.0); cout<<"Volume="<<v<<endl; return 0; } double Volume(double radius,double height) { double result=3.14 * radius * radius * height; return result; }
大连理工大学矩阵与数值分析上机作业
end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500
大连理工大学矩阵分析matlab上机作业
x(i)=1/i; %按要求给向量 x 赋值,其值递减 end normx1=norm(x,1); %求解向量 x 的 1 范数 normx1 normx2=norm(x,2); %求解向量 x 的 2 范数 normx2 normxinf=norm(x,inf); %求解向量 x 的无穷范数 normxinf normy1=norm(y,1); %求解向量 y 的 1 范数 normy1 normy2=norm(y,2); %求解向量 y 的 2 范数 normy2 normyinf=norm(y,inf); %求解向量 y 的无穷范数 normyinf z1=[normx1,normx2,normxinf]; z2=[normy1,normy2,normyinf]; end
for i=2:n
for j=i:n U(i,j)=A(i,j)-L(i,1:i-1)*U(1:i-1,j);
式
%Doolittle 分解计算上三角矩阵的公
L(j,i)=(A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i); %Doolittle 分解计算下三角矩 阵的公式
end
1 1 1 ������ x = (1, 2 , 3 , … , ������) ,
������ = (1,2, … , ������)������.
对n = 10,100,1000甚至更大的n计算其范数,你会发现什么结果?你能否修改
你的程序使得计算结果相对精确呢?
1.1 源代码
function [z1,z2]=norm_vector(n) %向量 z1 的值为向量 x 的是三种范数,向量 z2 的值为向量 y 的三 种范数,n 为输入参数
[理学]矩阵与数值分析-第1章li-Chapter1
什么是有效算法?
考察,线性方程组的解法
⎧a11 x1 + a12 x2 + L + a1n xn = b1 ⎪a x + a x + L + a x = b ⎪ 21 1 22 2 2n n 2 ⎨ M ⎪ ⎪ ⎩an1 x1 + an 2 x2 + L + ann xn = bn
早在18世纪Cramer已给出了求解法则:
2001. 数值线性代数,徐树方、高立、张平文,北京大学出版 社,2000. 数值逼近,王仁宏,高等教育出版社,1999. 数值逼近方法,南京大学数学系计算数学专业编,科学出 版社,1978. 微分方程数值解法,李荣华、冯果忱,高等教育出版社, 1996. 微分方程数值方法,胡健伟、汤怀民,科学出版社,1999. 矩阵分析引论,罗家洪、方卫东,华南理工大学出版社, 2006. 矩阵分析,同济大学应用数学系,同济大学出版社,2005.
本课程的成绩考核标准
1、平时的课后作业 2、数值试验报告 (Matlab,C) 3、期末考试 ≈ 70%
课程网站 /numerical/
≈ 30%
第1章
绪
论
1.1 计算机科学计算研究对象与特点
科学计算、理论计算和实验并列为三大科学方 法。现代意义下的计算数学主要研究在计算机上计 算的有效算法及其相关理论,从而使它成为一门新 学科——科学计算。
矩阵与数值分析
大连理工大学工科硕士研究生基础学位课程
李崇君
(主讲) 作者:张宏伟、金光日、李崇君 大连理工大学数学科学学院
从一个小例子开始
问题: 在一个正方形的桌面上(边长为a), 分别在四个角有 四只小虫,它们同时向着逆时针方向的另一只小虫移动, 求 它们的运动轨迹.
大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法
第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。
2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。
3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。
4、线性方程组的迭代解法,先作矩阵变换 U L D A --=Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()(超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。
5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。
7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。
大连理工大学矩阵与数值分析试卷-2013
1 0 0 0
3 ⎞ ⎛2 5 ⎟ T ⎟ ; LL 分解中 L= ⎜ ⎜3 4 ⎜ − ⎟ ⎟ ⎝2 5⎠
1 1 2 2
0 ⎞ ⎟ 7 ⎟。 ⎟ 2 ⎠
Gauss 求 积 公 式 , 则
1 ∫ x + 1 f (x ) dx ≈ A f (x ) + A f (x ) + A f (x ) 为
2)为使二点数值求积公式 积节点和求积系数应为 (A) x0 = −
∫
1
f ( x) 1 − x2
.
−1
dx ≈ A0 f ( x0 ) + A1 f ( x1 ) 具有最高的代数精度,其求
B
2 2 π 1 1 1 , x1 = ; A0 = A1 = ; (B) x0 = − , x1 = ; A0 = A1 = ; 2 2 2 2 2 2
⎛ ⎜ 即 V = ( v1 v2 ) = ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ V1 = V = ⎜ ⎜ ⎜ ⎝ 1 2 1 2 1 ⎞ ⎛ ⎟ ⎜ 2⎟ 或 V = ( v1 v2 ) = ⎜ −1 ⎟ ⎜ ⎟ ⎜ 2⎠ ⎝ 1 2 1 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ −1 ⎞ 2⎟ ⎟ ,因 rank(A)=1,故有 1 ⎟ ⎟ 2⎠ 1 ⎞ ⎛ 1 ⎞ ⎟ ⎜ ⎟ 2⎟ (1) = ⎜ 2 ⎟ , 由 U = (U1U 2 ) , 则 1 ⎟ ⎜ 1 ⎟ ⎟ ⎜ ⎟ 2⎠ ⎝ 2⎠
17). 为了减少运算次数,应将表达式.
4 x3 − 3x 2 − 2 x − 1 改写为 x4 + x2 + x − 1
( ( 4 x − 3) x − 2 ) x − 1 ; ( ( ( x + 0 ) x + 1) x + 1) x − 1
大连理工_2012矩阵与数值分析大作业
矩阵与数值分析学生:学号:任课老师:金光日教学班号:(2)班院系:电子信息与电气工程学部《矩阵与数值分析》课程数值实验题目1.给定n 阶方程组A x b =,其中6186186186A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,7151514b ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪⎝⎭则方程组有解(1,1,,1)T x = 。
对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。
1答: 程序1. Gauss 消元法function x=DelGauss(A,b) % Gauss 消去法 [n,m]=size(A); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if A(k,k)==0 return endm=A(i,k)/A(k,k); for j=k+1:nA(i,j)=A(i,j)-m*A(k,j); endb(i)=b(i)-m*b(k); enddet=det*A(k,k); %计算行列式enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end2. 列主元Gauss消去法:function x=detGauss(A,b)% Gauss列主元消去法[n,m]=size(A);nb=length(b);det=1; %存储行列式值x=zeros(n,1);for k=1:n-1amax=0; %选主元for i=k:nif abs(A(i,k))>amaxamax=abs(A(i,k));r=i;endendif amax<1e-10return;endif r>k %交换两行for j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;det=-det;endfor i=k+1:n %进行消元m=A(i,k)/A(k,k);for j=k+1:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);enddet=det*A(k,k);enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end矩阵A和b的构造clc;clear;n=10;%n=84;A=eye(n)*6+diag(ones(1,n-1)*8,-1)+diag(ones(1,n-1),1); b=[7,15*ones(1,n-2),14]';计算结果:(1)n=10时Gauss消元法>>x=DelGauss(A,b)x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000列主元Gauss消去法>>x=detGauss(A,b)x =1111111111(2) n=84时Gauss消元法>>x=DelGauss(A,b) x =1.0e+008 *0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.16650.6501-1.25822.3487-4.02635.3684列主元Gauss消去法>>x=detGauss(A,b) x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000 1.0000 1.00001.00001.0000 1.0000结果分析由上述实验结果可知,对于n=10采用Gauss 消去法和Gauss 列主元消去法得到的实验结果是相同的,而对于n=84,Gauss 消去法所得到的结果是错误的,Gauss 列主元消去法得到的结果是正确的。
大连理工2014《矩阵与数值分析》课程数值实验题目
0.999999998928894 0.999999999405581 0.999999998928894 0.999999998069934 0.999999997593247 0.999999997593247 0.999999998069934 0.999999998928894 0.999999998664353 0.999999997593247 0.999999996998828 0.999999996998828 0.999999997593247 0.999999998664353 0.999999998664353 0.999999997593247 0.999999996998828 0.999999996998828 0.999999997593247 0.999999998664353 0.999999998928894 0.999999998069934 0.999999997593247 0.999999997593247 0.999999998069934 0.999999998928894 0.999999999405581 0.999999998928894 0.999999998664353 0.999999998664353 0.999999998928894 0.999999999405581
% 2.1.1 f=inline('2/3*x^3*exp(x^2) ','x'); R=exp(4); n=100; b=2;a=1; for i=1:.2.1 f=inline('2*x/(x^2-3)','x') ; R=log(6); n=100; b=3;a=2; for i=1:100 n=n+100;
0.999999999405581 0.999999998928894 0.999999998664353 0.999999998664353
大连理工大学矩阵与数值分析上机作业13388
大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。
大连理工大学矩阵与数值分析上机作业13388
共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。
大连理工大学程名松矩阵与数值分析计算方法-第3章
1 (1 − ρ ( A ) ) > 0 一定存在 2 一种相容的矩阵范数 ⋅ ,使得 A ≤ ρ ( A) + ε 。
充分性 根据定理2.8,对于 ε =
又根据相容矩阵范数的性质, 再注意到上述关系式有 1 ρ ( A ) + ε = (1 + ρ ( A ) ) < 1 2 那么
A k ≤ A ≤ ( ρ ( A) + ε ) ≤ q k < 1
k→∞
k→∞
1⎞ lim ⎛ 1 + ⎟ k →∞ ⎜ ⎝ k⎠
k
lim sin k k →∞ k lim
lim
k →∞
k →∞
e− k
k
k
⎞ ⎛e 0 ⎞ ⎟ ⎜1 0 ⎟= A ⎟ =⎜ ⎟ ⎟ ⎜1 1 ⎟ ⎠ ⎠ ⎝
由矩阵序列极限的定义可以看出,矩阵序列收敛的性质和数 列收敛性质相似。 由定义可见,C m × n 中的矩阵序列的收敛相当于mn个数列同时 收敛。 因此可以用初等分析的方法来研究它。
∞ ∞
并且 则
lim Ak = A , k →∞
lim Bk = B
k →∞
lim A k B k = AB
k →∞
证 由
Ak Bk − AB = Ak Bk − Ak B + Ak B − AB
≤ B ⋅ Ak − A + Ak ⋅ Bk − B
由定理1和推论可知,结论成立。
性质3
n n lim Ak = A 并且 设 {Ak }k=1∈C × 中的矩阵序列,
∞
⎛ 0.1 0.7⎞ 。 由于 A ∞ = 0.9 < 1 ,故 计算 ∑ A ,其中 A = ⎜ ⎟ k =0 ⎝ 0.3 0.6⎠ ∞ k ρ ( A ) < 1,从而 ∑ A 收敛,且有
大连理工大学 矩阵与数值分析 第4章-4.2非线性方程的迭代解法
敛呢?不管非线性方程 f (x) = 0 的形式如何,总可以构造
ϕ(x) = x − k(x)
x
(k(x) ≠ 0)
(4-25)
作为方程(4-17)求解的迭代函数。 因为
ϕ′(x) = 1− k′(x) f (x) − k(x) f ′(x)
可知 | ϕ ′(x) | 在根 α 附近越小时 ,其局部收敛速度越快,
则迭代法 xk+1 = ϕ (xk ) 是 p 阶收敛。
练习1 取迭代函数
ϕ (x) = x + a(x2 −5)
要使迭代法收敛到 x* = 5, 则a应取何值?
且其收敛阶是多少?
解: ϕ′( x) = 1+ 2a x , 令
( ) ϕ′ 5 = 1+ 2a 5 < 1, 即有
−1 < 1+ 2a
x = x − f (x) = ϕ(x)
f ′(x)
(4-24)
建立的迭代格式至少是平方收敛。
证 根据定理4.6, 只需证明 ϕ′(α ) = 0 。 因为
ϕ′(α
)
=
⎡ ⎢
x
−
⎣
f f
(x) ′( x)
⎤ ⎥ ⎦
' x=α
=
⎡ ⎢1 ⎣
−
(
f
′(
x))2 − ( f ′(
f (x) x))2
f
′′( x)
x1 = 2× 0 −1 = −1 , x2 = 2(−1)3 −1 = −3 , x3 = 2(−3)3 −1 = −55 , L
显然, 当 k → ∞时, xk → −∞ ,故迭代法发散。 上述例子表明,迭代法的收敛与发散,依赖于迭代
大连理工大学 矩阵与数值分析 第2节线性多步法20160306
插值节点的不同取法就导致不同的多步法。
(1)Adams外插法(显式多步法)
取k+1个节点tn-k,…,tn-1,tn及函数值f(tn-i,u(tn-i)) i=k,…,1,0
构造区间[tn,tn+1]上逼近f(t,u(t))的k次Lagrange插值多项式Ln,k(t)
其中
k +1
∑ ( ) u = u + n+1
n h bk +1i f tn−i+1, un−i+1
i=0
=∫ ∏ bk+1i
0 k+1 τ + j dt
−1
j=0 j≠i
j−i
且 t = tn+1 +τ h , τ ∈[−1, 0]。
注: t − tn− j+1 = tn+1 +τ h − tn + ( j −1) h = (τ + j ) h
第1章 常微分方程初值问题数值解法
§2 线性多步法
§2 线性多步法
前节所讨论的方法如Euler方法、改进Euler方法都称为单步法 (单步长法)。 因为它们只利用前一个点的信息来计算下一个点,
即,只用初始点u0计算u1; 一般说来,只用un来计算un+1。
线性单步法一般说来,精度是较低的。 为提高精度,我们考虑
3)内插法是隐式格式(稳定性好),外插法是 显式格式。
2.2 待定系数法(基于Taylor展开式的求解公式) 用数值积分法只能构造一类特殊的多步法,其系数 一般只满足:
ak=1,ak-m=-1 al=0,当l≠k-m, k。
本节我们将基于Taylor展开式来构造出更一般的求 解公式。