几种淀粉的糊化温度

合集下载

淀粉糊化最佳温度

淀粉糊化最佳温度

淀粉糊化最佳温度淀粉糊化是指淀粉在一定温度下与水发生化学反应,使淀粉颗粒发生溶胀,形成糊状物质的过程。

淀粉糊化的最佳温度是指能够使淀粉达到最佳糊化程度的温度范围。

淀粉糊化温度的选择对于许多食品加工和工业应用来说至关重要。

淀粉是一种多糖类物质,主要存在于植物的种子、根茎和果实中。

它是人类重要的能量来源之一,也是食品加工中不可或缺的原料。

然而,淀粉本身是一种不溶于水的物质,无法直接被人体消化吸收。

为了能够更好地利用淀粉的能量和满足人体对淀粉的需求,我们需要将淀粉进行糊化处理。

淀粉的糊化过程是一个复杂的物理化学过程。

当淀粉与水接触时,水分子会渗透到淀粉颗粒内部,使淀粉分子链发生断裂和重组,形成糊状物质。

淀粉糊化的温度是指在何种温度下,淀粉颗粒能够充分吸水和糊化。

不同类型的淀粉在糊化温度上有所差异。

例如,玉米淀粉的最佳糊化温度约为60-70摄氏度,而马铃薯淀粉的最佳糊化温度约为65-75摄氏度。

这些温度范围是通过实验和研究得出的,可以保证淀粉在糊化过程中充分吸水和形成糊状物质。

淀粉糊化温度的选择不仅与淀粉的类型有关,也与具体的应用有关。

在食品加工中,淀粉的糊化温度会影响食品的质地和口感。

例如,在制作面包时,需要将淀粉进行高温糊化,使面团更加蓬松和有弹性。

而在制作果冻时,需要将淀粉进行低温糊化,使果冻具有透明和口感好的特点。

淀粉糊化温度的选择还与工业应用有关。

在纸浆和纺织工业中,淀粉常被用作粘合剂。

通过调整糊化温度,可以控制淀粉糊化的程度和黏度,从而适应不同的工艺需求。

淀粉糊化的最佳温度是根据淀粉类型和具体应用来确定的。

正确选择糊化温度可以使淀粉充分吸水和糊化,从而达到更好的效果。

在食品加工和工业应用中,合理控制淀粉糊化温度对于产品的质量和工艺的稳定性至关重要。

淀粉糊化率的测定

淀粉糊化率的测定

淀粉糊化率的测定在不同的单元操作中,糊化度依次为:挤压(糊化度80%~95%以上),膨胀(糊化度为80%左右),蒸煮(糊化度为70%~80%)压缩(估计糊化度为60%~70%),加工成本的排列顺序则相反。

所以,在谷物食品的工业生产中,糊化度的测量确定和控制是至关重要的。

淀粉糊化后,其物理、化学特性会发生很大变化,如双折射现象消失、颗粒膨胀、透光率和粘度上升等,所以糊化度的测定方法也有多种,如双折射法、膨胀法、酶水解法和粘度测量法等。

不同的测定方法,得到的糊化度值会有相当大的差异,这是由于测定基础和基准等不同,产生差异是必然的。

当前比较认同的方法是酶法,其次是染料吸收法中的碘电流滴定法。

酶法又分为淀粉糖化酶法、葡萄糖淀粉酶法及β-淀粉酶法等,其基本原理都是利用各种酶对糊化淀粉和原淀粉有选择性的分解,通过对生成物的测量得到准确的糊化度。

1 葡萄糖淀粉酶法通常,糊化淀粉容易被淀粉酶消化,因此可用消化相对百分率来准确计算糊化度。

1.1 仪器与试剂搅拌器,玻璃均质器,l~2ml移液管,恒温水浴,台式离心机。

99%乙醇,2mol/L醋酸缓冲液(pH4.8),10mol/L氢氧化钠,2mol/L醋酸, 2.63μ/ml葡萄糖淀粉酶液,0.025mol/L盐酸。

1.2 测定步骤试样的调制:试样 20g(或20ml),加入200ml浓度为99%的乙醇,投入高速旋转的家用混合器中连续旋转1min,使之迅速脱水。

生成的沉淀用3号玻璃过滤器抽滤,用约50ml浓度为99%的乙醇,接着用50ml乙醚脱水干燥后,放在氯化钙干燥器中,以水力抽滤泵减压干燥过夜,用研钵将其轻轻粉碎,仍保存在同样的干燥器中备用。

1.3 操作将100mg上述的干燥试料放入磨砂配合的玻璃均质器中,加8ml蒸馏水,用振动式搅拌机搅拌至基本均匀为止。

接着将均质器上下反复几次,使之成为均匀的悬浮液。

再用振动式搅拌机均匀化,随即各取悬浮液2ml注入2只容量为20ml的试管中,分别用作被检液和完全糊化检液。

淀粉糊化 老化

淀粉糊化 老化

淀粉糊化老化淀粉糊化。

淀粉不溶于冷水中,但它吸水膨胀。

遇热后水分子进入淀粉粒内部,使淀粉粒继续膨胀,其体积可增大几倍至几十倍,悬浮液立即成为粘稠的胶体溶液,这一现象称为“淀粉的糊化作用”。

这时的温度称为糊化温度,小麦的糊化温度为59.5℃~67.5℃。

淀粉粒的糊化温度是焙烤食品生产的一个重要技术参数。

一般在成型前防止糊化,若控制不好,在成型时过黏无法操作。

而在焙烤时,要充分糊化,使产品成熟,不然食用品质差。

淀粉老化。

淀粉老化亦称回升或凝聚。

糊化的淀粉经冷却后,已经展开散乱的胶束分子会收缩靠拢,于是淀粉制品由软变硬。

如果是淀粉溶液则发生混浊现象,溶液溶解度降低,溶质沉淀,沉淀物不能再溶解,也不容易被酶所水解,这种现象叫淀粉的老化。

淀粉老化在面包生产中具有重要意义,它直接影响面包的储存和消化吸收率。

淀粉制品老化后质地变硬、品质变劣、风味变坏、消化吸收率降低。

其影响老化的因素有:1.结构2.温度3.水分4.pH值5.表面活性物质1).温度:老化的最适宜的温度为2~4℃,高于60℃低于20℃都不发生老化。

2).水分:食品含水量在30~60%之间,淀粉易发生老化现象,食品中的含水量在10%以下的干燥状态或超过60%以上水分的食品,则不易产生老化现象。

3).酸碱性:在PH4以下的酸性或碱性环境中,淀粉不易老化。

4).表面活性物质:在食品中加入脂肪甘油脂,糖脂,磷脂,大豆蛋白或聚氧化乙烯等表面活性物质,均有延缓淀粉老化的效果,这是由于它们可以降低液面的表面能力,产生乳化现象,使淀粉胶束之间形成一层薄膜,防止形成以水分子为介质的氢的结合,从而延缓老化时间。

5).膨化处理:影响谷物或淀粉制品经高温、高压的膨化处理后,可以加深淀粉的α化程度,实践证明,膨化食品经放置很长时间后,也不发生老化现象,其原因可能是:a.膨化后食品的含水量在10%以下b.在膨化过程中,高压瞬间变成常压时,呈过热状态的水分子在瞬间汽化而产生强烈爆炸,分子约膨胀2000倍,巨大的膨胀压力破坏了淀粉链的结构,长链切短,改变了淀粉链结构,破坏了某些胶束的重新聚合力,保持了淀粉的稳定性。

玉米淀粉和木薯淀粉性能指标比较

玉米淀粉和木薯淀粉性能指标比较

如使用时会产生臭味或其他气味; 蒸煮 时易产生泡沫; 水解时易变色; 无论生浆还是熟浆均会显著降低淀粉胶的 储存稳定性。
淀粉的糊化温度

淀粉发生胶化时的温度称胶化温度, 有的也称之为糊化温度。 淀粉的胶化 温度随其品种的不同而有差异, 这是因为不同品种的淀粉颗粒结构强度不 同,吸水膨胀的难易也不一样的缘故。
粘合过程: 因直链淀粉分子渗透力支链淀粉分子其形状如树枝的抓持力当淀粉颗粒浸透到瓦楞纸板的 面纸和芯纸内侧后,在温度的作用下逐渐膨胀,达到糊化温度,便开始粘合。淀粉颗粒所 含水分蒸发,并部分被面纸和芯纸吸收,淀粉胶连结里纸、芯纸、瓦楞、面纸成为一个整 体,达到粘合的目的。
淀粉的基本成分组成
玉米淀粉 木薯淀粉

即使同一品种的淀粉, 其不同颗粒的糊化难易也存在差别, 有的能在较低 温度下糊化,有的需要较高的温度才能糊化,相差约 10℃;较大的颗粒 一般较易糊化。 玉米和小麦淀粉的胶化温度比马铃薯、 木薯淀粉高。 蜡质 玉米淀粉胶化温度与普通玉米淀粉相同。 但高直链玉米淀粉糊化难, 即使 在沸水中加热也难以糊化,需要在有压力条件下更高的温度加热。
淀粉 85.73 86.69 水分(20℃, 65% 空气湿度)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

直链淀粉和糊化温度关系

直链淀粉和糊化温度关系

直链淀粉和糊化温度关系直链淀粉是一种多糖类化合物,它由葡萄糖分子组成,而葡萄糖分子是通过α-1,4键连接在一起的。

直链淀粉具有一定的糊化温度,这是因为随着温度的升高,直链淀粉分子中的α-1,4键会变弱,从而导致纤维状的淀粉分子逐渐变为球状分子。

这种变化过程称为糊化。

直链淀粉的糊化温度与其分子结构有关。

直链淀粉分子中的α-1,4键连接方式使得其分子链较为直线,因此需要较高的温度来打破分子链之间的相互作用力,使其分子链逐渐变为球状。

实验表明,直链淀粉的糊化温度一般在60℃到80℃之间,但具体的糊化温度还与直链淀粉的结构有关。

直链淀粉的结构有三种类型:A型、B型和C型。

A型直链淀粉分子链较长,分子内部有较多的支链,因此糊化温度较高,一般在70℃到80℃之间。

B型直链淀粉分子链较短,分子内部的支链较少,因此糊化温度较低,一般在60℃到70℃之间。

C型直链淀粉分子链长度和支链数量介于A型和B型之间,因此糊化温度也介于A型和B型之间。

除了直链淀粉的结构类型外,还有其他因素会影响直链淀粉的糊化温度。

例如,直链淀粉的含水量越高,糊化温度也越高。

这是因为水分子可以与直链淀粉分子中的氢键相互作用,使得氢键变得更加稳定,从而增加了分子间的相互作用力,导致需要更高的温度来糊化直链淀粉。

此外,直链淀粉的pH值、离子浓度等因素也会影响其糊化温度。

直链淀粉的糊化温度与其分子结构、含水量、pH值、离子浓度等因素有关。

不同类型的直链淀粉糊化温度不同,但一般在60℃到80℃之间。

研究直链淀粉的糊化温度有助于深入了解其分子结构和性质,为其在食品工业、医药工业等领域的应用提供理论基础。

几种淀粉的糊化特性及力学稳定性

几种淀粉的糊化特性及力学稳定性

第24卷第10期农业工程学报V ol.24 No.102008年10月 Transactions of the CSAE Oct. 2008 255几种淀粉的糊化特性及力学稳定性付一帆,甘淑珍,赵思明※(华中农业大学食品科技学院,武汉 430070)摘 要:为探索淀粉糊化的力学稳定性,以不同来源淀粉为原料,采用快速黏度分析仪于不同搅拌速度下,研究外力作用对淀粉糊化特性的影响,为淀粉质食品的品质控制提供依据。

结果表明,不同来源淀粉的黏度曲线及其力学稳定性有差异。

以小麦淀粉的糊化温度最低;马铃薯淀粉糊的黏度和温度稳定性最大;马铃薯和莲子淀粉的峰值黏度较高,冷糊稳定性好;莲子淀粉的热糊稳定性差;玉米淀粉糊易于老化。

外力作用对淀粉糊的黏度曲线有影响。

较强的外力作用后,会导致淀粉糊的强度、黏度和糊化温度降低,改善热糊稳定性和冷糊稳定性。

淀粉糊化的力学稳定性与其颗粒强度有关,较大颗粒强度的淀粉的力学稳定性较好。

关键词:淀粉,力学稳定性,黏度,糊化中图分类号:TS210.1,TS201.7 文献标识码:B 文章编号:1002-6819(2008)-10-0255-03付一帆,甘淑珍,赵思明. 几种淀粉的糊化特性及力学稳定性[J]. 农业工程学报,2008,24(10):255-257.Fu Yifan, Gan Shuzhen, Zhao Siming. Gelatinization characteristics and mechanical stability of various starch sources[J]. Transactions of the CSAE, 2008,24(10):255-257.(in Chinese with English abstract)0 引 言淀粉质食品是重要的食品种类,其制作通常要在一定的湿热和外力作用[1,2]下形成溶胶和凝胶,进而完成某种食品的加工。

不同来源的淀粉在分子结构和性质上均有较大差异[3-9],这些都会导致其糊化特性的差异[3]。

淀粉的糊化和淀粉糊

淀粉的糊化和淀粉糊

淀粉的糊化和淀粉糊张力田 (华南理工大学,广州市 510641) 淀粉是天然光合成,微小颗粒存在,不溶于水,一难被酶解。

这种颗粒的直接应用很少,一般是利用其糊化性质,在水的存在下加热,使颗粒吸水膨胀,形成水溶粘稠的糊,应用所得的淀粉糊。

淀粉的糊化性质和淀粉糊的性质关系应用,至为重要。

1 淀粉的糊化 淀粉颗粒不溶于水,但在水中能吸收少量水分,颗粒稍膨胀。

普通玉米淀粉和马铃薯淀粉在水中所含平衡水分大约28%和33%。

这种吸水和膨胀现象是可逆的,水分被干燥后仍恢复原来的颗粒结构大小。

混淀粉于水中,不停地搅拌。

颗粒悬浮于水中,形成白色悬浮液,称为淀粉乳。

加热淀粉乳,颗粒随温度的升高,吸水更多,膨胀更大,达到一定的温度,原淀粉结构被破坏,吸水膨胀成粘稠胶体糊。

这种现象称为糊化,其温度称为糊化温度,形成的胶体称为淀粉糊。

淀粉的糊化温度在不同品种间存在差别,同一种淀粉在大小不同的颗粒间也存在差别。

大颗粒易棚化,糊化温度低,小颗粒难糊化,糊化温度高。

一淀粉颗粒的差别很大(2~150μm),淀粉乳受热,其中大颗粒先糊化,接着更多颗粒糊化,最后小颗粒糊化。

糊化温度是一个范围,相差约10℃,并不是一个固定的温度值。

玉米淀粉糊化温度为62~72℃,马铃薯淀粉糊化温度为56~68℃。

淀粉的糊化是吸热反应,热破坏淀粉分子间氢键,颗粒膨胀、吸水,结晶结构被破坏,偏光十字消失。

一种常用的测定糊化温度方法便是利用这种性质 ,偏光十字消失温度为糊化温度。

此方法应用偏光显微镜和电加热台,操作简单,结果可靠。

混少量淀粉样品入水中,浓度约0.1%~0.2%,取样滴于玻片上,约合100 ~200 个淀粉颗粒,四周围滴以甘油或矿物油,盖上玻片,置于电加热台上,约2 ℃/min 速度加热,经偏光显微镜观查,有颗粒偏光十字消失为糊化开始温度,随温度上升,更多颗粒糊化,约98 %颗粒糊化,便为糊化完成温度。

少量较小颗粒糊化困难,忽略之。

根据颗粒糊化的数量,还能估计约50 %颗粒被湖化,其温度为玉米淀粉62 -67 -72 ℃,马铃薯淀粉56 一63 - 68℃,木薯淀粉52- 57 - 64 ℃ 。

淀粉加工技术

淀粉加工技术

淀粉的制取与加工淀粉加工是利用具有不溶解于冷水、比重大于水以及与其他成分比重不同的特性进行物理的分离过程。

淀粉的用途十分广泛。

在食品工业中,淀粉是食品加工的原料。

在医药、发酵、纺织、造纸、粘胶、冶金、石油等工业中,淀粉是上千种产品的中间原料。

淀粉加工是农产品加工的一个非常重要的方面。

第一节淀粉生产的原料及淀粉的理化性质一、淀粉生产的原料淀粉虽然广泛地存在于各种植物体中,但作为生产淀粉的原料,必须具备淀粉含量高、易于提取、加工成本低、容易贮藏、副产品利用价值高等特点。

因此,用作生产淀粉的原料,主要有薯类、谷类和豆类等。

几类主要的淀粉原料特性如下:(一)禾谷类在禾谷类作物中,玉米、小麦等是生产淀粉的重要原料。

特别是玉米,它是工业化生产淀粉的主要原料。

1、玉米。

玉料是淀粉生产的主要原料之一。

具有淀粉品位高、质量好、生产成本低以及副产品利用价值高等特点。

目前,玉米淀粉的产量和质量,常因品种不同而有所差异。

在一般条件下,根据玉米的化学组分分析,其含水分13%,脂肪4.5%,淀粉70%,灰分2.0%,蛋白质8.5%,糖2%。

一般黄玉米较白玉米的淀粉含量高,粉质玉米较角质玉米的淀粉含量主高。

2、小麦。

小麦是主要粮食作物之一。

根据小麦的化学组分分析,其含水分9%-18%,脂肪1.5%-2%,淀粉60%-70%,纤维素2%-2.5%,糖2%-3%,灰分1.5%-2%。

小麦的淀粉含量较高,但含有面筋蛋白质,遇水则生成面筋,与淀粉不易分离。

小麦淀粉的生产一般以面粉为原料,其淀粉的产率为55%,同时还可得一以20%左右的次级淀粉和10%-15%的面筋。

(二)薯类薯类作物种类很多,作为生产淀粉的原料主要有甘薯、木薯和马铃薯等。

小型淀粉厂多用薯类作原料。

1、甘薯。

甘薯又名红薯,也称地瓜。

根据甘薯的组分分析,其含量水分72.4%,水化合物25.2%,蛋白质2%,粗纤维0.4%,脂肪0.2%,无机盐0.8%以及各种维生素等。

在碳水化合物中,以淀粉为主,蔗糖含5%,还含少量的糊精、单糖和戊糖等。

淀粉糊化的原理

淀粉糊化的原理

淀粉糊化的原理
淀粉糊化是指淀粉在加热过程中,由于受热的影响而失去结晶水,形成胶状物质的过程。

淀粉糊化的原理主要涉及两个方面:分子结构和物理化学变化。

首先,淀粉是由两种多糖类分子组成的聚合物:直链淀粉和支链淀粉。

直链淀粉含有α-1,4-葡萄糖键,而支链淀粉还含有α-1,6-葡萄糖键。

淀粉的纤维结构使得其在室温下呈现半晶体结构,形成了一种稳定的形态。

然而,当淀粉暴露于高温或湿热条件下时,其中的高糖基团在能量输入下开始运动。

这会导致分子中的氢键和范德华力弱化,淀粉的晶格结构开始破坏。

加热过程中,温度超过淀粉的玻璃化温度(约58-64℃),淀粉分子之间的相互作用逐渐减弱,
导致结晶区域的水分子被释放出来。

同时,加热还导致淀粉分子的变性。

淀粉分子在高温下会发生内部的断裂和重组,形成部分覆盖颗粒表面的胶体物质。

这些糊化淀粉分子通过荡钝部分颗粒间距和聚集在一起的方式形成了胶状物质。

总的来说,淀粉糊化的原理可以归结为温度升高,淀粉分子中的水分子被释放,分子间相互作用减弱,导致淀粉结构的破坏和形成胶状物质的过程。

这种糊化的淀粉在食品加工中常用于增加黏性、改善质地和增强口感等目的。

常见淀粉的特性黏度与黏度特性在线测量粘度计

常见淀粉的特性黏度与黏度特性在线测量粘度计

淀粉 玉米 马铃薯 小麦 木薯 高粱 大米
ቤተ መጻሕፍቲ ባይዱ
糊化开始温度℃
62 58 58 59 68 68
糊化中点温度℃
67 63 61 64 74 74
甘薯
58
65
资料来源:刘亚伟.玉米淀粉生产及转化技术[M]. 北京:化学工业出版社,2003:163
糊化完成温度℃ 72 68 64 69 78 78
72
1.3 变性淀粉的概述 1.3.1 变性淀粉的定义及作用
(1)糊化温度 解聚使糊化温度(GT)下降;非解聚中GT有升高也有下降,一般在淀粉结构中 引进亲水团如—OH、—COOH、—CH2COOH,可增加淀粉水分子与水的作用,使GT增加。高直链 淀粉结合紧密,晶格能高,较难糊化。
(2)淀粉糊的热稳定性 一般谷类的热稳定性大于薯类;通过接枝或衍生某些基团,从而改变基 团大小或架桥,可使淀粉的热稳定性增加。
淀粉在自然界中分布很广,是高等植物中常见的组分,也是碳水化合物贮藏的主要形式。在大
1
多数高等植物的所有器官中都含有淀粉,这些器官包括叶、茎(或木质组织)、根(或块茎)、球茎
(根、种子)、果实和花粉等。除高等植物外,在某些原生动物、藻类以及细菌中也都可以找到淀粉
粒。
植物绿叶利用日光的能量,将二氧化碳和水变成淀粉,绿叶在白天所生成的淀粉以颗粒形式存
几种淀粉的特性黏度与黏度特性的 关系研究
食品科学与工程 0601 刘艳英 指导教师:刘勤生
内容摘要:本实验主要研究玉米淀粉、马铃薯淀粉、红薯淀粉的特性黏度与黏度特性的关系,另外采用 γ 射
线对淀粉进行不同辐照剂量处理,得到性能不同的变性淀粉,以扩大其应用领域。实验结果表明:同一种淀粉,辐 照淀粉的特性黏度相比原淀粉降低了;不同来源淀粉,特性黏度值的大小关系为,红薯淀粉>马铃薯淀粉>玉米淀粉。 不同来源淀粉糊的黏度曲线及黏度特性有差异,马铃薯淀粉糊化温度最低,黏度上升快,峰值黏度最大;玉米淀粉 的热稳定性明显高于马铃薯淀粉和红薯淀粉;马铃薯淀粉的老化性与红薯淀粉的相近,但比玉米淀粉的弱;三种淀 粉均表现出优良的冷稳定性。马铃薯辐照淀粉与原淀粉相比,峰值黏度降低,冷稳定性减弱;老化性的强弱,没有 出现规律性变化; 10KGy 辐射剂量的马铃薯淀粉与酸变性马铃薯淀粉的各种黏度特性都十分接近。三种淀粉糊均属 于非牛顿型假塑性流体,具有剪切稀化现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档