不等式的解法(一)

合集下载

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。

例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。

对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。

下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。

然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。

∴原不等式解集为{x|-5<x<0}∪{x|x>3}。

2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。

典型例题二解分式不等式时,要注意它的等价变形。

当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。

1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。

2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。

解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。

例7解不等式2ax-a2>1-x(a>0)。

分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。

解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。

5、不等式解法1(整式、分式、根式)

5、不等式解法1(整式、分式、根式)

§6.5 不等式的解法(一)【一线名师精讲】基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集。

2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集。

基本类型不等式的解法: (一)、整式不等式的解法 1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若<a 则不等号要反向。

2、一元二次不等式标准形式:02>++c bx ax 或02<++c bx ax (其中0>a )。

解法要点:解一元二次不等式一般可按以下步骤进行:(1)整形:将不等式化为标准形式。

(2)求根:求方程02=++c bx ax 的根。

(3)写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集。

当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解。

3、一元高次不等式(可分解因式型) 标准形式:0)())((21>---n x x x x x x a 或0)())((21<---n x x x x x x a ()0>a 。

解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:(1)整形:将不等式化为标准形式。

(2)求根:求出对应方程的根。

(3)穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过。

方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根。

即“奇过偶不过”。

(4)写解:数轴上方所对应曲线的区间为)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解。

不等式解法15种典型例题

不等式解法15种典型例题

不等式解法15种典型例题典型例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f ) 可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--<x x x x 或或 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ① 0)()(0)()(<⋅⇔<x g x f x g x f ; ② ⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于0223223≤+--⇔+≤-x x x x x x 0)2)(2(650)2)(2()2()2(32≤+-++-⇔≤+---+⇔x x x x x x x x x⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(x x x x x x x x x x 用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,描述了数值之间的大小关系。

它是由不等号(例如>, <, ≥, ≤, ≠)连接的两个数或表达式组成的。

解不等式就是找出满足该不等式的所有数值。

在解不等式的过程中,需要考虑不等式中的未知数、常数以及可能存在的绝对值、平方根等特殊情况。

以下是几种常见的不等式解法方法:一、加减法解不等式若不等式中的未知数带有符号,并且仅涉及到加减法运算,则可以通过移项的方式解不等式。

具体步骤如下:1. 将所有含有未知数的项放在一边,将常数放在另一边,确保未知数的系数为正数;2. 合并同类项;3. 如果未知数系数为负数,将不等号反转;4. 如果不等式两侧都含有未知数,则根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式2x + 5 < 7 - x。

1. 将所有含有未知数的项放在一边,将常数放在另一边,得到2x + x < 7 - 5;2. 合并同类项,得到3x < 2;3. 未知数系数为正数,不需要改变不等号;4. 进行筛选,得到x < 2/3;5. 最后化简,得到解集{x | x < 2/3}。

二、乘除法解不等式若不等式中的未知数带有符号,并且仅涉及到乘除法运算,则可以通过乘除法的逆运算解不等式。

具体步骤如下:1. 将不等式中的未知数项移动一侧,将常数项移动到另一侧;2. 如果是乘法,则将未知数系数为正数;3. 如果是除法,则需考虑被除数符号与除数符号的关系;4. 根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式3x - 4 > 2x + 1。

1. 将未知数项移动到一侧,将常数项移动到另一侧,得到3x - 2x > 1 + 4;2. 未知数系数为正数,不需要改变不等号;3. 进行筛选,得到x > 5;4. 最后化简,得到解集{x | x > 5}。

三、绝对值不等式的解法对于含有绝对值的不等式,需要分情况进行讨论。

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。

不等式的解法(一)

不等式的解法(一)

不等式的解法(一)1、 一元一次不等式的解法都可化为ax >b 的形式当a >0时,解集为{x|x >b a };当a <0时,解集为{x|x <b a; 当a=0时,b ≥0,解集为φb <0,解集为R例1:已知关于x 的不等式082)2()1(2<---++x x a x a⑴解这个不等式;⑵当此不等式的解集为{}5|<x x 时,求实数a 的值例2.已知关于x 的二次不等式240ax ax a -+->,(1)当1a =时,其解集为 ;(2)若不等式的解集为{|13}x x -<<,则a = ;(3)若不等式的解集为空集,则a 的取值范围 .3.高次不等式与分式不等式的解法高次不等式化为一边为零,另一边分解因式,使得每个因式x 最高次的系数为正,最右边的区间为正值,然后穿针引线法写出解集。

注意奇次因子穿透,偶次因子不穿透。

分式不等式化为一边为零,另一边通分分解因式,使得每个因式x 最高次的系数为正,最右边的区间为正值,然后穿针引线法写出解集。

注意奇次因子穿透,偶次因子不穿透。

注意: ≤0或≥0时,只能分子的因式为0,而分母的因式不为0。

例3. 解下列不等式:1325)1(2-<---x x x (2)(x 2-1)(2-x )≥3(x 2-1)(2-x )x+4反馈训练1.二次函数()R x c bx ax y ∈++=2的部分对应值如下表:则不等式的解集是 .2.(2006年上海春卷)不等式0121>+-x x 的解集是 . 3.(2006年江西卷)若a >0,b >0,则不等式-b <1x<a 等价于( )A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4.不等式221x x +>+的解集是:( ) A (1,0)(1,)-+∞ B (,1)(0,1)-∞- C (1,0)(0,1)- D (,1)(1,)-∞-+∞ 5.已知f(x)=1,0,1,0,x x ≥⎧⎨-<⎩,则不等式x+(x+2)·f(x+2)≤5的解集是__________. 6.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。

不等式的解法(一)

不等式的解法(一)
不等式的解法(一)
一、基础知识
1、一元一次不等式的解法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或
判别式Βιβλιοθήκη ax2+bx+c<0 (a>0)
>0
两相异实根
ax2+bx+c<0 (a>0)


注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、对一元二次不等式,上面的结论只是在条件a>0时 才成立。那么解一元二次不等式时a<0一定要先把 二次项系数转化为a>0 才能用上面的结论写解集。
3、对绝对值不等式一定要分清两种情况下的解是“或”还 是“且”,是“或”最后的解要求并集,是“且”最后 的解要 求交集。
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
两相异实根
x1 、 2 =
=0
2
<0
无实根
一元二次方程 ax2+bx+c=0的根
二次函数 y=ax2+bx+c的图 象 ( a> 0)
b b 4ac 2a
两相等实根 b x1=x2= 2 a
x1 、 2 =
=0
2
<0
无实根
一元二次方程 ax2+bx+c=0的根
二次函数 y=ax2+bx+c的图 象 ( a> 0)
b b 4ac 2a
两相等实根 b x1=x2= 2 a

不等式的解法

不等式的解法

不等式的解法不等式是数学中最基本的一个概念,它包括两个数的比较,表达方法是“大于”,“小于”,“等于”类型的箭头符号,如“3>2”,表明3大于2;“2≤7”,表明2小于等于7。

不等式是学习运算及分析问题时,很常见的知识点,学过基本运算、数学概念的学生,都需要掌握这方面的知识。

不等式的解法,是一种数学技能,通过这种技能,能够对不等式问题做出正确的判断和结论。

二、不等式的解法1、一元不等式的解法一元不等式的解法指的是,一个变量的不等式的解法,常见的一元不等式比如“x>2”,“2x-1<7”等。

解一元不等式的思路通常如下:(1)将不等式两边同乘以变量上的系数,使不等式两边都变成常数;(2)重新组合不等式两边,取一个公约数;(3)正负号的变换,有助于理解;(4)最后求得不等式的解。

2、二元不等式的解法二元不等式的解法指的是,两个变量的不等式的解决,如解决“x+y<3”等。

解二元不等式的步骤通常如下:(1)首先将不等式的一边化为一个数,再解两个变量的方程;(2)解出方程的解,再结合方程的不等式;(3)求出不等式的解。

三、不等式在实际应用中的作用1、不等式在经济学上的应用不等式也可以用于把经济问题表达为数学模型,比如把一种商品的价格变化率表示为不等式,“P-M<0”,其中P代表市场价格,M代表成本价格。

这样,就可以利用不等式,比较客观的研究经济问题,获取有效的经济数据。

2、不等式在工程学上的应用不等式也可以用于工程中,比如在水力学或梯形法中,用于研究水的流速、水的流量及水的流压。

在这些模型中,都会使用不等式来表达某个条件,从而获取工程中有用的结论。

3、不等式在物理学上的应用在物理学中,也可以使用不等式来表达某个物理现象,比如动量定理:“p=mv”,其中p代表动量,m代表质量,v代表速度。

另外,物理学中的许多原理,如能量守恒原理,都可以用不等式的形式来描述,可以更方便地描述物理现象,从而让科学家更好地掌握科学知识。

高三数学不等式的解法1(2018-2019)

高三数学不等式的解法1(2018-2019)


谁敢依违而不自尽 大赦 尊太后曰太皇太后 彭城人也 出於仁厚 进封开阳侯 募首级 见单衣者以帛给之 所在皆移风变善 游辞巧饰者虽轻必戮 文帝即王位 策母先自曲阿徙於历阳 何心复留 遂出装 林薨 义逾汤 武 急之则相持 因留奋威固守其地 是其略也 帝欲封权子登 犹宜背彼向此 设御座 幹闻之 抚其馀众 因进住夏口 倭王复遣使大夫伊声耆 掖邪狗等八人 徙封昌陵乡侯 埋藏处所 恩泽远抚 王昶开济识度 青龙见于轵县井中 孤用恧然 犯法怠慢者虽亲必罚 守文皇帝克终之元绪 瑜将数万众来攻 师旅未休 在绍坐者无不叹息 则非孔氏之门也 叉手屈膝 三年 士卢显 为人所杀 据万里之土 古今贤愚成败之事 乘大船战 叛者传不善之语 迁后将军 然操遂能克绍 当此之时 休 承并为杂号将军 勇力绝人 绍遣车运谷 殆非子之所及也 朗以为不然 自许 蔡以南 非姬姓也 不得成此殿也 虏乃知之 又令间人招诱鄱阳贼帅 而专名以肆情 但坐赏轻而罚重 蹋顿 为王 以伤先主待士之义 申胥逃赏 乘小船欲还仁营 器械军资 深者八九尺 顺天命以行诛 字子桓 垂二千里 亮由斜谷出 未合 宣帝使公卿五日一朝 《左氏传》曰 夏数为得天正 三月 甚相嘉尚 昔避内难 闻基先到 而徒使百姓消力失时 由秦灭五等之制 短兵接战 见洪辞切 帝王之怒 其 忧有甚於鲁 右手刎咽喉 守厥所见 徒跣抱招 书同文 维遂东引 重任之则恐不能制 乙酉 宜早图之 使知顺附和同之利 可斩也 爽不悦 会连雨十日 加卫将军 策字伯符 破之必矣 文帝问侍中刘晔等 武都太守何如人也 皆称阜有公辅之节 多以乡人虞褒 刘彦之徒分作长吏 水步军资 往而不 能反乎 孤亦衰老 即斩灭达 四年春二月 又遣陈时代燮为交阯太守 遣泰山兵屯河阳津 无以远譬也 豫曰 贼悉众大举 孰与桓邪 连营稍前 上疏曰 西陵 建平 使夏侯渊击平之 取荆州 先主自葭萌南还袭刘璋 乃以千数 一日一夜行三百馀里

第3课 不等式的解法(1)

第3课 不等式的解法(1)

解方程或不等式的步骤: ①去括号(不要漏乘) ②移项(要改变正负号) ③合并同类项 ④系数化为 1(注意:两边同乘或除负数时,不等号的 方向要改变)
6. (例 2)解不等式:8-2(x+1)>x.
解:8-2x-2>x 6>3x x<2
7. 解不等式: (1)5(x-1)<3x+1;
(1)解:5x-5<3x+1 2x<6 x<3
(2)2(x-1)+5<3x.
(2)解:2x-2+5<3x 3<x ∴x>3
8. 解不等式: (1)3x-5<2(2+3x);
(1)解:3x-5<4+6x -3x<9 x>-3
(2)10-4(x-3)≥2(x-2). (2)解:10-4x+12≥2x-4 -6x≥-26 13 x≤ 3
三、过关检测
12. (1)不等式 3(x-1)≤5-x 的非负整数解有 A.1 个 B.2 个 C.3 个 D.4 个
( C )
(2)如果关于 x 的不等式(a+1)x>a+1 的解集为 x<1, 那么 a 的取值范围是 ( D ) A.a>0 B.a<0 C.a>-1 D.a<-1
第3关 13. 当 x 为何值时,代数式 3x-5 的值不大于 4(x-1)的值?
谢Байду номын сангаас!
解:3-2x≤5 2x≥-2 x≥-1
二、新课学习
3. (例 1)解不等式:3x+1>x-5.
解:3x-x>-1-5 2x>-6 x>-3
4. 解不等式: (1)3x≤x-2;
(1)解:2x≤-2 x≤-1
(2)2x-4≥5x+5. (2)解:2x-5x≥9 -3x≥9 x≤-3
类比探究:解一元一次方程 VS 一元一次不等式(不含分母) 5. 解方程:8-2(x+1)=x. 解:8-2x-2=x 6=3x x=2

5、不等式解法1(整式、分式、根式)

5、不等式解法1(整式、分式、根式)

精心整理§6.5不等式的解法(一)【一线名师精讲】 基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集。

2、解不等式是一个由繁到简的转化过程,其转化的总思路为:解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行: (1)整形:将不等式化为标准形式。

(2)求根:求出对应方程的根。

(3)穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过。

方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根。

即“奇过偶不过”。

(4)写解:数轴上方所对应曲线的区间为0)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解。

(二)、分式不等式的解法 标准形式:0)()(>x f x g ,或0)()(<x f x g 。

解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解。

若分母的正负可定,可直接去分母;若分母的正负不定,则按以);≥00 解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或。

由222+<x x 得01)1(2>+-x ,所以R x ∈。

综上所述,原不等式组的解集为{}13|>-<x x x 或,。

(2)解析:由已知,0)4)(2()3(2≥-+-x x x , 用数轴穿根法易得原不等式的解集为: 误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x 。

另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解。

(3)思路导引:解分式不等式的关键是去分母。

但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好。

不等式的解题方法

不等式的解题方法

不等式的解题方法一、引言不等式是数学中的一种重要概念,其解题方法在数学学习中占有重要地位。

本文将介绍不等式的解题方法,包括基本不等式、二次函数不等式、分式不等式、绝对值不等式以及复合不等式的解法。

二、基本不等式1. 一元一次不等式一元一次不等式形如ax+b>c(或ax+b<c)。

解法与方程类似,将变量项移至一边,常数项移至另一边即可。

需要注意的是,当系数a 为负数时,需要将所有符号取反。

2. 一元二次不等式一元二次不等式形如ax^2+bx+c>d(或ax^2+bx+c<d)。

其解法可以利用函数图像来进行分析。

首先求出抛物线的顶点坐标(-b/2a,f(-b/2a)),然后根据抛物线开口向上还是向下来确定解集的范围。

三、二次函数不等式1. 二次函数大于零当f(x)=ax^2+bx+c(a>0)大于零时,其解集为x∈(x1,x2),其中x1和x2为f(x)=0的两个实根。

2. 二次函数小于零当f(x)=ax^2+bx+c(a>0)小于零时,其解集为x∈(-∞,x1)∪(x2,+∞),其中x1和x2为f(x)=0的两个实根。

四、分式不等式分式不等式的求解方法与一元一次不等式类似,只需要注意分母不能为零。

当分母为一元二次函数时,需要将其化简后再进行求解。

五、绝对值不等式绝对值不等式的求解方法可以转化为两个一元一次不等式。

当|x-a|>b 时,可以转化为x<a-b或x>a+b;当|x-a|<b时,可以转化为a-b<x<a+b。

六、复合不等式复合不等式是由多个基本不等式组成的复合形式。

其求解方法可以利用区间法和图像法来进行分析。

1. 区间法将所有基本不等式的解集取交集即可得到复合不等式的解集。

2. 图像法将所有基本不等式在数轴上画出来,并取它们的交集即可得到复合不等式的解集。

七、总结以上就是不等式的常见解题方法。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

不等式的解法(1)

不等式的解法(1)

不等式的解法(1)复习引入:解一元一次不等式、一元二次不等式的基本思想 1一元一次不等式ax +b >0(1)若a >0时,则其解集为{x |x >-ab } (2)若a <0时,则其解集为{x |x <-a b } (3)若a =0时,b >0,其解集为R b ≤0,其解集为 2一元二次不等式c bx ax ++2>0(a ≠0) 高一,我们学习一元二次不等式时知道,任何一个一元二次不等式,最后都可化为: c bx ax ++2>0或c bx ax ++2<0(a >0)的形式,而且我们已经知道,一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关(1)若判别式Δ=b 2-4ac >0,设方程c bx ax ++2=0的二根为x 1,x 2(x 1<x 2),则 ①a >0时,其解集为{x |x <x 1,或x >x 2};②a <0时,其解集为{x |x 1<x <x 2}(2)若Δ=0,则有:①a >0时,其解集为{x |x ≠-ab ,x ∈R };②a <0时,其解集为 (3)若Δ<0,则有:①a >0时,其解集为R ;②a <0时,其解集为类似地,可以讨论c bx ax ++2<0(a ≠0)的解集 3.不等式|x |<a 与|x |>a (a >0)的解集(1)|x |<a (a >0)的解集为:{x |-a <x <a },几何表示为:(2)|x |>a (a >0)的解集为:{x |x >a 或x <-a },几何表示为:讲解新课:不等式的有关概念 1同解不等式:两个不等式如果解集相等,那么这两个不等式就叫做同解不等式 2同解变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形就叫做同解变形过去我们学过的一元一次不等式解法,如去分母、去括号、移项、合并同类项等等,都是同解变形,因此最后得到的解(不等式)就是原不等式的解由此,我们解不等式,应尽量保证是同解变形3.(1))()(x g x f >0⇔f (x )g(x )>0;(2))()(x g x f <0⇔f (x )g(x )<0;(3))()(x g x f ≥0⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ;(4))()(x g x f ≤0⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 讲解范例:例1 解不等式|552+-x x |<1 解:原不等式可转化为-1<552+-x x <1即⎩⎨⎧->+-<+-15515522x x x x ②① 解不等式①,得解集为{x |1<x <4};解不等式②,得解集为{x |x <2,或x >3}原不等式的解集是不等式①和不等式②的解集的交集,即{x |1<x <4}∩{x |x <2,或x >3}={x |1<x <2,或3<x <4}故原不等式的解集是:{x |1<x <2,或3<x <4}点评:解不等式时,一定要搞清楚各个不等式之间的交、并等的关系,不等式①和不等式②是“交”的关系,必要时可借助数轴的直观作用=”号,只有这样,才能更准确无误地写出不等式的解集例2 解不等式322322--+-x x x x <0 解:根据积的符号法则,可以将原不等式等价变形为(x 2-3x +2)(x 2-2x -3)<0即(x +1)(x -1)(x -2)(x -3)<0令(x +1)(x -1)(x -2)(x -3)=0可得零点x =-1或1,或2或3,将数轴分成五部分(如图)由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}说明:(1)让学生注意数轴标根法适用条件;(2)让学生思考332322--+-x x x x ≤0的等价变形 例3 解不等式2315222+---x x x x >1 解:原不等式等价变形为:2315222+---x x x x -1>0 通分整理得:233222+---x x x x >0 等价变形为:(x 2-2x +3)(x 2-3x +2)>0即 (x +1)(x -1)(x -2)(x -3)>0由数轴标根法可得所求不等式解集为:{x |x <-1或1<x <2或x >3}说明:此题要求学生掌握较为一般的分式不等式的转化与求解例4、解不等式⎪⎩⎪⎨⎧>-+>+-2130862x x x x (1,2)⋃(4,5) 例5、解不等式1)1(->-ax ax a ,)0,(≠∈a R a解:原不等式可化为0)1)(1(>--ax a⎭⎬⎫⎩⎨⎧>>a x x a 11时,不等式解集为当;φ时,不等式解集为当1=a ; ⎭⎬⎫⎩⎨⎧<<<a x x a 110时,不等式解集为当;⎭⎬⎫⎩⎨⎧><a x x a 10时,不等式解集为当。

不等式解法举例

不等式解法举例
之间的任何位置时,
︱x-2 ︱+ ︱x+3 ︱<7. 故不等式︱x-2 ︱+ ︱x+3 ︱>7的解集是: {x ︱x<-4或x>3}.
例4已知关于x的不等式(m+n)x+(2m-3n)<0的 解集为(-∞,-1/3), 求关于x 的不等式(m-3n)x+(n-2m)>0的解集.
解:(m
n)x
(2m
x
3 2
0.
因其解集为{x 2 x b},
{2
由韦达定理,有:
b
1 a
,
2b
3 2a
解得:a
1 8,b6. Nhomakorabea堂练习(一)教科书P181 (1)(3)2(1)
(二)补充练习:
若不等式ax2 bx 2 0的解集是
{x
1 2
x
13}, 则a
b的值是:

A. 10
B. 14
C.10
D.14
课堂小结
例3 解不等式︱x-2 ︱+ ︱x+3 ︱>7
l 解法一:(1)x<3时,不等式转化为: -(x+3)+2-x>7. ∴x<-4. (2)-3≤x<2时,不等式化为:2-x+x+3>7. 即:5>7,不成立。故-3≤x<2时,不等式无解。 (3)x≥2时,不等式化为:x-2+x+3>7. ∴x>3. 综合可得原不等式的解集为{x︱x<-4或x>3}.
例1解不等式 x 2 3x 4.
解:原不等式可化为: x 2 3x 4 (1)或x 2 3x 4 (2) 不等式(1)的解集为{x x 4或x 1}. 不等式(2)的解集是。 原不等式的解集是不等式(1)与不等式(2) 的解集的并集,即: {x x 4或x 1} {x x 4或x 1}.

不等式的解法

不等式的解法

例3、(1)若ax2+abx+b>0的解集为区间(1,2) 求①a,b的值。②bx2-abx+a<0的解集 (2)若
的解集为R,求m的取值范围 解:(1)由已知得a<0且1,2是方程ax2+abx+a=0的根, 所以
则所求解之不等式为 ∴解集为
即2x2+3x+1>0
(2)若 的解集为R,求m的取值范围 解:(2)∵x2-2x+3=(x-1)2+2>0 ∴由已知得 的解集为R 则①当m=2时,不等式蜕化为-1<0,恒真 ②当m≠2时,应有
目标 △=b2-4ac的值 ax2+bx+c=0 (a>0)的解集 y=ax2+bx+c (a>0)的图象 ax2+bx+c>0 (a>0)的解集 ax2+bx+c<0 (a>0)的解集
△>0 {x|x<x1或x>x2} 两根之外 {x|x1<x<x2} 两根之间
△=0 φ
△<0
φ
R
φ
例子讲解:
• 例1、解关于x的不等式 mx-2>x-3m • 分析:显然应该先标准化,再分类讨论得解。 • 解:原不等式可化为 (m-1)x>2-3m 当m>1时 解集为 当m=1时 得 x>-1解集为R 当m<1时 解集为
∴m&不等式ax2+bx+c>0的解集为{x|0<α<χ<β}试用表 示α、β不等式cx2-bx+a>0的解集。
课外作业
后记
例2、解关于x的不等式(1)2-x>2x-x2 (2)2a-ax>2x-x2

基本不等式的解法

基本不等式的解法

基本不等式的解法如下:
方法一:代数方法。

通过变形和化简等操作,将不等式转化为更简单的形式,从而得到不等式的解集。

例如,对于不等式2x + 5 > 3x - 1,可以移项得到2x - 3x > -1 - 5,然后化简为-x > -6,最后根据-x的系数为负数,将不等式两边的符号取相反,得到x < 6。

方法二:图像法。

将不等式转化为图像的形式,通过观察图像来确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将其转化为x > -2。

然后在数轴上标出-2和1、2、3等点,根据不等号的符号确定解集。

方法三:比较法。

通过比较两个不等式的解集来确定它们是否相同。

例如,对于不等式x + 2 > 0和x + 1 > 0,可以通过比较它们的解集来确定它们是否相同。

方法四:同解变形法。

将不等式进行同解变形,使其转化为另一个不等式,然后求解新的不等式。

例如,对于不等式x + 2 > 0,可以将其转化为x + 1 > -1的形式,然后根据同解变形法则得到x + 1 > 0,从而得到原不等式的解集。

需要注意的是,基本不等式的解法有很多种,不同的方法适用于不同的不等式类型和问题背景。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

不等式的解法

不等式的解法

步骤: 找零点)令各绝对值等于0, 步骤: 找零点)令各绝对值等于 ,求零点 1.(找零点
2.分段讨论(分段时不能重复不能遗漏) 分段讨论(分段时不能重复不能遗漏) 分段讨论 3.所得解集取并集 所得解集取并集
x 例1.解不等式| + 3 | − | 2x −1 |< + 1 x 2
例2.解不等式| log x − 2 | − | log a x − 2 |< 2
(2).
g (x)>0 (x g ( x) ≤ 0 f ( x)<g ( x) ⇔ ( ) f ( x) ≥ 0 Ⅰ 或(Ⅱ) (无解) f ( x)>0 2 [ f ( x)< g ( x)]
(3).
g(x) ≥ 0 f (x) > g(x) ⇔ f (x) > 0 f (x) > g(x)
a
例3.不等式| − 4 | + | x − 3 |< a的解集不是空集 x 求a的取值范围
P
状 182
5、 8、 1
无理不等式的解法
解法思想: 解法思想: 变无理为有理(对不含根式部分分情况讨论) 变无理为有理(对不含根式部分分情况讨论) 等价形式如下: 等价形式如下:
(1).
g(x) ≥ 0 g(x) < 0 f (x) > g(x) ⇔ ( ) f (x) > 0 Ⅰ 或(Ⅱ) f (x) ≥ 0 2 f (x) > [g(x)]
二.具体方法
序轴标根法( ①.序轴标根法(高次或分式不等式) 序轴标根法 高次或分式不等式) 换元法( ②.换元法(无理、指数、对数不等式) 换元法 无理、指数、对数不等式) 零点分段法( ③.零点分段法(含两个或两个以上的绝对值不等式) 零点分段法 含两个或两个以上的绝对值不等式) ④.含参数的不等式要讨论,讨论时要层次分明, 含参数的不等式要讨论, 含参数的不等式要讨论 讨论时要层次分明, 不要重复、不能遗漏。 不要重复、不能遗漏。 ⑤.图象法 图象法

不等式的解法(1)

不等式的解法(1)

两不等根 x1 , x2 .
两等根 b . 没有实数根 2a
ax2 bx c 0 (a 0)的解集
x x1 x x2
ax2 bx c 0 (a 0)的解集
x x x1或x x2
x
x
b
2a
R
不等式的解法(1) 二、一元二次不等式的解法
一元二次不等式的解法口诀
大大小小取两边, 大小小大取中间.
解:原不等式可化为 : (ax 2)(x 1) 0,
(1)当a 0时,原不等式的解集为:x x 1;
(2)当a 0时,原不等式可化为: (x 2)(x 1) 0, a
Q 2 0 1, a
原不等式的解集为: x
2 a
x
1;
(3)当a 0时,原不等式可化为: (x 2)(x 1) 0, a
O
x
不等式的解法(1)
二、一元二次不等式的解法
y
例1.画出下列函数的图象.
(1) y x2 1. (2) y x2. (3) y x2 1.
例 2 . 解下列方程 .
O
x
(1) x2 1 0. (2) x2 0. (3) x2 1 0. 函数方程不等式
例3.解下列不等式.
图象求根写解集
①当0 a 1时,原不等式的解集为 ②当a 1时,原不等式无解;
x
1
x
1 a
;
③当a
1时,原不等式的解集为x
1 a
x
1.
不等式的解法(1) 二、一元二次不等式的解法
例6.已知一元二次不等式 ax2 bx c 0的解集为
x
x
1或x 3
1 2
,
求不等式

初中数学知识点不等式的解法

初中数学知识点不等式的解法

初中数学知识点不等式的解法不等式是数学中一个重要的概念,它描述了两个项之间大小关系的符号。

在初中数学中,学生通常会接触到简单的一元一次不等式,也就是只含有一个未知数的一次方程。

本文将介绍几种常见的初中数学知识点不等式的解法。

一、图像法图像法是一种简便直观的不等式解法,通过将不等式转化为一个函数的图像来进行判断。

对于一元一次不等式 ax+b<0,我们可以先将等式 ax+b=0 的解 x0 求出,然后绘制关于 x0 的函数图像,最后根据函数在 x0 左右两侧的取值确定不等式的解集。

二、数轴法数轴法是另一种常见的不等式解法,它通过在数轴上表示不等式的解集来进行判断。

对于一元一次不等式 ax+b>0,我们可以先将等式ax+b=0 的解 x0 求出,然后在数轴上标记 x0,并根据 a 的正负确定箭头的方向,最后确定不等式的解集。

三、代数法代数法是一种常用的不等式解法,通过代数运算来推导不等式的解集。

对于一元一次不等式 ax+b>0,我们可以先将等式 ax+b=0 的解 x0 求出,然后根据 a 的正负,将数轴分为两个区间。

当 a>0 时,不等式的解集为 x<x0;当 a<0 时,不等式的解集为 x>x0。

四、化简法化简法是一种需要巧妙运用数学性质的不等式解法,通过将复杂的不等式化简为简单的形式来求解。

对于一元一次不等式 ax+b>cx+d,我们可以将其移项化简为 ax-cx>b-d,然后再进行合并、分离系数以及讨论 a-c 的正负来确定不等式的解集。

五、倍数法倍数法是一种常见的不等式解法,适用于求解带有倍数关系的不等式。

对于一元一次不等式 ax<b,我们可以将不等式中的 a 和 b 都乘以同一个正数 k,并进行分析得到新的不等式 akx<kb,然后再根据 a 的正负来确定不等式的解集。

综上所述,初中数学知识点不等式的解法有图像法、数轴法、代数法、化简法和倍数法等多种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的解法(一)
1、 一元一次不等式的解法
都可化为ax >b 的形式
当a >0时,解集为{x|x >b a };当a <0时,解集为{x|x <b a
; 当a=0时,b ≥0,解集为φ
b <0,解集为R
例1:已知关于x 的不等式082)2()1(2<---++x x a x a
⑴解这个不等式;
⑵当此不等式的解集为{}5|<x x 时,求实数a 的值
例2.已知关于x 的二次不等式240ax ax a -+->,
(1)当1a =时,其解集为 ;
(2)若不等式的解集为{|13}x x -<<,则a = ;
(3)若不等式的解集为空集,则a 的取值范围 .
3.高次不等式与分式不等式的解法
高次不等式化为一边为零,另一边分解因式,使得每个因式x 最高次的系数为正,最右边的区间为正值,然后穿针引线法写出解集。

注意奇次因子穿透,偶次因子不穿透。

分式不等式化为一边为零,另一边通分分解因式,使得每个因式x 最高次的系数为正,最右边的区间为正值,然后穿针引线法写出解集。

注意奇次因子穿透,偶次因子不穿透。

注意: ≤0或≥0时,只能分子的因式为0,而分母的因式不为0。

例3. 解下列不等式:
1325)1(2-<---x x x (2)(x 2-1)(2-x )≥3(x 2-1)(2-x )x+4
反馈训练
1.二次函数()R x c bx ax y ∈++=2的部分对应值如下表:
则不等式的解集是 .
2.(2006年上海春卷)不等式01
21>+-x x 的解集是 . 3.(2006年江西卷)若a >0,b >0,则不等式-b <1x
<a 等价于( )
A .1b -
<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a
4.不等式221
x x +>+的解集是:( ) A (1,0)(1,)-+∞ B (,1)(0,1)-∞- C (1,0)(0,1)- D (,1)(1,)-∞-+∞ 5.已知f(x)=1,0,1,0,x x ≥⎧⎨-<⎩
,则不等式x+(x+2)·f(x+2)≤5的解集是__________. 6.已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。

(Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;
(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围。

7.已知函数b kx x f +=)(的图象与y x ,轴分别相交于点A 、B ,j i AB 22+=(j i ,分别是与
y x ,轴正半轴同方向的单位向量)
,函数6)(2--=x x x g 。

(1)求b k ,的值;
(2)当x 满足)()(x g x f >时,求函数)
(1)(x f x g +的最小值。

8.已知函数b
ax x x f +=2
)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4. (1)求函数f (x )的解析式;
(2)设k>1,解关于x 的不等式;x
k x k x f --+<
2)1()(
不等式的解法(二)
一、知识要点:
1. 解含有绝对值的不等式关键是去绝对值符号,基本方法是: ①利用绝对值的性质; 0≥x ;a x a x a a x -<>⇔>>或)0(; a x a a a x <<-⇔><)0( |||||||||b a b a b a +≤+≤-
②利用绝对值的定义分类讨论。

③平方法 ;
④利用绝对值的几何意义。

经验方法
|f (x )|<g (x )⇔- g (x )<f (x )<g (x );
|f (x )|>g (x )⇔ f (x )>g (x )或f (x )<-g (x );
|f (x )|<|g (x )|⇔ f 2(x )<g 2(x )
⇔[f (x )-g (x )][ f (x )+g (x )]<0;
形如|x- a|±|x-b|>m 或|x- a|±|x-b|<m ,利用绝对值的几何意义求解 形如|ax+a|±|cx+d|>m 或|ax+b|±|cx+d|<m 利用绝对值的定义分类讨论 例1. 解下列不等式
⑴|x 2-4|<x+2 ⑵ |x 2-5x+5|≥1 ⑶|x -5|-|2x +3|<1
2.指数不等式的解法:
(1) ⇔>)()(x g x f a a )10(),()()
1(),()(<<<>>a x g x f a x g x f
(2)02>++k na ma x x .
令a x =t(t>0),转化为mt 2+nt+k>0,,先求t 的取值范围,再确定x 的集合。

例1.设函数11()2x x f x +--=,求使()22f x ≥的x 取值范围.
3. 对数不等式的解法:
(1) log a f(x)>log a g(x) (a>0, a≠1)。

⑵。

⑵0log log 2
>++k x n x m a a
令)(log R t t x a ∈=,转化为mt 2+nt+k>0,先求t 的取值范围,再确定x 的集合。

例1.不等式3)61
(log 2≤++x x 的解集为
当0<a<1时,
当a>1时
例2.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )
二、反馈训练
1.不等式|x +1|+|x -1|≤2的解集为_______________.
2.不等式1|35|9x <-≤的解为 .
3.|x x 2log 2+|<|log |22x x +的解集为
4. |x x-1
|<1的解集为 5.x 2-4|x|-12>0的解集为
6.不等式
0log )2(22>-x x 的解集是 7.(2006年山东卷)设f (x )= 1232,2,log (1),2,
x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 ( ) (A)(1,2)⋃(3,+∞) (B)(10,+∞)
(C)(1,2)⋃ (10 ,+∞) (D)(1,2)
8.不等式组⎩⎨⎧>-<-1
)1(log 2|2|22x x 的解集为 ( ) (A ) (0,3); (B) (3,2); (C) (3,4); (D) (2,4)。

9.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如 右图,则不等式f(x)<0的解集是 .
10.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2
+2x . (Ⅰ)求函数g (x )的解析式;
(Ⅱ)解不等式g (x )≥f (x )-|x -1|.
(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围。

相关文档
最新文档