新人教版八年级数学下册第二十章数据的分析小结与复习2

合集下载

八年级数学人教版下册课件第20章数据的分析小结

八年级数学人教版下册课件第20章数据的分析小结

A.148
B.158
C.165
D.178
跳远成 绩/厘米
140
148
158
165
178
185
190
人数 2 3 1 2 4 2 1
重点解析
跳远成 绩/厘米
140
148
158
165
178
185
190
人数 2 3 1 2 4 2 1
解:将这15个数据按照从小到大的顺序排列: 140、140、148、148、148、158、165、165、178、178、 178、178、185、185、190. 中位数是第8个,即165.
重点解析
3.某单位组织职工开展植树活动,植树量与人数之间的关 系如图,下列说法不正确的是( D ). A.共有30人参加本次植树活动 B.每人植树量的众数为4棵 C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
重点解析
重难点2:用样本估计总体
某零件加工厂为了解该批次零件的直径,随机抽取了 20 个零件 进行测量,结果统计如下表所示,这批次零件的平均直径是多少?
(3)由于我国水资源缺乏,许多城市常利用分段计费的方 法引导市民节约用水,即规定每个家庭的月基本用水量为m (吨),家庭月用水量不超过m(吨)的部分按原价收费, 超过m(吨)的部分加倍收费,你认为上述问题中的平均数、 众数和中位数哪个作为基本用水量比较合适?
.
深化练习
.
深化练习
(3)以中位数或者众数作为月基本用水量较为合 理. 理由:因为这样既可以满足大多数家庭用水量,也可 以引导用水量高于7吨的家庭节约用水.
一组数据中出现次数最多的数据称为这组数据的众数.
知识梳理

人教版八年级数学下册第二十章数据的分析小结(教案)

人教版八年级数学下册第二十章数据的分析小结(教案)
-众数:讲解众数在一组数据中的出现次数最多,可能有一个或多个众数的特点。
-方差、标准差的计算与应用:这两个指标是描述数据离散程度的关键,要使学生理解其在实际中的应用。
-方差:重点讲解方差计算公式,强调每个数据值与平均数差的平方在方差计算中的重要性。
-标准差:介绍标准差是方差的平方根,使学生理解标准差在数据标准化描述中的作用。
1.培养学生运用数据分析解决问题的能力,增强数据处理和数学建模的核心素养。
2.提高学生运用平均数、中位数、众数等描述数据集中趋势的能力,理解并运用方差、标准差描述数据离散程度。
3.培养学生制作频数分布表、绘制频数分布直方图的能力,提升几何直观和数据分析素养。
4.引导学生在实际问题中发现数学规律,培养逻辑思维和问题解决能力,增强数学应用意识。
五、教学反思
在今天的教学中,我尝试通过生活中的实例导入新课,希望以此激发学生对数据分析的兴趣。在讲解平均数、中位数、众数等基本概念时,我注意引导学生理解这些指标在描述数据集中趋势时的作用。同时,通过具体案例的分析,让学生感受到数据分析在实际中的应用价值。
在新课讲授过程中,我发现学生在理解方差、标准差等概念时存在一定难度。为了突破这个难点,我采用了举例和比较的方法,帮助他们理解这些指标在描述数据离散程度方面的意义。在实践活动中,学生们分组讨论并进行了实验操作,这有助于巩固他们对数据分析方法的理解。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数、众数的计算方法和应用场景。对于难点部分,如方差的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,如“如何选择合适的统计指标来描述班级同学的体育成绩”。

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)(带答案)

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)(带答案)

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)单选题1、小刘利用空闲时间到外地某建筑公司打工,公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)的工资为80元/天,如果某月(30天)正常上班的天数占80%,则当月小刘的日平均工资为()A.140元B.160元C.176元D.182元答案:C分析:根据平均数的计算公式即可得.解:由题意得:当月正常上班的天数为30×80%=24(天),不能正常上班的天数为30−24=6(天),则当月小刘的日平均工资为24×200+6×80=176(元),30故选:C.小提示:本题考查了求平均数,熟记公式是解题关键.2、某校航模兴趣小组共有40位同学,他们的年龄分布如表:B.众数、中位数C.平均数、方差D.中位数、方差答案:B分析:根据有40位同学,而13、14岁的共5+18=23位同学,可得众数;然后利用中位数的定义可确定这组数据的中位数,从而可对各选项进行判断.解:∵共有40位同学,13、14岁的共5+18=23位同学,14岁的占18位同学,∴14为众数,∴第20个数和第21个数都是14,∴数据的中位数为14.故选:B.小提示:本题考查了中位数,众数,平均数与方差,解题的关键是熟知它们的定义.3、佳佳同学5次上学途中所花时间(单位:min)x,y,10,11,9.已知这组数据的平均数为10,方差为2,则x2+y2的值为()A.192B.200C.208D.400答案:C解:∵x,y,10,11,9这组数据的平均数为10,∴x+y+10+11+9=5×10,∴x+y=20,∵x,y,10,11,9这组数据的方差是2,∴1[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2] =25x2-20x+100+y2-20y+100+0+1+1=10∴x2+y2=10+20(x+y)-100-100-1-1=10+20×20-100-100-1-1=208,故选:C.小提示:考查了平均数、方差和代数式求值.熟练掌握平均数与方差的计算公式是解题的关键.4、小明将自己家1月份至6月份的用水量绘制成了如图所示的折线统计图,那么小明家这6个月用水量的平均数和中位数分别是()A.10吨,12.5吨B.10吨,9.5吨C.9吨,10.5吨D.8吨,9.5吨答案:B分析:从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量,再将6个数据按从小到大的顺序排列,中间两个数的平均数就是中位数.解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10(吨),把这组数据按从小到大的顺序排列为:6,8,9,10,12,15,中位数为:(9+10)÷2=9.5(吨)故选:B.小提示:此题主要考查了折线图的应用以及平均数和中位数求法,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.5、某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5ℎ~25.5ℎ之间;②这200名学生参加公益劳动时间的中位数在20ℎ~30ℎ之间;③这200名学生中的高中生参加公益劳动时间的中位数可能在20ℎ~30ℎ之间;④这200名学生中的初中生参加公益劳动时间的中位数一定在20ℎ~30ℎ之间.所有合理推断的序号是()A.①②③④B.①②④C.①②③D.①④答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5~25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,高中学段栏各时间段人数分别为0−15,35,15,18,1,当0⩽t<10时间段人数为 0 时,中位数在10~20之间;当0⩽t<10时间段人数为 15 时,中位数在10~20之间,故③错误.④由统计表计算可得,初中学段栏0⩽t<10的人数在0~15之间,当人数为 0 时中位数在20~30之间;当人数为 15 时,中位数在20~30之间,故④正确.故选:B.小提示:本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.6、已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a的值可能是()A.7B.8C.9D.10答案:D分析:由平均数定义可得a+b的值,再由中位数的定义可知a、b中必有一个是小于4的,即可得出答案.解:∵数据1,2,3,4,5,a,b的平均数是4,∴1+2+3+4+5+a+b=7×4=28,∴a+b=13,将此组数据由小到大排列,则第4个数据即为中位数,又∵该组数据的中位数小于4,∴a,b两数中必有一个值小于4,∵a+b=13,∴a,b两数中较大的数的值大于9,∴a的值可能是10.故选:D.小提示:本题考查了平均数定义:所有数的总和除以数的个数;中位数定义:将一组数据从小到大排列,若奇数个数据则中间的就是中位数,若偶数个数据,则取中间两个数的平均数作为中位数;熟练掌握平均数和中位数定义是解题的关键.7、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.解:由题意得:10+3+a+7+55=6,解得:a=5;故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.8、某商店连续5天销售口罩的盒数分别为9,11,13,12,11,关于这组数据,以下结论正确的是()A.众数是11B.平均数是11C.中位数是12D.方差是107答案:A分析:根据中位数、众数、平均数、方差的计算方法分别求出结果再进行判断即可.解:将这5个数从小到大排列9,11,11, 12,13,最中间的数为11,因此中位数为11,出现次数最多的是11,因此众数是11,这7个数的平均数为9+11+11+12+13=565,方差为15×[(9−565)2+(11−565)2+(13−565)2+(12−565)2+(11−565)2]=4425.故选:A.小提示:本题考查中位数、众数、平均数、方差,掌握对应的计算方法是解题的关键.9、某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.88答案:C分析:将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分. 小王的最后得分为:90×33+5+2+88×53+5+2+83×23+5+2=27+44+16.6=87.6(分), 故选C .小提示:本题考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.10、如果将一组数据中的每个数都减去5,那么所得的一组新数据( ) A .众数改变,方差改变 B .众数不变,平均数改变 C .中位数改变,方差不变 D .中位数不变,平均数不变 答案:C分析:由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变, 故选:C .【小提示】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义. 填空题11、已知一组数据x 1,x 2,x 3,x 4,x 5的方差是14,那么另一组数据2x 1-2,2x 2-2,2x 3-2,2x 4-2,2x 5-2的方差是____________. 答案:1分析:根据方差的变化规律可得:数据2x 1-2,2x 2-2,2x 3-2,2x 4-2,2x 5-2的方差是22×14,再进行计算即可.解:∵x 1,x 2,x 3,x 4,x 5的方差是:14,∴另一组数据2x1,2x2,2x3,2x4,2x5的方差是:22×14=1,∴另一组数据2x1-2,2x2-2,2x3-2,2x4-2,2x5-2的方差是:1;所以答案是:1.小提示:本题考查了方差的知识,掌握当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,方差变为这个数的平方倍是解题的关键.12、生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol⋅m﹣2⋅s﹣1),结果统计如下:答案:乙分析:分别求甲、乙两品中的方差即可判断;解:S甲2=15[(32−25)2+(30−25)2+(25−25)2+(18−25)2+(20−25)2]=29.6S乙2=15[(28−25)2+(25−25)2+(26−25)2+(24−25)2+(22−25)2]=4S甲2>S乙2∴乙更稳定;所以答案是:乙.小提示:本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.13、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).答案:①②③分析:根据中位数,平均数和方差的意义,逐一判断即可.解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.故答案是:①②③.小提示:本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.14、如果一组数据中有3个6、4个−1,2个−2、1个0和3个x,其平均数为x,那么x=______.答案:1分析:利用平均数的定义,列出方程即可求解.解:根据题意得3×6+4×(−1)+2×(−2)+0+3x=x,13解得:x=1,所以答案是:1小提示:本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.15、学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.答案:88分析:利用加权平均数的求解方法即可求解.综合成绩为:85×20%+88×50%+90×30%=88(分),所以答案是:88.小提示:此题主要考查了加权平均数的求法,解题的关键是理解各项成绩所占百分比的含义.解答题16、市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.答案:(1)乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,10;乙10次射击成绩的平均数:8.2,方差:1.56;(2)甲;平均数高,且成绩稳定.分析:(1)根据平均数的公式“平均数=所有数之和再除以数的个数”乙队员10次射击的平均数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;(2)根据甲和乙的平均数和方差,选择平均数高和方差较小的同学即可. (1)解:乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,10; 则乙10次射击成绩的平均数=(6+2×7+3×8+2×9+2×10)÷10=8.2, 方差=110[(6−8.2)2+2×(7−8.2)2+3×(8−8.2)2+2×(9−8.2)2+2×(10−8.2)2]=1.56;(2)∵8.5>8.2,S 甲2=1.05,S 乙2=1.56, ∴S 甲2<S 乙2,∴甲的平均数高,且成绩稳定, ∴选择甲同学参加射击比赛.所以答案是:甲;平均数高,且成绩稳定.小提示:本题主要考查了平均数、方差的计算公式及应用等知识,熟练掌握平均数和方差的计算是解决问题的关键.17、某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示. 根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为___________分; (2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好.答案:(1)95(2)初中代表队的平均数为90分,高中代表队的平均数为95分(3)初中代表队学生复赛成绩的方差是40,高中代表队成绩较好分析:(1)根据中位数的定义可得答案;(2)按照平均数的计算方法计算即可;(3)计算初中代表队的方差,再比较即可.(1)解:五个人的成绩从小到大排列为:90、90、95、100、100.第3个数为中位数,所以中位数是95;所以答案是:95;(2)解:高中代表队的平均数为(90+90+95+100+100)÷5=95(分),初中代表队的平均数为(80+90+90+90+100)÷5=90(分);(3)×[(80−90)2+(90−90)2+(90−90)2+(90−90)2+(100−解:初中代表队的方差为1590)2]=40.∵95>90,20<40,∴高中代表队成绩较好.小提示:本题考查数据的收集与整理,熟练掌握中位数、平均数、方差的计算方法是解题关键.18、2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:(1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;(2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;(3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.答案:(1)见解析(2)64分钟(3)980名分析:(1)用扇形统计图表示各组人数占所调查人数的百分比;(2)根据平均数的计算方法进行计算即可;(3)样本估计总体,求出样本中每天校外体育活动时间不少于1小时的学生所占的百分比即可.(1)解:由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;(2)=64(分),解:55+65+63+57+70+75+637答:小明本周内平均每天的校外体育活动时间为64分钟;(3)1400×60+10=980(名),100答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.小提示:本题考查统计图的选择,频数分布表以及平均数,掌握各种统计图的特点以及加权平均数的计算方法是正确解答的前提.。

最新新编八年级数学下册第二十章数据的分析知识点总结新版新人教

最新新编八年级数学下册第二十章数据的分析知识点总结新版新人教

第二十章数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。

众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.极差:是指一组数据中最大数据与最小数据的差。

巧计方法,极差=最大值-最小值。

方差:各个数据与平均数之差的平方的平均数,记作s2.巧计方法:方差是偏差的平方的平均数。

标准差:方差的算术平方根,记作s 。

二教学时对五个基本统计量的分析:1 算术平均数不难理解易掌握。

加权平均数,关键在于理解“权”的含义,权重是一组非负数,权重之和为1,当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。

学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。

采取的措施:弄清权的含义和算术平均数与加权平均数的关系。

并且提醒学生再求平均数时注意单位。

2 平均数、与中位数、众数的区别于联系。

联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数的应用最为广泛。

区别:A 平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动。

B 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响。

当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

C 众数主要研究个数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数。

其中众数的学习是重点。

学生出现的问题:求中位数时忘记排序。

对三种数据的意义不能正确理解。

采取的措施:加强概念的分析,多做对比练习。

3 极差,方差和标准差。

方差是重难点,它是描述一组数据的离散程度即稳定性的非常重要的量,离散程度小就越稳定,离散程度大就不稳定,也可称为起伏大。

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记(带答案)

八年级数学下册第二十章数据的分析知识汇总笔记单选题1、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.2、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个答案:D分析:如图延长E F交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题.解:如图延长E F交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S=S△EBG=2S△BEF,故③正确,四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.小提示:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3、自去年9月《北京市打赢蓝天保卫战三年行动计划》发布以来,北京市空气质量呈现“优增劣减”特征,“蓝天”含金量进一步提高,下图是今年5月17日至31日的空气质量指数趋势图.(说明:空气质量指数为0﹣50、51﹣100、101﹣150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优良的天数占45;②在此次统计中,空气质量为优的天数多于轻度污染的天数;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.所有正确结论的序号是( )A .①B .①②C .②③D .①②③ 答案:D分析:根据折线统计图的数据,逐一进行分析即可.解:①在此次统计中,空气质量为优良的天数占1215=45,此项正确;②在此次统计中,空气质量为优的天数5天,多于轻度污染的天数3天,此项正确;③20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,此项正确. 故选:D .小提示:本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题. 4、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A .x+842B .10x+42015C .10x+8415D .10+42015答案:B分析:先求出15人的总成绩,再用15个人的总成绩除以15即可得整个组的平均成绩. 15个人的总成绩10x+5×84=10x+420,所以整个组的平均成绩为:再除以15可求得平均值为10x+420,15故选B.小提示:本题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5、在风凰山教育共同体数学学科节中,为展现数学的魅力,M老师组织了一个数学沉浸式互动游戏:随机请A,B,C,D,E五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.−3B.−4C.5D.9答案:D分析:设报D的人心里想的数是x,则再分别表示报A,C,E,B的人心里想的数,最后通过平均数列出方程,解方程即可.解:设D同学心里想的那个数是x,报A的人心里想的数是10-x,报C的人心里想的数是x-6,报E的人心里想的数是14-x,报B的人心里想的数是x-12,所以有x-12+x=2×3,解得:x=9.故选:D.小提示:本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.6、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A .12B .1C .32D .√3 答案:B分析:根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出. ∵∠ACB =90°,∠A =30°, ∴BC =12AB . ∵BC =2,∴AB =2BC =2×2=4, ∵D 是AB 的中点, ∴CD =12AB=12 ×4=2.∵E ,F 分别为AC ,AD 的中点, ∴EF 是△ACD 的中位线. ∴EF =12CD =12 ×2=1.故答案选B.小提示:本题考查了直角三角形的性质,三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理. 7、在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:.92 答案:B分析:先求出比赛的10个学生的成绩总和,再除以10得出平均分. 解:80+85×4+90×3+95×2=880,880÷10=88;故选:B.小提示:本题主要考查加权平均数,解题的关键是明确加权平均数的计算方法.8、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.9、为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是().96分,100分答案:B分析:根据中位数的定义和众数的定义分别求解即可.解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是92+96=94;2由统计表得数据96出现的次数最多,∴众数为96.小提示:本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.10、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.填空题11、某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.答案:2040试题解析:由题意得出:70名同学一共借书:2×5+30×3+20×4+5×15=255(本),×255=2040(本).故该校九年级学生在此次读书活动中共读书:56070故答案为2040.12、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.[(x1−20)2+(x2−20)2+⋅⋅⋅+(x12−20)2],已知9是这组数据中的一个数据,13、如果一组数据的方差S=112现把9去掉,所得新的一组数据的平均数是______.答案:21分析:由方差可知,这组数据共有12个,平均数为20,进而可知去掉一个数据后共有11个数据,数据总和为12×20−9=231,然后根据平均数的计算公式求解即可.解:由方差可知,这组数据共有12个,平均数为20,∴去掉9后,所得新的一组有11个数据的数据总和为12×20−9=231,∴新的一组数据的平均数为231=21,11所以答案是:21.小提示:本题考查了方差,平均数.解题的关键在于根据方差确定原数据共有12个,平均数为20.14、7名同学1分钟踢毽子比赛成绩如下(单位:个)89,87,36,95,89,80,69,这组数的中位数是______.答案:87分析:先把这组数据从小到大的顺序排列起来,在这组数据中最居中的那个数就是中位数(或最中间两个数据的平均数),解答即可.解:7个数据按从小到大排列:36 、69、80、87、89、89、95,∵第4个数是87,∴这组数的中位数是87.所以答案是:87.小提示:本题考查了学生对中位数的意义的掌握与理解,考查了学生分析观察解决问题的能力.15、睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是_______.答案:8.4小时分析:求出已知三个数据的平均数即可.根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为8.4小时小提示:此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.解答题16、杨梅销售公司在向果农收购相同品种“东魁”杨梅时,按照杨梅单果质量(单位:g)的整体分布情况,确定整批杨梅的等级,并按照不同的等级确定不同的收购价.果农老张和老王各送来一批杨梅,收购员小李在他们送来的杨梅中分别随机抽检了100颗,秤出质量(单位:g),并把收集到的数据整理成下表:(2)从杨梅单果质量的平均数看,你认为老张家杨梅的收购价与老王家杨梅的收购价应该相同吗?请说明理由.(3)结果,收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级,你能用统计知识解释小李这样做的合理性吗?答案:(1)86.4(2)应该相同,理由见解析(3)见解析,理由见解析分析:(1)用360°乘以老王家特优杨梅的频率即可;(2)分别求出两家的平均数,即可比较出来;(3)根据所求数据进行分析即可.(1)解:360°×24=86.4°,100所以答案是:86.4;(2)=25(克)解:老张家杨梅的等级的平均数为x1=20×17.5+32×22.5+26×27.5+22×32.5100老王家:x2=14×17.5+26×22.5+36×27.5+24×32.5=26(克)100从平均数看,根据样本估计总体,老张家与老王家的杨梅单颗质量平均数落在同一级别中,所以两家收购价应该相同;(3)解:从中位数角度来看,根据样本估计总体,老张家的杨梅单颗质量中位数落在20≤x<25组,属于一等品;而老王家的杨梅单颗质量中位数落在25≤x<30组,属于优等品,因此收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级也是合理的.小提示:本题考查扇形统计图,平均数及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.17、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.答案:(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析分析:(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;所以答案是:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.小提示:本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.18、为进一步宣传防震减灾科普知识,增强学生应急避险和自救互救能力,某校组织七、八年级各200名学生进行“防震减灾知识测试”(满分100分).现分别在七、八年级中各随机抽取10名学生的测试成绩x(单位:分)进行统计、整理如下:七年级:86,90,79,84,74,93,76,81,90,87八年级:85,76,90,81,84,92,81,84,83,84七八年级测试成绩频数统计表(1)a=,b=,c=.(2)规定分数不低于85分记为“优秀”,估计这两个年级测试成绩达到“优秀”的学生人数.(3)你认为哪个年级的学生掌握防震减灾科普知识的总体水平较好?请说明理由.答案:(1)2,85,84(2)七、八年级测试成绩达到优秀的学生人数分别为100人和60人(3)八年级的学生掌握防震减灾科普知识的总体水平较好,见解析分析:(1)从题目中给出的七,八年级中各随机抽取10名学生的测试成绩中可直接求出a,c的值,根据中位数定义可求出b;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.(1)解:∵八年级的10名学生中有8名学生成绩低于90分,∴a=10﹣7﹣1=2,由数据可知:84出现次数最多,根据众数的定义可知:c=84,把七年级10名学生的测试成绩排好顺序为:74,76,79,81,84,86,87,90,90,93,根据中位数的定义可知,该组数据的中位数为b=84+862=85,所以答案是:2,85,84;(2)七年级10名学生的成绩中不低于85分的所占比例为510=12,八年级10名学生的成绩中不低于85分的所占比例为310,∴七年级测试成绩达到“优秀“的学生人数为:200×12=100(人),八年级测试成绩达到“优秀“的学生人数为:200×310=60(人),∴七、八年级测试成绩达到“优秀“的学生人数分别为100人和60人;(3)∵七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,则说明八年级的测试成绩更稳定,∴八年级的学生掌握防震减灾科普知识的总体水平较好.小提示:本题考查了频数分布表,平均数、方差的意义,中位数和众数的定义,样本估计总体等知识,掌握各知识点定义、意义及计算方法是解题的关键.。

初中数学八下第二十章_数据的分析小结与复习巩固基础

初中数学八下第二十章_数据的分析小结与复习巩固基础

第二十章数据的分析小结与复习考点呈现考点一、平均数的计算例1 某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名节水量(单位:吨)0.5 1 1.5 2同学数(人) 2 3 4 1请你估计这200A.180吨 B.200吨 C.240吨 D.360吨解析:选出的10名同学家庭平均节约用水量为x=(0.5×2+1×3+1.5×4+2×1)÷10=1.2,根据样本平均数可以估计总体平均数为1.2吨,所以估计这200名同学的家庭一个月节约用水的总量大约是1.2×200=240(吨),故选C.点评:平均数是用来衡量一组数据的一般水平,本题首先计算样本平均数,再用样本平均数可以估计总体平均数,再根据总体平均数估计总量.二、众数和中位数的计算例2 某射击小组有20人,教练根据他们某次射击的数据绘制成如图1所示的统计图. 则这组数据的众数和中位数分别是( )A.7,7 B.8,7.5C.7,7.5 D.8,6解析:从图形可知7环有7人,所以众数是7,中位数是第10个与第11个的平均数,从小到大排列第10个是7,第11个是8,所以中位数是7.5,故选C.点评: 本题主要是考查中位数和众数的概念及从条形统计图中收集相关信息,本题应该从统计图中获取每个数据出现的次数来确定众数是哪个数据,然后根据中位数的概念确定中位数的大小.三、加权平均数的计算例3 某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,测试项目测试成绩甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.解析:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72,丙的平均成绩为:(73+65+84)÷3=74.因为74>73>72,所以候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2,丙的测试成绩为:(73×5+65图1×3+84×2)÷(5+3+2)=72.8.因为76.3>72.8>72.2,所以候选人甲将被录用.点评:加权平均数的计算公式是解决问题的重点内容,要明确公式中各个量含义. 四、方差的计算 例4 有一组数据如下: 3, a , 4, 6, 7. 它们的平均数是5,那么这组数据的方差为_________.解析:由平均数的计算公式可得557643=++++a ,求出a=5,再根据方差公式,得[]2)57()56()54()55()53(51222222=-+-+-+-+-=s . 点评:本题首先根据平均数的定义求出字母的取值,再结合方差的计算公式求出方差. 五、方差的性质例5 一组数据有n 个数,方差为S 2.若将每个数据都乘以2,所得到的一组新的数据的方差是_______.解析:根据方差公式,S 2=n1[(x 1--x )2+(x 2--x )2+…+(x n --x )2],将一组数据每一个数都乘以2以后,方差变为原来的4倍,所以所得到的一组新的数据的方差是4S 2.点评:方差是衡量一组数据波动大小的量,一组数据都加上同一个数,方差不变,都乘以同一个数,方差变为原来的乘以数的平方倍.六、综合应用例6 某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解析:(1) x 甲=18(82+81+79+78+95+88+93+84)=85,x 乙=18(92+95+80+75+83+80+90+85)=85.这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2) 派甲参赛比较合适.理由如下:由(1)知__x 甲=__x 乙,2222222221S [(7885)(7985)(8185)(8285)(8485)(8885)8(9385)(9585)]35.5=-+-+-+-+-+-+-+-=甲 2222222221S [(7585)(8085)(8085)(8385)(8585)(9085)8(9285)(9585)]41=-+-+-+-+-+-+-+-=乙 因为__x 甲=__x 乙,22S S <乙甲,所以甲的成绩较稳定,派甲参赛比较合适.点评:本题中“从统计的角度看”,指向的是:①在平均成绩相同的情况下看成绩的稳定性;②取得高分的可能性;③多元化的选拔标准给了学生较大的思维空间,选派的标准不同则得出的判断也可能不同.这样,甲和乙都有被选派去参赛的资格.误区点拨一、平均数错例例1 小明家去年的饮食支出3600元,教育支出1200元,其他支出为7200元,小明家今年的这三项支出依次比去年增长了9%,30%,6%,小明家今年的总支出比去年增长的百分数是多少?错解:%6%30%97200%61200%303600%9++⨯+⨯+⨯=1116.剖析:由于小明家去年的饮食、教育和其他三项支出金额不等,所以饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600、1200、7200分别视为三项支出增长率的“权”,通过计算加权平均数解决.正解:7200120036007200%61200%303600%9++⨯+⨯+⨯=9.3%.即小明家今年的总支出比去年增长的百分数为9.3%.二、中位数时,忽视重复数字的排列致错例2 一名射击运动员连续打靶8次,命中的环数如图所示, 这组数据的中位数为 .错解:将以上数据依次排列为7,8,9,10,故其中位数为298+=8.5. 剖析:以上解题因忽略数据的个数而致错,求一组数据的中位数时,如有重复数字,应将重复的数字重复写,再求其中位数.正解:从图中可以看出共有8个数据,其中7是1个,8是3个,9是2个,10是2个,故第4、5个数都是9,其中位数为8.5.三、错把个数当成众数例3 在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数为 . 错解:数据50出现的15次,次数最多,所以众数为15.错因分析:题目所研究的对象是捐款数,而不是学生数,明确所研究的对象是解决此类题的前提,而这一点恰是部分学生所忽略的,因而导致出错.正解:数据50出现了15次,次数最多,所以众数为50元. 四、方差的计算忽视重复数据例4 甲、乙两人5次射击命中的环数如下:甲 7,9,8,6,10;乙 7,8,9,8,8,则这两人5次射击命中的环数的平均数甲x =乙x =8,方差2s 甲_____2s 乙.(填“>”、“<”或“=”)错解:甲的方差2甲S =〔(7-8)2+(9-8)2+(8-8)2+(6-8)2+(10-8)2〕÷5=2;乙的方差2乙S =〔(7-8)2+(9-8)2+(8-8)2〕÷3=32;所以2甲S >2乙S . 剖析:错在乙的方差计算出错,乙组5个数据中有3个8,正确计算是乙的方差2乙S =〔(7-8)2+(9-8)2+(8-8)2×3〕÷5=0.4,所以2甲S >2乙S .评注:通过观察甲、乙两组数据发现:乙组5个数据中有3个8,1个7、1个9;甲组数据为6、7、8、9、10各1个.因此甲组数据与平均数8离散程度较大,乙组数据与平均数8离散程度较小,所以方差2s 甲>2s 乙.本题也可通过计算方差进行比较,但是计算较繁,要仔细认真,以防出错.基础盘点1. 一组数据4,5,6,7,7,8的中位数和众数分别是( )A .7,7B .7,6.5C .5.5,7D .6.5,7 2. 数据1,6,3,9,8的极差是( ) A.1 B.5 C.6 D.83. 已知甲、乙 两组数据的平均数相等,若甲组数据的方差S 2=0.055,已组数据的方差S 2=0.105,则 ( )A.甲组数据比已组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与已组数据的波动一样大D. 甲、乙两组数据的波动不能比较 4. 有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( )A .平均数B .中位数C .众数D .方差课堂检测1. 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为( ).A.25.6,26B.26,25.5C.26,26D.25.5,25.52.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ) A.10B.10C.2D.23. 某日气温情况是最高气温为8℃,气温的极差为10℃,则该日最低气温为 .4. 李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.5. 某车间为了改变管理松散状况,准备采取每天任务定额和超产有奖的措施, 以提高 工作效率,下面是该车间15名工人过去一天中各自装配机器的数量(单位:台)6,7,7,8,8,8,9,9,10,10,11,13,15,15,16求:(1)这组数据的平均数、众数和中位数:(结果精确到0.01台)(2)管理者应确定每人标准日产量为多少台比较恰当?课后测评1. 某班一次语文测验的成绩如下:得100分的7人,90分的14人,80分的17人,70分的8人,60分的2人,50分2人,这里80分是()A. 平均数B. 是众数不是中位数C. 是众数也是中位数D. 是中位数不是众数2.某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是()A.甲B.乙C.丙D.不确定3. 某车间6月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的()A.众数是4 B.中位数是1.5 C.平均数是2 D.方差是1.254. 北京奥运会女子50米步枪三种姿势决赛进行,杜丽在决赛中虽然第一枪仅仅打出8.7环,但她在之后的九枪中顶住压力表现出色,她以690.3环创造奥运会纪录的成绩夺取金牌,现将杜丽在决赛中的成绩统计如下:这组数据的中位数是,众数是 .5. 学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则五年后这五名队员年龄的方差为____ .(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.参考答案基础盘点:1.D 2.D 3.B 4.B课堂检测:1.D 2.C 3. -2℃ 4.2105. (1)平均数10.13,众数8,中位数9.(2)若规定日产量为8,则绝大多数工人不需努力就可完成任务;若规定日产量为10.13,则大多数工人不能超产,会挫伤积极性,比较合理的生产定额应在恰好使多数人有可能超产的水平上,取中位数9比较恰当.课后测评:1.C 2. A 3.D 4. 10.2 10.8 5.0.86. (1)出现次数最多的数是14,所以众数是14岁;这组数据有50个数,将这组数按从小到大的顺序排列,第25、26个数都是15,所以中位数是15岁.(2)因为全体参赛选手的人数为:5+19+12+14=50,50×28%=14(名),所以小明是16岁年龄组的选手.。

人教版八年级数学下册第二十章数据的分析 小结与复习课件(共53张ppt)

人教版八年级数学下册第二十章数据的分析 小结与复习课件(共53张ppt)
第二十章 数据的分析
小结与复习
知识点总览
一、数据的集中趋势
定义 一组数据的平均值称为这组数据的平均数

算术平 均数
一么x般_=_地_n1(_x,_1+_如_x2_+果__…有_+__nxn_个)_数__x_1_,__x叫2,做…这,n个xn,数那的 平均数.
均 数
加权平 均数
一般地,若n个数x1,x2,…,xn的权分别
算术平均数:
如果有n个数据,x1,x2,…,xn,
那么
x
1 n
(x1+x2+…+xn)叫做这n个数的算
术平均数,用“ 拔”.
x
”表示,读作“x
加权平均数:
若n个数 x1 ,x2 ,… ,xn 的权分别是
1 ,2 ,…, n,

x11 x22 xnn 1 2 n
叫做这n个数的加权平均数.
小组生产的零件的次品数的( D )
A、平均数是2
B、众数是3
C、中位数是1.5 D、方差是1.25
4、某次体育活动中,统计甲、乙两班学生每分钟跳绳 的次数(成绩)情况如下表,则下面的三个命题中,
(1)甲班学生的平均成绩高于乙班学生 的平均成绩; (2)甲班学生成绩的波动比乙班学生成绩的波动大; (3)甲班学生成绩优秀的人数不会多于乙班学生成绩
方差越大, 数据的波 动越_大__, 反之也成 立
叫做这组数据的方差,记作s2
三、用样本估计总体
1.统计的基本思想:用样本的特征(平均数和方 差)估计总体的特征.
2.统计的决策依据:利用数据做决策时,要全面、 多角度地去分析已有数据,从数据的变化中发现它 们的规律和变化趋势,减少人为因素的影响.
知识点逐个突破

八年级数学下册第二十章数据的分析基础知识点归纳总结(带答案)

八年级数学下册第二十章数据的分析基础知识点归纳总结(带答案)

八年级数学下册第二十章数据的分析基础知识点归纳总结单选题1、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.2、某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.86答案:B分析:根据加权平均数的定义计算可得.解:80×40%+90×25%+84×25%+70×10%=82.5(分)故选:B小提示:本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.3、在一次素养比赛中,6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,则其中不受影响的统计量是()A.平均数B.中位数C.众数D.方差答案:B分析:利用已知条件可知统计时误将一位学生的成绩65分记成了60分,平均数和方差都要变,可对A,D作出判断;同时众数也要变化,可对C作出判断;此时的中位数不变,可对B作出判断.解:∵6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,∴众数要变,故C不符合题意;平均数与每个数有关,因此平均数也要变,故A不符合题意;方差与每个数据有关,数据变了方差也要变化,故D不符合题意;中位数是82.5,不会变化,故B符合题意;所以答案是:B.小提示:本题考查了平均数;中位数;方差;众数等知识,掌握平均数、方差、中位数、众数的含义是解题的关键.4、在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的()A.平均数B.众数C.方差D.中位数答案:D分析:15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8,我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.小提示:本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.5、为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差分析:分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,x 甲=2+6+7+7+85=6, S 甲2=15×[(2−6)2+(6−6)2+(6−7)2+(6−7)2+(8−6)2]=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,x 乙=2+3+4+8+85=5, S 乙2=15×[(2−5)2+(3−5)2+(4−5)2+(8−5)2+(8−5)2]=6.4, 所以只有D 选项正确,故选D.小提示:本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.6、一组数据为5,6,7,7,10,10,某同学在抄题的时候,误将其中的一个10抄成了16,那么该同学所抄的数据和原数据相比,不变的统计量是( )A .极差B .平均数C .中位数D .众数答案:C分析:根据中位数、平均数、众数、极差的定义和计算方法判断即可解:将一组数据为5,6,7,7,10,10,中的一个10抄成了16,不影响找第3、4位的两个数,因此中位数不变,故选:C .小提示:考查平均数、众数、中位数的意义和计算方法,理解各个统计量的意义是正确解答的前提.7、北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的众数和中位数分别是( ).分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中32是出现次数最多的,故众数是32;把数据按从小到大的顺序排列后,处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选:A.小提示:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x≥-2,故选:D.小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.9、若x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,则x1,x2,…,x30的平均数为()A.12(a+b)B.130(a+b)C.13(a+2b)D.14(a+4b)答案:C分析:根据平均数的定义进行计算即可求解.因为x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,根据平均数的定义,x1,x2,…,x30的平均数=10a+20b30=13(a+2b).小提示:本题考查平均数,掌握平均数的定义是解决此题的关键.10、如果x1与x2的平均数是5,那x1−1与x2+5的平均数是()A.4B.5C.6D.7答案:D分析:根据x1与x2的平均数是5,求出x1+x2=10,再根据平均数的计算公式求出答案.解:∵x1与x2的平均数是5,∴x1+x1=2×5=10,∴x1−1与x2+5的平均数是x1−1+x2+52=x1+x2+42=7,故选:D.小提示:此题考查了平均数的计算公式,熟记公式是解题的关键.填空题11、某地10家电商6月份的销售额如下表所示,销售额的中位数为 _______万元.分析:根据中位数的定义进行解答即可.解:∵10家电商6月份的销售额为:1,2,2,2,2,3,3,3,11,11,∴中位数为第5个数和第6个数的平均数,即中位数为2+32=2.5(万元),所以答案是:2.5.小提示:本题考查了中位数,解题的关键是掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12、为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50,40,30,70,60,则这组数据的平均数是_________.答案:50分析:根据算术平均数的求法计算即可.解:这组数据的平均数为:50+40+30+70+605=50,所以答案是:50.小提示:本题考查了算术平均数,掌握算术平均数的求法是解题的关键.13、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分3:3:4的比例确定测试总分,已知小王三项得分分别为88:72:50,则小王的招聘得分为 _____.答案:70.2分分析:根据加权平均数的计算方法进行计算即可.小王的招聘得分为:88×310+72×410+50×310=70.2(分)故答案为70.2分小提示:本题考查加权平均数的意义和计算方法,掌握加权平均数的计算方法是正确计算的前提.14、已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.答案:5.5分析:先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴16(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是12×(5+6)=5.5,故答案为5.5.小提示:本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是5是解本题的关键.15、若四个数据4,5,x,6的平均数是5,那么x的值是________.答案:5分析:根据平均数的定义计算即可.(4+5+x+6)=5,解得:x=5.根据题意知14故答案为5.小提示:本题考查了平均数的定义,解题的关键是根据平均数的定义构建方程解决问题.解答题16、新世纪百货茶江商都统计了30名营业员在某月的销售额,统计图如图,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有的人数为.(2)根据(1)中规定,所有称职以上(称职和优秀)的营业员月销售额的中位数为,平均数是多少?(写出计算平均数的解答过程)(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.答案:(1)21(2)中位数是22万元,平均数是225万元21(3)这个奖励标准应定月销售额为22万元合适,因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖分析:(1)根据条形统计图的数据即可求出称职、优秀层次营业员人数;(2)根据中位数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.(1)由图可知营业员优秀人数为:2+1=3(人),称职人数为:5+4+3+3+3=18(人),所以称职和优秀的营业员共有的人数为:18+3=21(人),所以答案是:21;(2)由(1)知称职以上的营业员人数为:21人所以,月销售额的中位数是第11人的销售额,即22万元,平均数是:(5×20+4×21+3×22+3×23+3×24+2×25+1×26)÷21=225(万元).21所以答案是:22万元;(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.小提示:本题考查的是条形统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,本题也考查了加权平均数、中位数的认识.17、2021年,我国粮食总产量再创新高.小刘同学登录国家统计局网站,查询到了我国2021年31个省、直辖市、自治区的粮食产量数据(万吨).并对数据进行整理、描述和分析.下面给出了部分信息.a.反映2021年我国31个省、直辖市、自治区的粮食产量数据频数分布直方图如图(数据分成8组:0≤x<1000,1000≤x<2000,2000≤x<3000,3000≤x<4000,4000≤x<5000,5000≤x<6000,6000≤x<7000,7000≤x≤8000):b.2021年我国各省、直辖市、自治区的粮食产量在1000≤x<2000这一组的是:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3(1)2021年我国各省、直辖市、自治区粮食产量的中位数为______万吨;(2)小刘同学继续收集数据的过程中,发现北京市与河南省的单位面积粮食产量(千克/公顷)比较接近,如下图所示,他将自2016年至2021年北京市与河南省的单位面积粮食产量表示出来:)(单位面积粮食产量=粮食总产量播种面积自2016-2021年间,设北京市单位面积粮食产量的平均值为x A,方差为S A2;河南省单位面积粮食产量的平均值为x B,方差为S B2;则x A______x B,S A2______S B2(填写“”或“<”);(3)国家统计局公布,2021年全国粮食总产量13657亿斤,比上一年增长2.0%.如果继续保持这个增长率,计算2022年全国粮食总产量约为多少亿斤(保留整数).答案:(1)1279.9(2)>,<(3)2022年全国粮食总产量13930亿斤分析:(1)根据中位数的定义计算即可;(2)分别计算出北京和河南的单位面积粮食产量的平均数即可比较平均数大小,方差大小根据图像判断:方差越小越稳定,方差越大波动越大;(3)2022年全国粮食总产量=2021年全国粮食总产量×(1+2.0%),即可得出.(1)解:将2021年我国各省、直辖市、自治区的粮食产量从小到大排列:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3,一共9个数字,中间的数字1279.9即为中位数,2021年我国各省、直辖市、自治区粮食产量的中位数为:1279.9(2)(6148+6146+6137+6183+6244+6197)≈6176,x A=16(5781+5894+6097+6237+6356+6075)≈6073,x B=16∴x A>x B,由图中可以看出:北京单位面积粮食产量波动小,比较稳定,河南单位面积粮食产量波动大,所以可知S A2<S B2;(3)由题意得:2022年全国粮食总产量=13657×(1+2.0%)=13657×1.02≈13930故2022年全国粮食总产量13930亿斤.小提示:本题考查了中位数的定义,平均数和方差的公式,方差的意义以及增长率问题,牢固掌握各项概念和公式以及正确计算是本题关键.18、某校依据教育部印发的《大中小学劳动教育指导纲要(试行)》指导学生积极参加劳动教育.该校七年级数学兴趣小组利用课后托管服务时间,对七年级学生一周参加家庭劳动次数情况.开展了一次调查研究.请将下面过程补全.①收集数据通过问卷调查,兴趣小组获得了这20名学生每人一周参加家庭劳动的次数,数据如下:3 1 2 24 3 3 2 3 4 3 4 05 5 26 4 6 3②整理、描述数据:整理数据,结果如下:6≤x<8 2③分析数据(1)兴趣小组计划抽取该校七年级20名学生进行问卷调查,下面的抽取方法中,合理的是()A.从该校七年级1班中随机抽取20名学生B.从该校七年级女生中随机抽取20名学生C.从该校七年级学生中随机抽取男、女各10名学生(2)补全频数分布直方图;(3)填空:a=___________;(4)该校七年级现有400名学生,请估计该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(5)根据以上数据分析,写出一条你能得到的结论.答案:(1)C(2)补全频数分布直方图见解析;(3)3(4)160人(5)七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)分析:(1)根据抽样调查的要求判断即可;(2)根据频数分布表的数据补全频数分布直方图即可;(3)根据中位数的定义进行解答即可;(4)用样本的比估计总体的比进行计算即可;(5)根据平均数、中位数和众数的意义解答即可.(1)解:∵抽样调查的样本要具有代表性,∴兴趣小组计划抽取该校七年级20名学生进行问卷调查,合理的是从该校七年级学生中随机抽取男、女各10名学生,故选:C(2)解:补全频数分布直方图如下:(3)解:∵被抽取的20名学生每人一周参加家庭劳动的次数从小到大排列后为:0 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 ,排在中间的两个数分别为3、3,∴中位数a=3+3=3,2所以答案是:3;(4)解:由题意可知,被抽取的20名学生中达到平均水平及以上的学生人数有8人,=160(人),400×820答:该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生为160人;(5)解:根据以上数据可知,七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)小提示:此题考查条形统计图、中位数、众数、用样本估计总体等知识,解答本题的关键是明确题意,利用数形结合的思想来解答.。

人教版八年级下册数学:第20章《数据的分析》小结与复习 练习案

人教版八年级下册数学:第20章《数据的分析》小结与复习  练习案

八年级下数学NO :7 主备人:银 波 审核人: 授课人: 第 周 星期 第 组 学生 预习评价: 整理评价第二十章《数据的分析》小结与复习一、知识点梳理:1、数据的集中趋势:23、用样本估计总体.统计的基本思想:用样本的特征(平均数和方差)估计总体的特征.(2).统计的决策依据:利用数据做决策时,要全面、多角度地去分析已有数据,从数据的变化中发现它们的规律和变化趋势,减少人为因素的影响.二、典例精析【考点一】平均数、中位数、众数例1 某市在开展节约用水活动中,对某小区200户居民 家庭用水情况进行统计分析,其中3月份比2月份节约 用水情况如右表所示:请问:(1) 抽取的200户家庭节水量的平均数是____,中位数是____,众数是____.(2) 根据以上数据,估计某市100万户居民家庭3月份比2月份的节水量是_________.针对训练:1.某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下:10 kg装100袋; 20 kg装220袋; 50 kg装80袋.如果每500 g大米的进价和售价都相同,则他最应该关注的是这些销售数据(袋数)中的()A.平均数B.中位数C.众数D.最大值2.一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的()A.1个 B.2个C.3个D.0个3.某地发生地震灾害后,某中学八(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是( )A.20,10 B.10,20C.16,15 D.15,164. 小刚在“中国梦·我的梦”演讲比赛中,演讲内容、语言表达、演讲技能、形象礼仪四项得分依次为9.8,9.4,9.2,9.3. 若其综合得分按演讲内容50%、语言表达20%、演讲技能20%、形象礼仪10%的比例计算,则他的综合得分是_________.【考点二】方差的计算及应用例 2 小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题:(1) 根据图中信息,补全上面的表格.(2) 分别计算成绩的平均数和方差,填入表格. 若你是老师,将小明与小亮的成绩比较析后, 将分别给予他们怎样的建议?针对训练:5.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图.根据图中的信息,小张小李两人中成绩较稳定的是 .【考点三】分析数据做决策例3 我市某中学七、八年级各选派10名选手参加学校举办的“爱我祖国”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值;(2)直接写出表中m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.针对训练:6.经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A,B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg):A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.25.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.95.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:(2)推广哪种种植技术较好?。

人教版八年级下册数学:第20章 数据的分析小结与复习

人教版八年级下册数学:第20章 数据的分析小结与复习

A.平均数
B.众数
C.中位数
D.方差
2.(2016年宜昌中考试题)在6月26日“国际禁毒日”
来临之际,华明中学围绕“珍爱生命,远离毒品”
主题,组织师生到当地戒毒所开展相关问题的问卷 调查活动.其中“初次吸毒时的年龄”在17至21岁 的统计结果如图所示,则这些年龄的众数是( C). A.18 B.19 C.20 D.21
准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及
以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,
得分情况如下图.
(1)在抽取的学生中不及格人数所占的百分比是

(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=
69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确
质量好些;
(2)计算出s2B 的大小,考虑平均数与方差,说明哪台机器出的
产品质量好些; s2B 0.008 s2A
∴B的操作更稳定
例题4


专业的杨梅质检员有检测杨梅糖度的仪器.
质检员抽样调查各10 颗甲、乙两种杨梅的糖度,得
到的结果分别如下(糖度越高,杨梅越甜):
甲:10 11 11 12 12 13 13 13 14 15
人教版八年级下册
第20章 数据的分析 小结与复习
“数据,已经渗透
到当今每一个行业和业 务职能领域,成为重要 的生产因素。人们对于 海量数据的挖掘和运用, 预示着新一波生产率增 长和消费者盈余浪潮的 到来。”
麦肯锡
统计调查的基本步骤
数据收集 数据整理
数据描述 数据分析
本章知识结构图
数据的 集中趋势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考题分类
题型一 平均数、中位数、众数及其应用
1. 为迎接某次运动会在某市的召开,该市将举办以“我为运动
添光彩”为主题的演讲比赛.某县经过紧张的预赛,王锐、李红 和张敏三人脱颖而出,他们的创作部分和演讲部分的成绩如下 表所示,扇形统计图是当地的 450 名演讲爱好者对他们三人进 行“我喜欢的选手”投票后的统计情况(没有弃权票,并且每人只 能推选 1 人).
创作 演讲
王锐 95 分 82 分
李红 90 分 85 分
张敏 88 分 90 分
图 20-4
(1)请计算三位参赛选手的得票数各是多少?
解:由题意,王锐的得票数:30% ×450=135(张); 李红的得票数:36% ×450=162(张); 张敏的得票数:34% ×450=153(张).
(2)现要从王锐、李红和张敏三人中推选一人代表该地区参加全市的 决赛,推选方案为:①演讲爱好者所投票,每票记1分;②将创作、演 讲、得票三项所得分按4∶5∶1的比例确定个人成绩.请计算三位选手 的个人成绩,从他们的个人成绩看,谁将会被推选参加该市的决赛?
表示波 动的量
定义
极差
一组数据中的___最__大__数__据____与 __最__小__数__据__的差,叫做这组数据的
极差,它反映了一组数据波动范围 的大小
方差
设有n个数据x1,x2,x3,…,xn, 各数据与它们的____平__均__数____的差
的平方分别是(x1-x)2,(x2- x)2,…,(xn-x)2,我们用它们的 平均数,即用 n1_[_(x_1_-_x_)_2+__(x_2-__x_)2_+_…__+__(x_n_-_x_)2_]来衡量 这组数据的波动大小,并把它叫做
题型三 数据分析的应用
1. 2014年7月25日全国青少年校园足球比赛落幕,某学 校为了解本校2400名学生对本次足球赛的关注程度,以利于 做好教育和引导工作,随机抽取了本校内的六、七、八、九 四个年级部分学生进行调查,按“各年级被抽取人数”与 “关注程度”,分别绘制了条形统计图(图1-1)、扇形统计 图(图1-2)和折线统计图(图2).
甲路段
16 15
14 16
15 14
乙路段
19 10
17
18
15
11
(2)哪段台阶路走起来更舒服?为什么? 解:甲台阶走起来更舒服些,因为它的台阶高度的方差小.
(3)为方便游客行走,需要重新整修上山的小路,对于这两 段台阶,在台阶数不变的情况下,请你提出合理的整修建议. 解:使每个台阶的高度均为15cm,使得方差为0.
A.中位数是6吨 B.平均数是5.8吨
C.众数是6吨
D.极差是4吨
变式题 :四个数据8,10,x,10的平均数与中位数相等,则x等 于( D ) A.8 B.10 C.12 D.8或12
题型二 极差、方差及其应用
1.在某旅游景区上山的一条小路上,有一些断断续续的台阶,
如图所示,是其中的甲、乙台阶的示意图,请你用学过的
x2,…,xk这k个数的加权平均数,其中f1,f2,…,
fk叫做x1,x2,…,xk的权,f1+f2+…+fk=n
将一组数据按照由小到大(或由大到小)的顺序排列,

定义
如果数据的个数是奇数,则处于___中__间__位__置__的__数____就 是这组数据的中位数,如果数据的个数是偶数,则中

间___两__个__数__据__的__平__均__数___就是这组数据的中位数
这组数据的方差,记作s2
意义
极差是最简单的一 种度量数据波动情 况的量,但它受极 端值的影响较大
方差越大,数据的 波动越___大_____, 反之也成立
用样本估计总体
1.统计的基本思想:样本特征估计总体的特征. 2.统计的决策依据:利用数据进行决策时,要全面、多角
度地去分析已有数据,从数据的变化中发现它们的规律 和变化趋势,减少人为因素的影响.
统计知识回答下列问题:
甲路段
15 14 14
16
16
15
19
乙路
10

17 18
15
11
(1)两段台阶路有哪些相同点和不同点?
解:
x甲
15,
中位数:15,S
2 甲
2,
3
极差:2
相同点:两x乙段 1台5,阶中的位平数均:16高,S度甲2 相 3同35,;极差:9
不同点:两段台阶的中位数、方差和极差不同.
解:王锐的个人成绩:4×95+45+×58+2+11×135=92.5(分);
李红的个人成绩:4×90+45+×855++11×162=94.7(分);
张敏的个人成绩:4×88+45+×950++11×153=95.5(分).
∴张敏将会被推选参加该市的决赛.
2. 2010年因干旱影响,凉山州政府鼓励居民节约用水,为了 解居民用水情况,在某小区随机抽查了20户家庭的月用水量, 结果如下表:则关于这20户家庭的月用水量,下列说法错误 的是( ) D
第二十章 数据的分析
小结和复习
回眸 点睛
考题 分类
复习 归纳
课后 演练
回眸点睛
数据的代表
平均数 中位数 众数
极 数据的波动
方 平均数 中位数计总体平均数



用样本方差

估计总体方差

极差
方差
集中趋势
波动大小
数字特征
定义 一组数据的平均值称为这组数据的平均数
算术平 均数
(1)本次共随机抽查了 200 名学生,根据信息补全图(1-1) 中条形统计图,图(1-2)中八年级所对应扇形的圆心角的度 数为 144°;
一 __x般 _=_地_n1_(x,_1_+如__x果_2_+_有_…_n_+个__x数n_)_x_1,叫x做2,这…n个,数xn的,平那均么数


一般地,如果在n个数x1,x2,…,xn中,x1出现f1

加权平 均数
次 fk=,nx)2,出那现么f2次,,x=…_,_n1_(xx_1k_f出_1+_现_x_f2_kf次_2+_(_其…__中+__fx_1k+_fk_)f_2_+叫…做+x1,
数 防错 确定中位数时,一定要注意先把整组数据按照大小顺
提醒 序排列,再确定
定义
一组数据中出现次数___最__多___的数据叫做这组数据的 众数

数 防错 (1)一组数据中众数不一定只有一个;(2)当一组数据中 出现异常值时,其平均数往往不能正确反映这组数据
提醒 的集中趋势,就应考虑用中位数或众数来考查
相关文档
最新文档