高中数学选修2-2推理与证明教案及章节测试
选修2-2《推理与证明》全章教案
{}数列的通项公式。
试归纳出这个且的第一项:已知数列例,......),2,1(1,1411=+==+n a a a a a nnn n①探索:先让学生独立进行思考。
②活动:“千里走单骑” — 鼓励学生说出自己的解题思路。
③活动:“圆桌会议” — 鼓励其他同学给予评价,对在哪里?错在哪里?还有没有更好的方法? 【设计意图】:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。
【一点心得】:在“千里走单骑”和“圆桌会议”的探究活动中,教师一定要以“鼓励和表扬”为主,面带微笑,消除学生的恐惧感,提高学生的自信心.⑵能力培养(例2拓展)?,21,32,1,2:44321=====n a a a a a 求拓展例 ①思考:怎么求n a ?组织学生进行探究,寻找规律。
②归纳:由学生讨论,归纳技巧,得到技巧②和③。
技巧②:有整数和分数时,往往将整数化为分数.技巧③:当分子分母都在变化时,往往统一分子 (或分母),再寻找另一部分的变化规律.6.课堂小结(1)归纳推理是由部分到整体,从特殊到一般的推理。
通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
(2)归纳推理的一般步骤:通过观察个别情况发现某些相同的性质 从已知的相同性质中推出一个明确表述的一般命题(猜想) 证明课题:类比推理●教学目标:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
高中数学选修2-2精品课件2:推理与证明章末复习与测试
一个数若满足三角形数,其必能分解成两个相邻自然数乘 积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×250,∴选 C.
规律方法
三段论的推理依据:三段论推理的依据用集合论的观点 来讲就是:若集合M的所有元素都具有性质P,S是M的 子集,那么S的所有元素都具有性质P.三段论推理中包含 三个判断:第一个判断叫大前提,第二个判断叫小前提, 它指出了一个特殊情况,这两个判断联合起来,揭示了 一般原理和特殊情况的内在联系,从而产生了第三个判 断:结论.
他们研究过图 1 中的 1,3,6,10,…,由于这些数能够表
示成三角形,将其称为三角形数;类似的,称图 2 中的
1,4,9,16,…,这样的数为正方形数.下列数中既是三角
形数又是正方形数的是 ( C )
A.289
B.1024
Hale Waihona Puke C.1225D.1378
【解析】 图 1 中满足 a2-a1=2,a3-a2=3,…, an-an-1=n, 以上累加得 an-a1=2+3+…+n,an=1+2+3+…+n =n·(n2+1), 图 2 中满足 bn=n2,
规律方法 用反证法证明问题时要注意以下三点 (1)必须否定结论,即肯定结论的反面,当结论的反面呈 现多样性时,必须罗列出各种可能结论,缺少任何一种 可能,都不是反证法. (2)反证法必须从否定结论进行推证,即应把结论的反面 作为条件,
且必须根据这一条件进行推证,否则,仅否定结论,不 从结论的反面出发进行推理,就不是反证法. (3)推导出的矛盾可能多种多样,有的与已知矛盾,有的 与假设矛盾,有的与事实矛盾等,但是推导出的矛盾必 须是明显的.
专题四 ⇨用数学归纳法解题
数学归纳法是一种证明方法,可以证明与正整数有关 的命题,如恒等式、不等式、几何问题以及整除问题 等.高考数学归纳法的考查,一般以数列为背景,涉 及等式、不等式等问题,归纳—猜想—证明是解决此 问题的通法.
高二数学选修2-2第二章 推理与证明
§2.1.1 合情推理学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.学习过程一、课前准备(预习教材P 70~ P77,找出疑惑之处) 在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨; (2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是 的思维过程.二、新课导学探究任务一:考察下列示例中的推理问题:因为三角形的内角和是180(32)︒⨯-,四边形的内角和是180(42)︒⨯-,五边形的内角和是180(52)︒⨯-……所以n 边形的内角和是新知1:从以上事例可一发现: 叫做合情推理。
归纳推理和类比推理是数学中常用的合情推理。
探究任务二:问题1:在学习等差数列时,我们是怎么样推导首项为1a ,公差为d 的等差数列{a n }的通项公式的?新知 2 归纳推理就是根据一些事物的 ,推出该类事物的 的推理归纳是 的过程 例子:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7, 16=13+3, 18=11+7, 20=13+7, ……,50=13+37, ……, 100=3+97,猜想: .归纳推理的一般步骤1 。
2 。
※ 典型例题例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n 项和S n 的归纳过程。
例2设2()41,f n n n n N +=++∈计算(1),(2),(3,)...(10)f f f f 的值,同时作出归纳推理,并用n=40验证猜想是否正确。
练1. 观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?三、总结提升※ 学习小结 1.归纳推理的定义. 2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质; ②从已知的相同性质中推出一个明确表述的一般性命题(猜想). ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是( ). A.归纳推理是由一般到一般的一种推理过程 B.归纳推理是一种由特殊到一般的推理过程 C.归纳推理得出的结论具有或然性,不一定正确 D.归纳推理具有由具体到抽象的认识功能2. 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ).A.4()22x f x =+B.2()1f x x =+C.1()1f x x =+D.2()21f x x =+3.111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________.4 已知1+2=3,1+2+3=6,1+2+3+4=10,……1+2+3+……+n=(1)2n n +,观察下列立方和: 13,13+23,13+23+33,13+23+33+43,…… 试归纳出上述求和的一般公式。
高中数学 选修2-2:第2章 推理与证明 章末综合测评 含答案
章末综合测评(二)推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是() A.归纳推理B.类比推理C.演绎推理D.非以上答案【解析】根据演绎推理的定义知,推理过程是演绎推理,故选C.【答案】 C3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( )A .完全正确B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k . 【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】 根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2,故选B.7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123 D.199【解析】利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a>b>c,且a+b+c =0,求证:b2-ac<3a”最终的索因应是() 【导学号:05410056】A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】因为a>b>c,且a+b+c=0,所以3c<a+b+c<3a,即a>0,c<0.要证明b2-ac<3a,只需证明b2-ac<3a2,只需证明(-a-c)2-ac<3a2,只需证明2a2-ac-c2>0,只需证明2a+c>0(a>0,c<0,则a-c>0),只需证明a +c+(-b-c)>0,即证明a-b>0,这显然成立,故选A.【答案】 A9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N+)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有() A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD .b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1A .2 018×2 014B .2 018×2 013C .1 010×2 012D .1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A .1 006B .1 007C .1 008D .1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C 12.记集合T={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104|a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x+y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【导学号:05410057】【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】 (5,7)15.当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,左边第二个因式可知为a n +a n -1b +…+ab n -1+b n ,那么对应的表达式为(a -b )·(a n +a n -1b+…+ab n -1+b n )=a n +1-b n +1.【答案】 (a -b )(a n +a n -1b +…+ab n -1+b n )=a n +1-b n +116.如图3,如果一个凸多面体是n (n ∈N +)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f (n )对异面直线,则f (4)=________,f (n )=__________.(答案用数字或n 的解析式表示)图3【解析】 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n (n -3)2=n (n +1)2.从题图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,所以f (n )=n (n -2)+n (n -3)2·(n -2)=n (n -1)(n -2)2.【答案】 n (n +1)2 12 n (n -1)(n -2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.【证明】 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)观察以下各等式: sin 230°+cos 260°+sin 30°cos 60°=34, sin 220°+cos 250°+sin 20°cos 50°=34, sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α=34.19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】(1)因为PM⊥BB1,PN⊥BB1,又PM∩PN=P,所以BB1⊥平面PMN,所以BB1⊥MN.又CC1∥BB1,所以CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1SACC1A1cos α.其中α为平面BCC1B1与平面ACC1A1所成的二面角.证明如下:因为CC1⊥平面PMN,所以上述的二面角的平面角为∠MNP.在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.21.(本小题满分12分)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A . 又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n(n ≥2). (1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +. 下面利用数学归纳法加以证明:①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a k k -a k =(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1) =13k +1=13(k +1)-2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立. (2)b n =a n ·a n +1a n +a n +1 =13n -2·13n +113n -2+13n +1 =13n +1+3n -2 =13(3n +1-3n -2),所以b 1+b 2+…+b n =13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)] =13(3n +1-1),所以只需要证明13(3n +1-1)<n3⇔3n +1<3n +1⇔3n +1<3n +23n+1⇔0<23n(显然成立),所以对任意的n∈N+,都有b1+b2+…+b n<n 3.。
(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)
一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。
人教版高中选修2-2第二章推理与证明课程设计
人教版高中选修2-2第二章推理与证明课程设计一、课程目标本节课的主要目标是让学生掌握推理和证明的基本方法,能够通过举例子、逆证法、反证法等方式进行证明,并能够应用所学知识解决简单的问题。
同时,也要培养学生的逻辑思维能力、分析问题的能力和解决问题的能力。
二、课程内容本节课的主要内容包括:1. 推理和证明的概念和基本方法•推理的定义和分类•证明的定义和分类•举例法证明•逆证法证明•反证法证明2. 应用推理和证明•解决简单的问题(例如:证明两条直线平行、判定三角形相似等)三、教学方法为了达到上述课程目标,我们将采用以下教学方法:1. 演示法采用演示法,我们将通过演示和讲解来展示推理和证明的基本方法和应用方法。
演示可以采用黑板、PPT等形式。
2. 合作探究法教师将学生分成小组,让他们共同探究问题,并在小组之间互相讨论,比较答案。
通过这种方式,可以让学生不仅学会如何进行推理和证明,还能培养学生的合作和交流能力。
3. 独立探究法教师可以给学生留出一些时间进行独立学习,让学生自己寻找问题的答案,并通过课上展示和交流来分享成果。
四、教学步骤本节课的教学步骤如下:1. 概念讲解(10分钟)1.推理和证明的基本概念和分类2.举例法证明、逆证法证明、反证法证明2. 组内合作探究(20分钟)学生分成小组,探究问题:“如何证明两条直线垂直?” 每组讨论后,通过展示写在黑板上或使用投影仪展示。
教师对各组展示答案并进行评价和点评。
3. 独立探究(15分钟)学生进行独立探究,找到证明判定三角形相似的方法,并准备展示。
4. 展示和交流(15分钟)学生展示他们找到的证明方法,并通过交流对各种方法进行比较和讨论。
5. 总结归纳(10分钟)教师进行总结和归纳,对学生表现进行评价,并提出需要注意的事项。
五、板书设计本节课的主要板书内容:•推理和证明的定义•举例法证明、逆证法证明、反证法证明的基本过程•证明两条直线垂直的方法•判定三角形相似的方法六、作业设计为了巩固所学内容,我们可以留如下两道题目作为作业:1.如何证明两条直线平行?2.如何证明两个三角形是全等的?七、教学资源本节课的教学资源包括:1.人教版高中数学选修2-2教材2.PPT课件3.各种学习资料和习题八、评估方法为了对学生的学习状态进行及时的反馈和评估,我们将采取以下评估方法:1.课堂发言:教师对课堂互动情况进行记录和评测。
(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。
(易错题)高中数学高中数学选修2-2第一章《推理与证明》检测题(包含答案解析)
一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥3.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .94.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁5.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁6.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()2f x '=,12(),2f x '=,*1()()2n n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.已知n 为正整数用数学归纳法证明2()135(21)f n n n =++++-=时,假设*(n k k N =∈)时命题为真,即2()f k k =成立,则当1n k =+时,需要用到的(1)f k +与()f k 之间的关系式是( )A .(1)()23f k f k k +=+-B .(1)()21f k f k k +=+-C .(1)()21f k f k k +=++D .(1)()23f k f k k +=++9.高二年级有甲、乙、丙三个班参加社会实践活动,高二年级老师要分到各个班级带队,其中男女老师各一半,每次任选两个老师,将其中一个老师分到甲班,如果这个老师是男老师,就将另一个老师分到乙班,否则就分到丙班,重复上述过程,直到所有老师都分到班级,则 A .乙班女老师不多于丙班女老师 B .乙班男老师不多于丙班男老师 C .乙班男老师与丙班女老师一样多D .乙班女老师与丙班男老师一样多10.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲二、填空题13.观察下面的数阵,则第40行最左边的数是__________.14.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.15.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.16.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.17.观察下列不等式: (1)221sin cos 1αα≤≤+ (2)441sin cos 12αα≤≤+(3)661sin cos 14αα≤≤+ …… …… …… …… …… ……由此规律推测,第n 个不等式为:__________.18.已知,,a b c 为三条不同的直线,给出如下两个命题:①若,a b b c ⊥⊥,则//a c ;②若//,a b b c ⊥,则a c ⊥.试类比以上某个命题,写出一个正确的命题:设,,αβγ为三个不同的平面,__________. 19.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.已知数列{}n a 满足关系式()10a a a =>,()1122,1n n n a a n n N a --=≥∈+. (1)用a 表示2a ,3a ,4a ;(2)根据上面的结果猜想用a 和n 表示n a 的表达式,并用数学归纳法证之. 22.(1)已知数列{}n a 通项公式为()12n n n a +=,写出数列前5项. (2)记数列3333331,2,3,4,5,,,n 的前n 项和为n S ,写出n S 的前5项并归纳出nS 的计算公式.(3)选择适当的方法对(2)中归纳出的公式进行证明.23.用数学归纳法证明:()()()2222*24(2)221335212121n n n n N n n n +++⋯+=∈⋅⋅-++. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.26.已知函数()f x 满足()()233log log .f x x x =-(1).求函数()f x 的解析式;(2).当n *∈N 时,试比较()f n 与3n 的大小,并用数学归纳法证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次二项式系数对应杨辉三角形的第n +1行,然后令x =1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可. 【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n 项和为S n 1212n-==-2n ﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,则T n()12n n+ =,可得当n=10,所有项的个数和为55,则杨辉三角形的前12项的和为S12=212﹣1,则此数列前55项的和为S12﹣23=4072,故选A.【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.2.B解析:B【分析】由线面垂直与线面平行的判定,结合反证法,即可得出结果.【详解】当正四面体过点D的高与平面α垂直时,平面ABC平面α,所以BC平面α;若BC⊥平面α,因为正四面体中BC AD⊥,所以AD⊂平面α,或AD平面α,此时AD与平面α所成角为0,与条件矛盾,所以BC不可能垂直平面α;故选B【点睛】本题主要考查直线与平面平行与垂直的判定,在验证BC与平面α是否垂直时,可借助反证的思想来解决,属于中档试题.3.B解析:B【分析】由题意,可列出树形图,逐步列举,即可得到答案.【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.4.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.5.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.6.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx ,∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.C解析:C 【解析】分析:先根据条件确定()1f k +式子,再与()f k 相减得结果. 详解:因为()()13521f n n =++++-,所以()()13521f k k =++++-()()()11352121f k k k +=++++-++,所以()()121f k f k k +-=+,选C.点睛:本题考查数学归纳法,考查数列递推关系.9.C解析:C 【解析】任选两个老师共有4种情况:①男+男,则乙班中男老师数加1个;②女+女,则丙班中女老师数加1个;③男+女(男老师放入甲班中),则乙班中女老师数加1个;④女+男(女老师放入甲班中),则丙班中男老师数加1个,设一共有老师2a 个,则a 个男老师,a 个女老师,甲班中老师的总个数为a ,其中男老师x 个,女老师y 个,x y a +=,则乙班中有x 个老师,其中k 个男老师,j 个女老师,k j x +=;丙班中有y 个老师,其中l 个男老师,i 个女老师,i l y +=;女老师总数a y i j =++,又x y a +=,故x i j =+,由于x k j =+,所以可得i k =,即乙班中的男老师等于丙班中的女老师,故选C .10.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.11.B解析:B 【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T 分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.12.D解析:D 【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案. 【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话, 这与四人中只有一个人说的是真话相矛盾, 故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲 【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.二、填空题13.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数解析:1522 【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-,它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数, 所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题..14.2551【解析】观察由1起每一个转弯时增加的数字可发现为11223344…即第一二个转弯时增加的数字都是1第三四个转弯时增加的数字都是2第五六个转弯时增加的数字都是3第七八个转弯时增加的数字都是4…解析:2551【解析】观察由1起每一个转弯时增加的数字, 可发现为“1,1,2,2,3,3,4,4,…”, 即第一、二个转弯时增加的数字都是1, 第三、四个转弯时增加的数字都是2, 第五、六个转弯时增加的数字都是3, 第七、八个转弯时增加的数字都是4, …故在第100个转弯处的数为:()5015012(12350)1225512+++++⋯+=+⨯=.故答案为2551.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.15.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时16.(或)【解析】由式子可知第n 个式子分母是2n+1共2n 项所以解析:24sinsin 2121n n ππ+++++24sinsin02121k n n n ππ++=++(或212sin021nk k n π==+∑) 【解析】由式子可知,第n 个式子,分母是2n+1,共2n 项。
高中数学教案选修2-2《第2章 推理与证明》
目标定位:1.推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方法.和过去的教学内容(例如函数)相比,在本章中是把基本的数学(思维)方法(而不是某个数学对象)作为正面研究对象的.因此,本章的学习过程,是中学生第一次对数学活动过程的正面的系统的审视——这就是我们对本章教学活动的定位.2.推理方法与证明方法是从思维活动中抽象出来的,是由数学思维过程凝缩而成的“对象”.我们不能离开数学思维活动来谈论数学思维方法,不能满足于把数学方法看成是既定的程序、步骤和规则,不能满足于对方法做静态的逻辑的分析(这正是过去传统的教材中所强调的),而应当从(数学)活动本身,特别是从数学活动的过程来考察推理方法和证明方法建构的过程,以及这些方法是如何被运用到数学活动中成为“活”的方法的?应当着重于体会方法的特点、联系和作用(这正是传统教材中忽略的,而在苏教版教材中特别强调的).这样一来,考察和研究数学思维过程就应该成为本模块学习的出发点和归宿了.3.与数学知识(如概念)的建构不同,在数学方法建构的过程中,数学思维活动过程本身就是被考察的对象并提供了抽象的原型.例如,在本章的引言中,教材就是通过对“摸球中的思维过程”的分析,抽象出推理、证明方法的.在这里,摸球中的思维过程本身就成为抽象的原型!正是这样的特点,决定了在有关“方法”的教学必须建立在对数学思维活动做“正面”考察的基础之上.4.课程标准明确指出:设置本模块的目的是让学生结合已学过的数学实例和生活中的实例,对合情推理、演绎推理以及数学证明的方法进行概括与总结,进一步体会合情推理、演绎推理以及两者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,提高数学思维能力,形成对数学较为完整的认识.课程标准的上述要求.决定了本章中对思维过程的考察与分析应该是系统的,因为只有进行系统的考察才能让学生形成对数学较为完整的认识,才能通过对各种方法的比较,掌握各种方法的特点、作用以及它们之间的关系,更好地把它们运用到数学活动中去.5.本章具体的教学目标是:(1)结合已经学过的数学实例和生活中的实例,了解合情推理的含意,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.(2)结合已经学过的数学实例和生活中的实例,了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理.(6)通过对实例的介绍(如欧基里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想.(7)了解计算机在自动推理领域和数学证明中的作用.教材解读:1.根据对本章教学的基本定位,为了帮助学生对数学思维过程作系统的正面的考察,教材做了如下的工作:(1)教科书为学习活动设置了数学探索发现活动的大背景,大框架.(注意引言的作用),在分别阐述了归纳、类比、演绎等推理方法以后,又专门设置了一节“推理案例赏析”所有这些,都为对思维过程进行系统的考察提供了条件.(2)教科书充分地利用案例,通过案例(这些案例大多是从学生学习过的材料中选取的)提供数学思维活动的素材,把案例当成学习活动的出发点和载体,把案例分析看成是教学活动的主要形式.因为惟有如此,才能使学生进行深刻的思考(反思),对思维活动过程做“正面的”审视.(3)教科书注意对思维活动过程做适度的形式化概括.因为惟有如此,才能把对思维过程分析的成果固定下来,形成数学方法并运用到思维活动中去.以上各点可以从第一节〈合情推理与演绎推理〉的展开框图中看出:2.和其他模块相比,在本章中,案例分析更具有举足轻重的作用.因为除了案例分析,我们实在找不到更好的方法为学生提供“数学活动过程”,让学生参与到数学活动中来体验数学方法发现的过程,看到活生生的数学方法.因此,案例分析应该成为本模块教学的出发点和载体,为考察和分析数学活动过程提供素材和讨论的平台,同时,案例分析也应该是教学活动的主要手段.教学方法与教学建议:1.在教学中不仅要重视对推理方法和证明方法的特点进行(静态)分析,更要重视这些方法被抽象出来的过程,通过对数学活动过程的分析来认识它们的特点和作用(即对它们做动态的考察).从而正确地理解和运用这些方法,达到从整体上提高数学思维能力的目的.2.本章所学习的大部分内容如:合情推理、演绎推理、证明方法(包括反证法)都是学生熟悉的,他们早就在自觉或不自觉地把这些方法运用于学习与生活当中了.在教学中要注意从学生已学过的数学实例和生活中的实例出发,唤起学生的经验,找到知识的生长点,这是学生学习和理解本章内容的基础.3.在教学中,要通过对学生真实的思维过程和数学发现活动的典型案例的分析,让学生形成反思的意识,养成反思的良好习惯.4.教学的重点应该是对基本的数学方法的理解和运用.首先是对“推理”和“证明”在数学发现活动中的作用.这就要求学生从整体上认识本章所介绍的数学方法.如在“合情推理和演绎推理”的教学中,应通过实例,引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想.教学的重点在于通过具体实例理解合情推理与演绎推理(它们的作用、特点、关系),理解数学发现过程,而不必追求对概念的抽象表述.在证明方法的教学中,应通过实例,引导学生认识各种证明方法的特点,掌握这些方法的思考过程,体会证明的必要性,而对证明的技巧性不宜作过高的要求.5.数学的推理方法和证明方法,不仅运用在数学中,而且在生活中的其它领域都有广泛的应用.在教学中要引用生活中和其它学科中的例子,让学生体会数学和生活的联系,体会数学应用的广泛性,认识数学的文化价值.6.公理化思想和机器证明体现了数学的文化价值.在教学中要让学生体会公理化思想中蕴涵的理性精神,和机器化证明中的算法思想.下面是具体的教学建议,供参考.引言1.华罗庚教授“摸球”的例子,为推理与证明的学习提供了一个大的背景.它具有丰富的教学意义.在教学中不仅应该让学生体会到,“推理”与“证明”是构成探索活动的两个最基本的环节,让学生体会到,探索活动是一个不断的“提出猜想——验证猜想——再提出猜想——再验证猜想”的过程,而且应当让学生体会到永不休止的探索精神正是理性精神的表现!而数学家就是通过不断地提出猜想、证明猜想来进行探索活动的!2.引言中提出的两个问题(我们怎样进行推理?我们怎样验证(证明)结论?)是本大节的中心问题.本节的教学内容就是依据它展开的.2.1 合情推理与演绎推理1.合情推理和演绎推理是数学活动中常用的两种推理形式,它们具有不同的形式、特点和作用.本节先分别研究它们的特点和作用,然后再通过对具体的数学发现过程的分析,进一步体会它们之间的联系,在具体的数学思维过程中感受它们的作用.2.演绎、归纳、类比是学生熟悉的推理方式.教材列举了3个例子,开始了对这些推理形式的考察.教学中可以让学生举出更多的例子.3.通过揭示三个推理案例的共同点概括出“推理”的概念.并根据它们在结构上的不同特点,进行分类研究,这个过程虽然简单,却体现了案例分析是本章教学的主要形式的特点.2.1.1 合情推理1.合情推理是由G·波利亚提出的概念.他通过对数学发现活动的分析注意到数学活动是由“猜想”和“论证”两个环节构成的,相应地在这两个不同的环节里使用着不同的思维方法,即合情推理与论证推理(教科书中称为演绎推理).G·波利亚并没有为合情推理下定义.实际上,在教学中,只要让学生把合情推理看成是提出猜想的推理而演绎推理是可以给出证明的推理就行了.据此,教科书按照G·波利亚的思路,编写了引言,突出了对探索活动的分析,突出了“猜想”和“证明”两个重要的思维环节,而对合情推理的定义作淡化处理(只在阅读材料中提了一下)(《课程标准》给合情推理作了如下定义:合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某地结果的推理过程.)2.归纳、类比是合情推理的两种常用的形式,除此以外,合情推理还有其他的多种形式,如:联想、想象、直觉等等.2.1.1.1 归纳推理1.归纳推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察,考察的重点则是归纳推理的特点和它的作用.2.归纳推理的一般模式为:S具有P,1S具有P,2……S n具有P(S,S2,…,S n是A类事物的对象)1——————————————————————————所以,A类事物具有P.教学中可以介绍给学生.3.“思考”要求列举更多的有关归纳推理的例子,下面的例子可供参考.(1)观察:1 = 12,1 + 3 = 22,1 + 3 + 5 = 32,1 + 3 + 5 +7 = 42,由此猜想:1 + 3 + 5 + 7 + …+ (2n1) = n2.(2)1640年,费马在给友人的信中谈到:220+ 1 = 3,221+ 1 = 5,222+ 1 = 17,223+ 1 = 257,224+ 1 = 65 537都是素数,由此,他猜想:任何形如22n+ 1(n N)的数(通常称为费马数,记作F n)都是素数.此后,一直未有人怀疑过这个结论.直到1732年,欧拉发现F= 225+ 1 = 4 294 967 297 = 641 6 700 417并不是素数,才推翻费马的猜5想.此例还说明,在归纳推理中,根据同一个前提,可以推出不同的结论:当n > 1时,F n的末位数字是7(猜想).2.要让学生体会到归纳不仅是一种方法,而且体现了一种态度.欧拉说:把归纳看成是一种机会,“以便证明它或推翻它”,这就是我们对待归纳的态度,而归纳的价值就在于“在这两种情况之中我们都会学到一些有用的东西.”可以看出,归纳的态度就是探索的态度,这一点在华罗庚的“摸球”游戏中也得到了充分的体现.要让学生体会到,探索活动是在猜想的推动下进行的,没有猜想就没有探索!而归纳的价值就在于它是提出猜想的一种方法!3.在归纳推理中,根据同一个的前提,往往可以推出不同的结论.例如从例4中的推理前提出发,也可以得到当n>1时,F n的末位数字是7的结论(猜想).4.完全归纳法(和数学归纳法类似)实质上是一种演绎推理,它是一种必然性推理,是数学证明的工具,因此它不属于合情推理.2.1.1.2 类比推理1.类比推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察.2.类比推理的一般模式为:A类事物具有性质a,b,c,d,B类事物具有性质a',b',c',(a,b,c与a',b',c'相似或相同)————————————————所以,B类事物可能具有性质d'.教学中可以介绍给学生.3.例1是根据等式的性质类比不等式的性质.4.例2可以看成是系统间的类比.用现代数学的角度来看,类比就是两个具有同构关系的模型间的推理.数学(科学)发现活动中的类比绝大多数都是这类类比.在教学中要注意对类比过程的分析.5.类比可以看成是从已知的相似性,推断未知的相似性的推理.在教学中要引导学生对类比的过程进行分析,弄清在推理中究竟是从哪些已知的“相似性”推出什么样的未知的“相似性”的.6.在运用类比推理时,首先要找出两类对象之间可以确切表述的相似性(或一致性);然后,再用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;最后,检验这个猜想.在教学中不要满足于对对象相似性的模糊认识,要坚持把它们的相似性用语言确切地表述出来.只有这样,才能把类比和“比喻”区别开来.2.1.2 演绎推理1.演绎推理是一种重要的推理形式,通过数学学习,学生已经在广泛地使用它,在教学中,要让学生体会到演绎推理是严格按照逻辑法则进行的推理,是必然性推理的特点.2.三段论是演绎推理的主要形式.三段论有多种格式,教科书介绍了其中常用的一种,其用意在于让学生体会到演绎推理是一种形式化程度相当高的推理,而不是正面讲“三段论”,因此,在教学中不必拓展补充.3.除了三段论以外,演绎推理还有直接推理,关系推理、联言推理、假言推理、选言推理等多种形式.4.三段论也有多种形式,三段论的依据是不言自明的三段论公理:一类事物的全部是什么或不是什么,那么这类事物的部分也是什么或不是什么.对此教科书中用集合论的语言和图形作了说明,其目的是帮助学生理解三段论.(教学中不必提出三段论公理)5.三段论推理在数学中有重要的应用,特别是在理论初建或概念性质运用的初期.但是数学推理过程不全是三段论组合,直接用三段论推理的并不多,有些数学证明过程(如教科书中例2),虽然可以归结为三段论的组合,但却太为繁琐了,所以并不实用.6.数学并不等同于逻辑,它已独自发展几千年,尤其是它的符号系统,使得它有自身的一套简单的推理形式或规则,尽管它能用三段论解释,但大可不必去追溯它的三段论本源.因而在数学中,直接选定了若干演绎推理的规则.如:“如果q P ⇒,P 真,则q 真”、“如果b c ,,a b ⇒⇒,则c a ⇒”(三段论的“数学形式”)等等.(如课本中例2的证明就使用了这些规则)应该告诉学生,数学中的运算也是演绎推理的一种形式.7.在数学中学习演绎推理,并不等同于学习形式逻辑或数理逻辑,课程标准规定,本小节的学习目标是,“体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理”,相信注意到这些,就可以理解教科书的编写意图,并掌握教学的分寸了.8.在叙述演绎推理的特点时,要和归纳、类比的特点对照,让学生理解它们是两类不同的推理.9.教科书中说“演绎推理是一种收敛性的思维方法,它较少创造性”,这并不是说,演绎推理就完全没有发现功能,更不是说演绎推理在数学发现活动中没有作用.为了让学生全面认识演绎推理在发现活动中的作用,教科书提供了阅读材料:“海王星的发现和探索性演绎法”,这个材料对全面准确地理解演绎推理在探索活动中的作用是很有帮助的.2.1.3 推理案例赏析1.《推理案例赏析》是推理方法的综合应用,是对推理方法更深层次的考察.这样,教科书就为推理的教学提供了一个“总——分——总”的结构,而本小节正是后一个“总”.它引导学生在前面学习的基础上,对各种推理方法做综合的动态的考察,帮助学生体会不同推理方法的特点和联系,感受它们在数学思维过程中的作用.2.在教学中,要注意对思维过程的分析.课本中提供的思维过程只是几种典型的解决问题的思路.面对着这些问题,学生可能会有更多的想法,应该鼓励学生谈谈自己的想法,并对课本中的思考过程做出评价.3.关于例1的教学.(1)“提出问题”是数学发现活动中重要的环节.教学中要注意分析提出问题的过程.在例1和例2中,都是通过类比提出研究课题的.(2)课本中的思路1是“归纳的方案”,总的说,它是通过归纳提出猜想的.但是应该注意到,作为归纳基础的“表”中的每个数据都是由运算提供的,也就是说,演绎提供了归纳的基础.所以说:在数学发现活动中,演绎起到了类似“实验”的作用,在这里演绎为归纳提供了前提.(3)在“归纳的方案”中,解题者原本希望从表2-1-5中归纳出一般结论,可是却失败了,但是正是失败引导他尝试计算S1(n)和S2(n)的比,找到了通向成功的路.要让学生体会到发现活动都是具有尝试的性质的,失败是经常会遇到的,所以常说“失败是成功之母”.通过教学要让学生体会到,对思维过程进行调控的重要性.对此,在“思路2”和例2中,都有体现.教学中,要让学生体会到发现过程是一个曲折的艰苦的过程,认识到思维调控的重要性.(4)尝试计算S1(n)和S2(n)的比,是导致发现的关键,这个念头是由“联想”激发的.联想也是合情推理的一种方法.(5)思路2是一个“演绎的方案”,但这并不是说,在这个方案中没有使用合情推理的方法,相反地,应该说合情推理在这个方案中同样起了关键的作用.比如,这个方案中的“初始念头”——“尝试用直接相加的方法求出自然数的平方和”就是由合情推理提供的.(6)在思路2的教学中,设置了“(2)从失败中汲取有用的信息,进行新的尝试”的环节,是为了让学生体会到思维调控的重要性,注意对思维过程的分析,进而养成反思的习惯.(7)“既然能用上面的方法求出S1(n),那么我们也应该可以用类似的方法求出S2(n)”,这也是一个猜想,它是由类比得到的.4.关于例2的教学.(1)例2通过具体的问题对类比推理的方法做了更深入的介绍.类比在数学发现活动中具有十分重要的作用,应该让学生学会自觉地科学地把类比方法运用到发现活动中去.(2)把棱台和梯形类比,开始只是模糊的念头,通过分析,清晰地认识到它们之间的“相似性”,这时才会有科学的“类比推理”.因此,“确定类比对象”和“对类比对象的进一步分析”都是重要的思维环节,是进行类比推理的前提.学生在使用类比时,经常忽略这些环节.(3)验证猜想的过程也是对猜想做调整的过程.在这个过程中,合情推理仍然发挥着重要的作用.教学中请注意合情推理在“验证猜想”中的作用.(4)从美感出发做出的判断,可以称为审美推断.本例在“验证猜想”的环节中,使用了这种方法.审美推断也是一种合情推理的方法,在科学发现活动中具有重要的价值.通过案例的分析,应该让学生体会到审美在发现活动中的作用.(5)在公式(猜想)的调整过程中,实际上使用的是“探索性演绎法”(即在猜想的基础上进行的演绎推理),这可以让学生更好地体会到“演绎推理”在数学发现活动中所具有的类似于“实验”的功能.5.关于实习作业.学生可以通过查找资料来完成实习作业.例如可以引用本书提到的数学史中的例子:如欧拉公式、哥德巴赫猜想等,也可以从教科书中选取案例如:“正弦定理的发现”、“余弦定理的发现”、“和差化积公式的推导”等等.通过反思,对自己的思维活动进行分析(如你是怎样解决某个问题的).6.在思考以及实习作业中,教材反复提出了相同的问题,其用意是希望为学生分析思维活动时提供一个反思的框架.2.2 直接证明与间接证明教学的重点是让学生了解直接证法与间接证法的特点,知道证明的一般步骤,能使用它们证明问题,在教学中不要拘泥于“概念”,在“概念”上下功夫.2.1 直接证明1.课本中选用的两个例子都是学生熟知的,在《数学(必修5)》的基本不等式中就采用了这两个证明.现在教科书把它用作讨论综合法和分析法的素材,是为了让学生能集中精力关注这两种证明方法形式结构上的特点和区别,进而展开对证明方法的研究.2.一般地,分析法和综合法是两种常见的思维方法,人们利用它们来寻求证明问题的思路.在教科书中是把它们看成两种证明方法的(指呈现出来的证明过程).思维方法和证明方法当然有微妙的差别,但是如果把“证明”看成是思维过程,这样做也就没有什么不可以.3.综合法,从条件出发,“由因导果”,分析法,紧抓证题目标,“执果索因”.在实际的解题活动中,总是把两者结合起来使用的.2.2 间接证明1.反证法是一种重要的间接证法(同一法也是一种重要的间接证法).在教学中应先让学生弄清直接证明和间接证明的区别,然后再转入反证法.2.学生在学习立体几何初步时,已经使用反证法,因此他们是有经验的,但当时并没有正面介绍反证法.3.反证法的逻辑依据是矛盾律和排中律.反证法的实质在于:若肯定定理的假设而否定其结论,就会导致矛盾.具体地说,反证法不直接证明命题“若p则q”,而是从原题的反论题“既p又┐q”入手,由p与┐q合乎逻辑地推出一个矛盾结果;根据矛盾律,两个互相矛盾的判断,不能同真,必有一假,断定反论题“既p又┐q”为假;进而再根据排中律,两个互相矛盾的判断,不能同假,必有一真.由此肯定命题“若p则q”为真.虽然学生没有学过排中律和矛盾律,但是由于这两个定律的“准公理性”,学生还是能理解反证法的思想的,因而在教学中没有必要提出排中律和矛盾律.2.3 公理化思想1.公理化思想体现了数学中的理性精神和求真意识.为了确保命题真实性,数学对命题提出了演绎证明的要求,这种要求直接导致公理化产生.教学中要让学生体会到这一点.2.公理是“公认正确而不需证明的命题”,是“证明其它一切命题的基础”,是“选定”和“设置”的,都体现了现代公理法的思想,在教学中不要过多地强调公理是“经过长期的实践证明的”说法.3.可以建议有兴趣的学生阅读《数学史初步》中有关非欧几何的材料.教学案例:归纳推理执教:高建国(扬州大学附属中学)点评:张乃达(江苏省扬州中学)1.概念、技能、能力、态度我们可以从不同的层面来看归纳.第一种是把它看成一个概念,这要弄清什么是推理?什么是归纳推理?这是从知识层面来看归纳的;第二种是把归纳看成是一种方法,这就要弄清怎样进行归纳?归纳有哪几步?第一步怎么做?第二步又怎么做?等等,这是从技能层面来看归纳的.第三种是把归纳看成是一种能力,提高学生的归纳能力——归纳的能力实质上就是分析,分析到位了,思维能力提高了,归纳才能得到有价值的东西.这是从能力的层面看归纳的.长期以来,我们的教师大都习惯于从上面三个层次看归纳,并以此确定本节课的教学内容和重点,这正是习惯于从知识与能力的层面看待数学教育的体现!其实,如果从文化的视角来分析,就可以看到归纳还可以被看成是一种态度,一种对待事物的态度.归纳的态度实际上就是探究的态度,它总是用探究者的眼光来看世界——看到某些现象,总想从中归纳出某种规律!促使哥德巴赫提出那个著名的猜想的正是这种态度,向中学生介绍哥德巴赫猜想的目的也正是让他们学习这种态度!这种态度正是理性精神的表现!也是这节课中最有教育价值的东西!通过上面的分析,对这节课应该怎么上就清楚了.通过这节课当然应该让学生知道什么是推理?什么是归纳?怎样进行归纳?但是这并不是重点,其实学生早就在使用归纳的方法了,现在只要正面的小结一下就可以了!提高归纳的能力也不是这节课能够实现的目标,归纳的能力,是思维能力的体现,它不能独立于思维能力之外,也不是通过这节课就能实现的目标!这节课的重点应该是归纳态度的培养和探究精神的激发!在本节课中,执教老师对课的定位是比较准确的,较好地处理了概念、技能、能力和态度的关系.渗透了归纳态度的培养,探求欲望的激发,让学生体会到,在我们的周围,到处都存在着值得探索的问题,到处都可以运用归纳的方法来提出猜想,进而展开探索的活动,这对学生理性精神的形成是很有意义的.2.用数学(家)的眼光看世界。
新人教A版高中数学(选修2-2)《第二章推理与证明小结综合》word教案
推理与证明知识回顾对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力.通过本章的复习,培养推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一、推理部分1.知识结构框图:2.合情推理:____与____统称为合情推理.①归纳推理:______________.②类比推理:______________定义特点:归纳推理是由特殊到一般、由具体到抽象的推理;而类比推理是由特殊到特殊的推理;两者都能由已知推测、猜想未知,从而推出结论.但是结论的可靠性有待证明.③推理过程:从具体问题出发→______→归纳类比→______.3.演绎推理:_______________.①定义特点:演绎推理是由一般到特殊的推理;②学习要点:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:_______________;ⅱ小前提:_______________;ⅲ结论:_______________.集合简述:ⅰ大前提:且x具有性质P;ⅱ小前提:且;ⅲ结论:y也具有性质P;4.合情推理与演绎推理的关系:①合情推理中的归纳推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;二、证明部分1.知识结构框图2.综合法与分析法①综合法:_______________②分析法:_______________.学习要点:在解决问题时,经常把综合法与分析法合起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.③反证法:_______________.学习要点:反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与______,______或______等矛盾.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)_______________;(2)(归纳递推)_______________.其证明的方法叫做数学归纳法.学习要点:理解第一步是推理的基础,第二步是推理的依据,两者缺一不可.特别地,在证明第二步时命题成立,一定要用上归纳假设时命题成立;另外在证明第二步时首先要有明确的目标式,即确定证题方向;数学归纳法常和合情推理综合应用,特别常以归纳推理为前提.三、考查要求“合情推理”是一种重要的归纳、猜想的推理,它是发现问题和继续推理的基础.逻辑思维能力主要体现为对演绎推理的考查.试卷中考查演绎推理的试题的比例比较大,命题时既考虑使用选择题、填空题的形式进行考查,又考虑如何使用解答题(以证明题的形式)突出进行考查,立体几何是考查演绎推理的最好素材.数学归纳法很少单独考查,由于数列是和自然数有关的,因此,经常和数列一起考查,常与归纳猜想相结合进行综合考查.推理与证明复习指导对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力一.推理部分1.知识结构:演绎推理推理归纳和情推理类比2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知,可以,,于是推出:对入任何,都有;而这个结论是错误的,显然有当时,.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发观察、分析、比较、联想归纳、类比猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(是);ⅱ小前提:所研究的特殊情况(是);ⅲ结论:由一般原理对特殊情况作出判断(是);集合简述:ⅰ大前提:且具有性质;ⅱ小前提:且;ⅲ结论:也具有性质;例题1.若定义在区间D上的函数对于D上的个值,总满足,称函数为D上的凸函数;现已知在上是凸函数,则中,的最大值是.解答:由(大前提)因为在上是凸函数(小前提)得(结论)即因此,的最大值是注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设,(其中且)(1)5=2+3请你推测能否用来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由=+=又=因此,=(2)由=即=于是推测=证明:因为:,(大前提)所以=,=,=,(小前提及结论)所以=+==解题评注:此题是一典型的由特殊到一般的推理,构造=是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论=.二.证明部分1.知识结构数学归纳法综合法证明直接证法分析法间接证法反证法2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:,求证:证明:因为所以又由已知,因此,成立.由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)这里表示了,( )是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线,以过焦点的弦为直径的圆必与相切.证明:(如图)作AA/、BB/垂直准线,取AB的中点M,作MM/垂直准线.要证明以AB为直径的圆与准线相切只需证|MM/|=|AB|[om]由抛物线的定义:|AA/|=|AF|,|BB/|=|BF|所以|AB|=|AA/|+|BB/|因此只需证|MM/|=(|AA/|+|BB/|)根据梯形的中位线定理可知上式是成立的.所以以过焦点的弦为直径的圆必与相切.以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法, 特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=(时命题成立,证明当时命题也成立。
高中数学(人教B版,选修22)第二章 推理与证明+课件+同步测试+本章整合+综合素质检测(13份)2
由此可知:等差数列{an}之所以有等式成立的性质,关键
在于在等差数列中有性质:an+1+a19-n=2a10=0,类似地,在
等比数列{bn}中,也有性质:bn+1·b17-n=b
2 9
=1,因而得到答
案:b1b2…bn=b1b2…b17-n(n<17,n∈N*).
解法2:因为在等差数列中有“和”的性质a1+a2+…+an
比
OA′ AA′
+
OB′ BB′
+
OC′ CC′
=1得出结论,再类比“面积法”用
“体积法”进行证明.
[解析] 如图,设O为四面体V-BCD内任意一点,连接 VO、BO、CO、DO并延长交对面于V′、B′、C′、D′, 类比关系为OVVV′′+OBBB′′+OCCC′′+ODDD′ ′=1.
类比平面几何中的“面积法”,可用“体积法”来证明.
学法归纳总结
1.归纳推理 (1)归纳推理的一般步骤:①通过观察个别情况发现某些 相同性质;②从已知的相同性质中推出一个能明确表述的一 般性命题.简称为:观察、归纳、猜想. (2)归纳推理的特点:①归纳推理是从特殊到一般,具体 到抽象的推理形式,因而,由归纳所得的结论超越了前提所 包含的范围;②归纳推理是根据已知的条件(现象)推断未知 的结论(现象),因而结论具有猜测的性质;③归纳推理是立 足于观察、经验或实验的基础上的.
把该数列的后一项减去前一项,得一新数列 1,2,2,3,3,4,4,5,….
把原数列的第一项2添在新数列的前面,得到 2,1,2,2,3,3,4,4,5,….
于是,原数列的第n项an,就等于上面数列的前n项和, 即
a1=2=1+1=2, a2=2+1=1+(1+1)=3, a3=2+1+2=1+(1+1+2)=5, a4=2+1+2+2=1+(1+1+2+2)=7, …,
(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。
人教版高中数学选修2-2第二章推理与证明 同步教案
例2. 在ABC ∆中,若090=∠C ,则1cos cos 22=+B A ,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.例3. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文d c b a ,,,对应密文d d c c b b a 4,32,2,2+++,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为( ). A . 4,6,1,7 B . 7,6,1,4C . 6,4,1,7D . 1,6,4,7 【方法技巧】1.归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).2.类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等.做题时应注意:(1)找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积,平面上的角对应空间角等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等. 3.掌握利用“三段论”进行推理.巩固训练1. 图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --= .(答案用数字或n 的解析式表示)2. 已知ABC ∆的三边长为c b a ,,,内切圆半径为r (用的面积表示ABC S ABC ∆∆),则ABC S ∆)(21c b a r ++=;类比这一结论有:若三棱锥BCD A -的内切球半径为R ,则三棱锥体积=-BCD A V .3. 对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=………( )A .(4,0)B .(2,0)C .(0,2)D .(0,4)-(1)写出,,21a a 3a ;(2)求数列}{n a 的通项公式【方法技巧】1.用数学归纳法证明与自然数有关的一些等式,命题关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,由到时等式的两边会增加多少项,增加怎样的项.2.在证明过程中,(I )考虑“n 取第一个值的命题形式”时,需认真对待,一般情况是把第一个值代入通项,考察命题的真假,(II )步骤②在由到的递推过程中,必须用归纳假设,不用归纳假设的证明就不是数学归纳法.3. “归纳——猜想——证明”是一个完整的发现问题和解决问题的思维模式.巩固训练1.用数学归纳法证明:2333112(1)()2n n n n N *⎡⎤++⋅⋅⋅+=+∈⎢⎥⎣⎦2.已知数列1111,,,,,122334n(1)n ⋅⋅⋅⋅⋅⋅⨯⨯⨯+,计算1234,,,S S S S ,由此推测计算n S 的公式,并用数学归纳法证明.课后作业1.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A .使用了归纳推理B .使用了类比推理C .使用了“三段论”,但大前提错误D .使用了“三段论”,但小前提错误 2.用反证法证明命题:“三角形内角和至少有一个不大于060”时,应假设( ) A. 三个内角都不大于060 B. 三个内角都大于060 C. 三个内角至多有一个大于060 D. 三个内角至多有两个大于0603.若三角形能剖分为两个与自己相似的三角形,那么这个三角形一定是( ) A.锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定4.如图第n 个图形是由正2n +边形“扩展”而来(1,2,3)n =⋅⋅⋅,则第n 2-个图形中共有 个顶点.5.对大于或等于2的自然数m 的n 次方幂有如下分解方式: 2213=+ 23135=++ 241357=+++3235=+ 337911=++ 3413151719=+++根据上述分解规律,则2513579=++++, 若3*()m m N ∈的分解中最小的数是73,则m 的值为_ __ . 6.在平面直角坐标系中,直线一般方程为0=++C By Ax ,圆心在),(00y x 的圆的一般方程为22020)()(r y y x x =-+-;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在),,(000z y x 的球的一般方程为_______________________.7.如果函数)(x f 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有)()()()(2121nx x x f n x f x f x f nn +++≤+++ .若x y sin =在区间(0,)π上是凸函数,那么在ABC ∆中,C B A sin sin sin ++的最大值是________________.8.设P 是ABC ∆内一点,ABC ∆三边上的高分别为A h 、B h 、C h ,P 到三边的距离依次为a l 、b l 、c l ,则有a b c A B Cl l lh h h ++=______________;类比到空间,设P 是四面体ABCD 内一点,四顶点到对面的距离分别是A h 、B h 、C h 、D h ,P 到这四个面的距离依次是a l 、b l 、c l 、d l ,则有_________________。
高中数学(人教B版,选修22)第二章 推理与证明+课件+同步测试+本章整合+综合素质检测(13份)22 2.3
第二章 2.3一、选择题1.用数学归纳法证明1+q +q 2+…+q n +1=q n +2-q q -1(n ∈N *,q ≠1),在验证n =1等式成立时,等式左边的式子是( )A .1B .1+qC .1+q +q 2D .1+q +q 2+q 3[答案] C[解析] 左边=1+q +q 1+1=1+q +q 2.故选C.2.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从n =k 到n =k +1,左边的式子之比是( )A.12k +1 B .12(2k +1)C.2k +1k +1 D .2k +3k +1[答案] B [解析](k +1)(k +2)(k +3)…(k +k )(k +1+1)(k +1+2)…(k +1+k +1)=(k +1)(k +2)(k +3)…(2k )(k +2)(k +3)…(2k )(2k +1)(2k +2) =12(2k +1).故选B.3.用数学归纳法证明1n +1+1n +2+…+12n >1314(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12(k +1)B .增加了两项12k +1+12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 [答案] C[解析] n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2∴增加了12k +1+12k +2,减少了一项1k +1.故选C.4.(2014·秦安县西川中学高二期中)用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.5.某个与正整数n 有关的命题,如果当n =k (k ∈N *)时该命题成立,则可推得n =k +1时该命题也成立,现已知n =5时命题不成立,那么可推得( )A .当n =4时该命题不成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =6时该命题成立 [答案] A[解析] 由命题及其逆否命题的等价性知选A. 6.等式12+22+32+…+n 2=12(5n 2-7n +4)( )A .n 为任何正整数都成立B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立 [答案] B[解析] 经验证,n =1,2,3时成立,n =4,5,…不成立.故选B.7.用数学归纳法证明某命题时,左式为12+cos α+cos3α+…+cos(2n -1)α(α≠k π,k ∈Z ,n ∈N *),在验证n =1时,左边所得的代数式为( )A.12B.12+cos α C.12+cos α+cos3αD.12+cos α+cos3α+cos5α [答案] B[解析] 令n =1,左式=12+cos α.故选B.8.(2014·揭阳一中高二期中)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3[答案] A[解析] 因为从n =k 到n =k +1的过渡,增加了(k +1)3,减少了k 3,故利用归纳假设,只需将(k +3)3展开,证明余下的项9k 2+27k +27能被9整除.二、填空题9.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N +)”的过程中,第二步n =k 时等式成立,则当n =k +1时应得到________.[答案] 1+2+22+…+2k -1+2k =2k +1-110.用数学归纳法证明当n ∈N +时,1+2+22+23+ (25)-1是31的倍数时,当n =1时原式为__________,从k →k +1时需增添的项是________.[答案] 1+2+22+23+24 25k +25k +1+25k +2+25k +3+25k +411.使不等式2n >n 2+1对任意n ≥k 的自然数都成立的最小k 值为________. [答案] 5[解析] 25=32,52+1=26,对n ≥5的所有自然数n,2n >n 2+1都成立,自己用数学归纳法证明之.三、解答题12.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=2×1=2,∴等式成立. (2)假设n =k (k ∈N *)时等式成立.即(k +1)(k +2)…(k +k )=2k ·1·3·5·…·(2k -1)成立. 那么当n =k +1时,(k +2)(k +3)…(k +k )(2k +1)(2k +2)=2(k +1)·(k +2)·(k +3)·…·(k +k )·(2k +1)=2k +1·1·3·5·…·(2k -1)[2·(k +1)-1] 即n =k +1时等式成立.由(1)、(2)可知,对任何n ∈N *等式均成立.一、选择题1.用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3…(2n -1)(n ∈N +)”,则“从k 到k +1”左端需乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1 D .2k +3k +1[答案] B[解析] n =k 时左式=(k +1)(k +2)(k +3)n =k +1时左式=(k +2)(k +3)…(2k +1)(2k +2)故“从k 到k +1”左端需乘(2k +1)(2k +2)k +1=2(2k+1).故选B.2.已知数列{a n },a 1=1,a 2=2,a n +1=2a n +a n -1(k ∈N *),用数学归纳法证明a 4n 能被4整除时,假设a 4k 能被4整除,应证( )A .a 4k +1能被4整除B .a 4k +2能被4整除C .a 4k +3能被4整除D .a 4k +4能被4整除 [答案] D[解析] 在数列{a 4n }中,相邻两项下标差为4,所以a 4k 后一项为a 4k +4.故选D. 3.凸n 边形有f (n )条对角线,则凸n +1边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -2 [答案] C[解析] 由凸n 边形变为凸n +1边形后,应加一项,这个顶点与不相邻的(n -2)个顶点连成(n -2)条对角线,同时,原来的凸n 边形的那条边也变为对角线,故有f (n +1)=f (n )+(n -2)+1.故选C.4.(2014·湖北重点中学高二期中联考)用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3…(2n -1)(n ∈N *)时,从“n =k 到n =k +1”左边需增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1 D .2k +3k +1[答案] B[解析] n =k 时,等式为(k +1)(k +2)…(k +k )=2k ·1·3·…·(2k -1),n =k +1时,等式左边为(k +1+1)(k +1+2)…(k +1+k +1)=(k +2)(k +3)…(2k )·(2k +1)·(2k +2),右边为2k +1·1·3·…·(2k -1)(2k +1).左边需增乘2(2k +1),故选B.二、填空题5.用数学归纳法证明关于n 的恒等式时,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,待证表达式应为________.[答案] 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)2 6.用数学归纳法证明:1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=20=1,右边=21-1=1,不等式成立; ②假设n =k 时,等式成立, 即1+2+22+…+2k -1=2k -1.则当n =k +1时, 1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,所以n =k +1时等式成立.由此可知对任意正整数n ,等式都成立. 以上证明错在何处?____________. [答案] 没有用上归纳假设[解析] 由数学归纳法证明步骤易知其错误所在.7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+n 2+…+22+12.用数学归纳法证明S n=n (2n +1)2时,第二步从k 到k +1应添加的项为________.[答案] (k +2)·2k +12[解析] S k +1-S k =(k +1)(2k +1+1)2-k (2k +1)2=(k +2)·2k +12.三、解答题8.在数列{a n }中,a 1=a 2=1,当n ∈N *时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }的各项均为3的倍数.[证明] (1)∵a 1=a 2=1, 故a 3=a 1+a 2=2,a 4=a 3+a 2=3. ∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数.则n =k +1时,b k +1=a 4(k +1)=a (4k +4)=a 4k +3+a 4k +2=a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设,a 4k 是3的倍数,故可知b k +1是3的倍数. ∴n =k +1时命题正确.综合(1)、(2)可知,对于任意正整数n ,数列{b n }的各项都是3的倍数. 9.(2013·大庆实验中学高二期中)数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74.由此猜想a n =2n -12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-12k =2k +1-12(k +1)-1,∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -12n -1成立.。
(北师大版)成都市高中数学选修2-2第一章《推理与证明》检测(含答案解析)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .甲可以知道四人的成绩 B .丁可以知道四人的成绩 C .甲、丁可以知道对方的成绩D .甲、丁可以知道自己的成绩3.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .4.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76 C .123 D .199 5.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( ) A .50B .42C .-50D .-426.下列类比推理正确的是( )A .把()a b c +与x y a +类比,则有x y x y a a a +=+B .把()a a b +与()a a b ⋅+类比,则有()2a ab a a b ⋅+=+⋅C .把()nabc 与)n x y z (++类比,则有)n n n n x y z x y z ++=++(D .把()ab c 与()a b c ⋅⋅类比,则有()()a b c c a b ⋅⋅=⋅⋅ 7.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .48.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是数学老师、乙是语文老师、丙是英语老师B .甲是英语老师、乙是语文老师、丙是数学老师C .甲是语文老师、乙是数学老师、丙是英语老师D .甲是语文老师、乙是英语老师、丙是数学老师 9.用反证法证明命题:“若x ,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,反设正确的是( ) A .假设(1)f ,(2)f ,(3)f 至多有两个小于12B .假设(1)f ,(2)f ,(3)f 至多有一个小于12C .假设(1)f ,(2)f ,(3)f 都不小于12D .假设(1)f ,(2)f ,(3)f 都小于1210.用数学归纳法证明“11112321n ++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙二、填空题13.在xOy 平面上,将双曲线的一支221916x y -=(0)x >及其渐近线43y x =和直线0y =、4y =围成的封闭图形记为D ,如图中阴影部分,记D 绕y 轴旋转一周所得的几何体为Ω,过(0,)y (04)y ≤≤作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω体积为________14.已知数列1,12,21,13,22,31,14,23,32,41,,则76是数列中的第__________项.15.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)16.已知数列{}1214218421:,,,,,,,,,1121241248n a 其中第一项是0022,接下来的两项是100122,22,再接下来的三项是210012222,,222,依此类推,则9899a a ⨯=__________. 17.研究cos n α的公式,可以得到以下结论: 2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.在数列{a n }中,a 1=2,a n +1=31nn a a + (n ∈N *),可以猜测数列通项a n 的表达式为________.19.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234Sh h h h k+++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记nn na c T =,*n N ∈,证明:()122214n c c c n +++<+. 22.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 23.已知数列{}n x 满足1111,,21n nx x x +==+其中n *∈N .(Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论. 24.已知数列{}n a 中,11a =,136nn na a a +=-. (1)写出234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的结论. 25.数列{}n a 的前n 项和为n S ,且满足()*12N n n na S n S =+-∈.(Ⅰ)求1S ,2S ,3S ,4S 的值;(Ⅱ)猜想数列{}n S 的通项公式,并用数学归纳法证明你的结论. 26.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.D解析:D 【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了. 【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D. 【点睛】本题考查了推理与证明,关键是找到推理的切入点.3.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.4.C解析:C 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=, 294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.5.C解析:C 【解析】分析:由题意结合所给数据的特征确定第九个数即可.详解:观察所给的数列可知,数列的特征为:121,3a a ==,()213n n n a a a n --=-≥,则978193150a a a =-=--=-. 本题选择C 选项.点睛:本题主要考查数列的递推关系,学生的推理能力等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】分析:由题意逐一考查所给命题的真假即可. 详解:逐一考查所给命题的真假:A . 由指数的运算法则可得x y x y a a a +=,原命题错误;B . 由向量的运算法则可知:()2a ab a a b ⋅+=+⋅,原命题正确; C . 由多项式的运算法则可知)n n n n x y z x y z ++≠++(,原命题错误; D . 由平面向量数量积的性质可知()()a b c c a b ⋅⋅≠⋅⋅,原命题错误; 本题选择B 选项.点睛:本题主要考查类比推理及其应用等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.8.C解析:C 【解析】丙的年龄比语文老师大,则丙是数学老师或英语老师,不是语文老师;甲的年龄和英语老师不同,则甲是数学老师或语文老师,不是英语老师;选项B 错误; 英语老师的年龄比乙小,则乙是数学老师或语文老师,不是英语老师;选项D 错误; 选项A 中,英语老师的年龄比乙大,选项A 错误; 据此可得:甲是语文老师、乙是数学老师、丙是英语老师. 本题选择C 选项.9.D解析:D 【解析】试题分析:根据题意,由于反证法证明命题:“若2()f x x px q =++,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,即将结论变为否定就是对命题的反设,因此可知至少有一个的否定是一个也没有,或者说假设(1)f ,(2)f ,(3)f 都小于12,故选D.考点:反证法. 10.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k -到n=k+1,末项为11121212k k k+=--+,∴应增加的项数为2k . 故选C .11.D解析:D 【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案. 【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话, 这与四人中只有一个人说的是真话相矛盾, 故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.12.A解析:A【分析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.二、填空题13.【解析】分析:由已知中过(0y)(0≤y≤4)作Ω的水平截面计算截面面积利用祖暅原理得出Ω的体积详解:在xOy平面上将双曲线的一支及其渐近线和直线y=0y=4围成的封闭图形记为D如图中阴影部分则直线解析:36π.【解析】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支221916x y-=(0)x>及其渐近线43y x=和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a 与渐近线43y x =交于一点A (34a ,a )点,与双曲线的一支221916x y -=(0)x >交于B 2316+a 4a )点, 记D 绕y 轴旋转一周所得的几何体为Ω. 过(0,y )(0≤y≤4)作Ω的水平截面,则截面面积S=2223316944a ππ⎡⎤⎛⎫+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积, ∴Ω的体积V=9π×4=36π, 故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.14.【解析】分析:将所给数据分组发现每组数据分子分母以及分子与分母和的共同规律结合等差数列的求和公式求解即可详解:发现数列第一组分子与分组和为第二组分子与分母和为第三组分子与分母和为因为所以是第组第七个 解析:73【解析】分析:将所给数据分组,发现每组数据分子、分母以及分子与分母和的共同规律,结合等差数列的求和公式求解即可. 详解:1,12,21,13,22,31,14,23,32,41,,发现数列第一组11→分子与分组和为2, 第二组12,21→分子与分母和为3, 第三组13,22,31→分子与分母和为4,因为6713+=,所以76是第12组第七个数,第12组前面共有111212311662⨯++++==个数, 76是第66773+=项,故答案为73. 点睛:本题主要考查归纳推理,属于中档题. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质.②从已知的相同性质中推出一个明确表述的一般性命题(猜想),由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现十分有用,观察、实验、对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.15.丙【解析】假如甲说的是对的则乙说了假话丙说的是真话与条件不符;假如乙说的是真话则甲说的是假话丙说的也是假话符合条件;假如丙说的是真话则甲乙二人中必有一人说的是真话与条件不符所以乙说的是真话是丙做的好 解析:丙.【解析】假如甲说的是对的,则乙说了假话,丙说的是真话,与条件不符;假如乙说的是真话,则甲说的是假话,丙说的也是假话,符合条件;假如丙说的是真话,则甲乙二人中必有一人说的是真话,与条件不符,所以乙说的是真话,是丙做的好事.故答案为丙.16.1【解析】根据题意得到第98项是在这一列数中前边的数据共有91项再数7项是第98项数8项是第99项分别为两者相乘为1故答案为:1 解析:1【解析】根据题意得到第98项是在131200113222, (222)这一列数中,前边的数据共有91项,再数7项是第98项,数8项是第99项,分别为766722,22,两者相乘为1。
最新人教版高中数学选修2-2第二章《推理与证明复习》示范教案
第二章推理与证明复习课教学目标1.知识与技能目标(1)帮助学生进一步加深对合情推理和演绎推理的理解,力争使学生做到规范的应用这两种推理方法去解决相关问题;(2)掌握两种证明方法的思维过程和特点,并熟练掌握两种证明方法的操作流程;(3)进一步理解数学归纳法的基本原理、步骤,通过证明数学命题巩固对数学归纳法原理的再认识.2.过程与方法目标通过本章的学习,理解推理与证明的原理与方法,培养和提高学生的合情推理或演绎推理的能力,感受逻辑证明在数学以及日常生活中的作用,培养学生由具体到抽象的思维方法,提高学生的理性思维能力.3.情感、态度与价值观通过本章的学习,培养学生言之有理、论证有据的习惯,并能在今后的学习中有意识地使用这些推理与证明的方法.重点难点重点:(1)能利用归纳、类比、“三段论”进行简单推理;(2)了解综合法、分析法和反证法的思考过程与特点;(3)了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数n有关的数学命题.难点:(1)根据归纳、类比、“三段论”推理的结构和特点,进行简单推理(2)根据问题的特点,选择适当的证明方法或把不同的证明方法综合使用;(3)理解数学归纳法的思想实质,了解第二个步骤的作用,并且能够根据归纳假设作出证明.教学过程形成网络1.本章的知识结构图:2.本章基本知识点:(1)合情推理与演绎推理:①归纳推理的概念:根据一类事物的______对象具有某种性质,推出该类事物的____对象都具有这种性质的推理,或有____事实概括出________的推理,称为归纳推理(简称归纳).简言之,归纳推理是由______到________,由______到______的推理.②类比推理的定义:这种由两个(两类)对象具有__________和其中一类对象的某些__________,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由______到________的推理.③合情推理的定义:根据已有的事实,经过__________、__________、__________、__________,再进行__________、__________,然后提出猜想的推理,我们把它统称为合情推理.④演绎推理的定义:从____出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由______到______的推理.“三段论”是演绎推理的一般模式;包括(ⅰ)大前提——____________;(ⅱ)小前提——____________;(ⅲ)结论——______________.(2)直接证明与间接证明:①综合法定义:一般地,利用____________等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②分析法定义:一般地,从______出发,逐步寻求使它成立的__________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理),这种证明方法叫做分析法.③反证法定义:假设__________不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明________,从而证明了__________,这样的证明方法叫做反证法.④数学归纳法定义:一般地,证明一个与正整数n有关的命题P(n),可按下列步骤进行:(ⅰ)(归纳奠基)证明当______时命题成立;(ⅱ)(归纳递推)假设________命题成立,证明当____也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.提出问题:1.请同学们独立完成知识填空.2.在完成知识填空的同时,回想一下本章主要有哪些基本题型,解决这些基本题型的方法和步骤分别是什么?活动设计:学生独立完成基本知识填空,然后让几位同学口答填空答案,教师借助多媒体投影出知识填空的答案,适当的规范学生的表述,回忆旧知识,并思考、讨论回答所提出的问题.学情预测:学生在前面几节学习的基础上,能够顺利的完成基本知识填空,但在准确、规范表达上会存在着一定的差距;题型和方法的总结更是五花八门.活动结果:知识填空答案:(1)合情推理与演绎推理:①部分全部个别一般结论部分整体个别一般②某些类似特征已知特征特殊特殊③观察分析比较联想归纳类比④一般性的原理一般特殊已知的一般原理所研究的特殊情况据一般原理,对特殊情况作出的判断(2)直接证明与间接证明:①已知条件和某些数学定义、公理、定理②要证明的结论 充分条件③原命题 假设错误 原命题正确④(ⅰ)n 取第一个值n 0(n 0∈N *)(ⅱ)n =k(k ≥n 0,k ∈N *)时当n =k +1时命题设计意图全面系统地梳理基础知识,帮助学生巩固基础,加深对概念、公式、定理的理解,教师利用下一环节“典型示例”和同学们一块总结本章的重点题型和方法.典型示例类型一:归纳推理例1观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?思路分析:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质,(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).解:设f(n)为n 个点可连的弦的条数,则f(2)=1,f(3)=3,f(4)=6,…,猜想:f(n)=n (n -1)2. 点评:归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.巩固练习1.下列推理是归纳推理的是( )A .A 、B 为定点,若动点P 满足︱PA ︱+︱PB ︱=2a >︱AB ︱,则点P 的轨迹是椭圆B .由a 1=1,a n +1=3a n -1,求出S 1,S 2,S 3,猜想出数列的通项a n 和S n 的表达式C .由圆x 2+y 2=1的面积S =πr 2,猜想出椭圆的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇2.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的?( )A .白色B .黑色C .白色可能性大D .黑色可能性大答案:1.B 2.A类型二:类比推理例2在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{b n }中,若b 9=1,则有等式______成立.思路分析:找出两类对象之间可以准确表述的相似特征;然后,由一类对象的已知特征去推测另一类对象的特征,从而做出一个猜想.解:在等差数列{a n }中,若a 10=0,则a 1+a 19=a 2+a 18=…=a n +a 20-n =2a 10=0, 所以a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相似地,在等比数列{b n }中,若b 9=1,则有等式b 1·b 2·…·b n =b 1·b 2·…·b 17-n (n <17,n ∈N *)成立.点评:本题主要考查观察分析能力,抽象概括能力,考查运用类比的思想方法,由等差数列{a n }满足的一般结论,而得到等比数列{b n }所满足的一般结论.巩固练习平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地写出空间的一个四棱柱为平行六面体的两个充要条件.充要条件①________________.充要条件②________________.答案:①底面是平行四边形 ②两组相对侧面分别平行类型三:演绎推理例3如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AB ,BC 的中点.证明:平面MNB 1⊥平面BDD 1B 1.思路分析:本题所依据的大前提是面面垂直的判定定理,小前提是平面MNB 1与平面BDD 1B 1之间所满足的证明面面垂直所需要的条件,这是证明本题的关键.证明:在正方体ABCD —A 1B 1C 1D 1中,∵BB 1⊥平面ABCD ,MN ⊂平面ABCD ,∴BB 1⊥MN.∵MN ∥AC ,AC ⊥BD ,∴MN ⊥BD.又BD ∩BB 1=B ,∴MN ⊥平面BDD 1B 1.∵MN ⊂平面MNB 1,∴平面MNB 1⊥平面BDD 1B 1.点评:“三段论”中,第一个判断称为大前提,它提供了一个一般原理,第二判断叫小前提,指出了一个特殊情况,这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论,演绎推理是一种必然性推理,演绎推理的前提和结论之间有蕴含关系,因而,只要前提是真的,推理的形式是正确的,那么结论必然是真的,但错误的前提可导致错误的结论.巩固练习如果函数f(x +1)是偶函数,那么函数y =f(2x)的图象的一条对称轴是直线…( )A .x =-1B .x =1C .x =-12D .x =12答案:D类型四:直接证明例4已知a ,b ,c 为正实数,a +b +c =1.求证:a 2+b 2+c 2≥13. 思路分析:这是一个条件不等式的证明问题,要注意观察不等式的结构特点和已知条件的合理应用,从而选择出适当的证明方法.证明:(法一):a 2+b 2+c 2-13=13(3a 2+3b 2+3c 2-1)=13[3a 2+3b 2+3c 2-(a +b +c)2]=13(3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc)=13[(a -b)2+(b -c)2+(a -c)2]≥0,∴a 2+b 2+c 2≥13. (法二):(a +b +c)2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+b 2+c 2+c 2+a 2,∴3(a 2+b 2+c 2)≥(a +b +c)2=1.∴a 2+b 2+c 2≥13. (法三):设a =13+α,b =13+β,c =13+γ.∵a +b +c =1,∴α+β+γ=0. ∴a 2+b 2+c 2=(13+α)2+(13+β)2+(13+γ)2=13+23(α+β+γ)+α2+β2+γ2=13+α2+β2+γ2≥13.∴a 2+b 2+c 2≥13. 点评:充分利用“1”的代换是本题化简证明的关键.巩固练习已知数列{a n }的前n 项和S n =-a n -(12)n -1+2(n 为正整数),令b n =2n a n , 求证:数列{b n }是等差数列,并求数列{a n }的通项公式.解:(1)由S n =-a n -(12)n -1+2得a 1=-a 1+1 a 1=12, 并且a n +1=S n +1-S n =-a n +1-(12)n +2-[-a n -(12)n -1+2]=a n -a n +1+(12)n , 得到a n +1=12a n +12n +1.于是b n +1=2n +1a n +1=2n a n +1=b n +1. ∴数列{b n }是以1为首项,1为公差的等差数列.∵b n =b 1+(n -1)d ,∴b n =n.又∵b n =2n a n ,∴a n =n 2n . 类型五:间接证明例5已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于14. 思路分析:这是否定性命题,条件比较简单,直接证明比较难入手,可考虑用反证法.解:假设三式同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14, 三式同向相乘,得(1-a)a(1-b)b(1-c)c>164.① 又(1-a)a ≤(1-a +a 2)2=14,同理,(1-b)b ≤14,(1-c)c ≤14. 所以(1-a)a(1-b)b(1-c)c ≤164, 与①式矛盾,即假设前提不成立,故结论正确.点评:反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题,也常用反证法.巩固练习已知:ac ≥2(b +d).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根.证明:假设两方程都没有实数根,则Δ1=a 2-4b<0与Δ2=c 2-4d<0,有a 2+c 2<4(b +d),而a 2+c 2≥2ac ,从而有4(b +d)>2ac ,即ac<2(b +d),与已知矛盾,故原命题成立.类型六:数学归纳法例6已知等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r(b>0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. 解:(1)因为对任意的n ∈N *,点(n ,S n )均在函数y =b x +r 的图象上,所以得S n =b n +r. 当n =1时,a 1=S 1=b +r ;当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r)=b n -b n -1=(b -1)b n -1.又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1,b n =2(log 2a n +1)=2(log 22n -1+1)=2n ,则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立. ①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立. ②假设当n =k 时不等式成立,即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k >k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=(2k +3)24(k +1) =4(k +1)2+4(k +1)+14(k +1)=(k +1)+1+14(k +1)>(k +1)+1. 所以当n =k +1时,不等式也成立.由①、②可得不等式对任意的n ∈N *都成立.巩固练习1.用数学归纳法证明对n 为正偶数时某命题成立,若已假设n =k(k ≥2偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k 2成立时,总可推出f(k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f(3)≥9成立,则当k ≥1时,均有f(k)≥k 2成立B .若f(5)≥25成立,则当k ≤5时,均有f(k)≥k 2成立C .若f(7)<49成立,则当k ≥8时,均有f(k)<k 2成立D .若f(4)=25成立,则当k ≥4时,均有f(k)≥k 2成立答案:1.B 2.D拓展实例例 已知函数f(x)=a x +x -2x +1(a>1). (1)证明函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明f(x)=0没有负数根.思路分析:(1)直接利用函数单调性的定义证明即可.(2)合理利用第(1)问提供的结论,当f(x)=0有负数根时,利用函数与方程的关系,找到与已知矛盾的结论即可.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0,所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=3(x 2-x 1)(x 2+1)(x 1+1)>0, 于是f(x 2)-f(x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f(x)在(-1,+∞)上为增函数.(2)设存在x 0<0(x 0≠-1),满足f(x 0)=0,则ax 0=-x 0-2x 0+1,又0<ax 0<1,所以0<-x 0-2x 0+1<1, 即12<x 0<2与x 0<0(x 0≠-1)假设矛盾.故f(x 0)=0没有负数根. 点评:掌握综合法、分析法和反证法的思考过程、特点;根据问题的特点,选择适当的证明方法或把不同的证明方法综合使用.变练演编例用数学归纳法证明当n ∈N *时,1·n +2·(n -1)+3·(n -2)+…+(n -2)·3+(n -1)·2+n·1=16n(n +1)(n +2). 思路分析:与正整数有关的数学命题,可以用数学归纳法进行证明,故只需严格按照数学归纳法的步骤证明即可.证明:(1)当n =1时,1=16·1·2·3,结论成立. (2)假设n =k 时结论成立,即1·k +2·(k -1)+3·(k -2)+…+(k -2)·3+(k -1)·2+k·1=16k(k +1)(k +2). 当n =k +1时,则1·(k +1)+2·k +3·(k -1)+…+(k -1)·3+k·2+(k +1)·1=1·k +2·(k -1)+…+(k -1)·2+k·1+[1+2+3+…+k +(k +1)]=16k(k +1)(k +2)+12(k +1)(k +2)=16(k +1)(k +2)(k +3), 即当n =k +1时结论也成立.综合上述,可知结论对一切n ∈N *都成立.点评:一般地,证明一个与正整数n 有关的命题,有如下步骤:(1)证明当n 取第一个值n 0时命题成立;(2)假设当n =k(k ≥n 0,k 为自然数)时命题成立,证明当n =k +1时命题也成立. 提出问题:是否存在常数a ,b 使等式1·n +2·(n -1)+3·(n -2)+…+(n -2)·3+(n -1)·2+n·1=16n(n +a)(n +b)对一切自然数n 都成立,并证明你的结论.活动设计:引导学生适当改变题目的条件和结论,进行一题多变,学生自己设计题目进行研究,对于数学归纳法不应只满足于证明现成的结论,更应当认真思考结论是如何得到的;归纳推理常起到重要的作用是:“归纳—猜想—证明”是由特殊到一般的重要思维方法.活动结果:令n =1,得1=16(1+a)(1+b),令n =2,得4=26(2+a)(2+b), 整理得⎩⎪⎨⎪⎧ab +a +b =5,ab +2(a +b )=8.解得a =1,b =2. 数学归纳法证明过程见“变练演编”中的例题.设计意图通过本题发现,探索性命题的解题思路是:从给出的条件出发,通过观察、实验、归纳、猜想,探索出结论,然后再对归纳猜想的结论进行证明.达标检测1.下面说法正确的个数有( )①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般形式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式无关.A .1个B .2个C .3个D .4个2.若a ,b ,c 是不全相等的实数,求证:a 2+b 2+c 2>ab +bc +ca.证明过程如下:∵a ,b ,c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又∵a ,b ,c 不全相等,∴以上三式至少有一个“=”不成立,∴将以上三式相加得2(a 2+b 2+c 2)>2(ab +bc +ac),∴a 2+b 2+c 2>ab +bc +ca.此证法是( )A .分析法B .综合法C .分析法与综合法并用D .反证法3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1)[2(k +1)2+1] 答案:1.B 2.B 3.B课堂小结1.知识收获:(1)合情推理与演绎推理;(2)直接证明与间接证明;(3)数学归纳法.2.方法收获:(1)推理的三种基本方法:归纳推理、类比推理、演绎推理;(2)证明问题的三种基本方法:综合法、分析法、反证法;(3)用数学归纳法证明与自然数有关的命题.3.思维收获:学会使用日常学习和生活中经常使用的思维方法,感受逻辑证明在数学以及日常生活中的作用,并养成言之有理,论证有据的好习惯.布置作业本章复习参考题A 组第5题、第7题.补充练习基础练习1.如果数列{a n }是等差数列,则( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 52.设f 0(x)=sinx ,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n +1(x)=f n ′(x),n ∈N ,则f 2 007(x)等于( )A .sinxB .-sinxC .cosxD .-cosx3.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a的值( ) A .都大于2 B .至少有一个不大于2C .都小于2D .至少有一个不小于24.已知f(x +1)=2f (x )f (x )+2,f(1)=1(x ∈N *),猜想f(x)的表达式为( ) A .f(x)=42x +2 B .f(x)=2x +1C .f(x)=1x +1D .f(x)=22x +1答案:1.B 2.D 3.D 4.B拓展练习5.已知数列{a n }满足S n +a n =2n +1,(1)写出a 1,a 2,a 3,并推测a n 的表达式;(2)用数学归纳法证明所得的结论.解:(1)a 1=32,a 2=74,a 3=158,猜测a n =2-12n . (2)①由(1)已得当n =1时,命题成立;②假设n =k 时,命题成立,即a k =2-12k , 当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1,且a 1+a 2+…+a k =2k +1-a k ,∴2k +1-a k +2a k +1=2(k +1)+1=2k +3.∴2a k +1=2+2-12k ,a k +1=2-12k +1, 即当n =k +1时,命题成立.根据①②得n ∈N *,a n =2-12n 成立. 设计说明设计思想:通过基础知识填空,帮助学生回顾基本概念、定理和相关结论,通过典型示例总结本章的基本题型和方法;通过练习和作业加深对概念的理解和应用的熟练性.设计意图:由于本章概念多、理论性较强,通过基础知识填空,帮助学生准确记忆相关概念,并形成本章的知识网络;通过典型示例教学总结题型和方法,熟练相关题型的解题步骤和准确规范的表述;教学中不要急于求成,而应在后续的教学中经常借助这些概念表达、阐述和分析.设计特点:从学生的认知基础出发结合具体的题型和方法,加深概念理解的同时,熟练相关方法的应用,同时在应用新知的过程中,将所学的知识条理化,使自己的认知结构更趋合理.备课资料例1:若a 、b 、c 均为实数,且a =x 2-2x +π2,b =y 2-2y +π3,c =z 2-2z +π6,求证:a 、b 、c 中至少有一个大于0.思路分析:直接证明较难入手,运用反证法进行证明.证明:设a 、b 、c 都不大于0,a ≤0,b ≤0,c ≤0,∴a +b +c ≤0.而a +b +c =(x 2-2x +π2)+(y 2-2y +π3)+(z 2-2z +π6)=(x 2-2x)+(y 2-2y)+(z 2-2z)+π=(x -1)2+(y -1)2+(z -1)2+π-3,∴a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0.点评:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明比较困难或难以证明时,可运用反证法进行证明.反证法的基本思想是:通过证明命题的否定是假命题,从而说明原命题是真命题.例2:数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…). 证明:(1)数列{S n n}是等比数列;(2)S n +1=4a n . 思路分析:利用a n 与S n 的关系,合理转化已知条件a n +1=n +2n S n即可. 证明:(1)由a n +1=n +2n S n ,而a n +1=S n +1-S n 得n +2n S n=S n +1-S n . ∴S n +1=2(n +1)n S n .∴S n +1n +1S n n=2.∴数列{S n n}为等比数列. (2)由(1)知{S n n }的公比为2,∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1,∴S n +1=4a n . 点评:综合法又叫顺推法,其实质就是由因导果法.例3:已知a>0,b>0,a +b =1,求证:(a +1a )(b +1b )≥254. 思路分析:用分析法将一个较为复杂的不等式转化为简单的不等式,找到使之成立的充分条件.证明:要证(a +1a )(b +1b )≥254,只需证4a 2b 2+4(a 2+b 2)+4≥25ab , ∵a +b =1,∴a 2+b 2=1-2ab.只需证4a 2b 2+4(1-2ab)+4≥25ab ,即4a 2b 2-33ab +8≥0.(*)只需证ab ≤14或ab ≥8.∵a>0,b>0,a +b =1≥2ab ,∴ab ≤14. 又ab ≥8不可能,∴ab ≤14时,使得(*)式成立.∴原不等式成立. 点评:由待证结论出发,步步寻找使该结论成立的充分条件.例4:在△ABC 中(如图1),若CE 是∠ACB 的角平分线,则AC BC =AE BE.其证明过程:作EG ⊥AC 于点G ,EH ⊥BC 于点H ,CF ⊥AB 于点F.∵CE 是∠ACB 的平分线,∴EG =EH.又∵AC BC =AC·EG BC·EH =S △AEC S △BEC ,AE BE =AE·CF BE·CF =S △AEC S △BEC ,∴AC BC =AE BE. (1)把上面结论推广到空间中:在四面体A —BCD 中(如图2),平面CDE 是二面角A-CD-B 的角平分面,类比三角形中的结论,你得到的相应空间的结论是__________.(2)证明你所得到的结论.图1 图2思路分析:运用类比思想,由平面图形边长成比例类比到空间图形面积(体积)成比例.解:(1)结论:S △ACD S △BCD =AE BE 或S △ACD S △BCD =S △AEC S △BEC 或S △ACD S △BCD =S △AED S △BED. (2)证明:设点E 到平面ACD 、平面BCD 的距离分别为h 1、h 2,则由平面CDE 平分二面角A-CD-B 知h 1=h 2.又∵S △ACD S △BCD =h 1S △ACD h 2S △BCD =V A —CDE V B —CDE ,AE BE =S △AED S △BED =V C —AED V C —BED =V A —CDE V B —CDE .∴S △ACD S △BCD =AE BE. 点评:类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳,从而提出猜想.(设计者:赵海彬)。
人教版 选修2-2第二章推理与证明 同步教案
例2. 在ABC ∆中,若090=∠C ,则1cos cos 22=+B A ,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.例3. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文d c b a ,,,对应密文d d c c b b a 4,32,2,2+++,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为( ). A . 4,6,1,7 B . 7,6,1,4C . 6,4,1,7D . 1,6,4,7 【方法技巧】1.归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性).2.类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等.做题时应注意:(1)找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积,平面上的角对应空间角等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等. 3.掌握利用“三段论”进行推理.巩固训练1. 图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --= .(答案用数字或n 的解析式表示)2. 已知ABC ∆的三边长为c b a ,,,内切圆半径为r (用的面积表示ABC S ABC ∆∆),则ABC S ∆)(21c b a r ++=;类比这一结论有:若三棱锥BCD A -的内切球半径为R ,则三棱锥体积=-BCD A V .3. 对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=………( )A .(4,0)B .(2,0)C .(0,2)D .(0,4)-(1)写出,,21a a 3a ;(2)求数列}{n a 的通项公式【方法技巧】1.用数学归纳法证明与自然数有关的一些等式,命题关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关,由到时等式的两边会增加多少项,增加怎样的项.2.在证明过程中,(I )考虑“n 取第一个值的命题形式”时,需认真对待,一般情况是把第一个值代入通项,考察命题的真假,(II )步骤②在由到的递推过程中,必须用归纳假设,不用归纳假设的证明就不是数学归纳法.3. “归纳——猜想——证明”是一个完整的发现问题和解决问题的思维模式.巩固训练1.用数学归纳法证明:2333112(1)()2n n n n N *⎡⎤++⋅⋅⋅+=+∈⎢⎥⎣⎦2.已知数列1111,,,,,122334n(1)n ⋅⋅⋅⋅⋅⋅⨯⨯⨯+,计算1234,,,S S S S ,由此推测计算n S 的公式,并用数学归纳法证明.课后作业1.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误2.用反证法证明命题:“三角形内角和至少有一个不大于060”时,应假设()A.三个内角都不大于060 B.三个内角都大于060C.三个内角至多有一个大于060 D. 三个内角至多有两个大于0603.若三角形能剖分为两个与自己相似的三角形,那么这个三角形一定是()A.锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.如图第n个图形是由正2n+边形“扩展”而来(1,2,3)n=⋅⋅⋅,则第n2-个图形中共有个顶点.5.对大于或等于2的自然数m的n次方幂有如下分解方式:2213=+23135=++241357=+++3235=+337911=++3413151719=+++根据上述分解规律,则2513579=++++,若3*()m m N∈的分解中最小的数是73,则m的值为_ __ . 6.在平面直角坐标系中,直线一般方程为0=++CByAx,圆心在),(yx的圆的一般方程为222)()(ryyxx=-+-;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在),,(zyx的球的一般方程为_______________________.7.如果函数)(xf在区间D上是凸函数,那么对于区间D内的任意1x,2x,…,nx,都有)()()()(2121nxxxfnxfxfxfnn+++≤+++.若xy sin=在区间(0,)π上是凸函数,那么在ABC∆中,CBA sinsinsin++的最大值是________________.8.设P是ABC∆内一点,ABC∆三边上的高分别为Ah、Bh、Ch,P到三边的距离依次为al、bl、cl,则有a b cA B Cl l lh h h++=______________;类比到空间,设P是四面体ABCD内一点,四顶点到对面的距离分别是Ah、Bh、Ch、Dh,P到这四个面的距离依次是al、bl、cl、dl,则有_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推理与证明
一、核心知识
1.合情推理
(1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体,由个别到一般的推理。
(2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊到特殊的推理。
2.演绎推理
(1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般到特殊的推理。
(2)演绎推理的主要形式:三段论
“三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
3.直接证明
直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
(1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
(2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。
要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
4反证法
(1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
(2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正确。
(3)反证法的思维方法:正难则反
5.数学归纳法(只能证明与正整数有关的数学命题)的步骤
(1)证明:当 n 取第一个值 n0(n0∈N*)时命题成立;
(2)假设当 n=k (k ∈N*,且 k≥n0)时命题成立,证明当 n=k+1 时命题也成立 由(1),(2)可知,命题对于从 n0 开始的所有正整数 n 都正确。
二、典型例题 例1. 已知2()
(1),(1)1()2
f x f x f f x +==+ *x N ∈()
,猜想(f x )的表达式为( ) A.4()22x f x =
+; B.2()1f x x =+; C.1()1f x x =+; D.2
()21
f x x =+. 例2. 已知*111()1()23f n n N n =++++∈L ,计算得3(2)2f =,(4)2f >,5
(8)2f >,(16)3f >,
7
(32)2
f >
,由此推测:当2n ≥时,有 例3. 已知:23150sin 90sin 30sin 222=++οοο; 2
3
125sin 65sin 5sin 222=++οοο
通过观察上述两等式的规律,请你写出一般性的命题:________________________________________=
2
3
( * )并给出( * )式的证明.例4.若c b a ,,均为实数,且6
2,3
2,2
2222πππ+-=+-=+-=x z c z y b y x a 。
求证:c b a ,,中至少有一个大于0。
例5.求证:1+3+5+…+(2n+1)=(n ∈N*)
三、课后练习
1.数列1,3,6,10,15,…的递推公式可能是( ) A.⎩⎨⎧
a 1=1,a n +1=a n +n (n ∈N *
)
B.⎩⎨⎧
a 1=1,
a n =a n -1+n (n ∈N *
,n ≥2)
C.⎩⎨⎧
a 1=1,a n +1=a n +(n -1)(n ∈N *
)
D.⎩⎨⎧
a 1=1,
a n =a n -1+(n -1)(n ∈N *
,n ≥2)
2.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)
2
(n ∈N *)时,验证n =1,左
边应取的项是( )
A .1
B .1+2
C .1+2+3
D .1+2+3+4 3.已知f (n )=1
n +1n +1+1n +2+…+1
n 2,则( )
A .f (n )中共有n 项,当n =2时,f (2)=12+1
3
B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1
4
C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1
3
D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1
4
4.已知a +b +c =0,则ab +bc +ca 的值( )
A .大于0
B .小于0
C .不小于0
D .不大于0
5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <b C .a =b D .a 、b 大小不定 6.若
sin A
a
=
cos B
b
=
cos C
c
,则△ABC 是( )
A .等边三角形
B .有一个内角是30°的直角三角形
C .等腰直角三角形
D .有一个内角是30°的等腰三角形 7.观察式子:474
131211,3531211,23211222222<+++<++<
+,…,则可归纳出式子为( )A 、121131211222-<+++n n Λ B 、121
131211222+<+++n n ΛC 、n n n
1213
12
112
2
2
-<
++
+
Λ
D 、122131211222+<+++n n
n
Λ8.设)()(,cos )('
010x f x f x x f ==,'21()(),,f x f x =L '1()()n n f x f x +=,n ∈N ,则=)(2008x f 9.函数()f x 由下表定义:
若05a =,1()n n a f a +=,0,1,2,n =L ,则2007a = . 10.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为_____.
11.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖___________块.(用含n 的代数式表示)48n +
12. △ABC 的三个内角A 、B 、C 成等差数列,求证:c
b a
c b b a ++=
+++3
11。
13.用分析法证明:若a >0,则21
212
2-+
≥-+
a
a a a 。
14.ABC ∆中,已知B a b sin 323=,且C A cos cos =,求证:ABC ∆为等边三角形。
15.已知:a 、b 、c ∈R,且a +b +c =1. 求证:a 2+b 2+c 2≥1
3.。