函数中的面积问题
一次函数与面积结合问题解题技巧
一次函数与面积结合问题解题技巧全文共四篇示例,供读者参考第一篇示例:一次函数与面积结合问题解题技巧一次函数是初中数学中最基本的一种函数形式,通常表示为y = kx + b,其中k和b为常数,x为自变量,y为因变量。
面积问题是数学中常见的问题类型之一,需要运用数学知识来求解。
当一次函数与面积结合在一起时,往往需要运用数学知识和解题技巧来解决问题。
本文将为大家介绍一次函数与面积结合问题解题的技巧,并通过实例来解释具体的解题方法。
一、如何将一次函数与面积联系起来在解决一次函数与面积结合问题时,我们需要先找到函数表达式和面积之间的联系。
通常,我们可以通过一次函数的图像和面积来建立它们之间的关系。
若给定一次函数y = 2x + 1,要求计算函数图像在一定区间内与x 轴之间的面积,我们可以先绘制函数的图像,然后找出其与x轴之间的面积。
二、一次函数与矩形面积的关系在一次函数与面积结合问题中,经常会出现与矩形面积有关的题目。
矩形的面积等于长乘以宽,即S = l*w。
如果给定一个矩形的长度为x,宽度为y = kx + b(k和b为常数),我们可以通过一次函数的表达式计算出矩形的面积。
三、利用一次函数的特性解决面积问题如果一个图形可以通过两条一次函数的交点来确定,我们也可以通过两条函数的表达式来求出图形的面积。
四、实例解析为了帮助大家更好地理解一次函数与面积结合问题的解题方法,我们来看一个实例:例:已知一次函数y = 2x + 3和直线y = x + 1的交点A、B、C、D,求由四个点构成的四边形的面积。
解:我们可以通过求解两条直线的交点来确定四个点的坐标。
将两条直线的表达式相等,得到x = -2,将x = -2代入其中一条直线的表达式中,得到交点坐标为(-2, -1)。
接下来,根据交点的坐标,我们可以求得四边形的边长,进而计算出四边形的面积。
将四个点连接起来可以得到一个平行四边形,根据平行四边形面积公式S = 底边长*高得到面积。
如何求解三角函数中的面积最值问题
如何求解三角函数中的面积最值问题
三角函数中的面积最值问题是数学中的一个经典问题,可以通过求解函数的导数来找到最值点。
以下是一个简单的步骤来解决这个问题:
1. 确定函数表达式:首先确定你要研究的三角函数,比如正弦函数、余弦函数或者其他函数。
2. 求导:对函数进行求导,得到函数的导数。
3. 解方程:将导数等于零,然后解方程来找到导数的零点或者驻点。
4. 求最值:对于找到的驻点,将其带入原函数,计算得到对应的面积值。
5. 比较结果:比较所有驻点对应的面积值,找到最大值或最小值。
举个例子,假设我们要求解正弦函数sin(x)在区间[0, π]上的面积最大值。
按照上述步骤进行:
1. 函数表达式:该问题中,函数表达式为sin(x)。
2. 求导:对sin(x)求导得到cos(x),即函数的导数。
3. 解方程:将cos(x)等于零,得到x=π/2,在区间[0, π]上找到导数为零的点。
4. 求最值:将x=π/2带入原函数sin(x),计算得到面积值为1。
5. 比较结果:该区间上面积最大值为1,没有更大的值。
通过以上步骤,我们可以求解三角函数中的面积最值问题。
需要注意的是,这个方法只适用于简单的三角函数,对于复杂的函数或更复杂的问题,可能需要使用更高级的数学工具和技巧来求解。
二次函数面积问题(整)
二次函数面积问题(整)1.题型一:割补法1.1 求解析式已知抛物线经过点A(4,)和点B(,2),且对称轴为直线l,顶点为C,求解析式。
由对称性可知,顶点C的横坐标为4/2=2,代入抛物线方程得2b+c=-4,又由于抛物线经过点A和B,代入方程可得2b+c=16和-b+c=2.解方程组得b=-3,c=2,代入方程y=-x^2-3x+2即可得到解析式。
1.2 求面积连接AC、BC、BD,求四边形ADBC的面积。
由于AC和BC在对称轴上,所以它们的长度相等。
设AC=BC=x,由顶点C的坐标可知,AC和BC的纵坐标分别为2和-2,因此四边形ADBC的面积为x*4+1/2*x*(-4)=2x。
2.如图,在直角坐标系中,已知直线y=x+4与y轴交于A 点,与x轴交于B点,C点坐标为(-2,),求解析式和四边形AOBM的面积。
2.1 求解析式由于抛物线经过点A、B、C,所以可以列出三个方程,分别是c=4,a+b+c=0,4a-2b+c=-2.解方程组得a=1,b=-3,c=4,因此抛物线的解析式为y=x^2-3x+4.2.2 求面积设抛物线的顶点为M,连接AM和XXX,求四边形AOBM的面积。
由于抛物线的对称轴与x轴垂直,所以顶点M的横坐标为1.5,代入抛物线方程可得纵坐标为4.25.因此,四边形AOBM的面积为1/2*2*4.25=4.25.3.已知抛物线y=3(x+1)^2-12如图所示3.1 求交点坐标抛物线与y轴的交点为(-3,-3),因为当x=0时,y=-3.抛物线与x轴的交点为(-3±2√3,0),因为当y=0时,x=-1±√3.3.2 求面积设顶点D的坐标为(-1,0),连接AD和BD,求四边形ABCD的面积。
由于AD和BD在对称轴上,所以它们的长度相等。
设AD=BD=x,由顶点D的坐标可知,AD和BD的纵坐标分别为3和-3,因此四边形ABCD的面积为x*6+1/2*x*6=9x。
二次函数中的面积问题(学生版)
二次函数与几何综合专题----面积问题【模型解读】1.比例问题大部分题目的处理方法可以总结为两种:(1)计算;(2)转化. 策略一:运用比例计算类 策略二:转化面积比如图,B 、D 、C 三点共线,考虑△ABD 和△ACD 面积之比.转化为底:共高,面积之比化为底边之比:则.更一般地,对于共边的两三角形△ABD 和△ACD ,连接BC ,与AD 交于点E ,则.策略三:进阶版转化 在有些问题中,高或底边并不容易表示,所以还需在此基础上进一步转化为其他线段比值,比如常见有:“A ”字型线段比、“8”字型线段比. “A ”字型线段比:.DCBA::ABDACDSSBD CD =HABC:::ABDACDSSBM CN BE CE ==M N EDCBA :::ABDACDSSBD CD BA AM ==MDCBA“8”字型线段比:.转化为垂线:共底,面积之比化为高之比:.面积能算那就算,算不出来就转换; 底边不行就作高,还有垂线和平行.2.铅垂高求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法. 【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:111:::ABDACDSSBD CD AB CM ==MDCBA:::ABDACDSSBD CD BM CN ==MNABCD【方法总结】作以下定义:A、B两点之间的水平距离称为“水平宽”;过点C作x轴的垂线与AB交点为D,线段CD即为AB边的“铅垂高”.如图可得:=2ABCS⨯水平宽铅垂高引例1:如图,在平面直角坐标系xOy中,抛物线2y x bx c=++与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,3OA OC==,顶点为D,对称轴交x轴于点E.(1)求抛物线的解析式、对称轴及顶点D的坐标.(2)求四边形ABCD的面积.(3)抛物线上是一点P,若△PAC面积为1,求P点坐标(4)抛物线上是否存在点P,使得ACP ACDS S=(12ACP ACDS S=),若存在,求出点P的坐标;若不存在,请说明理由.铅垂高水平宽DABCxyOE(5)抛物线上是否存在点P ,使得BP 平分ABC 的面积,若存在,求出点P 的坐标;若不存在,请说明理由.(6)直线AC 下方的抛物线上有一动点P ,过点P 作PM x 轴于点M ,使得AC 平分APM △的面积,若存在,求出点P 的坐标;若不存在,请说明理由.(7)过E 点的直线l 将四边形ABCD 的面积分成2:7两部分,求直线l 的解析式.引例2:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点 (1)求抛物线解析式。
二次函数中的面积计算问题(包含铅垂高)
(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。
278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。
抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。
思想分析这个问题是二次函数中的常见面积问题。
该方法不是唯一的。
可以使用截补法,但是有点麻烦。
如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。
掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。
答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。
将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。
二次函数的应用(面积最值问题)
二次函数的应用(面积最值问题)[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值X 围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道与在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的X 围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008XXXX)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)XX 市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008XXXX)将一X 边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyOAM (图5) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值X 围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的X 围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2)中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ACD P Q解:∵∠APQ=90°,∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年XX 市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008XX 内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008XXXX)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值X 围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值X 围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年XX 市)随着绿城XX 近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉与树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +==∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08XX 聊城)如图,把一X 长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm ,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm . (2)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm 时, 长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08XX)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。
二次函数中的面积问题
二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。
● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。
一次函数图象中的面积问题
例 4 已知直线 Y :一 +2与 轴 、 Y轴分别交于点 A、 点 B, 另一直线 Y=k x+b ( k ≠0 ) 经过点 C ( 1 , 0 ) 与直
.
.
s ∞ = + S A A o B  ̄ - 了 1
S A A C D: c・ DE, A C =I , DE =y 0 ,
・ . .
即(
丽
・ .
+v / 芝
+
) < 8
> 0, 点评此题 中用 Nhomakorabea 替 换
T, 缩小分 母 , 放 大分
数, 问题获解.
.
+
_ 『< = z / Y
+
一
总之 , 利用放缩法 解题 时 , 应 把握 住放 缩 的 目标 和 放缩 的适度 , 问题才能得到合理解决. ) 放
k+b=0,
4 了 2)
,
/ c E A\
r
‘ ・
i 争 号 . 解 之 尼 2 ,
T— z / h - - -  ̄= 1的大小.
√n
( 上接 6 6页 )
应 用相 关知识使问题迅速获解.
≠ 丽 , 于是 ( 丽
解
一
。 . ‘ o ≠b , . ・ . 丽 r ) > O .
) 并
点评
大为 ( 丽
解 题 的关键 是 将 (
+ 丽 ) +( 丽
珏
氯
J
/
\/ B
~
其坐标为 ( ‰, Y o ) .
・ . ’
点A 、 点 B是 直线 Y= 一 + 2与 轴 、 Y轴 的交
点,
‘ . .
点A ( 2 , 0 ) , 点n ( o , 2 ) .
二次函数中面积问题
专题10 二次函数中面积问题方法1 割补法求面积1.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线()2240y ax ax a a =-++<经过点B .(1)求该抛物线的函数表达式:(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2)21252528S m ⎛⎫=--+ ⎪⎝⎭;当52m =时,S 取得最大值258.【解析】 【分析】(1)根据题意先求出点B 的坐标,然后代入二次函数解析式求解即可;(2)由题意可求点A 坐标,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则有03m <<,然后根据割补法求面积即可.【详解】解:(1)把0x =代入33y x =-+得3y =, △(0,3)B .把(0,3)B 代入224y ax ax a =-++, 得34a =+,△1a =-.△抛物线的解析式为2y x 2x 3=-++;(2)令0y =,则2230x x -++=,解得1x =-或3, △抛物线与x 轴的交点横坐标分别为1-和3. △点M 在抛物线上,且在第一象限内, △03m <<.将0y =代入33y x =-+,得033x =-+,解得1x =, △(1,0)A .如解图,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则2111(31)2223132AOBOBMOAMAOBOAMB S S SSSSm m m =-=+-=⨯⨯+⨯-⨯-++⨯⨯四边形 2215122522528m m m ⎛⎫=-+=--+⎪⎝⎭, △102-<,且03m <<, △当52m =时,S 取得最大值258. 【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.方法2 铅锤高水平宽求面积2.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;解:(1)由题意得:4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,△抛物线解析式为y=﹣x2+2x+3;(2)△A(0,3),D(2,3),△抛物线对称轴为x=1,△E(3,0),设直线AE的解析式为y=kx+3,△3k+3=0,解得,k=﹣1,△直线AE的解析式为y=﹣x+3,如图1,作PM△y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),△PM=﹣t2+2t+3+t﹣3=﹣t2+3t,△12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,△t=32时,△PAE的面积最大,最大值是278.方法3 △=0时求面积最大3.如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式; (2)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.(1)将A (-1,0)、点C(0,-2).代入232y ax x c =-+ 求得:213222y x x =-- (2)已求得:B (4,0)、C (0,-2),可得直线BC 的解析式为:y=12x -2; 设直线l△BC ,则该直线的解析式可表示为:y=12x+b , 当直线l 与抛物线只有一个交点时,可列方程:12x+b=12x 2-32x -2,即:12x 2-2x -2-b=0,且△=0; △4-4×12(-2-b )=0,即b=-4; △直线l :y=12x -4.所以点M 即直线l 和抛物线的唯一交点,有: 213222{142y x x y x =--=-,解得:2{3x y ==-即 M (2,-3).过M 点作MN△x 轴于N ,S△BMC=S 梯形OCMN+S△MNB -S△OCB=12×2×(2+3)+12×2×3-12×2×4=4. △点M (2,﹣3),△MBC 面积最大值是4. 考点:二次函数综合题.类型拓展1 求四边形面积4.如图1,在平面直角坐标系中,一次函数y =12x ﹣2的图象与x 轴交于点B ,与y 轴交于点C ,抛物线y =12x 2+bx +c 的图象经过B 、C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)若点D 在直线BC 下方的抛物线上,如图1,连接DC 、DB ,设四边形OCDB 的面积为S ,求S 的最大值;解:(1)对于y =12x ﹣2,令y =12x ﹣2=0, 解得:x =4; 令x =0,则y =﹣2,故点B 、C 的坐标分别为(4,0)、(0,﹣2);将点B 、C 的坐标代入抛物线表达式得2116402c b c =-⎧⎪⎨⨯++=⎪⎩,解得:322b c ⎧=-⎪⎨⎪=-⎩, 故抛物线的表达式为213222y x x =--①; (2)连接OD ,点D 的坐标为(x ,213222x x --),则S =S △ODC +S △ODB =12×OC ×D x +12×BO ×(﹣D y )=12×2×x +12×4×(213222x x -++)=﹣x 2+4x +4,△﹣1<0,故S 有最大值, 当x =2时,S 有最大值8;5.如图,抛物线2y x bx c =-++与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点,连接AC .(1)求抛物线的表达式;(2)点E 为直线BC 上方的抛物线上的一动点(点E 不与点B ,C 重合),连接BE ,CE ,设四边形BECA 的面积为S ,求S 的最大值; (1)解:(1)将(1A -,0)(3B ,0)代入2y x bx c =-++,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,223y x x ∴=-++;(2)(2)过E 作EF x ⊥轴于点F ,与BC 交于点H ,(1A -,0)(3B ,0),4AB ∴=当0x =时,3y =,(0,3)C ∴,3OC ∴=,设2(,23)F a a a -++,则(,3)H a a -+,222333EH a a a a a ∴=-+++-=-+,ABC BCE BECA S S S ∆∆=+四边形,21143(3)322S a a ∴=⨯⨯+-+⨯ 236(3)2a a =+-+23375()228a =--+,∴当32a =时,S 的最大值为758;类型拓展2 抛物线上有且只有三个点6.如图1,已知抛物线y =ax 2+2x +c (a ≠0),与y 轴交于点A (0,6),与x 轴交于点B (6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P 是抛物线上的动点,若在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,求这三个点的坐标及定值S .解:(1)△抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).△603612ca c=⎧⎨=++⎩△126 ac⎧=-⎪⎨⎪=⎩△抛物线解析式为:y=﹣12x2+2x+6,△y=﹣12x2+2x+6=﹣12(x﹣2)2+8,△顶点坐标为(2,8)(2)△点A(0,6),点B(6,0),△直线AB解析式y=﹣x+6,当x=2时,y=4,△点D(2,4)如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设直线PC解析式为y=﹣x+b,△﹣12x2+2x+6=﹣x+b,且只有一个交点,△△=9﹣4×12×(b﹣6)=0△b =212, △直线PC 解析式为y =﹣x +212, △当x =2,y =172, △点C 坐标(2,172), △CD =92,△﹣12x 2+2x +6=﹣x +92,△x =3, △点P (3,152) △在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,△另两个点所在直线与AB ,PC 都平行,且与AB 的距离等于PC 与AB 的距离, △DE =CD =92,△点E (2,﹣12),设P 'E 的解析式为y =﹣x +m , △﹣12=﹣2+m , △m =32△P 'E 的解析式为y =﹣x +32,△﹣12x 2+2x +6=﹣x +32,△x =△点P '(,﹣32﹣,P ''(3﹣,﹣32,△S =12×6×(152﹣3)=272.7.如图,直线334y x =-+与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 234y ax x c =++经过 B 、C 两点.(1)求抛物线的解析式;(2)如图,点 E 是抛物线上的一动点(不与 B ,C 两点重合),△BEC 面积记为 S ,当 S 取何值时,对应的点 E 有且只有三个?【答案】(1)233384y x x =-++;(2)3【解析】 【分析】(1)先利用一次函数解析式确定B (0,3),C (4,0),然后利用待定系数法求抛物线解析式;(2)由于E 点在直线BC 的下方的抛物线上时,存在两个对应的E 点满足△BEC 面积为S ,则当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S ,所以过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+,利用方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解求出b 得到E 点坐标,然后计算此时S △BEC . 【详解】(1)当x=0时,y=-34x+3=3,则B (0,3),当y=0时,-34x+3=0,解得x=4,则C (4,0),把B (0,3),C (4,0)代入y=ax 2+34x+c 得383a c ⎧=-⎪⎨⎪=⎩, 所以抛物线解析式为233384y x x =-++;(2)当E 点在直线BC 的下方的抛物线上时,一定有两个对应的E 点满足△BEC 面积为S , 所以当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S , 即此时过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+, 方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解, 方程23333844x x x b -++=-+有两个相等的实数解, 则△=122-4×3×(-24+8b )=0,解得b=92,解方程得x 1=x 2=2, E 点坐标为(2,3), 此时1343322BEC S ⎛⎫=⨯⨯-= ⎪⎝⎭, 所以当S=1时,对应的点E 有且只有三个.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.8.如图,直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线223y x bx c =-++经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是抛物线上的一动点(不与B ,C 两点重合),当14BEC BOC S S =△时,求点E 的坐标;(3)若点F 是抛物线上的一动点,当BFC S △为什么取值范围时,对应的点F 有且只有两个?【答案】(1)225433y x x =-++;(2)1E ⎝⎭,2E ⎝⎭,34222E ⎛-+ ⎝⎭,44222E ⎛+- ⎝⎭;(3)当163BFC S >△时,对应的点F 有且只有两个.【解析】【分析】(1)根据待定系数法,即可求解;(2)过点E 作x 轴的垂线交BC 于点N ,设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,点(,4)N a a -+,根据12BEC B C S EN x x =-△,14BEC BOC S S =△,列出方程,即可求解; (3)当F 点在直线BC 的下方的抛物线上时,一定有两个对应的F 点满足BCF △面积为S ,当F 点在直线BC 的上方的抛物线上时,无F 点满足BCF △面积为S 才符合题意,故只需要求出当点F 在直线BC 的上方时,BFC S △的最大值,即可得到结论 .【详解】(1)△直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,△(0,4)B ,(4,0)C ,将(0,4)B ,(4,0)C 代入223y x bx c =-++, 可得2424403c b c =⎧⎪⎨-⨯++=⎪⎩,解得534b c ⎧=⎪⎨⎪=⎩, △225433y x x =-++; (2)如图,过点E 作x 轴的垂线交BC 于点N , 设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,则点(,4)N a a -+, △2212541624423333BEC B C S EN x x a a a a a =-=-+++-=-+△, △182BOC S BO OC =⋅=△,14BEC BOC S S =△, △2416233a a -+=,解得:1x =2x =3x =4x = 将1x ,2x ,3x ,4x代入抛物线解析式,可得:1y =,2y =3y =4y =△1E ⎝⎭,2E ⎝⎭,34222E ⎛ ⎝⎭,44222E ⎛ ⎝⎭; (3)当点F 在直线BC 上方的抛物线上时,设点225,433F m m m ⎛⎫-++ ⎪⎝⎭, 由(2)同理可得:22416416(2)3333BFC S m m m =-+=--+△, △当2m =时,BFC S △的最大值为163, △当BFC S △>163时,在直线BC 的上方的抛物线上无法找到F 点, 综上所述:当163BFC S >△时,对应的点F 有且只有两个.【点睛】本题主要考查二次函数与一次函数的综合,掌握待定系数法,函数图像上的点的坐标特征以及三角形的面积=铅垂高×水平宽,是解题的关键.类型拓展3 综合运用9.综合与实践 如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是()4,0,与y 轴交于点()0,3C -,点D 在抛物线上运动.(1)求抛物线的表达式;(2)如图2,当点D 在第四象限的抛物线上运动时,连接BD ,CD ,BC ,当BCD △的面积最大时,求点D 的坐标及BCD △的最大面积;(1)解:点B ()4,0和点()0,3C -代入二次函数234y x bx c =++, 得:01243b c c=++⎧⎨-=⎩ 解得943b c ⎧=-⎪⎨⎪=-⎩. △抛物线的表达式是239344y x x =--. (2) 解:如图,连接OD ,过点D 作DM x ⊥轴,作DN y ⊥轴.设点D 的坐标是239,344m m m ⎛⎫-- ⎪⎝⎭.△239344DM m m =-++,DN m =. △()4,0B ,()0,3C -,△4OB =,3OC =.△BCD OCD OBD OBC S S S S =+-△△△△111222OC DN OB DM OB OC =⋅+⋅-⋅ 2113913434322442m m m ⎛⎫=⨯+⨯-++-⨯⨯ ⎪⎝⎭ 2362m m =-+ 23(2)62m =--+. △302-<, △当2m =时,BCD △的面积最大且为6.当2m =时,2239399322344442m m --=⨯-⨯-=-. △点D 的坐标是92,2⎛⎫- ⎪⎝⎭,BCD △的最大面积是6. 10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()()3,0,0,3B C ,点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D ,若OD m =,PCD 的面积为S ,求S 与m 的函数关系式,并求当S 取得最大值时,点P 的坐标;(1)解:将点B (3,0),C (0,3)代入y =-x 2+bx +c ,得09333b c =-++⎧⎨=⎩;解得23b c =⎧⎨=⎩, △二次函数的解析式为y =-x 2+2x +3;(2)△y =-x 2+2x +3=-(x -1)2+4,△顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, △直线BM 的解析式为y =-2x +6,△PD △x 轴且OD =m ,△P (m ,-2m +6),△S =S △PCD =12PD •OD =12m (-2m +6)=-m 2+3m ,即S =-m 2+3m ,△当点P 与点B 重合时,不存在以P 、C 、D 为顶点的三角形,△1≤m <3,△S =-m 2+3m =-(m -32)2+94, △-1>0,△当m =32时,S 取最大值94;此时点P 的坐标为332⎛⎫ ⎪⎝⎭,. 11.如图,在平面直角坐标系中,抛物线2y ax bx c =++的对称轴为2x =,与y 轴交于点A 与x 轴交于点E 、B ,且点(0,5)A ,(5,0)B ,过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的点,且在AC 的上方,作PD 平行于y 轴交AB 于点D .(1)求二次函数的解析式;(2)当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(1) 解:抛物线2y ax bx c =++的对称轴为2x =, △22b a-=, 4b a ∴=-,∴抛物线解析式为24y ax ax c =-+,点(0,5)A ,(5,0)B ,∴52550c a b c =⎧⎨-+=⎩, ∴15a c =-⎧⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)解://AC x 轴,点(0,5)A ,当5y =时,2455x x -++=,10x ∴=,24x =,(4,5)C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,(0,5)A ,(5,0)B ,由点A 、B 的坐标得,直线AB 的解析式为5y x =-+;设2(,45)P m m m -++,,5()D m m ∴-+,224555PD m m m m m ∴=-+++-=-+,4AC =, △()221525252222APCD S AC PD m m m ⎛⎫=⋅=-+=--+ ⎪⎝⎭四边形 ∴当52m =时,四边形APCD 的面积最大, ∴即点5(2P ,35)4时,四边形APCD 的面积最大为252; 12.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点B 的坐标为(1,0),点C 的坐标为(0,4),点D 的坐标为(0,2),点P 为二次函数图象上的动点.(1)求二次函数的解析式和直线AD 的解析式;(2)当点P 位于第二象限内二次函数的图象上时,连接AD ,AP ,以AD ,AP 为邻边作平行四边形APED ,设平行四边形APED 的面积为S ,求S 的最大值.【答案】(1)y =-x 2-3x +4,122y x =+;(2)814【解析】【分析】 (1)利用待定系数法将B (1,0),C (0,4)代入二次函数y =﹣x 2+bx +c 即可求出二次函数的解析式,令y =0,可求出A 点坐标,然后设直线AD 的解析式为y =kx +b ,利用待定系数法将A 点坐标和D 点坐标代入y =kx +b 即可求出直线AD 的解析式;(2)连接PD ,作PG y 轴交AD 于点G ,根据题意设出点P 和点G 的坐标,然后表示出线段PG 的长度,进而根据2APD S S ∆=表示出平行四边形APED 的面积,最后根据二次函数的性质求解即可.【详解】解:(1)将B (1,0),C (0,4)代入y =-x 2+bx +c 中,得014b c c =-++⎧⎨=⎩,解得34b c =-⎧⎨=⎩, △二次函数的解析式为y =-x 2-3x +4在y =-x 2-3x +4中,令y =0,即2340x x --+=,解得x 1=-4,x 2=1,△A (-4,0).设直线AD 的解析式为y =kx +b'.△D (0,2),△04'2'k b b =-+⎧⎨=⎩, 解得:12'2k b ⎧=⎪⎨⎪=⎩ △直线AD 的解析式为122y x =+. (2)连接PD ,作PG y 轴交AD 于点G ,如图所示.设P (t ,-t 2-3t +4)(-4<t <0),则G (t ,122t +), △2217342222PG t t t t t =--+--=--+, △2122||41482APD D A S S PG x x t t ∆==⨯⋅-=--+, 27814()44t =-++. △-4<0,-4<t <0,△当74t =-时,S 有最大值814.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积.。
函数的面积问题
莲都区大港头学校 许宏
引例1:已知: 如图,直线y x 1交x轴、y轴
于点A、B,直线y 0.5x 2交x轴、y轴于
点C、D, 两直线交于点P。
(1)写出各点坐标: A(__1_,__0)_、B_(__0_,__-1、) C(__4_,_0_)_、D_(_0_,__2_)、
y P
O B1 -2 C
4A
x
拓展2 : 如图,抛物线y (x 1)2 k与x轴交于A、B两
点, 与y轴交于点C (0,3).
(1)求出抛物线的解析式;
(2)点M是抛物线上的一个动点, 且在第三象限.
当点M运动到何处时,∆AMB 的面积最大?求出此时∆AMB 的面积,和M的坐标. 当点M运动到何处时,四边形 AMCB的面积最大?求出此时 四边形AMCB的面积,和M的 坐标.
y=-0 .5x+2
y
D P
P(__2_,_1_)_。
oA
B
(2)∆DOC的面积为__4__
y=x-1
C
x
3
(3)△PAC的面积为___2 _。
引例2 : 如图,一次函数y kx (1 k 0)与反
比例函数y m (m 0)的图象有公共点A(1,2). x
直线l x轴于点N (3,0),与一次函数和反比例
函数的图象分别交于点B, C.
y
(1)求一次函数与反比例函 数的解析式
(2)求△ABC的面积.
N
x
例1: 如图,一次函数y x 1与反比例函
数y 2 的图象相交于点A.直线l与一次函 x
数相交于点B(3,4), 与反比例函数相交于
点C(4, 1),求ABC 的面积。 2
二次函数综合(一)——面积问题
二次函数综合(一) ——面积问题
一、解决函数综合题中面积问题的常用方法:
1. 割补法
当所求图形的面积没有办法直接求出时,我们采取间接(分割或补全图形再分割)的方法来表示所求图形的面积,如图1:
4. 相似法
利用相似三角形面积比等于相似比的平方进行转化.
二、基本题型
1.如图,在平面直角坐标系中,△AOB的顶点O为原点,已知点A(3,6),B(5,2),求△AOB的面积.
2.已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。
求△ACD的面积。
3已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。
求△BCD的面积。
专题58 二次函数中的面积问题(解析版)
例题精讲求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S AE BF CD AE BF=+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下面求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.例题精讲【例1】.如图,抛物线y=﹣x2﹣2x+3与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C.点P为抛物线第二象限上一动点,连接PB、PC、BC,求△PBC面积的最大值,并求出此时点P的坐标.解:令x=0,则y=3,∴C(0,3),设直线BC的解析式为y=kx+3(k≠0),把点B坐标代入y=kx+3得﹣3k+3=0,解得k=1,∴直线BC的解析式为y=x+3,设P的横坐标是x(﹣3<x<0),则P的坐标是(x,﹣x2﹣2x+3),过点P作y轴的平行线交BC于M,则M(x,x+3),∴PM=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,=PM•|x B﹣x C|=(﹣x2﹣3x)×3=﹣(x2+3x)=﹣(x+)2+,∴S△PBC∵﹣<0,有最大值,最大值是,∴当x=﹣时,S△PBC∴△PBC面积的最大值为;当x=﹣时,﹣x2﹣2x+3=,∴点P坐标为(﹣,).变式训练【变1-1】.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式和直线AC的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.解:(1)∵y=ax2+bx+3经过A(1,0),C(4,3),∴,解得:,∴抛物线的解析式为:y=x2﹣4x+3;设直线AC的解析式为y=kx+h,将A、C两点坐标代入y=kx+h得:,解得:,∴直线AC的解析式为y=x﹣1;(2)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,).【变1-2】.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣+bx+c 经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得x=4,∴C(4,0).把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)过M点作MN⊥x轴,与AC交于点N,如图,设M(a,﹣a2+a+2),则N(a,﹣a+2),=•MN•OC=(﹣a+2﹣a2﹣a﹣2)×4=﹣a2+2a,∴S△ACMS△ABC=•BC•OA=×(4+2)×2=6,=S△ACM+S△ABC=﹣a2+2a+6==﹣(a﹣2)2+8,∴S四边形ABCM∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2).【例2】.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.解:(1)抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)把C(2,m)代入y=x2﹣2x﹣3得m=4﹣4﹣3=﹣3,则C(2,﹣3),设直线AC的解析式为y=mx+n,把A(﹣1,0),C(2,﹣3)代入得,解得,∴直线AC的解析式为y=﹣x﹣1;设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),∴PE=﹣t﹣1﹣(t2﹣2t﹣3)=﹣t2+t+2,∴△ACE的面积=×(2+1)×PE=(﹣t2+t+2)=﹣(t﹣)2+,当t=时,△ACE的面积有最大值,最大值为,此时P点坐标为(,﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:,故抛物线的表达式为:,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点,=S△APO+S△CPO﹣S△ODC=则S=S四边形ADCP=,∵﹣1<0,故S有最大值,当时,S的最大值为.【变2-2】.如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)连接DC,DB,设△BCD的面积为S,求S的最大值.解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1)=x2﹣x﹣2;(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.△BCD2+4.∴当x=2时,S有最大值,最大值为4.1.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)解:对于y=﹣x2+x+2y=﹣x2+x+2=0,解得x=﹣1或4,令x=0,则y =2,故点A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,2),过点P作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为y=﹣x+2,设点P的坐标为(x,﹣x2+x+2),则点H的坐标为(x,﹣x+2),+S△PHC=PH×OB=×4×(﹣x2+x+2+x﹣2)=﹣则△BCP的面积=S△PHBx2+4x,∵﹣1<0,故△BCP的面积有最大值,当x=2时,△BCP的面积有最大值,此时,点P的坐标为(2,3),故选:A.2.如图1,抛物线与x轴交于A、B两点,与y轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)点P为抛物线上直线BC上方的一动点,求△PBC面积的最大值,并求出点P坐标;(3)若点Q为抛物线对称轴上一动点,求△QAC周长的最小值.解:(1)令x=0,则y=2,∴C(0,2),令y=0,则x=4,∴B(4,0),将点B(4,0)和点C(0,2)代入,得,解得:,∴抛物线的解析式为y=﹣x2+x+2;(2)作PD∥y轴交直线BC于点D,设P(m,﹣m2+m+2),则D(m,﹣m+2),∴PD=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,=×4×(﹣m2+2m)=﹣m2+4m=﹣(m﹣2)2+4,∴S△PBC∴当m=2时,△PBC的面积有最大值4,此时P(2,3);(3)令y=0,则,解得x=﹣1或x=4,∴A(﹣1,0),∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,∵A点与B点关于对称轴对称,∴AQ=BQ,∴AQ+CQ+AC=BQ+CQ+AC≥BC+AC,∴当B、C、Q三点共线时,,△QAC周长最小,∵C(0,2),B(4,0),A(﹣1,0),∴BC=2,AC=,∴AC+BC=3,∴△QAC周长最小值为3.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC面积的最大值.若没有,请说明理由.解:(1)根据题意得:,解得,则抛物线的解析式是y=﹣x2﹣2x+3;(2)理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称,∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小,对于y=﹣x2﹣2x+3,令x=0,则y=3,故点C(0,3),设BC的解析式是y=mx+n,则,解得,则BC的解析式是y=x+3.x=﹣1时,y=﹣1+3=2,∴点Q的坐标是Q(﹣1,2);(3)过点P作y轴的平行线交BC于点D,设P的横坐标是x,则P的坐标是(x,﹣x2﹣2x+3),对称轴与BC的交点D是(x,x+3).则PD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x.=(﹣x2﹣3x)×3=﹣x2﹣x==﹣(x+)2+,则S△PBC∵﹣<0,故△PBC的面积有最大值是.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的二次函数解析式:(2)若点P在抛物线上,点Q在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.解:(1)∵y过A(﹣1,0),B(5,0)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5得,解得y=x2﹣4x﹣5;(2)当x=0时,y=﹣5,∴C(0,﹣5),设P(m,m2﹣4m﹣5),Q(n,0),①BC为对角线,则x Q﹣x C=x B﹣x P,y Q﹣y C=y B﹣y P,解得,(舍去),∴P(4,﹣5),②CP为对角线,则x Q﹣x C=x P﹣x B,y Q﹣y C=y P﹣y B,解得或,∴P(2+,5)或(2﹣,5),③CQ为对角线时,CP∥BQ,则点P (4,﹣5);综上P (4,﹣5)或(2﹣,5)或(2+,5);第三种,CQ 为对角线不合要求,舍去;(3)过H 作HD ∥y 轴交BC 于D ,∴S △BCH =S △CDH +S △BDH =HD (x H ﹣x C )+HD (x B ﹣x H )=HD (x B ﹣x C )=HD ,设BC :y =kx +b 1,∵BC 过B 、C 点,代入得,,,∴y =x ﹣5,设H (h ,h 2﹣4h ﹣5),D (h ,h ﹣5),S △BCH =HD =×[h ﹣5﹣(h 2﹣4h ﹣5)]=﹣(h ﹣)2+,∴当h =时,H (,﹣)时,S △BCHmax =.5.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=OC,∵点C(0,﹣3),∴OC=3,∴OE=,∴E(0,﹣),∴点P的纵坐标为﹣,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,∴x2﹣2x﹣3=﹣,∴x=或x=,∵点P在直线BC下方的抛物线上,∴0<x<3,∴点P(,﹣);(3)如图2,过点P作PF⊥x轴于F,则PF∥OC,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴A(﹣1,0),∴设P(m,m2﹣2m﹣3)(0<m<3),∴F(m,0),=S△AOC+S梯形OCPF+S△PFB=OA•OC+(OC+PF)•OF+PF•BF∴S四边形ABPC=×1×3+(3﹣m2+2m+3)•m+(﹣m2+2m+3)•(3﹣m)=﹣(m﹣)2+,∴当m=时,四边形ABPC的面积最大,最大值为,此时,P(,﹣),即点P运动到点(,﹣)时,四边形ABPC的面积最大,其最大值为.6.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,解得:a=﹣,b=,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)设点P的坐标为(t,﹣t2+t+2).∵A(﹣1,0),B(3,0),∴AB=4.∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);(3)当△ODP∽△COB时,=即=,整理得:4t2+t﹣12=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).当△ODP∽△BOC,则=,即=,整理得t2﹣t﹣3=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).综上所述点P的坐标为(,)或(,).7.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.E是BC上一点,PE∥y轴.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当m为何值时MN=BM,解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得解这个方程组,得.故直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴S△BCP∵﹣<0,∴当t=时,S=.△BCP最大(3)M(m,﹣m+3),N(m,m2﹣4m+3),∴MN=|m2﹣3m|,BM=|m﹣3|,当MN=BM时,m2﹣3m=(m﹣3),解得m=.9.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.解:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,解得,所以二次函数解析式为y=﹣x2+x﹣3;(2)存在.过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D 到AC的距离最大,此时△ACD的面积最大,∵直线AC的解析式为y=x﹣3,∴k=,即y=x+b,由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣12x+4b+12=0,∴△=122﹣4×3×(4b+12)=0,解得b=0,∴3x2﹣12x+12=0,解得x1=x2=2,把x=2,b=0代入y=x+b得y=,∴D点坐标为(2,).10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0),过点B的直线y==x﹣2交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求△PBC面积的最大值.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx﹣3中,得:,解得:,∴该抛物线表达式为y=x2﹣2x﹣3.(2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2﹣2m﹣3),则点E(m,m﹣2),∴PE=PD﹣DE=﹣m2+2m+3﹣(﹣m+2)=﹣m2+m+1,联立方程组:,解得:,.∵点B坐标为(3,0),∴点C的坐标为(﹣,﹣),∴BD+CF=3+||=.=S△PEB+S△PEC=PE•BD+PE•CF∴S△PBC=PE(BD+CF)=(﹣m2+m+1)×=﹣(m﹣)2+,(其中﹣<m<3).∵﹣<0,∴这个二次函数有最大值.的最大值为.∴当m=时,S△PBC11.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;=S△OAB?若存在,请求出点P的坐标,若不(2)在抛物线上是否存在一点P,使S△P AB存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;(2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,∵OP∥AB,∴△ABP和△ABO是等底等高的两个三角形,=S△ABO,∴S△P AB∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,解得:或,∴点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',连接AP'',BP'',∴AB∥EP''∥OP,OB=BE,=S△ABO,∴S△AP''B∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.12.直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△PBA的面积最大时,求点P的坐标;②在①的条件下,点P关于抛物线对称轴的对称点为Q,在直线AB上是否存在点M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明理由.解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为:(4,0)、(0,2),将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2;(2)①过点P作y轴的平行线交BC于点N,设P(m,﹣m2+m+2),点N(m,﹣m+2),则:△PBA的面积S=PN×OA=×4×(﹣m2+m+2+m﹣2)=﹣2m2+8m,当m=2时,S最大,此时,点P(2,5);②点P(2,5),则点Q(,5),设点M(a,﹣a+2);(Ⅰ)若:∠QM1B=2∠QAM1,则QM1=AM1,则(a﹣)2+(a+3)2=(a﹣4)2+(﹣a+2)2,解得:a=,故点M1(,);(Ⅱ)若∠QM2B=2∠QAM1,则∠QM2B=∠QM1B,QM1=QM2,作QH⊥AB于H,BQ的延长线交x轴于点N,则tan∠BAO==,则tan∠QNA=2,故直线QH表达式中的k为2,设直线QH的表达式为:y=2x+b,将点Q的坐标代入上式并解得:b=2,故直线QH的表达式为:y=2x+2,故H(0,2)与B重合,M2、M1关于B对称,∴M2(﹣,);综上,点M的坐标为:(,)或(﹣,).13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0).(1)求此抛物线的表达式.(2)若点P是直线AB下方的抛物线上一动点,当△ABP的面积最大时,求出此时点P 的坐标和△ABP的最大面积.(3)设抛物线顶点为D,在(2)的条件下直线AB上确定一点H,使△DHP为等腰三角形,请直接写出此时点H的坐标(﹣,﹣).解:(1)将点B(﹣3,0)和点C(1,0)代入y=ax2+bx﹣3,得,∴,∴y=x2+2x﹣3;(2)令x=0,则y=﹣3,∴A(0,﹣3),设直线AB的解析式为y=kx+b,∴,∴,∴y=﹣x﹣3,过点P作PG⊥x轴交AB于点G,设P(t,t2+2t﹣3),则G(t,﹣t﹣3),∴PG=﹣t﹣3﹣t2﹣2t+3=﹣t2﹣3t,∴S△ABP=×3×(﹣t2﹣3t)=﹣(t+)2+,当t=﹣时,S△ABP有最大值,此时P(﹣,﹣);(3)由y=x2+2x﹣3的顶点D(﹣1,﹣4),设H(m,﹣m﹣3),∵△DHP为等腰三角形,∴DH=PH,∴(m+1)2+(﹣m+1)2=(m+)2+(﹣m+)2,解得m=﹣,∴H(﹣,﹣),故答案为:(﹣,﹣).14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1;(2)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,同理可得:AN=,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+;(3)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,PF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)∴S△PBC×4=﹣2(t﹣2)2+8,最大值为8,此时t2﹣3t﹣4=﹣6,∴当t=2时,S△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.(3)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图2,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2).16.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,抛物线的对称轴交x轴于点M,连接BC、CM.求△BCM的周长及tan∠BCM的值;(3)如图2,过点A的直线m∥BC,点P是直线BC上方抛物线上一动点,过点P作PD⊥m,垂足为点D,连接BD,CD,CP,PB.当四边形BDCP的面积最大时,求点P 的坐标及四边形BDCP面积的最大值.解:(1)将A(﹣1,0),B(3,0)分别代入y=﹣x2+bx+c得:,解得,∴y=﹣x2+2x+3.(2)由解析式可得M(1,0),C(0,3),∴.∴△BCM的周长为.如图1,过点M作MN⊥BC于点N,∵OB=OC,∴∠OBC=∠BMN=45°.∴.∴.∴.=S△BDC+S△BPC,(3)由题意可知:S四边形BDCP∵过点A的直线m∥BC,∴.∵A(﹣1,0),B(3,0),∴AB=4.∵抛物线y=﹣x2+2x+3交y轴于点C(0,3),∴OC=3.∴.如图2,过点P作PF⊥x轴,垂足为点F,交BC于点E,直线BC的解析式为:y=﹣x+3.设P(x,﹣x2+2x+3),则E(x,﹣x+3),∵点P是直线BC上方抛物线上一动点,∴PE=PF﹣EF=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.则=.∴.当时,四边形BDCP的面积最大,最大面积为.此时,点P的坐标为.17.如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B (1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.∴,解得,∴y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),∵顶点(﹣1,﹣4)关于原点的对称点为(1,4),∴抛物线F2的解析式为y=﹣(x﹣1)2+4,∴y=﹣x2+2x+3;(3)由题意可得,抛物线F3的解析式为y=﹣(x﹣1)2+6=﹣x2+2x+5,①联立方程组,解得x=2或x=﹣2,∴C(﹣2,﹣3)或D(2,5);②设直线CD的解析式为y=kx+b,∴,解得,∴y=2x+1,过点M作MF∥y轴交CD于点F,过点N作NE∥y轴交CD于点E,设M(m,m2+2m﹣3),N(n,﹣n2+2n+5),则F(m,2m+1),E(n,2n+1),∴MF=2m+1﹣(m2+2m﹣3)=﹣m2+4,NE=﹣n2+2n+5﹣2n﹣1=﹣n2+4,∵﹣2<m<2,﹣2<n<2,∴当m=0时,MF有最大值4,当n=0时,NE有最大值4,=S△CDN+S△CDM=×4×(MF+NE)=2(MF+NE),∵S四边形CMDN∴当MF+NE最大时,四边形CMDN面积的最大值为16.18.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y =a(x﹣h)2+k.抛物线H与x轴交于点A、B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式.(2)如图1,点P在线段AC上方的抛物线H上运动(不与A、C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值.(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A、P、C、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为.解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∵PD⊥AB,∴∠ADP=90°,∴∠ADP=∠AOC,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,∴PF=EF=PE,=PF•EF=PE2,∴S△PEF=×()2=;∴当m=﹣时,S△PEF最大值(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).。
一次函数中的面积问题
一次函数中的面积问题学情分析:本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。
文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。
文章还提供了三个典型例题,以帮助读者更好地理解。
研究目标与考点分析:研究目标:1、关于一次函数的面积问题利用面积求解析式;2、利用解析式求面积以及对于动点问题学会熟练的解决。
考点分析:1、一次函数的解析式与面积的充分结合。
研究重点:1、一次函数与面积的综合结合与运用;2、对于动点问题与一次函数的熟练结合与把握。
研究方法:讲练结合练巩固。
研究内容与过程:一、本节内容导入本节内容主要介绍了一次函数相关的面积问题,包括规则图形和不规则图形的求解方法,以及含参数问题的求解方法。
文章强调了在求解过程中,需要注意坐标的正负和线段的非负性。
二、典例精讲本节提供了三个典型例题,分别介绍了如何利用面积求解析式,如何求解含参数问题的面积,以及如何求解四边形的面积。
文章强调了在解题过程中,需要注意分类讨论和建立方程的思想。
本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。
文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。
文章还提供了三个典型例题,以帮助读者更好地理解。
在研究过程中,需要注意分类讨论和建立方程的思想。
同时,需要注意坐标的正负和线段的非负性。
通过讲练结合练,可以更好地巩固所学知识。
1、已知直线y=-x+2与x轴、y轴分别交于A点和B点,另一条直线y=kx+b(k≠0)经过点C(1,m),且将△AOB分成两部分。
1)若△AOB被分成的两部分面积相等,则k=-2,b=2.2)若△AOB被分成的两部分面积比为1:5,则k=-5,b=7.2、已知一次函数y=-2/3x+3的图像与y轴、x轴分别交于点A、B,直线y=kx+b经过OA的三分之一点D,且交x轴的负半轴于点C,如果S△AOB=S△DOC,求直线y=kx+b的解析式。
专题58 二次函数中的面积问题(原卷版)-中考数学解题大招复习讲义
例题精讲求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S AE BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下面求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.例题精讲【例1】.如图,抛物线y=﹣x2﹣2x+3与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C.点P为抛物线第二象限上一动点,连接PB、PC、BC,求△PBC面积的最大值,并求出此时点P的坐标.变式训练【变1-1】.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式和直线AC的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【变1-2】.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣+bx+c 经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.【例2】.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.变式训练【变2-1】.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.【变2-2】.如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)连接DC,DB,设△BCD的面积为S,求S的最大值.1.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)2.如图1,抛物线与x轴交于A、B两点,与y轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)点P为抛物线上直线BC上方的一动点,求△PBC面积的最大值,并求出点P坐标;(3)若点Q为抛物线对称轴上一动点,求△QAC周长的最小值.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC面积的最大值.若没有,请说明理由.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的二次函数解析式:(2)若点P在抛物线上,点在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.5.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.6.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.7.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.E是BC上一点,PE∥y轴.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当m为何值时MN=BM,9.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0),过点B的直线y==x﹣2交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求△PBC面积的最大值.11.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;=S△OAB?若存在,请求出点P的坐标,若不(2)在抛物线上是否存在一点P,使S△P AB存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.12.直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△PBA的面积最大时,求点P的坐标;②在①的条件下,点P关于抛物线对称轴的对称点为Q,在直线AB上是否存在点M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0).(1)求此抛物线的表达式.(2)若点P是直线AB下方的抛物线上一动点,当△ABP的面积最大时,求出此时点P 的坐标和△ABP的最大面积.(3)设抛物线顶点为D,在(2)的条件下直线AB上确定一点H,使△DHP为等腰三角形,请直接写出此时点H的坐标.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.16.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,抛物线的对称轴交x轴于点M,连接BC、CM.求△BCM的周长及tan∠BCM的值;(3)如图2,过点A的直线m∥BC,点P是直线BC上方抛物线上一动点,过点P作PD⊥m,垂足为点D,连接BD,CD,CP,PB.当四边形BDCP的面积最大时,求点P 的坐标及四边形BDCP面积的最大值.17.如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B (1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.18.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y =a(x﹣h)2+k.抛物线H与x轴交于点A、B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式.(2)如图1,点P在线段AC上方的抛物线H上运动(不与A、C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值.(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A、P、C、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为.。
一次函数面积问题专题(含答案)
一次函數面積問題1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。
2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。
3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的图像,(1)用m、n表示A、B、P的坐标(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。
6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。
11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B(1)求两直线交点C的坐标(2)求△ABC的面积(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。
二次函数中的面积问题
二次函数——面积问题 〖知识要点〗一.求面积常用方法:1.直接法一般以坐标轴上线段或以与轴平行的线段为底边 2.利用相似图形;面积比等于相似比的平方 3.利用同底或同高三角形面积的关系 4. 割补后再做差或做和三边均不在坐标轴上的三角形及不规则多边形需把图形分解二. 常见图形及公式抛物线解析式y=ax 2+bx+ca ≠0抛物线与x 轴两交点的距离AB=︱x 1–x 2︱=a ∆ 抛物线顶点坐标-a b2;a b ac 442-抛物线与y 轴交点0;c “歪歪三角形中间砍一刀”ah S ABC 21=∆;即三角形面积等于水平宽与铅垂高乘积的一半.y 轴交于点C;则则△PCD 的面积是3、已知抛物线c bx x y ++=2与y 轴交于点A;与x 轴的正半轴交于B 、C 两点;且BC=2;S △ABC =3;则b =;c =.〖典型例题〗● 面积最大问题1、二次函数c bx ax y ++=2的图像与x 轴交于点A-1;0、B3 ;0;与y 轴交于点C;∠ACB=90°. 1求二次函数的解析式;2P 为抛物线X 轴上方一点;若使得△PAB 面积最大;求P 坐标3P 为抛物线X 轴上方一点;若使得四边形PABC 面积最大;求P 坐标4P 为抛物线上一点;若使得ABC PAB S S ∆∆=21;求P 点坐标.. ● 同高情况下;面积比=底边之比2.已知:如图;直线y=﹣x +3与x 轴、y 轴分别交于B 、C;抛物线y=﹣x 2+bx +c 经过点B 、C;点A 是抛物线与x 轴的另一个交点.1求B 、C 两点的坐标和抛物线的解析式;图12若点P 在直线BC 上;且;求点P 的坐标.3.已知:m 、n 是方程x 2﹣6x +5=0的两个实数根;且m <n;抛物线y=﹣x 2+bx +c 的图象经过点Am;0、B0;n .1求这个抛物线的解析式;2设1中抛物线与x 轴的另一交点为C;抛物线的顶点为D;试求出点C 、D 的坐标和△BCD 的面积;注:抛物线y=ax 2+bx +ca ≠0的顶点坐标为3P 是线段OC 上的一点;过点P 作PH ⊥x 轴;与抛物线交于H 点;若直线BC 把△PCH 分成面积之比为2:3的两部分;请求出P 点的坐标.● 三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图;过△ABC 的三个顶点分别作出水平垂直的三条直线;外侧两条直线之间的距离叫△ABC 的“水平宽”a;中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高h”.我们可以得出一种计算三角形面积的新方法:S △ABC =ah;即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图;抛物线顶点坐标为点C1;4交x 轴于点A;交y 轴于点B0;31求抛物线解析式和线段AB 的长度;2点P 是抛物线在第一象限内上的一个动点;连接PA;PB;当P 点运动到顶点C 时;求△CAB 的铅垂高CD 及S △CAB ;3在第一象限内抛物线上求一点P;使S △PAB =S △CAB .法一:同底情况下;面积相等转化成平行线法二:同底情况下;面积相等转化成铅垂高相等变式一:如图2;点P 是抛物线在第一象限内上的一个动点;连结PA;PB;是否存在一点P;使S △PAB =S △CAB 若存在;求出P 点的坐标;若不存在;请说明理由.变式二:抛物线上是否存在一点P;使S △PAB =S △CAB 若存在;求出P 点的坐标;若不存在;请说明 ● 点动+面积5.如图1;已知△ABC 中;AB=10cm;AC=8cm;BC=6cm;如果点P 由B 出发沿BA 方向向点A 匀速运动;同时点Q 由A 出发沿AC 方向向点C 匀速运动;它们的速度均为2cm/s;连接PQ;设运动的时间为t 单位:s0≤t ≤4.解答下列问题:1当t 为何值时;PQ ∥BC .2是否存在某时刻t;使线段PQ 恰好把△ABC 的面积平分 若存在求出此时t 的值;若不存在;请说明理由.3如图2;把△APQ沿AP翻折;得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形若存在;求出此时菱形的面积;若不存在;请说明理由.形动+面积6.如图1;抛物线y=ax2+bx+3a≠0与x轴、y轴分别交于点A﹣1;0、B3;0、点C三点.1试求抛物线的解析式;2点D2;m在第一象限的抛物线上;连接BC、BD.试问;在对称轴左侧的抛物线上是否存在一点P;满足∠PBC=∠DBC 如果存在;请求出点P点的坐标;如果不存在;请说明理由;3如图2;在2的条件下;将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移;记平移后的三角形为△B′O′C′.在平移过程中;△B′O′C′与△BCD重叠的面积记为S;设平移的时间为t秒;试求S与t之间的函数关系式。
与面积有关的函数关系问题
与面积有关的函数关系问题函数关系是指一个函数的关系如何受其他函数的影响。
在数学中,函数关系是用来描述两个或多个函数之间的关系或互动机制。
以下我将阐述面积(Area)与函数关系的关系。
首先,我们要明确的是,面积和函数之间的关系是由函数与物理状况定义的。
一般来说,函数与物理状况之间的关系可以表示为:F(H) = A,其中F(H)表示函数,H表示物理状况,A表示面积。
也就是说,面积取决于函数与物理状况的关系,函数与物理状况又决定了物体的性质,而物品的性质又决定面积。
比如,如果我们要求一个圆形物体的面积,我们可以用以下函数来描述它的特征:f (x) = x*3.14,其中x表示圆的半径,3.14是圆周率。
根据此,我们可以得到关于院子面积和半径的函数关系:A = x2* 3.14,其中x是圆的半径,A表示面积。
在这里,我们可以看到,函数与物理状况之间的关系显而易见:函数决定了物理状况,而物理状况又决定了面积。
同样,任何几何体都有自己的函数与物理状况之间的关系,从而形成一种函数与面积之间的关系。
比如,一个平行四边形的面积可以表示为A = a*b,其中a和b分别表示平行四边形的两边长度。
可以看出,函数与物理状况之间的关系又决定了物理状况,而物理状况又决定面积。
总之,有许多要求求面积的情况,其中函数与物理状况之间的关系是重要的。
函数关系可以表示为F(H) = A,其中F(H)是表示函数的物理状况的函数,H表示函数的物理状况,A表示面积。
所以,函数与物理状况之间的关系又决定了物理状况,而物理状况又决定面积。
函数中的面积问题
函数知识在八年级数学中率先出现,对于八年级学生来说比较抽象,函数中的面积问题又是函数中的一个重点,对这一问题,教学中体会到应通过由简到繁的练习,使学生循序渐进地掌握思路和方法。现举例说明。
一、已知函数解析式求面积
例1已知函数 求该图像与x轴、y轴围成三角形的面积。
图1
解函数
当x=0时,y=-8
二、已知面积求解析式
例2直线 与两坐标轴围成三角形的面积的24求k的值。
图2
解 与两坐标轴的交点为(0,k)和( ,0)
解后语:已知三角形的面积,相当于直线与坐标轴交点到原点的距离的乘积可知,由此可转化成求交点坐标,即可得答案。
例3已知直线l和直线 交于点P,与x轴交于点A(8,0),且△PAO的面积为16,求直线l的解析式。
图3
解:∵直线l与x轴交于点A(8,0)∴AO=8,∵△PAO Nhomakorabea面积为16
∴三角形的高为4,∴P点的纵坐标为4或-4
∵直线l与直线 交于点P,
∴P点坐标为(16,4)或(24,-4)
∴直线l过点A(8,0)和P(16,4)或A(8,0)和P(24,-4)
∴设直线l:
则 或
解得
解后语:由已知三角形的面积,可想到以寻找底和高为突破口。又知过点A(8,0),知底OA,可求得高,因此P点纵坐标可得。又知点P在l上又在 上,所以P点坐标可得,再用待定系数法可求过A(8,0)和P点的直线解析式。
当x=2时,y=0
∴函数 与两坐标轴的交点坐标为(0,-8)和(2,0)
解后语:求三角形的面积时,应先确定三角形的底和高,那么三角形的底和高分别是什么,又怎样表示呢?作出函数 的图像,直线与坐标轴围成的三角形便一目了然了。
一次函数中的面积问题A
一次函数中的面积问题知识点概述:(一) 铅垂线法求面积:(该方法多与二次函数结合,在初二阶段不常使用) 铅垂线法求面积步骤:1. 过三角形的某个顶点做x 轴的垂线,将原三角形分为两个三角形;2. 如图,得面积的表达式:1212ABC S AP OB h h ∆=⋅+(),AP 称为铅锤高,12h h + 称为水平宽;求出直线BC 的解析式;3. 求出直线BC 的解析式;4. 带入A 点的横坐标,得点P 的坐标;5. 计算6.带入面积的表达式求解。
1.(2015•武昌区期中)如图,平面直角坐标系中,A(-3,-2)、B(-1,-4)求S△OAB2.如图,点A(-5,2)、B(5,0)、C(0,5),用铅垂法求S△ABC。
3.用铅垂线法求一次函数y=x,y=-2x+4,y=7x+4的图像所围成的封闭图形的面积。
1.【答案】5【解析】过B做x轴垂线,交OA于点C,交x轴于点D设直线OA解析式为:y=kx,将A(-3,-2)代入y=kx,得:2 k3 =∴OA函数解析式为:y=2 3 x将x=-1代入y=23x ,得:y=23-∴C点坐标为(-1,23 -)∴CD=2 3∴BC=BD-CD=103,即该三角形的铅垂高为103过A作AE垂直于BD,交BD于E,则AE=2, OD=1∴该三角形的水平宽为3∴1103523OABS∆=⋅⋅=2.【答案】20【解析】设直线AB的函数解析式为y=kx+b,将A(-5,2),B(5.0)分别代入得:520 -5k bk b+=+=⎧⎨⎩解得:115 bk⎧==-⎪⎨⎪⎩∴AB的函数解析式为:y=15 -+1将x=0代入得:y=1,即D点坐标为(0,1)∴CD=OC-OD=4,即该三角形的铅垂高为4A到y轴的距离为5,B到y轴的距离也为5,∴该三角形的水平宽为10∴1410202ABCS∆=⨯⨯=3.【答案】20 3【解析】由题中函数解析式画出函数图像,如右图所以: 联立24y x y x =+=⎧⎨⎩,得44x y =-=-⎧⎨⎩ ∴B 点坐标为(-4,-4)联立74y x y x ==+⎧⎨⎩,得:2323x y ⎧⎪=-=-⎪⎨⎪⎪⎩∴C 点坐标为(23-,23-) 联立2474y x y x =+=+⎧⎨⎩,得:04x y ==⎧⎨⎩∴A 点坐标为(0,4)过C 做x 轴的垂线,交y=2x+4于D 点,则D 点坐标为(23-,83) ∴CD=103,即该三角形的铅垂高为103 B 到y 轴的距离为4 ∴该三角形的水平宽为4∴110204233ABC S ∆=⨯⨯= y=x y=2x+4 y=7x+4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数、反比例函数中的面积问题
兴文县建武初级中学校杨波
学习目标:1.全面复习一次函数、反比例函数的基础知识;
2.灵活应用相关知识进行解题;
3.进一步体会数学结合的思想.
学习重点:1.全面复习一次函数、反比例函数的基础知识;
2.灵活应用相关知识进行解题.
学习难点:1.具体问题的分析方法和解决问题能力的培养;
2.规范的书写格式和严格的书写要求.
学习过程:
一、课堂导入:
请大家看着学习案的第一部分,这是2013年和2014年宜宾市中考数学的22题,想要解决这两个题,需要使用函数和坐标系、一次函数、反比例函数的知识,通过这次半期模拟考试,我发现大家对一次函数和反比例函数掌握还是不够,很多的知识需要再次进行复习。
今天,我们就一起再次对一次函数和反比例函数的知识进行复习和巩固。
二、学生自学,完成学习案:
对于一次函数和反比例函数的知识,我们之前曾有过复习,现在请大家回忆一下,按照下面的要求,独立的完成学习案:
时间:5分钟,
内容:
完成方式:独立思考,自主解答,
三、自学检查,成果展示:
请大家停下笔,看看自己的学习案,现在我们以前后两排,六个同学为一个小组,以小组为单位,对学习案上的问题进行讨论,注意弄清楚每个答案的来历,小组内无法解决的问题做好记号。
注意:讨论的声音不能影响到其他的小组,每位同学都要认真的参与,尊重他人就是尊重自己。
四、新课学习,检查自学效果:
现在请大家看着2014年遂宁市中考数学题,给大家2分钟时间,结合我们刚刚复习的知识,你有什么想法?
1、请学生说说想法、思路?
2、请其他同学补充或更正?
3、师生共同分析、审题,找出解决问题的办法;
4、学生根据分析的思路和想法,书写解答过程。
强调:注意
书写规范、格式。
5、小组内展示自己的解题过程,相互帮助同学找出解题中的
问题和不足,返回进行修改。
6、根据刚才的经验,请同学们独立分析和解答2014年宜宾中
考22题,实在有困难的可以和同桌进行小声的交流,注意
把握交流的声音不能影响到其他同学的思考。
五、课堂小结:
通过遂宁、宜宾两道中考题的分析和解答,请大家以小组为单位讨论
和总结,讨论的问题是:
1、都涉及到哪些知识点?
2、你学会了什么方法解决这一类问题?
六、巩固、练习作业:
2013年宜宾中考22题、半期考试20题。
七、课后反思:
一次函数、反比例函数中的面积问题
兴文县建武初级中学校 杨 波
一、 函数和坐标系:
1.各象限内点的坐标的符号特征:
第一象限:( +, +),第二象限:( , ) 第三象限:( , ),第四象限:( , ) 2.坐标抽上点的特征:已知点P (x ,y )
点P 在x 轴上,=y ,点P 在y 轴上,x = , 点P 既在x 轴上,又在y 轴上,x = ,=y . 3. 两条坐标轴夹角平分线上的点 P (x ,y )的特征: 在第一、三象限夹角平分线上⇔x 与 y _______________; 在第二、四象限夹角平分线上⇔x 与 y _______________. 4. 和坐标轴平行的直线上点的坐标的特征:
平行于 x 轴⇔__________相同;平行于 y 轴⇔__________相同. 5.点的对称性:已知点 P (a ,b ):
(1)其关于 x 轴对称的点1P 的坐标为_________________. (2)其关于 y 轴对称的点2P 的坐标为_________________. (3)其关于原点对称的点3P 的坐标为_________________. 6. 点与点、点与线之间的距离:
(1)点 M (a ,b )到 x 轴的距离为________. (2)点 M (a ,b )到 y 轴的距离为________.
(3)点 1M (1x ,0),2M (2x ,0)之间的距离为________. (4)点 M 1(0,y 1),M 2(0,y 2)之间的距离为________. 二、一次函数的图象及性质:
1.一次函数 y =kx +b (k ≠0)的图象、性质列表如下:
b >0 b <0 b =0
k >0
经过第一、二、三象限
经过 、 、 象限
经过 、 、 象限
图象从左到右上升,y 随x 的________________
k<0
经过第一、二、四象限经过、、象限经过、、象限
图象从左到右上升,y随x的________________
2.交点坐标:一次函数y=kx+b(k≠0)的图象与x 轴的交点是_________,与y 轴的交点是________.
3.正比例函数y=kx(k≠0)的图象一定经过点________.
4.若一次函数y=kx+b(k≠0)的图象与x 轴交于点A,与y轴交于点B,则=
A O B
△
S.
5.确定一次函数表达式的条件:
函数表达式kx
y=b
kx
y+
=
所需的条件
三、反比例函数:
1.图像和性质列表如下:
表达式()0
≠
=k
x
k
y
图像
k>0 k<
性质
图像在、象限图像在、象限
在每个象限内,y随x增大而在每个象限内,y随x增大而2.k的几何意义:如图,过双曲线()0≠
=k
x
k
y上任意一点()b a
P,分别作x轴、y轴的垂线PM、PN,所得的矩形PMON的面积是 .
3.确定反比例函数的表达式:
运用待定系数法,确定反比例函数的表达式,与确定一次函数表达式的方法一样.
四、新知探索:
问题1:(2014遂宁23题10分)已知:如图,反比例函数x
k
y =
的图象与一次函数b x y +=的图象交于点A (1,4)、点B (﹣4,n ). (1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.
问题2:(2014宜宾22题10分)如图,一次函数y = –x +2的图象与反比例函数y = – 3
x 的图像
交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.。