七年级数学正数和负数教案

合集下载

七年级数学教案(上册)正数和负数

七年级数学教案(上册)正数和负数

七年级数学教案(上册)正数和负数一、教学目标:1. 让学生理解正数和负数的定义,能够区分正数和负数。

2. 让学生掌握正数和负数的运算规则,能够进行简单的加减乘除运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 正数和负数的定义2. 正数和负数的运算规则3. 练习题三、教学重点:1. 正数和负数的定义2. 正数和负数的运算规则四、教学难点:1. 正数和负数的运算规则2. 学生的逻辑思维能力和解决问题的能力五、教学方法:1. 讲授法:讲解正数和负数的定义和运算规则。

2. 案例分析法:通过实例分析,让学生理解正数和负数的运算规则。

3. 练习法:让学生通过练习题,巩固所学知识。

4. 小组讨论法:让学生分组讨论,培养学生的团队合作能力。

【教学内容】一、正数和负数的定义1. 正数的定义:大于0的数称为正数。

2. 负数的定义:小于0的数称为负数。

二、正数和负数的运算规则1. 同号相加:两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数。

2. 异号相加:一个正数和一个负数相加,如果正数的绝对值大于负数的绝对值,则结果为正数;如果负数的绝对值大于正数的绝对值,则结果为负数。

3. 同号相乘:两个正数相乘,结果为正数;两个负数相乘,结果为正数。

4. 异号相乘:一个正数和一个负数相乘,结果为负数。

5. 除法运算:正数除以正数,结果为正数;负数除以负数,结果为正数;正数除以负数,结果为负数;负数除以正数,结果为负数。

【课堂练习】1. 判断题:(1)2是正数,-2是负数。

()(2)两个正数相加,结果一定是正数。

()(3)一个正数和一个负数相乘,结果一定是负数。

()2. 选择题:A. -3B. 0C. 4D. -5(2)两个负数相加,结果是?A. 正数B. 负数C. 0D. 无法确定【课堂小结】本节课我们学习了正数和负数的定义,以及它们的运算规则。

正数是大于0的数,负数是小于0的数。

同号相加,异号相加,同号相乘,异号相乘,以及除法运算都有相应的规则。

人教版七年级数学上册第一章1.1正数和负数的概念(教案)

人教版七年级数学上册第一章1.1正数和负数的概念(教案)
3.重点难点解析:在讲授过程中,我会特别强调正数的意义和负数的意义这两个重点。对于难点部分,比如负数的概念,我会通过温度的例子和数轴的演示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正数和负数相关的实际问题,如温度、海拔等。
2.实验操作:为了加深理解,我们将进行一个简单的数轴操作实验。这个操作将演示正数和负数在数轴上的表示和它们之间的相对关系。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正数和负数的概念》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过温度低于0℃或者存款和借款的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正数和负数的奥秘。
-正数和负数的实际应用:通过生活中的实例,强调正数和负数在解决实际问题中的应用,如温度、收入支出等。
举例:讲解正数和负数的定义时,可以借助数轴,让学生理解0以上为正数,0以下为负数。比较大小的时候,可以通过具体的数字比较,如-3和-5,让学生明白绝对值的概念。
2.教学难点
-负数的概念理解:对于初中一年级的学生来说,负数是一个全新的概念,理解上可能存在困难。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生ห้องสมุดไป่ตู้组讨论(用时10分钟)
1.讨论主题:学生将围绕“正数和负数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你还能想到哪些使用正数和负数的例子?”

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。

2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。

本课内容是本章后续的有理数的相关概念及运算的基础。

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。

在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。

二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。

2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。

在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。

三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。

在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。

这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。

突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。

本节课的教学难点为:用正数、负数表示指定方向变化的量。

四、教学过程设计1、创设情境,引入新知教师展示教科书图1。

七年级数学《正数和负数》教案

七年级数学《正数和负数》教案

七年级数学《正数和负数》教案数学《正数和负数》教案一教学目标1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.三.正数与负数概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.四.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.5)到目前为止,所学过的数(除π外)都是有理数.数学《正数和负数》教案二教学目标1.使学生理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.知识结构1.正数.负数和零的概念正数负数零象1.2.5. .48等大于零的数叫正数象-1.-2.5, ,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数2.有理数的分类三.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.四.概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.例如:一定是负数吗?答案是不一定.因为字母可以表示任意的数,若表示正数时, 是负数;当表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.五.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.这样有理数按整数.分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.因此,有理数按正数.负数.0的关系还可分类为:3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.如圆周率就不能表示成分数.5)到目前为止,所学过的数(除外)都是有理数.教学设计示例(一)一.素质教育目标(一)知识教学点1.了解:是实际需要的.2.掌握:会判断一个数是正数还是负数.3.应用:会初步应用正负数表示温度.海拔高度等互为相反数意义的量.(二)能力训练点通过正数.负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.(三)德育渗透点1.从实际问题引入正数.负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2.通过正负数的学习,渗透对立.统一的辩证思想.(四)美育渗透点通过引人负数,学生会感觉得小学里学的数是〝不全〞的,从而通过本节课的教学,给学生以完整美的享受.二.学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.2.学生学法:研究实际问题→认识负数→负数在实际中的应用三.重点.难点.疑点及解决办法1.重点:会判断正数.负数,运用正负数表示具有相反意义的量.2.难点:负数的引入.3.疑点:负数概念的建立.四.课时安排2课时五.教具学具准备投影仪(电脑).自制活动胶片.中国地图.六.师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.七.教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1.2.3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆.回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问.【教法说明】教师利用问题〝有没有比0小的数?〞制造悬念,并且这时学生有一种急需知道结果的要求.(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午_点,晚6点,夜间_点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃.[板书]10 5 -5 -10师:再看一个例子,中国地形图上,可以看到我国有一座世界峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-_5米,这两个数表示的高度是相对海平面说的,你能说说8848米,-_5米各表示什么吗?(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-_5米表示吐鲁番盆地比海平面低_5米.【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察.动脉.讨论后得出答案,充分发挥了学生的主体地位.教师针对学生回答的情况给与指正.师:以上实例中出现了-5.-10.-_5这样的数,一般地温度比0℃高5℃.10℃.1.6℃.℃记作+5.+10.+1.6.+,大于0的数为正数;当温度比0℃低于5℃.10℃.2.2℃记作-5.-10.-2.2,像这样在正数前面加〝-〞号叫负数;0既不是正数也不是负数.师随着叙述给出板书[板书]正数:大于0的数负数:正数前面加〝-〞号(小于0的数)0:既不是正数也不是负数.【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数.负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的.(三)尝试反馈,巩固练习1.师板书后提问:第二个例子中的8848是什么数,-_5是什么数,海平面的高度是哪个数?2.出示1(投影显示)例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里〝-_,4.8,+7.3,0,-2.7,-,,,-8._,3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.数学《正数和负数》教案三正数集合负数集合4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?学生活动:1.2题学生回答,3题同桌交换审阅,4题讨论后举手回答.【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度.海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生回答.教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:(出示投影升)1.填空(1)-50表示支出50元,那么+100元表示_____________.(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.(3)乒乓球比标准重量重0._9记作_____________;比标准重量轻0._9记作_____________;标准重量记作______________.2.一个学生演示,教师提出要求规定向前走为正.(1)向前走2步记作_________________.(2)向后走5步记作_________________.(3)〝记作6步〞他应怎么走?〝记作-4步〞呢?(4)原地不动记作_________________.(出示投影5)3.例题一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.(1)如果向东运动4 记作4 ,向西运动5记作_______________.(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.【教法说明】用正数.负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数.负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求〝记作+5应怎样走?〞,这样在活跃.欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?—有没有比零小的数?(有,是负数)1.正数和负数表示的是一对相反意义的量.2.零既不是正数也不是负数.八.随堂练习1.判断题(l)0是自然数,也是偶数( )(2)0可以看成是正数,也可以看成是负数( )(3)海拔-_5米表示比海平面低_5米( )(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )(5)如果向南走记为正,那么-10米表示向北走-10米( )(6)温度0℃就是没有温度( )2.将下列各数填入相应的大括号里-9,,0, ,2000,+61,,-10.8正数集合负数集合3.用正数和负数表示下列各量(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________.(2)足球比赛,赢2球可记作_________球,输一球应记作____________球.九.布置作业(一)必做题1.下列各数中哪些是正数?哪些是负数?-_,0._,+ , , ,0,25.8,-3.6,-4,9651,-0.12.一物体可左右移动,设向右为正,(1)向左移动_ 应记作什么?(2)〝记作8 〞表明什么?(二)选做题1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方,哪个地方最低?的地方比最低的地方高多少?十.板书设计随堂练习答案1.√ _ √ √ _ _2.正数集合负数集合3.(1)+24℃,-3.5℃;(2)+2,-1作业答案(一)必作题1.0._, , ,25.8,9651是正数;-_,,-3.6,-4,-0.1是负数;2.(1)向左移动_ 记作 ;(2)记作表明物体向右移动 .(二)选作题1. .2.甲地,丙地最低,的地方比最低的地方高 .(二)一.素质教育目标(一)知识才学点1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解数0在有理数分类中的作用.(二)能力训练点培养学生树立对数分类讨论的观点和能正确地进行分类的能力.(三)德育渗透点通过联系与发展.对立与统一的思考方法对学生进行辩证唯物主义教育.(四)美育渗透点通过有理数的分类,给学对称美的享受二.学法引导1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识.2.学生学法:识记→练习巩固.三.重点.难点.疑点及解决办法1.重点:有理数包括哪些数.2.难点:有理数的分类.3.疑点:明确有理数分类标准.四.教具学具准备投影仪.自制胶片.五.师生互动活动设计教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题.六.教学步骤(一)复习导入(出示投影1)1.把下列各数填入相应的大括号内:+6, ,3.8,0,-4,-6.2, ,-3.8,正数集合负数集合2.填空:(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________.(2)如果规定+20表示收入20元,那么-10元表示______________.(3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在地不动记作__________________.【教法说明】出示投影后,学生思考,然后举手回答问题.当学生回答完一题后.教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正.负数的概念,以及零的特殊意义.通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示.师:在小学大家学过1,2,3,4……这是什么数呢?生:自然数.师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?生:负数.师:具体叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称.【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题.这样一步一个台阶的教学过程,符合学生认识问题的一般规律.(二)探索新知,讲授新课1.分类数的名称1,2,3,4……叫做正整数;-1,-2,-3,-4……叫做负整数.0叫做零., , (即)……叫做正分数;, , (即)……叫做负分数;正整数.负整数和零统称为整数.正分数和负分数统称为分数.整数和分数统称有理数.即【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律.提出问题:巩固概念(出示投影2)(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解.新授过程中随时设计习题进行反馈练习,以便调节回授.注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数.2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:(1)先把有理数按〝整〞和〝分〞来分类,再把每类按〝正〞与〝负〞来分类,如下表:(2)先把有理数按〝正〞和〝负〞来分类,再把每类按〝整〞和〝分〞来分类,如下表尝试反馈,巩固练习(出示投影3)下列有理数中:-7,10.1, ,89,0,-0.67, .哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生思考,然后找同学逐一回答.其他同学准备补充或纠正.【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力.3.数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合.同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合.(三)变式训练,培养能力(出示投影4)(1)把有理数6.4,-9, ,+10,,-0._1,-1, ,-8.5,25,0,100按正整数.负整数.正分数.负分数分成四个集合.正整数集合 ,负整数集合正分数集合 ,负分数集合(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:整数集合 ,分数集合正数集合 ,负数集合【教法说明】学生思考后,动笔完成上述第(1)题.一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力.第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感.(四)归纳小结师:今天我们一起学习了哪些内容?由学生自己小结,然后教师再总结:今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意〝0〞不是正数,但是整数.【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识.再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标.(五)反馈检测(出示投影5)(1)整数和分数统称为_______________;整数包括___________________._________________和零,分数包括________________和__________________.(2)把下列各数填入相应集合的持号内:-3,4,-0.5,0,8.6,-7整数集合 ,分数集合正有理数集合 ,负分数集合(4)选择题:-100不是( )A.有理数;B.自然数;C.整数;D.负有理数.以小组为单位计分,积分的组为优胜组.【教法说明】通过反馈检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感.七.随堂练习1.判断题(1)整数又叫自然数.()(2)正数和负数统称为有理数()(3)向东走-20米,就是向西走20米( )(4)温度下降-2℃,是零上2℃( )(5)非负数就是正数,非正数就是负数()2.在下列适当的空格里打上〝√〞号有理数整数分数正整数负分数自然数2-3._ 03.把下列各数分别填在相应的大括号里 1.8,-42,+0._, ,0,-3.__926,,1整数集合分数集合正数集合负数集合。

七年级数学教案(上册)正数和负数

七年级数学教案(上册)正数和负数

七年级数学教案(上册)正数和负数一、教学目标:1. 让学生理解正数和负数的定义,能够正确识别正数和负数。

2. 让学生掌握正数和负数的运算规则,能够进行简单的正数和负数运算。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 正数和负数的定义2. 正数和负数的运算规则3. 练习题三、教学重点:1. 正数和负数的定义2. 正数和负数的运算规则四、教学难点:1. 正数和负数的运算规则五、教学方法:1. 讲授法:讲解正数和负数的定义,演示正数和负数的运算过程。

2. 练习法:让学生通过练习题来巩固所学的内容。

3. 讨论法:让学生分组讨论练习题,培养学生的合作能力和解决问题的能力。

教学过程:一、导入:1. 引导学生回顾已学过的数的分类,如整数、分数、小数等。

2. 提问:同学们,你们知道正数和负数吗?它们有什么特点呢?二、新课讲解:1. 讲解正数的定义:正数是大于0的数,可以用“+”号表示。

2. 讲解负数的定义:负数是小于0的数,可以用“-”号表示。

3. 讲解正数和负数的运算规则:a. 同号相加,保留符号,绝对值相加。

b. 异号相加,保留符号,绝对值大的数减去绝对值小的数。

c. 同号相减,保留符号,绝对值大的数减去绝对值小的数。

d. 异号相减,保留符号,绝对值大的数减去绝对值小的数。

三、课堂练习:1. 让学生独立完成练习题,巩固所学的内容。

2. 针对学生的练习情况进行讲解和指导。

四、课堂小结:1. 回顾本节课所学的内容,让学生加深对正数和负数的理解。

2. 强调正数和负数的运算规则,提醒学生在实际应用中注意符号的运用。

五、课后作业:1. 让学生完成课后练习题,巩固所学的内容。

2. 鼓励学生进行自主学习,探索更多的正数和负数的运算规则。

六、教学拓展:1. 介绍正数和负数在实际生活中的应用,如金融、温度等。

2. 引导学生思考正数和负数的关系,如正数与负数的和为0,正数与负数的乘积为负数等。

七、巩固练习:1. 让学生通过练习题进一步巩固正数和负数的概念及运算规则。

七年级上册数学《正数和负数》教案

七年级上册数学《正数和负数》教案

七年级上册数学《正数和负数》教案教师不能死扣教案,把学生的思维的积极性压下去。

要根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

下面就是小编给大家带来的七年级上册数学《正数和负数》教案,希望能帮助到大家!初中数学教案1:正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高【例1】举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为( )A.3B.-3C.-2.5D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了 .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)初中数学教案2:正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0 m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247, 孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表: 星期一二三四增减 -5 +7 -3 +4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)初中数学教案3:有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高【例1】把下列各数填入相应的集合内:,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125, ,-3 ,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{ };(4)非负数集合{ };(5)有理数集合{ }.2.下列说法中正确的是( )A.整数就是自然数B. 0不是自然数C.正数和负数统称为有理数D. 0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?初中数学教案4:数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边, 都在原点的右边.(三)应用迁移,巩固提高【例1】下列所画数轴对不对?如果不对,指出错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.【例3】下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )A.1个B.2个C.3个D.4个【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有( )A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是( )A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是( )A.-1B.1C.-3D.3初中数学教案5:相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高【例1】填空(1)-5.8是的相反数, 的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是, 的相反数是它本身.【例2】下列判断不正确的有( )①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【例3】化简下列各符号:(1)-[-(-2)]; (2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).【归纳】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.【例4】数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A 的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华【归纳】(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.( )(2)-7和7是相反数.( )(3)-a的相反数是a,它们互为相反数.( )(4)符号不同的两个数互为相反数.( )2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是( )A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是( )A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.。

初一数学《正数和负数》教案(精选9篇)

初一数学《正数和负数》教案(精选9篇)

初一数学《正数和负数》教案(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初一数学《正数和负数》教案(精选9篇)教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。

初一数学《正数和负数》教案大全

初一数学《正数和负数》教案大全

初一数学《正数和负数》教案大全前言正数和负数是初一数学中的一个重要内容,也是学生学习数学的基础概念之一。

本文档旨在整理初一数学《正数和负数》教案,供教师备课和学生复习参考。

教学目标1.理解正数和负数的概念,并掌握正数和负数的表示方法。

2.掌握正数、负数之间的加减法。

3.能够应用正数和负数进行简单的实际问题解决。

教学内容第一课:正数和负数的概念教学目标1.理解正数和负数的概念。

2.掌握正数和负数的表示方法。

3.能够举一些实际例子来说明正数和负数。

教学重点1.正数和负数的概念。

2.正数和负数的表示方法。

教学难点1.负数的概念。

2.负数的表示方法。

教学过程1.初始活动(5分钟)教师可以通过在黑板上画一个数轴,并将数轴分为正数和负数两个区域,向学生询问“你们学习数学的时候,见过这样的图形吗?你们知道这是什么吗?”引导学生回忆学习内容,并引入今天的新知识点。

2.导入新课(10分钟)教师请学生仔细观察一个数轴的样式,并向学生介绍正数、负数的概念。

教师可以先举一些简单的实际例子来说明正数和负数:(1)当我们向右走,所经过的路程叫做正路程,用正数表示;(2)当我们向左走,所经过的路程叫做负路程,用负数表示。

3.学习新知(25分钟)教师请学生依然观察数轴,并根据教师的提示分别用正数和负数表示一些简单的实际例子,例如:•当温度为25摄氏度时,用正数表示。

•当比赛队伍得分为-3分时,用负数表示。

教师还可以通过让学生自己举出一些例子,来进一步加深学生的印象。

4.确定课程目标(10分钟)教师请学生回顾当天所学内容,并总结课程目标。

第二课:正数和负数之间的加减法教学目标1.掌握正数和负数之间的加减法。

2.理解同号相加减不变的规律。

教学重点1.正数和正数之间的加减法。

2.正数和负数之间的加减法。

教学难点如何让学生理解同号相加减不变的规律。

教学过程1.初始活动(5分钟)教师可以通过向学生出一些简单的加减法来引导学生思考以下问题:“什么样的数能够相加?”“什么样的数不可以相加?”2.学习新知(25分钟)教师先向学生介绍同号相加减不变的规律,并用一些实际的例子来加深学生的理解。

正数和负数数学教案

正数和负数数学教案

正数和负数数学教案正数和负数数学教案「篇一」正数和负数数学教案1.1正数和负数使学生了解数是为了满足生产和生活的需要而产生、发展起来的;会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数.培养学生的观察、想象、归纳与概括的能力。

过程性目标探索负数概念的形成过程,使学生建立正数与负数的数感。

课前准备搜集生活中有关用负数表示的量并预习课文。

教学过程一.创设情景1.我们已经学过那些数?它们是怎样产生和发展起来的?我们知道,为了表示物体的个体或事物的顺序,产生了数1,2,3为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生、发展起来的。

2.让学生说出自己搜集到的生活中有关用负数表示的量。

3.在日常生活中,常会遇到下面的一些量,能用学过的`数表示吗?例1汽车向东行驶3千米和向西行驶2千米。

例2温度是零上10℃和零下5℃。

例3收入500元和支出237元。

例4水位升高1.2米和下降0.7米。

例5买进100辆自行车和买出20辆自行车。

二.探究归纳1.相反意义的量学生分组讨论:上面这些例子中出现的各对量,有什么共同特点?这里出现的每一对量,虽然有着不同的具体内容,但有着一个共同特点:它们都是具有相反意义的量.向东和向西、零上和零下、收入和支出、升高和下降、买进和买出都具有相反的意义。

让学生再举出几个日常生活中的具有相反意义的量。

2.正数与负数只用原来所学过的数很难区分具有相反意义的量.例如,零上5℃用5表示,那么零下5℃再用同一个数5来表示就不够了。

在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作“负”)号来表示.就拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用-5℃来表示。

七年级数学教案正数与负数优秀6篇

七年级数学教案正数与负数优秀6篇

七年级数学教案正数与负数优秀6篇《正负数》教案篇一·教学内容:北师大版数学教材第七册86-87页。

·教材分析:《正负数》是北师大版小学数学实验教材四年级上册第七单元《生活中的负数》的第二课时。

教材通过正负数在生活中的一些应用实例,引导同学们在实际生活中感受正负数在生活中的应用,理解、感受正、负数及0的意义,为进一步学习正负数打下较好基础。

·学情分析:第一课时《温度》的学习,学生已经了解了零上、零下温度的区别、读写方法,并形象而生动地感受了负数产生的背景及其在生活中的实际意义和应用。

本节课学习《正负数》较为轻松有趣,但应用正负数解决、理解生活中的实际问题会有一定的困难和挑战性。

·教学目标:知识与技能:学生通过感知正数与负数,初步体会生活中的负数是根据需要来界定的,体验具体情境中的负数;知道正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。

过程与方法:通过举例、尝试、探索等数学活动,初步培养学生的辨证思维能力和问题意识。

情感态度、价值观:激发学生对数学的浓厚兴趣和热爱,培养学生的合作意识;激发民族自豪感,渗透爱国主义教育。

·教学重、难点:了解正负数的意义,应用正负数表示生活中具有相反意义的量。

·教学过程预设:(一)、组织课前游戏:同学们,我们先来做个游戏,好吗?游戏的名字叫“截然相反”。

规则是:老师说一句话,你们要快速地说出和这句话意思相反的话。

零上温度上车前进做生意赚了钱足球比赛进了球(二)创设情境,引入新课:(一)、通过记录相反意义的数量,初步了解负数的意义:1、下面老师说几件生活中的事,请同学们记录相关信息。

要求:简明扼要,能看懂,记录时可以使用文字或者符号。

2、师叙述,生记录:足球比赛,中国队上半场进了2个球,下半场丢了2个球。

四照园小学2006年,四年级共转入15个学生,五年级共10个学生。

小明的妈妈做生意,三月份赚了6000元,四月份亏了2000元。

初一数学正负数教案

初一数学正负数教案

初一数学正负数教案教学目标:1. 理解正数与负数的概念,能够表示正数与负数;2. 能够用数轴表示正数与负数,并能够在数轴上表示给定的正数与负数;3. 通过具体的实例,了解正数与负数的加法与减法。

教学准备:1. 数轴模型;2. 小黑板或白板;3. 黑板笔或白板笔;4. 学生练习册或工作纸。

教学过程:一、导入新知识(5分钟)1. 提问:你们知道什么是正数和负数吗?请举例说明。

2. 学生回答后,教师解答:正数是大于零的数,如1、2、3等;负数是小于零的数,如-1、-2、-3等。

二、理解正数与负数(10分钟)1. 准备一个数轴模型,然后请学生观察数轴上的数字,并回答以下问题:a. 数轴的中央是什么数?(答案:0)b. 数轴的右侧是什么数?(答案:正数)c. 数轴的左侧是什么数?(答案:负数)2. 教师讲解:数轴上的右侧是正数,左侧是负数。

正数用正号“+”表示,负数用负号“-”表示。

三、数轴表示正数与负数(10分钟)1. 教师在黑板上画一条数轴,并标出0,然后请学生在数轴上表示以下数字:1,-2,3,-4,5。

2. 学生完成后,教师检查答案,并解释表示位置的意义。

四、正数与负数的加法(15分钟)1. 提问:正数与正数相加,结果是正数还是负数?为什么?2. 学生回答后,教师解答:正数与正数相加,结果是正数。

因为正数表示的是比零更大的数,两个正数相加,得到的数仍然比零更大。

3. 教师例举几个实际的加法例子,要求学生计算并给出结果。

例如:3+2=?,-4+2=?,-3+(-2)=?等。

4. 学生完成后,教师检查答案,并解释结果的意义。

五、正数与负数的减法(15分钟)1. 提问:正数与负数相减,结果是正数还是负数?为什么?2. 学生回答后,教师解答:正数与负数相减,结果可能是正数,也可能是负数,取决于两个数的大小关系。

3. 教师例举几个实际的减法例子,要求学生计算并给出结果。

例如:5-2=?,3-(-4)=?,-3-2=?等。

七年级数学正数和负数教案

七年级数学正数和负数教案

七年级数学正数和负数教案一、教学目标1.知道正数、负数的定义与表示方法,掌握正负数的大小比较;2.能够将实际生活中的问题转化为正负数的运算问题,正确地进行加减乘除运算;3.掌握使用数轴表示正负数以及使用数轴解决实际问题的方法;4.培养学生的思维能力和数学运算能力,激发学习兴趣。

二、教学内容1.正负数的概念及表示方法;2.正负数的大小比较;3.正负数的加减乘除运算;4.数轴的概念及使用方法;5.数轴解决实际问题。

三、教学重难点重点1.正负数的定义与表示方法;2.正负数的大小比较;3.正负数的加减乘除运算。

难点1.数轴的概念及使用方法;2.数轴解决实际问题。

四、教学过程第一课时1. 教师引入教师给学生出示一组有正数和负数的数列(例如:-3,-1,2,5,-4)并提问:“这些数有什么相同之处?有什么不同之处?”让学生自己思考,然后给出观察结果。

2. 正负数的概念与表示教师讲解正负数的定义和表示方法,先从整数的概念出发,引入正数和负数的概念,然后讲解正数和负数的表示方法。

3. 正负数的大小比较教师让学生回顾小学数学中关于数比大小的内容,并结合正数和负数的概念,讲解正负数的大小比较,引导学生掌握正确的比大小方法。

4. 教学练习教师出示一些正负数,让学生进行大小比较练习,加深学生对正负数大小的认识。

第二课时1. 教师引入教师出示一些实际生活中的问题(例如:“小明身上有100元,他去商店买东西花了60元,他现在有多少钱?”),引导学生将问题转化为正负数的运算问题。

2. 正负数的加减乘除运算教师讲解正负数的加减乘除运算,引导学生正确地进行运算。

教师还可以设计一些实际生活中的问题,让学生自己思考并进行运算,提高学生的运算能力。

3. 教学练习教师出示一些实际生活中的问题,让学生自己思考并进行运算,加深学生对正负数加减乘除运算的掌握。

第三课时1. 教师引入教师引入数轴的概念,讲解数轴的作用和使用方法。

2. 数轴的表示方法教师让学生自己画一条数轴(可以在黑板上画出来),然后将正数和负数表示在数轴上。

七年级数学教案正数与负数

七年级数学教案正数与负数

七年级数学教案正数与负数一、教学目标1.理解正数与负数的概念,能够正确读写正数与负数。

2.能够运用正数与负数表示具有相反意义的量。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

二、教学重点与难点重点:正数与负数的概念及读写方法。

难点:运用正数与负数表示具有相反意义的量。

三、教学过程1.导入新课(1)同学们,我们生活中会遇到很多表示数量的词,比如:5个苹果、3杯水、8本书等等。

这些词都是表示数量的,我们称之为“数”。

(2)那么,你们知道什么是正数和负数吗?今天,我们就来学习正数与负数的概念。

2.理解正数与负数的概念(1)我们来看一下正数。

正数是指大于0的数,如:1、2、3、4、5等。

(2)我们来看一下负数。

负数是指小于0的数,如:-1、-2、-3、-4、-5等。

(3)同学们,你们注意到正数和负数的表示方法了吗?正数前面没有符号,而负数前面有一个负号“-”。

(4)那么,0既不是正数也不是负数,它是一个特殊的数。

3.读写正数与负数(1)我们来学习如何读写正数与负数。

(2)读写正数时,直接读写数字即可,如:1读作“一”,2读作“二”。

(3)读写负数时,先读负号“-”,再读数字,如:-1读作“负一”,-2读作“负二”。

(4)同学们,试着读一读这些数:3、-4、5、-6。

4.运用正数与负数表示具有相反意义的量(1)同学们,我们已经学会了读写正数与负数,那么你们知道正数与负数可以表示具有相反意义的量吗?(2)比如:地上有5个苹果,我们可以用正数5表示;地下有3个苹果,我们可以用负数-3表示。

(3)再比如:小明赚了10元钱,我们可以用正数10表示;小明亏了5元钱,我们可以用负数-5表示。

a.小华上升了3米,小丽下降了2米。

b.小刚向右走了5步,小强向左走了4步。

5.练习与巩固a.判断下列各数中,哪些是正数,哪些是负数:7、-2、0、-5、3。

b.将下列具有相反意义的量用正数与负数表示:1.小王上升了4米,小张下降了6米。

精选《正数和负数教案》四篇

精选《正数和负数教案》四篇

精选《正数和负数教案》四篇《正数和负数教案》篇1教学目标:1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

3、培养学生获取信息,并进行分析的意识和能力。

4、进行德育渗透,培养学生科学精神和民族自豪感。

教学重点:了解负数的意义和负数在生活中的应用。

教学难点:理解负数的意义。

教学用具:电脑课件、实物投影仪、温度计。

教学过程:一、创设情境,导入新知。

同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。

(边说边板书:数数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。

能开始吗?1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

二、探讨交流,感知新知。

(一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

1、展示同学们的记录单(随机进行)根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。

)足球比赛转学情况账目结算上半场 2 四年级 7 三月份 900 下半场2五年级 3 四月份 100刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。

刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。

(渗透对应的数学思想)表示相反意义的两个量。

这张记录单,只把数据记了下来,没有说明情况。

请看这张记录单,你觉得怎样?(请学生们交流看法)足球比赛转学情况账目结算上半场进2个四年级进7人三月份 900 下半场输2个五年级出3人四月份 100这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。

人教版七年级数学上册:1.1《正数和负数》教案

人教版七年级数学上册:1.1《正数和负数》教案

人教版七年级数学上册:1.1《正数和负数》教案一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容,本节课主要让学生初步理解正数和负数的概念,掌握它们的性质,并能够进行简单的运算。

通过本节课的学习,为学生今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但对正数和负数的理解可能还比较模糊。

因此,在教学过程中,教师需要注重引导学生从实际问题中抽象出正数和负数的概念,并通过大量的例子让学生加深对它们的理解。

三. 教学目标1.让学生了解正数和负数的概念,掌握它们的性质。

2.培养学生运用正数和负数解决实际问题的能力。

3.培养学生合作交流、积极思考的良好学习习惯。

四. 教学重难点1.重难点:正数和负数的定义,以及它们的性质。

2.难点:如何让学生理解并熟练运用正数和负数解决实际问题。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法,引导学生从实际问题中抽象出正数和负数的概念,通过大量的例子让学生加深对它们的理解,并培养学生的合作交流能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和板书。

3.分组学生,每组选一个组长。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的图片,如温度计、股票走势图等,引导学生关注正数和负数在实际生活中的应用。

让学生举例说明生活中遇到的正数和负数,从而引出本节课的主题。

2.呈现(10分钟)介绍正数和负数的定义,让学生通过观察、分析、讨论,理解正数和负数的性质。

教师给出一些例子,如5、-3、0.5等,让学生判断它们是正数还是负数,并解释原因。

3.操练(10分钟)让学生进行一些简单的练习,如填空、选择题等,巩固对正数和负数概念的理解。

教师可设置一些实际问题,让学生运用正数和负数进行解答。

4.巩固(10分钟)教师提出一些问题,引导学生运用正数和负数进行思考。

如:“小华往东走了5米,小李往西走了3米,他们之间的距离是多少?”让学生分组讨论,并选出组长进行汇报。

初一上册数学《正数和负数》教案

初一上册数学《正数和负数》教案

初一上册数学《正数和负数》教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!初一上册数学《正数和负数》教案初一上册数学《正数和负数》教案(通用10篇)作为一位杰出的教职工,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。

最新-七年级数学教案正数与负数(优秀15篇)

最新-七年级数学教案正数与负数(优秀15篇)

七年级数学教案正数与负数(优秀15篇)作为一名教师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。

来参考自己需要的教案吧!以下是勤劳的小编给大家收集整理的15篇正数与负数教案的相关文章,仅供借鉴,希望对大家有所启发。

七年级数学正数和负数教案篇一1.1《正数和负数》教学设计方案(第1课时)教材分析:一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。

是本章有理数学习的基础。

二、教学目标知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。

2.能结合具体情境出现并提出数学问题,并解释结果的合理性。

情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。

三、教学重、难点重点:体会负数引入的必要性和有理数应用的广泛性,能应用正负数表示生活中的具有相反的意义的量。

难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。

教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念教学过程教师演示第一节首图片为主体的多媒体课件。

环节教师活动学生活动设计意图创设情境导入新课自主学习师生互动合作探究达标检测学习总结教师出示图片说明自然数的产生、分数的产生。

接着出示问题问题1 天气预报:北京市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?问题2 有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?三个问题中的-3、0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4

人教版七年级数学上册:1.1《正数和负数》教案4一. 教材分析《正数和负数》是人教版七年级数学上册的第一单元,主要介绍正数和负数的概念,以及它们的性质。

这一单元为学生以后学习代数、几何等数学知识打下基础。

在教材中,通过丰富的实例和生活中的问题,引导学生认识正数和负数,理解它们的相对性,以及掌握它们的运算规则。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念有了一定的了解。

但正数和负数作为新的数学概念,对学生来说还比较抽象,需要通过具体的生活实例来帮助他们理解和接受。

此外,学生可能对负数在实际生活中的意义和应用还不够明确,需要在教学中加以引导和拓展。

三. 教学目标1.知识与技能:使学生掌握正数和负数的概念,理解它们的性质和运算规则;2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:正数和负数的概念,性质和运算规则;2.难点:负数在实际生活中的意义和应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入正数和负数的概念,引导学生观察、分析和解决问题,培养学生的动手操作能力和合作意识。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备;2.学具:练习本、铅笔、橡皮;3.教学素材:正数和负数的实例、问题。

七. 教学过程1.导入(5分钟)通过展示生活中的一些实例,如温度、海拔、贷款等,引导学生认识正数和负数。

向学生解释,正数表示一种量,而负数表示与这种量相反的另一种量。

2.呈现(10分钟)向学生介绍正数和负数的概念,以及它们的性质。

举例说明,正数是大于0的数,负数是小于0的数。

引导学生观察和分析正数和负数的性质,如它们的相对性、运算规则等。

3.操练(10分钟)让学生进行一些简单的正数和负数的运算练习,如加减乘除、比较大小的。

在练习过程中,引导学生掌握正数和负数的运算规则,并能够灵活运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学正数和负数教案
以下是为您推荐的七年级数学正数和负数教案,希望本篇文章对您学习有所帮助。

七年级数学正数和负数教案
学习目标:
1、知识技能:了解正数和负数是怎样产生的;知道什么是正数和负数;理解数0表示的量的意义。

2、数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

3、解决问题:会用师生合作,联系实际,激发学生学好数学的热情。

重点:正、负数的意义。

难点:负数的意义及0的内涵。

课前准备
温度计、文具盒
教学流程安排
活动流程及活动内容和目的
活动1 问题引入通过活动使学生了解数起源于生活。

活动2 活动安排使学生进入问题情境。

从而引出问题。

活动3 举例说明用更多事例,丰富问题情境。

活动4 学习负数的概念说明什么是正、负数。

活动5 负数概念的应用进一步认识正数和负数。

活动6 负数概念的巩固全面认识正数和负数。

教学过程设计
活动1
1、请同学们数一数自己的文具盒中共有几支笔。

(若干支笔)
2、请一个同学数一数老师手中的文具盒中有几支笔。

(没有笔)
3、用一把小刀把一个苹果切成两半,半个苹果怎样用一个数来表示?
4、书P4 图1 .1-1 自然数的产生、分数的产生
师生行为及设计意图
通过活动说明数的产生和发展离不开生活和生产的需要。

原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用0表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。

通过创设情景问题,向学生渗透实践第一的辨证唯物主义观点。

活动2
1、各组派两名同学进行如下活动:一名同学按老师的指令表演,另一名同学在黑板上速记,看哪一组获胜。

2、各小组研究各自手中的温度计上刻度的确切含义,然后各小组派一名说出其中三个刻度的含义,请另一组一名同学在黑板上速记。

看哪一组获胜。

师生行为
1、教师说出指令:向前两步,向后两步;
向前一步,向后三步;
向前四步,向后一步;
向前四步,向后两步。

一名学生按老师的指令表演,另一名学生在黑板上速记。

2、一名同学说出指令:零上10℃,零下5℃,零上35℃。

零上15℃,零上48℃,零下12℃。

另一名学生按指令在黑板上速记。

设计意图
通过学生的活动,激发学生参与课堂教学的热情,使学生进入问题情境,引入新课。

教师分析同学们的活动情况,如果学生不能引入符号表示,教师也参与表演。

用符号表示出:+2、-2、+1、-3、+4、-1、+4、-2、+10、-5、+35、+15、+48、-12等,让学生感受引入符号的必要性。

活动3
问题展示
1、天气预报2019年12月某天北京的温度为―3~3℃,它的确切含义是什么?这一天北京的温差是多少?
2、某机器零件的长度设计为100㎜,加工图纸标注的尺寸为1000.5(㎜),这里的0.5代表什么意思?合格厂品的长度范围是多少?
3、有三个队参加足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?
师生行为
教师解释净胜球数与排名顺序:介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分,净胜球数都相同,进球多的队排名在前。

按照上述规定,红队第一,蓝队第二,黄队第三。

学生思考-3~3℃、净胜球数与排名顺序、0.5的意义。

设计意图
通过事例引出用各种符号表示的数,让学生试着解释,激发学生的求知欲望,让不同水平的学生都在进行积极的思维参与,兴致勃勃地参与学习活动。

同时对问题背景作些说明,有利于学生对问题的理解。

使学生感到数的扩充势在必行,扩充的理由是社会生产,生活的需要及数学自生发展的需要。

活动4
1、在师生活动中和问题中出现了一些新数据:-3、-
2、-5、-12、-0.5它们表示什么含义?
2、我们小学知道,数0表示没有,仔细观察上述的各例子,数0都表示没有吗?数0是正数吗?是负数吗?
师生行为
教师讲解:我们把这种前面带有号的数叫做负数。

并说明:为与负数相区别,我们把以前学过的0以外的数,例如3、2、0.5等,叫做正数,根据需要,有时在正数前面也加上+,例如,+2、+3、+0.5。

就是3、2、0.5。

一个数前面的+-号叫做它的符号。

教师说明数0的意义。

数0既不是正数,也不是负数,0是正数与负数的分界。

0℃是一个确定的温度,海拔0表示海平面的平均高度。

0的意义已不仅是表示没有。

设计意图
在出现若干个新数后,采用描述性定义,并与小学学过的数对比,有利于学生理解概念。

采用联系对比的方法,采取轻松的态度,尽量避免使概念复杂化。

活动5
展示问题
1、学生举例说明正、负数在实际中的应用。

2、在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。

通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。

珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为155米。

它表示什么含义?
3、记录帐目时,通常用正数表示收入款额,负数表示支出
款额。

则收入254元可记为多少元?支出56元可记为多少元?
4、 P5 图1、12 1、13
师生行为
教师安排学生分小组活动:举一些实际中用正数、负数表示数量的例子。

学生分组相互交流并推选代表发言。

教师与同学一起对各代表的发言进行评价。

教师解释:把0以外的数分为正数和负数,起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用。

例如,在地形图上表示某地的高度时,需要以海平面为基准。

设计意图
通过师生活动使学生真正理解正、负数,从而正确使用正、负数。

使学生感到,数的每一次发展都是为了满足社会生产与生活的需要。

活动6
1、练习P5
2、总结:这节课我们学习了哪些知识?你能说一说吗?
3、作业p7 1、2、3
师生行为
教师巡视、辅导。

及时纠正错误。

学生交流、完成练习。

巩固所学知识。

教师引导学生回忆本节课所学内容。

学生回忆交流。

教师和学生一起补充完善,使学生更加明晰所学的知识。

教师布置作业,学生记录作业。

设计意图
巩固所学的知识,教师努力使学生自己回顾、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密连结,完善认知结构。

相关文档
最新文档