高中数学专题讲义-直接证明与间接证明

合集下载

直接证明和间接证明

直接证明和间接证明

直接证明和间接证明例如,我们要证明一个分数小于1的正数与其倒数相乘的结果一定小于1、我们可以直接证明如下:设分数为a/b,其中a和b均为正整数。

则有a<b,因此,a/b<b/b,即a/b<1又因为倒数的定义为1/a,即倒数为1除以该数,所以可知a/b *1/a = a/ba = 1/b,而1/b小于1因此,我们可以得出结论:一个小于1的正数与其倒数相乘的结果一定小于1间接证明是通过反证法(或称间接推理)推导出结论的证明方法。

它包括以下步骤:首先,假设要证明的结论不成立;其次,根据该假设推导出与已知事实矛盾的结论;最后,得出假设的结论非真,因此原结论为真。

间接证明的特点是通过推理和推导推翻假设,从而得到结论。

例如,我们要证明根号2是无理数。

假设根号2是有理数,即可表示为a/b的形式,其中a和b是整数,且a和b没有公因数。

则根号2=a/b,即2=(a/b)^2,即2b^2=a^2根据等式两边平方数的性质可知,a^2必为偶数。

那么,根据整数的性质可知,a也必为偶数,即a=2c,其中c为整数。

将a=2c代入等式2b^2=a^2中,得到2b^2=(2c)^2,化简得到b^2=2c^2依据同样的推理,b也是偶数,与假设a和b之间没有公因数相矛盾。

因此,假设根号2是有理数的假设不成立,根号2是无理数。

总结来说,直接证明是通过逻辑推理和数学定义直接得出结论,而间接证明是通过反证法推导出结论。

这两种证明方法在数学中应用广泛,可以灵活运用于各类数学问题的证明中。

无论是选择直接证明还是间接证明,重要的是要严谨、清晰地阐述证明的过程和推理的逻辑,以确保结论的正确性。

直接证明与间接证明课件

直接证明与间接证明课件

基础知识梳理
2.间接证明 反证法:假设原命题 不成立 ,经 过正确的推理,最后得出 矛盾 ,因此 说明假设错误,从而证明了原命题成 立,这样的证明方法叫反证法.
三基能力强化
用反证法证明命题:若整系数一元 二次方程ax2+bx+c=0(a≠0)有有理数 根,那么a、b、c中至少有一个是偶数 时,下列假设中正确的是( ) A.假设a、b、c都是偶数 B.假设a、b、c都不是偶数 C.假设a、b、c至多有一个偶数 D.假设a、b、c至多有两个偶数 答案:B
基础知识梳理
综合法和分析法有什么区别与联系? 分析法的特点是:从“未知”看“需知”, 逐步靠拢“已知”,其逐步推理,实际上是寻 求它的充分条件; 综合法的特点是:从“已知”看“可知”, 逐步推向“未知”,其逐步推理,实际上是寻 找它的必要条件. 分析法与综合法各有其特点,有些具体 的待证命题,用分析法或综合法均能证明出 来,往往选择较简单的一种.
直接证明与间接证明
基础知识梳理
1.直接证明 (1)综合法 ①定义:利用已知条件和某些数学定义、公 理、定理等,经过一系列的推理证明 ,最后推导 出所要证明的结论 成立 ,这种证明方法叫综合 法. ②框图表示:
P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其 中 P 表示条件,Q 表示要证结论).
课堂互动讲练
一般地,含有根号、绝对值的等式 或不等式,若从正面不易推导时,可以 考虑用分析法.
课堂互动讲练
反证法体现了正难则反的思维方法,用反证 法证明问题的一般步骤是: (1)分清问题的条件和结论; (2)假定所要证的结论不成立,而设结论的反 面成立(否定结论); (3)从假定和条件出发,经过正确的推理,导 出与已知条件、公理、定理、定义及明显成立的 事实相矛盾或自相矛盾(推导矛盾); (4)因为推理正确,所以断定产生矛盾的原因 是“假设”错误.既然结论的反面不成立,从而证 明了原结论成立(结论成立).

直接证明与间接证明_知识讲解

直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。

高考数学总复习 专题05 第6节 直接证明与间接证明课件 文

高考数学总复习 专题05 第6节 直接证明与间接证明课件 文

则a+b+c
=(x2-2y+ )+( y2-2z+ )+(z2-2x+ )
2
3
6
=(x-1)2+( y-1)2+(z-1)2+-3.
因为-3 0,(x-1)2+( y-1)2+(z-1)2 0,
所以a+b+c 0,与a+b+c 0矛盾.
因此,假设不成立.
故a、b、c中至少有一个大于0.
t 与假设矛盾,或与某个真命题矛盾.从而判定綈 q 为假,推出 q 为真的方法,叫做反证法.
典例分析
题型一 综合法 【例1】(2011·湛江模拟)定义:若数列{An}满足An+1=A2n, 则称数列{An}为“平方递推数列”,已知数列{an}中, a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,n∈N*, 求证:数列{2an+1}是“平方递推数列”.
所以 x + y 2; 2x y 2y x 3
再证 x + y 2, x 2y y 2x 3
只需证3x(2x+y)+3y(x+2y) 2(x+2y)( y+2x),
即2xy x2+y2,显然成立,
所以 x + y 2 . x 2y y 2x 3
综上所述,存在常数c= 2 ,使对任意的正整数x、 3
大于60°”时,应假设( )
A. 三个内角都不大于60°
B. 三个内角都大于60°
C. 三个内角至多有一个大于60°
D. 三个内角至多有两个大于60°
解析:因为“至少有一个”的反面是“一个也没有”,所 以“三角形的三个内角中至少有一个不大于60°” 的否定 是“三角形的三个内角中一个也没有不大于60°”,即“三 个内角都大于60°”,故选B.
个小于2.
a

高考数学总复习考点知识专题讲解34---直接证明与间接证明

高考数学总复习考点知识专题讲解34---直接证明与间接证明

以上三式相加得 43a1+1+3b1+1+3c+1 1≥9-3(a+b+c)=6, ∴3a1+1+3b1+1+3c+1 1≥32, 当且仅当a=b=c=13时取“=”.
角度2:分析法 【例1-2】 (1)已知a≥b>0,求证:2a3-b3≥2ab2- a2b. (2)已知a>0,求证: a2+a12- 2≥a+12-2.
[证明] (1)要证明2a3-b3≥2ab2-a2b,
只需证2a3-b3-2ab2+a2b≥0, 即证2a(a2-b2)+b(a2-b2)≥0, 即证(a+b)(a-b)(2a+b)≥0. ∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0, 从而(a+b)(a-b)(2a+b)≥0成立, ∴2a3-b3≥2ab2-a2b.
[证明] ①当n=1时,左边=12-22=-3,右边=- 3,等式成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即12-22+32 -42+…+(2k-1)2-(2k)2=-k(2k+1).
当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+ (2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=- k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],
1.分析法与综合法的应用特点 对较复杂的问题,常常先从结论进行分析,寻求结论 与条件的关系,找到解题思路,再运用综合法证明;或两 种方法交叉使用. 2.反证法证明的应用特点 要假设结论错误,并用假设的命题进行推理,如果没 有用假设命题推理而推出矛盾结果,其推理过程是错误 的.
3.数学归纳法的应用特点 归纳假设就是已知条件,在推证n=k+1时,可以通过 凑、拆、配项等方法,但必须用上归纳假设.

直接证明与间接证明优质课件ppt

直接证明与间接证明优质课件ppt

间接证明(习题1)
1.求证:若一个整数的平方是偶数,则这个数也是偶数.
证: 假设这个数是奇数,可以设为 2k+1, 则有
(2k 1)2 4k 2 4k 1
k Z.

4k 2 4k 1 (k Z)不是偶数
这与原命题条件矛盾.
2、用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
(1)结论以否定形式出现; (2)结论以“至多-------,” ,“至少------”
形式出现; ( 3)唯一性、存在性问题; (4) 结论的反面比原结论更具体更容易
研究的命题。
间接证明(例题1)
求证:正弦函数没有比2小的正周期.
思路
先求出周期
用反证法证明 2 是最小正周期.
间接证明(例题1)
直接证明(学生活动)
思考:在《数学(5 必修)》中,我们如何证明
基本不等式 ab a b (a 0,b 0)? 2
证法1 对于正数a,b, 有
( a b)2 0 a b 2 ab 0 a b 2 ab
a b ab 2
1、 概念
直接证明
直接从原命题的条件逐步推得结论 成立,这种证明方法叫直接证明。
若 a = b,则a = b,与已知a > b矛盾,
若 a < b,则a < b, 与已知a > b矛盾, 故假设不成立,结论 a > b成立。
3、已知a≠0,求证关于x的方程ax=b有且只 有一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x1,x2且x1 ≠ x2 则ax1 = b,ax2 = b ∴ ax1 = ax2 ∴ ax1 - ax2 = 0 ∴a(x1 - x2)= 0 ∵ x1 ≠ x2,x1 - x2 ≠ 0 ∴a = 0 与已知a ≠ 0矛盾, 故假设不成立,结论成立。

13.2直接证明与间接证明

13.2直接证明与间接证明

1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)⇒P1⇒P2⇒P3⇒P4(结论)B(结论)⇐B1⇐B2…⇐B n⇐A(已知)2.间接证明(1)反证法的定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒tt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ ) (6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 对于A ,若c =0,则ac 2=bc 2,故不正确. 对于B ,∵a <b <0,∴a -b <0,∴a 2-ab =a (a -b )>0, ∴a 2>ab ,∴ab -b 2=b (a -b )>0,∴ab >b 2, ∴a 2>ab >b 2,故B 正确.对于C ,∵a <b <0,∴1a -1b =b -aab >0,∴1a >1b,故错; 对于D ,∵a <b <0,b a -a b =b 2-a 2ab <0,∴b a <ab,故错. 2.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 3.要证a 2+b 2-1-a 2b 2≤0只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足: ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1, ∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0, ∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②, ∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1. 任意的x 1,x 2∈[0,1],x 1+x 2≤1, f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2). ∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0, 即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1.题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由均值不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N +), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,且p ,q ,r ∈N +,所以r -q ,r -p ∈N +. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 (2015·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根; (ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根. (1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0; ②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ). 因为f (α)=α,f (β)=β,且α≠β, 所以f ′(c )=1.与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.24.1反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直. 规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确;②的假设错误 D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q . 5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A答案 A解析 ∵a +b 2≥ab ≥2ab a +b, 又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N +,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小,∴c n +1<c n .14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a , 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0, 故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。

高三数学考点-直接证明与间接证明

高三数学考点-直接证明与间接证明

12.3 直接证明与间接证明1.直接证明(1)综合法:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的____________,最后推导出所要证明的结论________,这种证明方法叫做综合法.综合法又叫顺推证法或__________法.(2)分析法:一般地,从要证明的________出发,逐步寻求使它成立的____________,直至最后,把要证明的__________归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法又叫逆推证法或__________法.(3)综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.间接证明反证法:一般地,假设原命题____________(即在原命题的条件下,结论____________),经过______________,最后得出__________.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾.因此说明假设________,从而证明了原命题成立,这样的证明方法叫做反证法.反证法是间接证明的一种基本方法.自查自纠1.(1)推理论证 成立 由因导果 (2)结论 充分条件 结论 执果索因2.不成立 不成立 正确的推理 矛盾 错误要证明3+7<25,以下方法中最合理的是( ) A .分析法 B .综合法 C .反证法 D .数学归纳法 解:“执果索因”最佳,即分析法.故选A .(2015·黄冈高二检测)设a ,b ∈R ,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D.a 2+b 22<1<ab解:ab <⎝⎛⎭⎫a +b 22=1<a 2+b 22(a ≠b ).故选B .设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个大于2D .至少有一个不小于2 解:因为a ,b ,c >0,所以a +1b +b +1c +c +1a ≥6,举反例可排除A 、B 、C.或直接由a =b =c =1排除A ,B ,C.故选D .用反证法证明“如果a >b ,那么3a >3b ”,假设内容应是____________.解:原条件不变,假设结论不成立.故填3a =3b 或3a<3b.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,则∠A =∠B =90°不成立; ②所以一个三角形中不能有两个直角;③假设∠A ,∠B ,∠C 中有两个角是直角,不妨设∠A =∠B =90°. 正确顺序的序号排列为____________.解:由反证法证明的步骤知,先反设,即③,再推出矛盾,即①,最后作出判断,肯定结论,即②,顺序应为③①②.故填③①②.类型一 直接证明已知a ,b ,c ∈R +,求证:a 2+b 2+c 23≥a +b +c3. 证法一:采用分析法.要证a 2+b 2+c 23≥a +b +c3,只需证a 2+b 2+c 23≥⎝⎛⎭⎫a +b +c 32,只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的, 所以a 2+b 2+c 23≥a +b +c3成立(当且仅当a =b =c 时等号成立).证法二:采用综合法.因为a ,b ,c ∈R +,所以(a -b )2+(b -c )2+(c -a )2≥0, 所以2(a 2+b 2+c 2)≥2(ab +bc +ac ),所以3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac ,所以3(a 2+b 2+c 2)≥(a +b +c )2, 所以a 2+b 2+c 23≥a +b +c3(当且仅当a =b =c 时等号成立).【点拨】分析法与综合法是直接证明常用的两种方法,前者是“执果索因”,后者是“由因导果”.常用分析法探索证明路径,再用综合法进行表述.已知:a >0,b >0,a +b =1. 求证:a +12+b +12≤2.证明:要证a +12+b +12≤2,只需证a +12+b +12+2⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤4, 又a +b =1,故只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12≤1, 只需证⎝⎛⎭⎫a +12⎝⎛⎭⎫b +12=ab +12(a +b )+14≤1,只需证ab ≤14.因为a >0,b >0,1=a +b ≥2ab ,所以ab ≤14,故原不等式成立⎝⎛⎭⎫当且仅当a =b =12时取等号. 类型二 间接证明已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.证法一:假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,因为a ,b ,c ∈(0,1),所以三式同向相乘得(1-a )b (1-b )c (1-c )a >164.又(1-a )a ≤⎝⎛⎭⎫1-a +a 22=14,同理(1-b )b ≤14,(1-c )c ≤14,所以(1-a )a (1-b )b (1-c )c ≤164,这与假设矛盾,故原命题正确.证法二:假设三式同时大于14,因为0<a <1,所以1-a >0, (1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12,三式相加得32>32,这是矛盾的,故假设错误,所以原命题正确.【点拨】一般地,对于结论是“都是”“都不是”“至多”“至少”形式的数学问题,或直接从正面入手难以寻觅解题突破口的问题,宜考虑用反证法,这体现了“正难则反”的思想,用反证法解题时,推导出矛盾是关键一步,途径很多,可以与已知矛盾、与假设矛盾、与已知事实相违背等,但推导出的矛盾必须是明显的.(1)(2016·周口模拟)用反证法证明命题“若a +b +c 为偶数,则自然数a ,b ,c 中恰有1个或3个偶数”时正确反设为( ) A .自然数a ,b ,c 都是奇数 B .自然数a ,b ,c 都是偶数 C .自然数a ,b ,c 中恰有两个偶数D .自然数a ,b ,c 中都是奇数或恰有两个偶数解:由于“自然数a ,b ,c 中恰有1个或3个偶数”的否定是“自然数a ,b ,c 都是奇数或恰有两个偶数”,故选D .(2)已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.解:假设x 0是f (x )的负数根,则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,所以0<ax 0<1⇒0<-x 0-2x 0+1<1,解得12<x 0<2,这与x 0<0矛盾,故方程f (x )=0没有负数根.1.综合法又叫顺推证法或由因导果法,它是从“已知”看“可知”,逐步推向“未知”,其逐步推理是在寻求它的必要条件.综合法的解题步骤用符号表示是:P (已知)⇒Q 1⇒Q 2⇒Q 3⇒…⇒Q n ⇒Q (结论).2.分析法又叫逆推证法或执果索因法,它是从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理的实质是寻求使结论成立的充分条件.分析法的解题步骤用符号表示是:B (结论)⇐B 1⇐B 2⇐…⇐B n ⇐A (已知). 3.分析法与综合法的综合应用分析法和综合法是两种思路相反的推理证明方法,二者各有优缺点.分析法思考起来比较自然,容易找到解题的思路和方法,缺点是思路逆行,叙述较繁,且表述易错;综合法条理清晰,宜于表述,缺点是探路艰难,易生枝节.在证明数学问题的过程中分析法和综合法往往是相互结合的,先用分析法探索证明途径,然后再用综合法表述.4.用反证法证明命题的一般步骤: (1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设;(3)由假设出发,应用正确的推理方法,推出与已知条件,或与假设矛盾,或与定义、公理、定理、事实等矛盾的结果;(4)断定产生矛盾的原因是假设不真,于是原结论成立,从而间接地证明命题为真. 5.可用反证法证明的数学命题类型 (1)结论是否定形式的命题;(2)结论是以至多、至少、唯一等语句给出的命题; (3)结论的反面是较明显或较易证明的命题;(4)用直接法较难证明或需要分成多种情形进行分类讨论的命题. 6.常见的“结论词”与“反设词”原结论词 反设词 原结论词 反设词 至少有一个 没有一个 ∀x 成立 ∃x 0不成立 至多有一个 至少有两个 ∀x 不成立 ∃x 0成立 至少有n 个 至多有n -1个 p 或q p 且 q 至多有n 个至少有n +1个p 且qp 或 q1.用分析法证明:欲使①A >B ,只需②C <D .这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件解:分析法证明的本质是证明使结论成立的充分条件成立,即②⇒①,所以①是②的必要条件.故选B .2.用反证法证明命题:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数时,下列假设中正确的是( ) A .假设a ,b ,c 都是偶数 B .假设a ,b ,c 都不是偶数 C .假设a ,b ,c 中至多有一个偶数 D .假设a ,b ,c 中至多有两个偶数解:“a ,b ,c 中至少有一个是偶数”的否定为“a ,b ,c 都不是偶数”.故选B . 3.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B .b >c >aC .c >a >bD .a >c >b解:因为a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0,所以a >b >c .故选A .4.若a >b >0,且x =a +1b ,y =b +1a,则( )A .x >yB .x <yC .x ≥yD .x ≤y 解:因为a +1b -⎝⎛⎭⎫b +1a =(a -b )⎝⎛⎭⎫1+1ab >0.所以a +1b >b +1a.故选A . 5.已知a >b >0,且ab =1,若0<c <1,p =log c a 2+b 22,q =log c ⎝ ⎛⎭⎪⎫1a +b 2,则p ,q 的大小关系是( ) A .p >q B .p <qC .p =qD .p ≥q解:因为a 2+b 22>ab =1,所以p =log c a 2+b 22<0.又q =log c ⎝ ⎛⎭⎪⎫1a +b 2=log c 1a +b +2ab >log c 14ab =log c 14>0,所以q >p .故选B .6.设[x ]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x ]=-[x ] B .[2x ]=2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ]解:取x =1.6,y =2.7,则[x ]=[1.6]=1,[y ]=[2.7]=2,[2x ]=[3.2]=3,[-x ]=[-1.6]=-2,故A ,B 错误;[x +y ]=[1.6+2.7]=4,故C 错.故选D .7.设a >b >0,x =a a +b b ,y =a b +b a ,则x ,y 的大小关系是________.解:x -y =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b )>0.所以x >y .故填x>y. 8.(2015·河北保定高二期末)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是__________.(填序号)解:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,若a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.故填③.9.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R . (1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b ); (2)判断(1)中命题的逆命题是否成立,并证明你的结论.解:(1)证明:因为a +b ≥0,所以a ≥-b . 因为f (x )在R 上单调递增,所以f (a )≥f (-b ). 同理,a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ). 两式相加即得:f (a )+f (b )≥f (-a )+f (-b ). (2)(1)中命题的逆命题为:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0. 该命题成立,下面用反证法证之. 假设a +b <0,那么: a +b <0⇒a <-b ⇒f (a )<f (-b ), a +b <0⇒b <-a ⇒f (b )<f (-a ), 所以f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故a +b ≥0.逆命题得证.10.已知a ,b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43.证明:因为a 3-b 3=a 2-b 2且a ≠b , 所以a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得 (a +b )2>a +b ,又a +b >0,所以a +b >1.要证a +b <43,即证3(a +b )<4,因为a +b >0,所以只需证明3(a +b )2<4(a +b ), 又a +b =a 2+ab +b 2, 即证3(a +b )2<4(a 2+ab +b 2), 也就是证明(a -b )2>0.因为a ,b 是不等正数,故(a -b )2>0成立.故a +b <43成立.综上,得1<a +b <43.11.已知a >0,b >0,且a +b =1,求证:⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254. 证明:要证⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254, 只需证ab +a 2+b 2+1ab ≥254,只需证4(ab )2+4(a 2+b 2)-25ab +4≥0, 只需证4(ab )2+8ab -25ab +4≥0,只需证4(ab )2-17ab +4≥0, 即证ab ≥4或ab ≤14,只需证ab ≤14,而由1=a +b ≥2ab ,所以ab ≤14显然成立,所以原不等式⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥254成立. 已知α为锐角,且tan α=2-1,函数f (x )=x 2tan2α+x ·sin ⎝⎛⎭⎫2α+π4,数列{a n }的首项a 1=12,a n +1=f (a n ).(1)求函数f (x )的表达式;(2)求证:a n +1>a n ;(3)求证:1<11+a 1+11+a 2+…+11+a n<2(n ≥2,n ∈N *).解:(1)tan2α=2tan α1-tan 2α=2(2-1)1-(2-1)2=1,又因为α为锐角,所以2α=π4,所以sin ⎝⎛⎭⎫2α+π4=1,f (x )=x 2+x .(2)证明:a n +1=a 2n +a n ,因为a 1=12,所以a 2,a 3,…,a n 都大于0, 所以a 2n >0,所以a n +1>a n .(3)证明:1a n +1=1a 2n +a n =1a n (1+a n )=1a n -11+a n ,所以11+a n =1a n -1a n +1,所以11+a 1+11+a 2+…+11+a n =1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=2-1a n +1,因为a 2=⎝⎛⎭⎫122+12=34,a 3=⎝⎛⎭⎫342+34>1,又因为n ≥2,a n +1>a n ,所以n ≥2时,a n +1≥a 3>1,所以1<2-1a n +1<2,所以1<11+a 1+11+a 2+…+11+a n<2.。

高中数学复习:直接证明与间接证明

高中数学复习:直接证明与间接证明

+…+
1 n
n
1
1
=1-
n
1
=
1
n
n
,
1
即 1 + 1 +…+ 1 > n .
S1 S2
Sn n 1
解法二:
1 S1
+
1 S2
+…+
1 Sn
1
=12
+
1 22
+…+
1 n2
>1,
∵1> n ,
n 1

1 S1
+
1 S2
+…+
1 Sn
>
n
n
1
.
考点突破 栏目索引
规律总结 综合法证题的思路
考点突破 栏目索引
考点突破 栏目索引
1-1 在△ABC中,设a,b,c分别是内角A,B,C所对的边,且直线bx+ycos A+
cos B=0与ax+ycos B+cos A=0平行,求证:△ABC是直角三角形.
证明 证法一:由直线平行可知bcos B-acos A=0,
由正弦定理可知sin Bcos B-sin Acos A=0,
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”) (1)综合法是直接证明,分析法是间接证明. ( ✕ ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件. (✕) (3)用反证法证明结论“a>b”时,应假设“a<b”. ( ✕ ) (4)反证法是指将结论和条件同时否定,推出矛盾. ( ✕ )
栏目索引

【高中数学】直接证明与间接证明

【高中数学】直接证明与间接证明
的取值范围为
2.
-3,3
答案:
2
1-1 1-1 1-1 9.已知 x,y,z 是互不相等的正数,且 x+y+z=1,求证: x y z >8.
证明:因为 x,y,z 是互不相等的正数,且 x+y+z=1,
所以1-1=1-x=y+z>2 yz,

x
x xx
1-1=1-y=x+z>2 xz,
所以 2ab+2bc+2ac≤2(a2+b2+c2),
所以 1≤a2+b2+c2+2(a2+b2+c2),
即 a2+b2+c2≥1. 3
2.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 sin Asin B+sin Bsin C+
cos
2B=1.
(1)求证:a,b,c 成等差数列;
____________________. 解析:“x=-1 或 x=1”的否定是“x≠-1 且 x≠1”. 答案:x≠-1 且 x≠1 7.设 a>b>0,m= a- b,n= a-b,则 m,n 的大小关系是________. 解析:(分析法) a- b< a-b⇐ a< b+ a-b⇐a<b+2 b· a-b+a-b⇐2 b· a-b
即 cos(A+C)>0,所以 A+C 是锐角,
从而 B>π,故△ABC 必是钝角三角形. 2
3.分析法又称执果索因法,已知 x>0,用分析法证明 1+x<1+x时,索的因是( ) 2
A.x2>2
B.x2>4
高中数学学科
C.x2>0
D.x2>1
解析:选 C 因为 x>0,
所以要证 1+x<1+x, 2
[课时跟踪检测]

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。

数学证明通常可以分为直接证明和间接证明两种形式。

本文将介绍直接证明和间接证明的含义、特点以及应用。

一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。

直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 列出已知条件和前提条件。

3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。

4. 分析并验证证明过程中的每一步是否严谨、正确。

5. 结束证明,得出所要证明的命题。

直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。

因此,直接证明在数学证明中广泛应用于各个领域。

例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。

定理:若a和b为偶数,则a+b为偶数。

证明:设a=2m,b=2n,其中m和n为整数。

则a+b=2m+2n=2(m+n)。

由于m和n为整数,所以m+n也是整数。

因此,a+b=2(m+n)为偶数。

证毕。

二、间接证明间接证明是一种通过反证法推导出结论的证明方法。

它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。

间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 假设所要证明的命题为假。

3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。

4. 推断出所要证明的命题为真。

5. 结束证明,得出所要证明的命题。

间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。

它常常用于证明一些与质数、无理数、等级等有关的命题。

例如,我们来证明一个著名的数学定理:根号2是一个无理数。

定理:根号2是一个无理数。

证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。

高考数学复习第十三章直接证明与间接证明课件

高考数学复习第十三章直接证明与间接证明课件
k2
则当n=k+1时,ak+1=-
a
k
+
1 2
2
.
1 4
因为函数f(x)=-
x
+1
2
2 在1
4
上 0 ,单12 调递增,0<ak≤
k
1+
2
=1 2
2
<1
4
=k 1,即当nk=k+11时,结论1成立.
( k 2 ) 2 k2 4k 3 (k 1) 2
< ,1所以1 ak+1≤-
高考数学
第十三章 直接证明与间接证明
知识清单
考点一 直接证明与间接证明
1.直接证明 直接证明的两种基本方法是综合法、分析法. (1)综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列 的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系:A ⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理,B为要证 结论),它的常见书面表达是“∵,∴”或“⇒”. (2)分析法是“执果索因”,它是从要证的结论出发,倒着分析,逐渐地靠 近已知. 2.间接证明 (1)反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成
k2 2
由数学归纳法知,当n≥2时,an≤ n
1
.
2
(2)首先证明:当x>0时,均有ln(1+x)> x .
1 x
设g(x)=ln(1+x)- x ,则
1 x
g'(x)= 1 - =1 >0, x
1 x (1 x ) 2 (1 x ) 2
所以g(x)在(0,+∞)上单调递增,因此,当x>0时,g(x)>g(0)=0,即ln(1+x)>

高中培优个性化讲义直接证明与间接证明

高中培优个性化讲义直接证明与间接证明

第十五讲 直接证明与间接证明教学目标:1、了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.2、了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.3、.了解数学归纳法的原理.能用数学归纳法证明一些简单的数学命题.一、知识回顾 课前热身知识点1、直接证明(1)综合法 ①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q (其中P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件.知识点2、间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.知识点3、数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.二、例题辨析 推陈出新例1、 设a 、b 、c >0,证明a 2b +b 2c +c 2a≥a +b +c . [解答] ∵a 、b 、c >0,根据基本不等式,有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c .三式相加:a 2b +b 2c +c 2a +a +b +c ≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c .保持本例条件不变 ,试证明a 3+b 3+c 3≥13(a 2+b 2+c 2)·(a +b +c ). 证明:∵a 、b 、c >0,∴a 2+b 2≥2ab ,∴(a 2+b 2)(a +b )≥2ab (a +b ),∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2,∴a 3+b 3≥a 2b +ab 2.同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2,将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a 2+b 2+c 2)(a +b +c ).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).变式练习1.已知x +y +z =1,求证:x 2+y 2+z 2≥13. 证明:∵x 2+y 2≥2xy ,x 2+z 2≥2xz ,y 2+z 2≥2yz ,∴2x 2+2y 2+2z 2≥2xy +2xz +2yz .∴3x 2+3y 2+3z 2≥x 2+y 2+z 2+2xy +2xz +2yz .∴3(x 2+y 2+z 2)≥(x +y +z )2=1.∴x 2+y 2+z 2≥13.例2、已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. [解答] 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1、x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π).故cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.这由x 1、x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式是显然成立的.因此,12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.变式练习2.已知a >0,求证: a 2+1a 2-2≥a +1a -2. 证明:要证 a 2+1a 2-2≥a +1a-2,只要证 a 2+1a 2+2≥a +1a + 2.∵a >0,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a +22,即a 2+1a 2+4 a 2+1a 2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只要证2 a 2+1a2≥ 2⎝⎛⎭⎫a +1a ,只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.例3、设{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)数列{S n }是等差数列吗?为什么?[解答] (1)证明:若{S n }是等比数列,则S 22=S 1·S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2), ∵a 1≠0,∴(1+q )2=1+q +q 2,解得q =0,这与q ≠0相矛盾,故数列{S n }不是等比数列.(2)当q =1时,{S n }是等差数列.当q ≠1时,{S n }不是等差数列.假设q ≠1时,S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,2a 1(1+q )=a 1+a 1(1+q +q 2).由于a 1≠0,∴2(1+q )=2+q +q 2,即q =q 2,∵q ≠1,∴q =0,这与q ≠0相矛盾.综上可知,当q =1时,{S n }是等差数列;当q ≠1时,{S n }不是等差数列.变式练习3.求证:a ,b ,c 为正实数的充要条件是a +b +c >0,且ab +bc +ca >0和abc >0.证明:必要性(直接证法):∵a ,b ,c 为正实数,∴a +b +c >0,ab +bc +ca >0,abc >0,因此必要性成立. 充分性(反证法):假设a ,b ,c 是不全为正的实数,由于abc >0,则它们只能是两负一正,不妨设a <0,b <0,c >0.又∵ab +bc +ca >0,∴a (b +c )+bc >0,且bc <0, ∴a (b +c )>0.①又a <0,∴b +c <0.而a +b +c >0,∴a +(b +c )>0,∴a >0.这与a <0的假设相矛盾. 故假设不成立,原结论成立,即a ,b ,c 均为正实数.另外证明:如果从①处开始,进行如下推理:a +b +c >0,即a +(b +c )>0.又a <0,∴b +c >0.则a (b +c )<0,与①式矛盾,故假设不成立,原结论成立,即a ,b ,c 均为正实数.三、归纳总结 方法在握归纳1、用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.归纳2、分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.归纳3、反证法的原理是“正难则反”,即如果正面证明有困难时,或者直接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.反证法证题的实质是证明它的逆否命题成立.反证法中常见词语的否定形式 原词否定形式 至多有n 个(即x ≤n ,n ∈N *)至少有n +1个(即x >n ⇔x ≥n +1,n ∈N *) 至少有n 个(即x ≥n ,n ∈N *)至多有n -1个(即x <n ⇔x ≤n -1,n ∈N *) n 个都是n 个不都是(即至少有1个不是) 特例至多有1个 至少有2个 至少有1个 至多有0个,即一个也没有四、拓展延伸 能力升华例1、已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系;(2)猜想f (n )与g (n )的大小关系,并给出证明.[解答] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k2. 那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-⎣⎡⎦⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0,所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都 有f (n )≤g (n )成立.变式练习3.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式;(2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2.解:(1)由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1).(2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k 时不等式成立,即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2.根据①和②,对于所有n ≥1,都有a n ≥n +2.归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.五、课后作业 巩固提高1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A a +b 2≥ab ≥2ab a +b,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b . 2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若“a +b =1”,则4ab =4a (1-a )=-4⎝⎛⎭⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件.3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4),只要证a 2+7a <a 2+7a +12,只要证0<12,∵0<12成立,∴P <Q 成立.4.在应用数学归纳法证明凸n 边形的对角线为n (n -3)2条时,第一步检验n 等于( ) A .1 B .2 C .3 D .0解析:选C ∵n ≥3,∴第一步应检验n =3.5.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ) A .k 2+1 B .(k +1)2C.(k +1)4+(k +1)22 D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 解析:选D ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2,∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.6.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0;②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立,其中正确判断的个数为( )A .0B .1C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.7.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎨⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2. 故x 2,b 2,y 2成等差数列. 8.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12 B .-32 C.12 D.32解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a +1)≤0,解得-12≤a ≤32, 故a 的最大值为32. 9.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________. 答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12” 10.(2013·株洲模拟)已知a ,b ,μ∈(0,+∞)且1a +9b=1,则使得a +b ≥μ恒成立的μ的取值范围是________. 解析:∵a ,b ∈(0,+∞)且1a +9b=1,∴a +b =(a +b )⎝⎛⎭⎫1a +9b =10+⎝⎛⎭⎫9a b +b a ≥10+29=16, ∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16.答案:(0,16]11.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0,得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 12.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明:要证lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ), 只需证a +b 2·b +c 2·c +a 2>abc .(中间结果)∵a ,b ,c 是不全相等的正数,∴由基本不等式得: a +b 2≥ab >0,b +c 2≥bc >0,c +a 2≥ac >0, 且上三式中由于a ,b ,c 不全相等,故等号不同时成立.∴a +b 2·b +c 2·c +a 2>a ·b ·c .(中间结果)∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 13.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0. ∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r . 与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成等比数列.14.用数学归纳法证明11×3+13×5+…+1(2n -1)(2n +1)=n 2n +1(n ∈N *). 证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以n =1时等式成立. (2)假设n =k 时等式成立,即有11×3+13×5+…+1(2k -1)(2k +1)=k 2k +1. 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3)=k 2k +1+1(2k +1)(2k +3)=2k2+3k+1(2k+1)(2k+3)=(k+1)(2k+1)(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1.这就是说,n=k+1时等式也成立.由(1)(2)可知,等式对一切n∈N*都成立.。

高三数学复习课件【直接证明与间接证明】

高三数学复习课件【直接证明与间接证明】

[冲关演练]
设{an}是公比为 q 的等比数列. (1)推导{an}的前 n 项和公式; (2)设 q≠1,证明数列{an+1}不是等比数列. 解:(1)设{an}的前 n 项和为 Sn. 则 Sn=a1+a1q+a1q2+…+a1qn-1, qSn=a1q+a1q2+…+a1qn-1+a1qn, 两式相减得(1-q)Sn=a1-a1qn=a1(1-qn), 当 q≠1 时,Sn=a111--qqn,


(2)设
2n
a1=d,Tn=
k=1
n
(-1)kb2k,n∈N*,求证:
k=1
T1k<21d2.


返回
[学审题] ①想到 an>0,且 an+1-an=d; ②想到 bn2=an·an+1; ③由 cn=b2n+1-bn2,结合 bn 与 an 的关系可得 cn 的关系式; ④若想证{cn}是等差数列,想到只需让 cn+1-cn 是个常数; ⑤Tn 表示{bn}的偶数项与奇数项平方差的和,结合③可得;
文字 语言
因为……,所 以……,或由…… 得……,或“⇒”
要证(欲证)……,只需 证……,即证……
返回
2.间接证明——反证法 要证明某一结论 Q 是正确的,但不直接证明,而是先去 _假__设__Q__不__成__立 ___(即 Q 的反面非 Q 是正确的),经过正确的 推理,最后得出矛盾 ,因此说明非 Q 是 错误 的,从而断 定结论 Q 是 正确 的,这种证明方法叫做反证法.
n
所以
k=1
T1k=21d2k=n 1
kk1+1=21d2k=n 1
1k-k+1 1
=21d2·1-n+1 1<21d2.
返回

最新高三数学专题复习资料直接证明与间接证明

最新高三数学专题复习资料直接证明与间接证明

第五节直接证明与间接证明1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解反证法的思考过程和特点.1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.1.分析法是从要证明的结论出发,逐步寻找使结论成立的什么条件?(充分条件、必要条件、充要条件)提示:充分条件.2.用反证法证明结论“a>b”时,应假设的内容是什么?提示:应假设a≤b.3.证明不等式2+7<3+6最适合的方法是什么?提示:分析法.1.若a<b<0,则下列不等式中成立的是( )A.1a<1bB.a+1b>b+1aC.b+1a>a+1bD.ba<b+1a+1解析:选C ∵a<b<0,∴1a>1 b.由不等式的同向可加性知b+1a>a+1b.2.用分析法证明:欲使①A>B,只需②C<D,这里①是②的( )A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件解析:选B 由题意可知,应有②⇒①,故①是②的必要条件.3.(A.山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.4.下列条件:①ab>0;②ab<0;③a>0;b>0;④a<0,b<0,其中能使ba+ab≥2成立的条件的个数是________.解析:要使ba+ab≥2,只要ba>0且ab>0,即a,b不为0且同号即可,故有3个.答案:35.已知点A n(n,a n)为函数y=x2+1图象上的点,B n(n,b n)为函数y=x 图象上的点,其中n∈N*,设c n=a n-b n,则c n与c n+1的大小关系为________.解析:由题意知,a n=n2+1,b n=n,∴c n=n2+1-n=1n2+1+n.显然,cn随着n的增大而减小,∴c n>c n+1.答案:c n>c n+1[例1] 已知函数f(x)=3x-2x,求证:对于任意的x1,x2∈R,均有f x1f x22≥f⎝⎛⎭⎪⎫x1+x22.[自主解答] 要证明f x1f x22≥f⎝⎛⎭⎪⎫x1+x22,即证明3x1-2x13x2-2x22≥3x1+x22-2·x1+x22,因此只要证明3x1+3x22-(x1+x2)≥3x1+x22-(x1+x2),即证明3x1+3x22≥3x1+x22,因此只要证明3x1+3x22≥3x1·3x2,由于x1,x2∈R,所以3x1>0,3x2>0,由基本不等式知3x1+3x22≥3x1·3x2显然成立,故原结论成立.方法规律利用分析法证明问题的思路及注意事项(1)分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.(2)用分析法证明数学问题时,要注意书写格式的规范性(常常用“要证(欲证)…”“即要证…”“就要证…”),当分析到一个明显成立的结论时,再说明所要证明的数学问题成立.已知非零向量a 、b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2.证明:a ⊥b ⇔a ·b =0, 要证|a |+|b ||a +b |≤ 2.只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2, 只需证|a |2+|b |2-2|a ||b |≥0, 即(|a |-|b |)2≥0,上式显然成立, 故原不等式得证.[例2] (A.丽水模拟)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A 1A 2=d 1.同样可得在B ,C 处正下方的矿层厚度分别为B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3.过AB ,AC 的中点M ,N 且与直线AA 2平行的平面截多面体A 1B 1C 1­A 2B 2C 2所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC 区域内正下方的矿藏储量(即多面体A1B1C1­A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=13(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.[自主解答] (1)证明:依题意A1A2⊥平面ABC,B1B2⊥平面ABC,C1C2⊥平面ABC,所以A1A2∥B1B2∥C1C2.又A1A2=d1,B1B2=d2,C1C2=d3,且d1<d2<d3.所以四边形A1A2B2B1,A1A2C2C1均是梯形.由AA2∥平面MEFN,AA2⊂平面AA2B2B,且平面AA2B2B∩平面MEFN=ME,可得AA2∥ME,即A1A2∥DE.同理可证A1A2∥FG,所以DE∥FG.又点M,N分别为AB,AC的中点,则点D,E,F,G分别为A1B1,A2B2,A2C2,A1C1的中点,即DE、FG分别为梯形A1A2B2B1、A1A2C2C1的中位线.因此DE=12(A1A2+B1B2)=12(d1+d2),FG=12(A1A2+C1C2)=12(d1+d3),而d1<d2<d3,故DE<FG,所以中截面DEFG是梯形.(2)V估<V.证明如下:由A1A2⊥平面ABC,MN⊂平面ABC,可得A1A2⊥MN. 而EM∥A1A2,所以EM⊥MN,同理可得FN⊥MN.由MN是△ABC的中位线,可得MN=12BC=12a,即为梯形DEFG的高,因此S中=S梯形DEFG=12⎝⎛⎭⎪⎫d1+d22+d1+d32·a2=a8(2d1+d2+d3),即V估=S中·h=ah8(2d1+d2+d3).又S=12 ah,所以V=13(d1+d2+d3)S=ah6(d1+d2+d3).于是V-V估=ah6(d1+d2+d3)-ah8(2d1+d2+d3)=ah24[(d2-d1)+(d3-d1)].由d1<d2<d3,得d2-d1>0,d3-d1>0,故V估<V.方法规律综合法与分析法联袂应用的技巧综合法与分析法各有特点,在解决实际问题时,常把分析法与综合法综合起来运用,通常用分析法分析,综合法书写.这一点在立体几何中应用最为明显,同时,在数列、三角、解析几何中也大多是利用分析法分析,用综合法证明的办法来证明相关问题.对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.试判断g(x)=2x-1(x∈[0,1])是否为理想函数,如果是,请予证明;如果不是,请说明理由.解:g(x)=2x-1(x∈[0,1])是理想函数,证明如下:因为x∈[0,1],所以2x≥1,2x-1≥0,即对任意x∈[0,1],总有g(x)≥0,满足条件①.g(1)=21-1=2-1=1,满足条件②.当x1≥0,x2≥0,x1+x2≤1时,g(x+x2)=2x1+x2-1,1g(x)+g(x2)=2x1-1+2x2-1,1于是g(x1+x2)-[g(x1)+g(x2)]=(2x1+x2-1)-(2x1-1+2x2-1)=2x1·2x2-2x1-2x2+1=(2x1-1)(2x2-1).由于x1≥0,x2≥0,所以2x1-1≥0,2x2-1≥0,于是g(x1+x2)-[g(x1)+g(x2)]≥0,因此g(x1+x2)≥g(x1)+g(x2),满足条件③,故函数g(x)=2x-1(x∈[0,1])是理想函数.1.反证法的应用是高考的常考内容,题型为解答题,难度适中,为中高档题.2.高考对反证法的考查常有以下两个命题角度:(1)证明否定性命题.(2)证明存在性问题.[例3] (A.台州模拟)已知{a n}是由非负整数组成的无穷数列.该数列前n 项的最大值记为A n,第n项之后各项a n+1,a n+2,…的最小值记为B n,d n=A n-B n.(1)若{a n}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数.证明:d n=-d(n=1,2,3,…)的充分必要条件为{a n}是公差为d的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.[自主解答] (1)d1=d2=1,d3=d4=3.(2)证明:(充分性)因为{a n}是公差为d的等差数列,且d≥0,所以a1≤a2≤…≤a n≤…,因此A n=a n,B n=a n+1,d n=a n-a n+1=-d(n=1,2,3,…).(必要性)因为d n=-d≤0(n=1,2,3,…),所以A n=B n+d n≤B n,又a n≤A n,a n+1≥B n,所以a n≤a n+1,于是,A n=a n,B n=a n+1.因此a n+1-a n=B n-A n=-d n=d,即{a n}是公差为d的等差数列.(3)证明:因为a1=2,d1=1,所以A1=a1=2,B1=A1-d1=1.故对任意n≥1,a n≥B1=1.假设{a n}(n≥2)中存在大于2的项.设m为满足a m>2的最小正整数,则m≥2,并且对任意1≤k<m,a k≤2.又a1=2,所以A m-1=2,且A m=a m>2.于是,B m=A m-d m>2-1=1,B m-1=min{a m,B m}≥2.故d m-1=A m-1-B m-1≤2-2=0,与d m-1=1矛盾.所以对于任意n≥1,有a n≤2,即非负整数列{a n}的各项只能为1或2.因为对任意n≥1,a n≤2=a1,所以A n=2.故B n=A n-d n=2-1=1.因此对于任意正整数n,存在m满足m>n,且a m=1,即数列{a n}有无穷多项为1.反证法应用问题的常见类型及解题策略(1)证明否定性命题.解决此类问题分三步:①假设命题的结论不成立,即假设结论的反面成立;②由假设出发进行正确的推理,直到推出矛盾为止;③由矛盾断言假设不成立,从而肯定原命题的结论正确.(2)证明存在性问题.证明此类问题的方法类同问题(1).1.设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解:(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n1-q,∴S n=⎩⎨⎧na 1,q =1,a 11-qn1-q ,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k+2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 2.已知f (x )=x 2+px +q . 求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|、|f (2)|、|f (3)|中至少有一个不小于12.证明:(1)因为f (x )=x 2+px +q ,所以f (1)=1+p +q ,f (2)=4+2p +q ,f (3)=9+3p +q ,则f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2.(2)假设|f(1)|、|f(2)|、|f(3)|都小于1 2,即|f(1)|<12,|f(2)|<12,|f(3)|<12,则-12<f(1)<12,-12<f(2)<12,-12<f(3)<12.由同向不等式性质,得-2<f(1)+f(3)-2f(2)<2.这与f(1)+f(3)-2f(2)=2矛盾.故原命题结论成立,即|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1 2 .—————————————[课堂归纳——通法领悟]——————————————1种关系——综合法与分析法的关系综合法与分析法的关系:分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用.2个注意点——利用分析法和反证法应注意的问题(1)用分析法证明数学问题时,要注意书写格式的规范性,常常用(“要证(欲证)…”“即要证…”“就要证…”),等分析到一个明显成立的结论.(2)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3个关键点——反证法证明的关键点(1)准确反设;(2)从否定的结论正确推理;(3)得出矛盾.数学思想(十一)转化与化归思想在解题中的应用高考对直接证明与间接证明的考查多在知识的交汇处命题,如数列、立体几何、不等式、函数、解析几何等都可能考查,在具体求解时,应注意运用转化与化归思想寻求解题思路.[典例] (B.山东高考)定义“正对数”:ln +x =⎩⎨⎧0,0<x <1,ln x ,x ≥1.现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ; ②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln +⎝ ⎛⎭⎪⎫a b ≥ln +a -ln +b ;④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有________(写出所有真命题的序号).[解题指导] 本题是新定义问题,解题时要严格按照所给定义,对每一个选项逐一论证或排除.[解析] 对于命题①,若0<a <1,由指数函数y =a x 可知,当x >0时,0<y <1,即对任意b >0,0<a b <1,于是ln +(a b )=0,且b ln +a =b ×0=0,此时ln +(a b )=b ln+a =0,此时命题成立;当a =1时,ab =1对任意b >0成立,此时ln +(a b )=b ln +a =0,此时命题成立;当a >1时,根据指数函数性质可得对任意b >0,a b >1,此时ln +(a b )=ln a b =b ln a ,且b ln +a =b ln a ,此时命题成立,故命题①为真命题;对于命题②,取a =13,b =3时,ln +(ab )=0,ln +a +ln +b =ln 3>0,二者不相等,故命题②不是真命题;对于命题③,若a b ≥1,a ≥1,b ≥1,此时ln +⎝ ⎛⎭⎪⎫a b =ln a b =ln a -ln b ,ln +a-ln +b =ln a -ln b ,不等式成立;若a b ≥1,0<a <1,0<b <1,此时ln +⎝ ⎛⎭⎪⎫a b =ln a b ≥0,ln +a -ln +b =0,不等式也成立;若a b ≥1,a ≥1,0<b <1,此时ln +⎝ ⎛⎭⎪⎫a b =ln a b >ln a ,ln +a -ln +b =ln a ,此时不等式也成立.根据对称性,当ab<1时的各种情况就相当于交换了上述a ,b 的位置,故不等式成立.综上,命题③为真命题;对于命题④,若0<a <1,0<b <1,无论a +b 取值如何均有ln +(a +b )≤ln 2,不等式成立;若0<a <1,b ≥1,则ln +(a +b )=ln(a +b )<ln 2b =ln b +ln 2=ln +a +ln +b +ln 2,不等式成立,同理a ≥1,0<b <1时不等式也成立;当a ≥1,b ≥1时,ln +(a +b )=ln(a +b ),ln +a +ln +b +ln 2=ln a +ln b +ln 2,故④中不等式可化为a +b ≤2ab ,构造函数g (a )=a +b -2ab ,根据定义可知函数g (a )在[1,+∞)上单调递减,所以g (a )≤g (1)=1+b -2b =1-b ≤0,所以a +b ≤2ab ,所以④中的不等式成立,即命题④为真命题.[答案] ①③④[题后悟道] 1.注意这类判断命题真假的题目,其解法上既要规范,又要灵活.当判断为真时,需严格地推理证明;而判断为假时,只需举一反例即可.2.注意培养观察能力,即观察条件、结论,且能从数学的角度揭示其差异,如“高次↔低次”“分式(根式)↔整式”“多元↔一元”等,从而为我们的化归转化指明方向,奠定基础.设a ,b 为正实数.现有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1;③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中的真命题有________(写出所有真命题的序号).解析:①中,a 2-b 2=(a +b )(a -b )=1,a ,b 为正实数,若a -b ≥1,则必有a +b >1,不合题意,故①正确;②中,1b -1a =a -bab=1,只需a -b =ab 即可.如果a =2,b =23满足上式,但a -b =43>1,故②错;③中,a ,b 为正实数,所以a+b >|a -b |=1,且|a -b |=|(a +b )(a -b )|=|a +b |>1,故③错;④中,|a 3-b 3|=|(a -b )(a 2+ab +b 2)|=|a -b |(a 2+ab +b 2)=1.若|a -b |≥1,不妨取a >b >1,则必有a 2+ab +b 2>1,不合题意,故④正确.答案:①④1.用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数解析:选B “至少有一个”的否定为“都不是”.2.(A.北京高考)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人解析:选B 学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.3.(A.嘉兴模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤A D .C ≤B ≤A 解析:选Aa +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x在R 上是单调减函数,故f ⎝⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C 假设P <Q ,要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证a 2+7a <a 2+7a +12,只要证0<12,∵0<12成立,∴P <Q 成立.5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B由已知条件,可得⎩⎨⎧ a +c =2b ,x 2=ab ,y 2=bc .①②③由②③,得⎩⎪⎨⎪⎧a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b=2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.6.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1.B 2=π2-B 1.C 2=π2-C 1.那么A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾. 所以假设不成立,又由已知可得△A 2B 2C 2不是直角三角形,所以△A 2B 2C 2是钝角三角形.7.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________________.解析:“至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.答案:a ,b 中没有一个能被5整除8.(A.福建高考)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系: ①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.解析:因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上,符合条件的有序数组的个数是6.答案:69.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法) 令⎩⎨⎧f12p 2+p +1≤0,f12p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝ ⎛⎭⎪⎫-3,32.法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎪⎫-3,32. 答案:⎝⎛⎭⎪⎫-3,3210.已知a >0,1b -1a>1.求证:1+a >11-b. 证明:∵1b -1a>1,a >0,∴0<b <1,要证1+a >11-b, 只需证1+a ·1-b >1, 只需证1+a -b -ab >1, 只需证a -b -ab >0, 即a -bab>1, 即1b -1a>1.这是已知条件,所以原不等式成立. 11.设S n 表示数列{a n }的前n 项和. (1)若{a n }为等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q.判断{a n }是否为等比数列,并证明你的结论.解:(1)法一:设{a n}的公差为d,则Sn=a1+a2+…+a n=a1+(a1+d)+…+[a1+(n-1)d],又S n=a n+(a n-d)+…+[a n-(n-1)d],∴2S n=n(a1+a n),∴S n=n a1+a n2.法二:设{a n}的公差为d,则Sn=a1+a2+…+a n=a1+(a1+d)+…+[a1+(n-1)d],又S n=a n+a n-1+…+a1=[a1+(n-1)d]+[a1+(n-2)d]+…+a1,∴2S n=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]=2na1+n(n-1)d,∴S n=na1+n n-12d.(2){a n}是等比数列.证明如下:∵S n=1-q n1-q,∴a n+1=S n+1-S n=1-q n+11-q-1-q n1-q=q n1-q1-q=q n.∵a1=1,q≠0,∴当n≥1时,有an+1an=q nq n-1=q,因此,{a n}是首项为1且公比为q的等比数列.12.(A.丽水模拟)给定数列a1,a2,…,a n,对i=1,2,3,…,n-1,该数列前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i =A i-B i.(1)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(2)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0,证明:d1,d2,…,d n-1是等比数列;(3)设d1,d2,…,d n-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,an-1是等差数列.解:(1)d1=2,d2=3,d3=6.(2)证明:因为a1>0,公比q>1,所以a1,a2,…,a n是递增数列.因此,对i=1,2,…,n-1,A i=a i,B i=a i+1. 于是对i=1,2,…,n-1,di=A i-B i=a i-a i+1=a1(1-q)q i-1.因此d i≠0且di+1di=q(i=1,2,…,n-2),即d1,d2,…,d n-1是等比数列.(3)证明:设d为d1,d2,…,d n-1的公差.对1≤i≤n-2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i.又因为A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n-1是递增数列.因此A i=a i(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<a n-1.因此a n=B1.所以B1=B2=…=B n-1=a n.所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.[冲击名校]设集合W是满足下列两个条件的无穷数列{a n}的集合:①an+a n+22≤a n+1;②an≤M,其中n∈N*,M是与n无关的常数.(1)若{a n}是等差数列,S n是其前n项的和,a3=4,S3=18,试探究{S n}与集合W之间的关系;(2)设数列{b n}的通项为b n=5n-2n,且{b n}∈W,M的最小值为m,求m的值;(3)在(2)的条件下,设C n=15[b n+(m-5)n]+2,求证:数列{C n}中任意不同的三项都不能成为等比数列.解:(1)∵a 3=4,S 3=18,∴a 1=8,d =-2. ∴S n =-n 2+9n .S n +S n +22<S n +1满足条件①, S n =-⎝⎛⎭⎪⎫n -922+814,当n =4或5时,S n 取最大值20. ∴S n ≤20满足条件②,∴{S n }∈W . (2)b n =5n -2n 可知{b n }中最大项是b 3=7, ∴M ≥7,M 的最小值为7.(3)由(2)知C n =n +2,假设{C n }中存在三项c p ,c q ,c r (p ,q ,r 互不相等)成等比数列,则c 2q =c p ·c r ,∴(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎨⎧q 2=pr ,2q -p -r =0.消去q 得(p -r )2=0, ∴p =r ,与p ≠r 矛盾.∴{C n }中任意不同的三项都不能成为等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一:综合法【例1】若110a b<<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b aa b+> D.a b a b -=-【例2】如果数列{}n a 是等差数列,则( )。

(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =【例3】在△ABC 中若2sin b a B =,则A 等于( )(A)003060或 (B)004560或 (C)0060120或 (D)0030150或【例4】下列四个命题:①若102a <<,则()()cos 1cos 1a a +<-;②若01a <<,则11a-1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。

其中正确的是( )。

(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+ab b a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个【例6】已知,a b R ∈且,0a b ≠,则在①ab b a ≥+222;②2≥+baa b ; 典例分析板块二.直接证明与间接证明③2)2(b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( )A 1个B 2个C 3个D 4个【例7】已知c b a ,,均大于1,且4log log =⋅cb ca ,则下列各式中,一定正确的是 ( )A b ac ≥B c ab ≥C a bc ≥D c ab ≤【例8】已知不等式1()()9,a x y xy++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是( ) A .2B .4C .6D .8【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( )A .a b >B .b a >C .a b =D .不确定【例10】设M 是ABC ∆内一点,且AB AC ⋅=u u u r u u u r30BAC ∠=︒,定义()(,,)f M m n p =,其中m 、n 、p 分别是MBC ∆,MCA ∆,MAB ∆的面积,若1()(,,)2f P x y =,则14x y +的最小值是 ( ) A .8 B .9 C .16 D .18【例11】若函数32)1(2++-=mx x m y 是偶函数,则)43(-f ,)1(2+-a a f (a ∈R )的大小关系是)43(-f )1(2+-a a f .【例12】设≥++=++>>>cbac b a c b a 111,1,0,0,0则若【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则()1f ,()2.5f ,()3.5f 的大小关系是 .【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0120,则a b a ρρρ.)2(-=【例15】定义运算()()a a ba bb a b≤⎧*=⎨>⎩,例如,121*=,则函数2()(1)f x x x=*-的最大值为_________________.【例16】若cba>>,*Nn∈,且cancbba-≥-+-11恒成立,则n的最大值是。

【例17】已知集合M是满足下列条件的函数f(x)的全体:①当),0[+∞∈x时,函数值为非负实数;②对于任意的,[0,)s t∈+∞,都有()()()f s f t f s t+≤+在三个函数)1ln()(,12)(,)(321+=-==xxfxfxxf x中,属于集合M的是。

【例18】给出下列四个命题:①若0a b>>,则11a b>;②若0a b>>,则11a ba b->-;③若0a b>>,则22a b aa b b+>+;④若0a>,0b>,且21a b+=,则21a b+的最小值为9.其中正确命题的序号是.(把你认为正确命题的序号都填上)【例19】如图,在直四棱柱A1B1C1D1—ABCD中,当底面四边形ABCD满足条件(或任何能推导出这个条件的其他条件,例如ABCD是正方形、菱形等)时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)图【例20】用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应为 .【例21】若0a b c >,,,求证:()()()abc a b c b c a a c b +-+-+-≥.【例22】若a b c +∈R ,,,求证:3()a b ca b ba b c abc ++≥【例23】已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b【例24】证明:已知:0,0>>b a ,求证:b a ab b a +≥+【例25】已知(0,),2πθ∈求2sin cos y θθ=的最大值。

【例26】设0,102=+<<y x a ,求证:81log log 2)(+≤+a a a a y x .【例27】某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.【例28】在锐角三角形ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++题型二:分析法【例29】设m n ≠,43x m m n =-,34y n m n =-,则x 与y 的大小关系为( )。

(A )x y >;(B )x y =; (C )x y <; (D )x y ≠【例30】已知1,c a b >== )。

(A) a b > (B)a b < (C)a b = (D)a 、b 大小不定【例31】设a 、b 、m 都是正整数,且a <b ,则下列不等式中恒不成立的是( )。

(A)1a a m b b m +<<+ (B) a a mb b m +≥+ (D) 1a a m b b m +≤≤+ (D) 1b m b a m a+<<+【例32】已知()()()f x y f x f y +=+,且()12f =,则()()()12f f f n ++⋅⋅⋅+不能等于( )。

(A)f (1)+2f (1)+…+nf (1) (B)(1)2n n f +⎡⎤⎢⎥⎣⎦(C)n (n +1) (D)n (n +1)f (1)【例33】75226--与的大小关系是__________.【例34】在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 。

【例35】设26,37,2-=-==R Q P ,那么P, Q, R 的大小顺序是 。

【例36】有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖。

”乙说:“甲、丙都未获奖。

”丙说:“我获奖了。

”丁说:“是乙获奖。

”四位歌手的话只有两句是对的,则获奖的歌手是【例37】若a b c ,,是△ABC 的三边长,求证:4442222222()a b c a b b c c a ++<++【例38】△ABC 的三个内角A 、B 、C 成等差数列,求证:cb ac b b a ++=+++311。

【例39】用分析法证明:若a>0,则212122-+≥-+aa aa 。

【例40】设 a c bx ax x f )0()(2≠++=若函数)1(+x f 与)(x f 的图象关于轴对称,求证)21(+x f 为偶函数。

【例41】自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用n x 表示某鱼群在第n 年年初的总量,+∈N n ,且1x >0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与n x 成正比,死亡量与2n x 成正比,这些比例系数依次为正常数c b a ,,. (Ⅰ)求1+n x 与n x 的关系式;(Ⅱ)猜测:当且仅当1x ,c b a ,,满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)【例42】设函数)(sin )(R x x x x f ∈=.(1)证明:Z k x k x f k x f ∈=-+,sin 2)()2(ππ;(2)设0x 为)(x f 的一个极值点,证明240201)]([x x x f +=.【例43】已知二次函数()c bx ax x f ++=2,(1)若c b a >>且()01=f ,证明:()x f 的图像与x 轴有两个相异交点; (2)证明: 若对1x ,2x , 且12x x <,()()21x f x f ≠,则方程()()()221x f x f x f +=必有一实根在区间 (1x ,2x ) 内;(3)在(1)的条件下,是否存在R m ∈,使()a m f -=成立时,()3+m f 为正数.题型三:反证法【例44】下列表中的对数值有且仅有一个是错误的:请将错误的一个改正为lg =【例45】用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )( A ) 假设三内角都不大于60°; (B) 假设三内角都大于60°;(C) 假设三内角至多有一个大于60°; (D) 假设三内角至多有两个大于60°。

【例46】已知33q p +=2,关于p +q 的取值范围的说法正确的是( )(A )一定不大于2 (B )一定不大于22 (C )一定不小于22 (D )一定不小于2【例47】否定结论“至多有两个解”的说法中,正确的是 ( )(A )有一个解 (B )有两个解 (C )至少有三个解 (D )至少有两个解【例48】设,,a b c 大于0,则3个数:1a b +,1b c +,1c a+的值 ( ) (A )都大于2 (B )至少有一个不大于2 (C )都小于2 (D )至少有一个不小于2【例49】已知α∩β=l ,a ⊂α、b ⊂β,若a 、b 为异面直线,则 ( )(A ) a 、b 都与l 相交 (B ) a 、b 中至少一条与l 相交 (C ) a 、b 中至多有一条与l 相交 (D ) a 、b 都与l 相交【例50】用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A 、假设三内角都不大于60度;B 、 假设三内角都大于60度;C 、假设三内角至多有一个大于60度;D 、 假设三内角至多有两个大于60度。

相关文档
最新文档