问题四物体平衡问题中的临界问题

合集下载

平衡中的临界极值问题

平衡中的临界极值问题

平衡中的临界和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。

极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。

临界问题往往是和极值问题联系在一起的。

平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。

求解平衡的临界问题一般用极限法。

极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。

在平衡中最常见的临界问题有以下两类: 一、以弹力为情景1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。

2. 绳子断与持续的临界条件是:作用力达到最大值;绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。

例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。

解:作出A 受力图如图所示,由平衡条件有:F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为:N F N 33403320≤≤变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断?(2)要使细线不被拉断,拉力F 不得超过多少?变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承受的最大拉力均为T ,则每根绳的长度不得短于__ ____.例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。

物体平衡的临界与极值问题

物体平衡的临界与极值问题

例6、光滑斜面上用细线吊着一重物G=10N,小球处于静止状态=300,=600直角劈形木块质量M=2kg,用外力顶靠在竖直墙上,已知木块与墙之间最大静摩擦力和木块对墙的压力成正比,即fm=kFN,比例系数k=0.5,则垂直作用于BC边的外力F应取何值木块保持静止。
f动=μ(mgcosθ±F) f静= mgsinθ
f动=μ(mgcosθ±Fsinθ) f静= |mgsinθ-Fcosθ|
例2、如图所示,物体m与斜面体M一起静止在水平面上.若将斜面的倾角θ稍微增大一些,且物体m仍静止在斜面上,则 ( ) 斜面体对物体的支持力变小 斜面体对物体的摩擦力变大 水平面与斜面体间的摩擦力变大 水平面与斜面体间的摩擦力变小
【解析】 对小球进行受力分析如图所示,根据物体的平衡条件有,当力F较小时,OB张紧,OC有可能松弛,当力F较大时,OC张紧,OB有可能松弛.由此可知,OC刚要松弛和OB刚要松弛是此问题的临界条件.
【例6】如图所示,用绳AC和BC吊起一重物,绳与竖直方向夹角分别为30°和60°,AC绳能承受的最大拉力为150N,而BC绳能承受的最大的拉力为100N,求物体最大重力不能超过多少?
例4.如右图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m,且M、m相对静止,小车后来受力个数为 ( ) A.3 B.4 C.5 D.6
【解析】 对M和m整体,它们必受到重力和地面支持力,因小车静止,由平衡条件知墙面对小车必无作用力,以小车为研究对象.如右图所示,它受四个力;重力Mg,地面的支持力FN1,m对它的压力FN2和静摩擦力Ff,由于m静止,可知Ff和FN2的合力必竖直向下,故B项正确. 【答案】 B
例3.如图所示,在水平力F作用下,A、B保持静止,若A与B的接触面是水平的,且F≠0,则关于B的受力个数可能为( ) 3 4 5 6

专题八 静、动态平衡 平衡中的临界与极值问题 (课件) 人教版2023-2024学年高三一轮复习

专题八  静、动态平衡 平衡中的临界与极值问题 (课件) 人教版2023-2024学年高三一轮复习

【答案】D 【详解】AB.对小球受力分析,如图所示,根据受力平衡可得 F mg tan , T mg ,移动过程中,θ逐渐增大,tanθ逐渐增大,
cos
cosθ逐渐减小,则水平拉力F逐渐增大,细线的拉力逐渐增大,故 AB错误;CD.以铁架台、小球整体为研究对象,根据受力平衡可得 FN (M m)g ,f F,可知桌面对铁架台的支持力不变,即铁架台对桌面的压力不变; 铁架台所受地面的摩擦力变大,故C错误,D正确。 故选D。
经典例题
[典例1](2024·全国·高三专题练习)如图所示,壁虎在竖直玻璃面上斜 向上匀速爬行,关于它在此平面内的受力分析,下列示意图中正确的是( )
A.
B.
C.
D.
【答案】A 【详解】壁虎在竖直玻璃面上匀速爬行,属于匀速直线运动,对壁虎进行受力分析 由图可知,F与mg大小相等,方向相反。 故选A。
当物理情景中涉及物体较多时,就要考虑采用整体法和隔离法。
(1)整体法
研究外力对系统的作用 各物体运动状态相同
同时满足上述两个条件即可采用整体法。
(2)隔离法
分析系统内各物体各部分间相互作用 各物体运动状态可不相同
物体必须从系统中隔离出来,独立地进行受力分析,列出方程。
变式训练
变式3(2023秋·天津西青·高一天津市西青区杨柳青第一中学校考期末)一 铁架台放在水平桌面上,其上用轻质细线悬挂一小置运动到虚线位置,铁架台始 终保持静止。则在这一过程中( ) A.水平拉力F不变 B.细线的拉力变小 C.铁架台对桌面的压力变大 D.铁架台所受地面的摩擦力变大
A.5N
B.6N C.7.5N D.8N
【答案】B
【详解】设F与水平方向夹角为θ,根据平衡知识可知:F cos (mg F sin ) ,解得

高考物理一轮复习 第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题

高考物理一轮复习 第二章 专题强化四 动态平衡问题 平衡中的临界、极值问题

个状态均可视为平衡状态.
2.做题流程 受力分析 —化—“—动—”—为—静→画不同状态平衡图构造矢量三角形 —“—静—”—中—求—动→
—定—性—分—析→ 根据矢量三角形边长关系确定矢量的大小变化
三角函数关系
—定—量—计—算→ 正弦定理
找关系求极值
相似三角形
3.三力平衡、合力与分力关系 如图,F1、F2、F3共点平衡,三力的合 力 为 零 , 则 F1 、 F2 的 合 力 F3′ 与 F3 等 大 反 向 , F1 、 F2 、 F3′ 构 成 矢 量 三 角 形 , 即F3′为F1、F2的合力,也可以将F1、F2、 F3直接构成封闭三角形.
√A.MN上的张力逐渐增大
B.MN上的张力先增大后减小
C.OM上的张力逐渐增大
√D.OM上的张力先增大后减小
以重物为研究对象分析受力情况,受重力mg、OM绳上拉力F2、MN上 拉力F1,由题意知,三个力的合力始终为零,矢量三角形如图所示, F1、F2的夹角为π-α不变,在F2转至水平的过程中, 矢量三角形在同一外接圆上,由图可知,MN上的 张力F1逐渐增大,OM上的张力F2先增大后减小, 所以A、D正确,B、C错误.
以结点B为研究对象,分析受力情况,作出力的合成图如图,根据平 衡条件知,F、FN的合力F合与G大小相等、方向相反. 根据三角形相似得AFC合 =AFB=BFCN 又 F 合=G 得 F=AACB G,FN=BACC G ∠BCA缓慢变小的过程中,AB变小,而AC、BC 不变,则F变小,FN不变,故杆BC所产生的弹 力大小不变,故选A.
2.一力恒定(如重力),另一力与恒定的力不垂直但方向不变,作出不同状 态下的矢量三角形,确定力大小的变化,恒力之外的两力垂直时,有极 值出现. 基本矢量图,如图所示

处于平衡状态中的极值问题和临界问题

处于平衡状态中的极值问题和临界问题

处于平衡状态中的极值问题和临界问题预备知识:1、极值问题:平衡物体的极值问题,一般指在力的变化过程中的最大值和最小值问题。

解决临界问题的方法:是解析法,即根据物体的平衡条件列出方程,在解方程时,采用数学知识求极值或者根据临界条件求极值。

另外图解法也是常用的一种方法,即根据物体的平衡条件作出力的矢量图,画出平等四边形或者矢量三角形进行动态分析,确定最大值或最小值。

2、临界问题:由某种物理现象变化灰另一种物理现象或由某种物理状态变化为另一种物理状态时,发生转折的状态叫临界状态,往往利用“恰好出现”或“恰好不出现”的语句来表述。

解决这类问题的基本方法是假设推理法,即先假设某种情况成立,然后再根据平衡条件及有关知识进行论证、求解。

例1(两物体刚好发生相对滑动模型)(单选)如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧,紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度。

已知滑块与板的动摩擦因数及最大静摩擦因数均为3,现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到竖直,此过程中弹簧的弹力大小F 随夹角θ的变化关系可能是图中的哪一个?分析:这是临界问题—两物体刚好发生相对滑动的模型。

由关键词“缓慢”,可知滑块处于动态平衡。

在板的右端缓慢抬起的过程中,可知在夹角θ较小时,滑块与板相对静止;夹角θ较大时,滑块相对板滑动。

进而分析可知,板与水平面的夹角存在一临界值α,此时滑块所受的摩擦力恰为最大静摩擦力。

易知,板与水平面的夹角小于临界角时,滑块所受的摩擦力为静摩擦力;大于临界角时,摩擦力为滑动力,从而问题得解。

解析:设板与水平面的夹角为α时,滑块相对于板刚要滑动。

则由sin cos mg mg αμα=得:tan αμ==,030α= 则θ在0030 的范围内,弹簧处于原长,弹力F =0。

当板与水平面的夹角大于α时,滑块相对板缓慢滑动,由平衡条件得:()()()()()sin sin cos sin cos sin cos cos (sin cos sin cos )sin sec sin cos cos F mg mg mg mg mg mg mg βθμθθμθθθβθββθθββθβββθβθβ⎛⎫=-=-=- ⎪⎝⎭=-=-=-=-=- (注意:其中tan βμ=)小结:解决这类问题的关键是寻找临界条件。

第7课时:动态平衡 临界状态和极值问题

第7课时:动态平衡 临界状态和极值问题

第7课时:动态物体 平衡的临界状态和极值问题一、动态平衡二、平衡的临界状态所谓的临界状态是指一种物理现象转变为另一种物理现象,或者从一个物理过程转入到另一个物理过程的转折状态。

我们也可以将其理解为“恰好出现”或者“恰好不出现”某种现象的状态。

而平衡物体的临界状态是指物体所处的平衡状态将要变化的状态。

3.如图所示,小球质量为m=2kg ,用两根轻绳AB ,AC 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为60°的力F ,使小球平衡时,两绳均伸直,则力F 的大小应满足什么条件?8.如图所示放在光滑斜面上的小球,一端系于固定的O 点,现用外力缓慢将斜面在水平桌面上向左推移,使小球上升(最高点足够高),在斜面运动过程中,绳对球的拉力将( ) A 先增大后减小 B 先减小后增大C 直接增大D 一直减小9.如图所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共力为1T .现保持小球在原位置不动,使绳b在原竖直同固定一个小球,这时绳b的拉的拉力变为2T ;再转过θ角固定,绳b的拉力为3T ,平面内逆时转过θ角固定,绳b则( )A .1T =3T >2TB .1T <2T <3TC .1T =3T <2TD .绳a的拉力减小三、平衡的极值问题所谓极值问题是指研究平衡问题中某物理量变化情况时出现的最大值或者最小值。

研究物理极值问题和临界问题的基本观点有二:1、物理分析:通过对物理过程分析,抓住临界或者极值条件进行求解;2、数学讨论:通过对物理问题的分析,依据物理规律列出物理量之间的函数关系,用数学方法求极值。

这种方法一定要依据物理理论对解的合理性以及物理意义进行讨论或者说明。

研究临界问题的基本方法:一般采用先假设一种情况的存在,然后再根据平衡条件以及有关知识列方程求解。

研究平衡物体的极值问题有两种方法:1、解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值。

平衡中的临界与极值问题

平衡中的临界与极值问题

突破5平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。

突破临界问题的三种方法(1)【解析】法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。

通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等。

(2)图解法根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值。

(3)极限法极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大'、“极小”、“极右”、“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解。

2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或【解析】法进行分析.处理极值问题的两种基本方法(1)【解析】法:根据物体的平衡条件列方程,通过数学知识求极值的方法.此法思维严谨,但有时运算量比较大,相对来说较复杂,而且还要依据物理情境进行合理的分析讨论.学%科网(2)图解法:根据物体的平衡条件作出力的矢量三角形,然后由图进行动态分析,确定极值的方法.此法简便、直观.【典例1】倾角为0=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数《=0.5。

现给A施加一水平力F如图所示。

设最大静摩擦力与滑动摩擦力相等(sin 37°= 0.6, cos 37°= 0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2【答案】A【典例2】如图所示,一球A 夹在竖直墙与三角劈B 的斜面之间,三角形劈的重力为G ,劈的底部与 水平地面间的动摩擦因数为用劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过 多大?(设劈的最大静摩擦力等于滑动摩擦力)【答案】:球的重力不得超过 1 兴G【跟踪短训】1.将两个质量均为m 的小球a 、b 用细线相连后,再用细线悬挂于O 点,如图所示。

好---高中物理力学中的临界问题分析

好---高中物理力学中的临界问题分析

高中物理力学中的临界问题分析1、运动学中的临界问题例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)当两车相距最远时汽车的速度多大?例题二、在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?针对练习:(07海南卷)两辆游戏赛车、在两条平行的直车道上行驶。

时两车都在同一计时线处,此时比赛开始。

它们在四次比赛中的图如图所示。

哪些图对应的比赛中,有一辆赛车追上了另一辆(AC)二、平衡现象中的临界问题例题:跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).针对练习1:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F针对练习2:(98)三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳A、必定是OAB、必定是OBC、必定是OCD、可能是OB,也可能是OC三、动力学中的临界问题例题一:如图所示,在光滑水平面上叠放着A、B两物体,已知m A=6 kg、m B=2 kg,A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20N,现水平向右拉细线,g取10 m/s2,则 ( )A.当拉力F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受A的摩擦力等于4 ND.无论拉力F多大,A相对B始终静止针对练习:(2007)江苏卷如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。

第二章 专题四 动态平衡问题 平衡中的临界、极值问题

第二章 专题四 动态平衡问题 平衡中的临界、极值问题

另外两个力方向均发生变化,但两者的夹角不变.作出不同
状态的矢量三角形,利用两力夹角不变,结合正弦定理列
式求解,也可以作出动态圆,恒力为圆的一条弦,根据不
同位置判断各力的大小变化,如图5所示.
图5
返回目录
专题四
动态平衡问题
平衡中的临界、极值问题
方法5:相似三角形法
特征:一个恒力,两个变力,找出几何三角形.
000 kV的高压线上带电作业的过程.如图所示,绝缘轻绳OD一端固定在高压线杆塔
上的O点,另一端固定在兜篮D上.另一绝缘轻绳跨过固定在杆塔上C点的定滑轮,一
端连接兜篮,另一端由工人控制.身穿屏蔽服的王进坐在兜篮里,缓慢地从C点运动
到处于O点正下方E点的电缆处.绳OD一直处于伸直状态,兜篮、王进及携带的设备
( √
)
[解析] 对系统整体受力分析可知,竖直方向受到的地面的支持力始终等于系统所
受的重力,故正确.
(2)斜面所受地面的摩擦力一定增加.
(
√ )
[解析] 对整体受力分析,可知斜面所受地面摩擦力一定增大,故正确.
返回目录
专题四
动态平衡问题
命题点3
平衡中的临界、极值问题
正弦定理法的应用
3. [2024河北邯郸开学联考]《大国工匠》节目中讲述了王进利用“秋千法”在1
运动到B点的过程中,夹角θ从0°增大到90°,所以推力F一直减小,滑块受到的支持
力一直增大,A、B错误.将滑块和工件看作一个整体,对整体受力分析,如图所
示,根据平衡条件可得N=(m+M)g-F cos θ=(m+M)g-mg cos 2 θ,f=F sin θ=
1
2
mg cos θ sin θ= mg sin 2θ,夹角θ从0°增大到90°,地面对工件的支持力 N一直增

动态平衡问题专题——平衡物体的临界、极值问题分析

动态平衡问题专题——平衡物体的临界、极值问题分析

动态平衡问题专题——临界、极值问题平衡物体的临界问题:某种物理现象变化为另一种物理现象的转折状态叫做临界状态。

临界状态也可理解为“恰好出现”或“恰恰不出现”某种现象的状态。

平衡物体的临界状态是指物体所处的平衡状态将要被破坏而尚未破坏的状态。

涉及临界状态的问题叫做临界问题,解答临界问题的基本思维方法是假设推理法。

平衡物体的极值问题:受几个力作用而处于平衡状态的物体,当其中某个力的大小或方向按某种形式发生改变时,为了维持物体的平衡,必引起其它某些力的变化,在变化过程中可能会出现极大值或极小值的问题。

研究平衡物体的极值问题常用解析法和图解法。

1跨过定滑轮的轻绳两端,分别系着物体A和B,物体A放在倾角为θ的斜面上,如图。

已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量取值范围。

解析:先选物体B为研究对象,它受到重力m B g和拉力F T的作用,根据平衡条件有:F T=m B g ①再选物体A为研究对象,它受到重力mg、斜面支持力F N、轻绳拉力F T和斜面的摩擦力作用,假设物体A处于将要上滑的临界状态,则物体A受的静摩擦力最大,且方向沿斜面向下,这时A的受力情况如图乙所示,根据平衡条件有:F N-mg cosθ=0 ②F T-F fm-mg sinθ=0 ③由摩擦力公式知:F fm=μF N ④联立①②③④四式解得m B=m(sinθ+μcosθ).再假设物体A处于将要下滑的临界状态,则物体A受的静摩擦力最大,且方向沿斜面向上,根据平衡条件有:F N-mg cosθ=0 ⑤F T+F fm-mg sinθ=0 ⑥第1页联立①⑤⑥④四式解得m B=m(sinθ-μcosθ).故,物体B的质量的取值范围是:m(sinθ-μcosθ)≤m B ≤m(sinθ+μcosθ).2如图,不计重力的细绳AB与竖直墙夹角为60º,轻杆BC与竖直墙夹角为30º,杆可绕C自由转动,若细绳承受的最大拉力为200N,轻杆能承受的最大压力为300N,则在B点最多能挂多重的物体?解析:将物体对B点的拉力F进行分解,显然F=G假设绳与轻杆均被不拉断.当细绳承受的拉力F1最大时,轻杆所受的压力当轻杆承受的压力F2最大时,细绳所受的拉力由此可以当物体的重力逐渐增加时,轻杆承受的压力先达到最大.此时物体的重力达到最大.3半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,OA绳和OB绳所受的力大小如何变化?第2页第3页解析:OB绳的B 端沿半圆支架从水平位置逐渐移至竖直的位置C 的过程中,物体始终处于平衡状态,找出不变的物理量,画出平行四边形进行分析.对结点O 受力分析如图:结点O 始终处于平衡状态,所以OB 绳和OA 绳上的拉力的合力大小保持不变,方向始终是竖直向上的.所以OA 绳受力大小变化情况:逐渐变小;OB 绳受力大小变化情况是:先变小后变大4如图,一倾角为θ的固定斜面上有一块可绕其下端转动的挡板P ,今在挡板与斜面间夹一个重为G 的光滑球,试分析挡板P 由图示位置逆时针转到水平位置的过程中,球对挡板的压力如何变化?解析:受力分析如图,将F 1与F 2合成,其合力与重力等大反向如图:挡板转动时,挡板给球的弹力F 1与斜面给球的弹力F 2合力大小方向不变,其中F 2的方向不变,作辅助图如上,挡板转动过程中,F 1第4页的方向变化如图中a 、b 、c 的规律变化,为满足平行四边形定则,其大小变化规律为先变小后变大,其中挡板与斜面垂直时为最小.与此对应,F 2的大小为一直减小.根据牛顿第三定律,球对挡板的压力是先减小后增加,对斜面的压力是不断减小。

临界问题归纳

临界问题归纳

临界问题归纳【临界问题归纳】高考物理的八种“临界情况”相信很多同学都有这样的经验,在做题时,看不出这是临界情况,头脑一热,就走到别的路上了,结果兵败滑铁卢!一、刚好不追尾两物体最终速度相等或者接触时速度相等。

二、刚好不拆分两物体仍然接触、弹力为零,且速度和加速度相等。

三、刚好不滑动1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。

2.斜面上物体刚好不上(下)滚:静摩擦力为最小静摩擦力,物体均衡。

3.保持物体静止在斜面上的最小水平推力:静摩擦力为最大静摩擦力,物体平衡。

4.带动物体的最轻力:静摩擦力为最小静摩擦力,物体均衡。

四、运动到某一极端位置1.绳端物体刚好通过最高点(耦合最高点):物体运动至最高点时重力(耦合重力)等同于向心力,速度大小为(gr)1/2[(gˊr)1/2].2.杆端物体刚好通过最高点:物体运动到最高点时速度为零。

3.刚好运动至某一点:抵达该点时速度为零。

4.物体刚好滑出(滑不出)小车:物体滑到小车一端时与小车速度刚好相等。

5.粒子刚好飞出来(飞不出)两个极板间的匀强电场:粒子沿极板的边缘箭出来(粒子运动轨迹与极板切线)。

6.粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。

五、速度达至最小或最小时:物体难以承受的合外力为零,即为加速度为零1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。

2.导体厉害在磁场中搞研磨运动时超过稳定状态:感应电流产生的安培力和其他力的合力均衡。

六、某一量达到极大(小)值1.两个物体距离最近(离):速度成正比。

2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。

3.并使通电导线在弯曲导轨上恒定的最轻磁感应强度:安培力平行于斜面。

4.穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。

七、绳的临界问题1.绳刚好被拉直:绳上拉力为零。

2.绳刚好被折断:绳上的张力等同于绳能忍受的最小拉力。

3.绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。

2025届高三物理一轮复习专题突破四动态平衡问题平衡中的临界和极值问题(28张PPT)

2025届高三物理一轮复习专题突破四动态平衡问题平衡中的临界和极值问题(28张PPT)
解析 设两根细绳对圆柱体的拉力的合力为FT,木板对圆柱体的支持力为FN,由平衡条件得FT、FN的合力方向竖直向上,大小等于圆柱体的重力G。作合成图中三角形的外接圆,初状态时FN水平向左,FT过圆的圆心,如图中实线所示。木板以直线MN为轴向后方缓慢转动直至水平过程中,
FT、FN的夹角不变,且合力不变,如图中虚线所示,可知两根细绳对圆柱体拉力的合力FT一直减小,木板对圆柱体的支持力FN先增大后减小,根据牛顿第三定律得圆柱体对木板的压力先增大后减小,A、D两项错误, B项正确;两根细绳的夹角不变,随着合力的减小,两根细绳上的拉力也一直减小,C项错误。
解析 如图所示,以小球为研究对象,小球受到重力、细绳的拉力和斜面的支持力,三力平衡。根据平衡条件得知拉力与支持力的合力与重力大小相等,方向相反,且重力保持不变,作出三个位置拉力与支持力的合成示意图,可得细绳由水平方向逐渐向上偏移时,拉力F先逐渐减小后逐渐增大,D项正确。
答案 D
考向3 相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例进行计算。
第二章
相互作用——力
专题突破四 态平衡问题 平衡中的临界和极值问题
1.学会用解析法、图解法、相似三角形法等解答动态平衡问题。2.会用极限分析法或数学分析法等解答平衡中的临界和极值问题。
1.动态平衡问题是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态。2.基本思路:化“动”为“静”,“静”中求“动”。
考向2 物理分析法根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值。
答案 A

高考物理总复习课件动态平衡问题和平衡中的临界极值问

高考物理总复习课件动态平衡问题和平衡中的临界极值问
认真阅读题目,明确题目要求和考查的知 识点,避免答非所问或漏答关键信息。
05
高考真题回顾与模拟训练
历年高考真题精选讲解
精选近五年高考物理试卷中涉及动态平衡 和平衡中临界极值问题的真题
对真题进行深入剖析,包括解题思路、方 法、技巧和易错点等
通过真题讲解,帮助学生熟悉高考命题规 律和考试要求,提高应试能力
模拟试卷编制与实战演练
01
根据高考物理考试大纲和命题趋势,编制针对动态 平衡和平衡中临界极值问题的模拟试卷
02
试卷难度适中,涵盖各种题型,包括选择题、填空 题、计算题等
03
学生进行实战演练,模拟考试场景,提高解题速度 和准确性
学生自主练习推荐
01 推荐适合学生自主练习的习题集或辅导资料,包 括基础题、提高题和拓展题等
平衡中的临界极值问题中,易忽视临 界条件的分析和判断。在解题时,应 注意分析物体的受力情况,找出临界 条件,并结合数学方法求解极值。
相关领域前沿动态介绍
在物理学研究领域,动态平衡问题和平衡中的临界极值问题一直是研究的热点。近年来,随着计算机技术的发展和应用,数 值模拟方法逐渐成为解决这类问题的有效手段。通过数值模拟,可以更加直观地展示物体的受力情况和运动过程,为理论分 析和实验验证提供有力支持。
定义
动态平衡指的是物体在受到外力作用 时,通过内部调节机制使自身保持平 衡状态的过程。
特点
动态平衡是一个不断调整的过程,物 体在平衡状态附近做微小的振动或摆 动,但总体上能够保持相对稳定。
常见动态平衡现象举例
单摆
单摆在摆动过程中,受到重力和 拉力的作用,通过不断调整自身 的角度和速度,保持动态平衡。
力的方向
在临界状态下,物体受到的力的方向往往与运动方向或速度方向有关。

平衡中的临界与极值问题(解析版)

平衡中的临界与极值问题(解析版)

突破5平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。

突破临界问题的三种方法(1)【解析】法根据物体的平衡条件列方程,在解方程时采用数学知识求极值。

通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等。

(2)图解法根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值。

(3)极限法极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大”、“极小”、“极右”、“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解。

2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或【解析】法进行分析.处理极值问题的两种基本方法(1)【解析】法:根据物体的平衡条件列方程,通过数学知识求极值的方法.此法思维严谨,但有时运算量比较大,相对来说较复杂,而且还要依据物理情境进行合理的分析讨论.学%科网(2)图解法:根据物体的平衡条件作出力的矢量三角形,然后由图进行动态分析,确定极值的方法.此法简便、直观.【典例1】倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。

现给A施加一水平力F,如图所示。

设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.5【答案】 A【典例2】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)【答案】:球的重力不得超过G【跟踪短训】1. 将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示。

平衡中的临界与极值问题

平衡中的临界与极值问题

平衡中的临界与极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松驰的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大.研究的基本思维方法:假设推理法.2.极值问题平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.例1 重为G 的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作用力F 使木块做匀速运动,则此最小作用力的大小和方向应如何?解析 木块在运动过程中受摩擦力作用,要减小摩擦力,应使作用力F 斜向上,设当F 斜向上与水平方向的夹角为α时,F 的值最小.木块受力分析如图所示,由平衡条件知:F cos α-μF N =0,F sin α+F N -G =0解上述二式得:F =μG cos α+μsin α令tan φ=μ,则sin φ=μ1+μ2,cos φ=11+μ2可得F =μG cos α+μsin α=μG1+μ2cos (α-φ) 可见当α=φ时,F 有最小值,即F min =μG1+μ2答案μG 1+μ2与水平方向成α角且tan α=μ 解决极值问题和临界问题的方法(1)图解法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.(2)数学解法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值). 突破训练1 如图1 所示,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B 处于静止状态.若要使两小球处于静止状态且悬线OA 与竖直方向的夹角θ保持30°不变,则外力F 的大小 ( )图1A .可能为33mgB .可能为52mgC .可能为2mgD .可能为mg答案 BCD 解析 本题相当于一悬线吊一质量为2m 的物体,悬线OA 与竖直方向夹角为30°,与悬线OA 垂直时外力F 最小,大小为mg ,所以外力F 大于或等于mg ,故B 、C 、D 正确.。

高考物理一轮复习导学:动态平衡、平衡中的临界和极值问题

高考物理一轮复习导学:动态平衡、平衡中的临界和极值问题

§2.6 动态平衡、平衡中的临界和极值问【考点自清】一、平衡物体的动态问题(1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。

在这个过程中物体始终处于一系列平衡状态中。

(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。

(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。

解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。

图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。

二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。

物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。

临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。

(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。

高考物理第一轮复习同步导学平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。

解决这类问题关键是要注意“恰好出现”或“恰好不出现”。

2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。

平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。

【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题四物体平衡问题中的临界问题
问题四:关于物体平衡问题中的临界问题
1、用细绳AC 和BC 吊起一重物,两绳与竖直方向的夹角如图1-47所示,AC 能承受的最大拉力为150N ,BC 能承受的最大拉力为100N .为使绳子不断裂,所吊重物的质量不能超过多少?
2、一光滑球重力为G ,半径为R ,靠着墙角静止在水平地面上,一厚度为h (h <R )的木块塞在球的左下方,如图所示,现用水平力F 推木块,忽略各接触处的摩擦力,则当F 的值至少为多少时,才能将球从地面推起来?
3060图1B C
A F
3、跨过定滑轮的轻绳两端,分别系着物体A 和物体B ,物体A 放在倾角为θ的斜面上,如图所示,已知物体A 的质量为m ,物体与斜面的
动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A 静止在斜面上,求物体B 的质量的
取值范围(最大摩擦力与滑动摩擦力的大小相等)。

4、拖把是由拖杆和拖把头构成的擦地工具(如图)。

设拖把头的质量为m ,拖杆
质量可忽略;拖把头与地板之间的
动摩擦因数为常数μ,重力加速度
为g 。

某同学用该拖把在水平地板
上拖地时,沿拖杆方向推拖把,拖
A θ B
杆与竖直方向的夹角为θ。

(1)若拖把头在地板上匀速移动,求推拖把的力的大小。

(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。

已知存在一临界角θ0.若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动。

求这一临界角的正切tanθ0。

解:(1)设该同学沿拖杆方向用大
小为F 的力推拖把。

将推拖把的力
沿竖直和水平方向分解,按平衡条
件有
Fcosθ+ mg=N ①
Fsinθ=f ②
式中N 和f 分别为地板对拖把的正压力和摩擦力。

按摩擦定律有 f=μN ③
联立①②③得F=mg θμθμcos sin - ④
(2)若不管沿拖杆方向用多大的力都不能使
拖把从静止开始运动,应有Fsinθ≤λN ⑤这时①式仍满足,联立①⑤得
mg
sinθ-λcosθ≤λ
F
现考察使上式成立的θ角的取值范围,注意到上式右边总是大于零,且当F无限大时极限为零,有sinθ-λcosθ≤0 ⑦
使上式成立的θ角满足θ≤θ0,这里θ0是题中所定义的临界角,即当θ≤θ0时,不管沿拖杆方向用多大的力都推不动拖把。

临界角的正切为tanθ0=λ。

相关文档
最新文档